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Abstract

Several recent papers (e.g., Newey et al., 2005; Newey and Smith, 2004; Anatolyev,

2005) derive general expressions for the second-order bias of the GMM estimator and its

first-order equivalents such as the EL estimator. Except for some simulation evidence, it

is unknown how these compare to the second-order bias of QMLE of covariance structure

models. The paper derives the QMLE bias formulas for this general class of models. The

bias – identical to the EL second-order bias under normality – depends on the fourth mo-

ments of data and remains the same as for EL even for non-normal data so long as the

condition for equal asymptotic efficiency of QMLE and GMM derived in Prokhorov (2009)

is satisfied.
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1 Motivation and Results

Consider a model formulated in terms of the second moments of the data, i.e. assume that

there exists a family of distributions {Pθ, θ ∈ Θ ⊂ Rp, Θ compact} and a random vector

Z ∈ Z ⊂ Rq from Pθo , θo ∈ Θ, such that EZ = 0, E{||Z||4} < ∞ and

E
[
ZZ′

]
= Σ(θ), if and only if θ = θo, (1)

and expectation is with respect to Pθo .

The measurable real-valued matrix function Σ(θ) comes from a structural model such as

a factor model, a random effects model, a simultaneous equations model, a conditional expec-

tation model, a LISREL model, etc. The matrix function is such that vec(Σ) is continuous

at each θ ∈ Θ, vec(Σ) is three times continuously differentiable on a neighborhood of θo and

p ≤ 1
2q(q + 1).

For a random sample (Z1, . . . ,ZN ), where Zi is measured as deviations from the mean,

denote

Si ≡ ZiZ′i (2)

and

S ≡ 1
N

N∑

i=1

Si. (3)

The problem is to estimate θo given the random sample (Z1, . . . ,ZN ).

The fourth moments exist by assumption so, by the central limit theorem,

√
N(vec(S)− vec(Σ(θo))) → N(0, ∆(θo)),

where

∆(θ) = V(vec(Si)) = Evec(Si)vec(Si)′ − vec(Σ(θ))vec(Σ(θ))′ (4)

and vec denotes vertical vectorization of a matrix. To save space we will omit the argument

of matrix-functions and write Σ instead of Σ(θ), Σo instead of Σ(θo), ∆o instead of ∆(θo),

etc.
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Gaussian (Q)MLE is the traditional estimation method in covariance structure literature

(see, e.g., Jöreskog, 1970). It is common to write it as

θ̂QMLE = arg min
θ∈Θ

{log |Σ|+ tr(SΣ−1)}.

This estimator will be compared with the EL and GMM estimators. The EL estimator is

defined as

θ̂EL = arg max
θ∈Θ

N∑

i=1

ln πi, s.t.
N∑

i=1

πim(Zi; θ) = 0 and
N∑

i=1

πi = 1,

where m(Zi; θ) = vech(Si) − vech(Σ) and vech denotes vertical vectorization of the lower

triangle of a matrix. The optimal GMM estimator is

θ̂GMM = arg min
θ∈Θ

{mN (θ)′WmN (θ)},

where

mN (θ) =
1
N

N∑

i=1

m(zi;θ) = vech(S)− vech(Σ),

and the asymptotically optimal weighting matrix is the inverse of the asymptotic variance

matrix of the moment functions:

Wo = {E[m(Zi; θo)m(Zi; θo)′]}−1. (5)

First order asymptotic comparisons of QMLE and GMM are well known (see, e.g., Chamberlain,

1984). Both estimators are consistent under standard assumptions and GMM and its first-

order equivalents dominate QMLE in terms of first-order efficiency except under normality as

their first-order conditions use optimal weights even under non-normality. It turns out, how-

ever, that QMLE of covariance structures preserves its asymptotic efficiency property even

under non-normality if certain conditions on higher moments of the data are satisfied (see,

e.g., Prokhorov, 2009; Satorra and Neudecker, 1994). In such cases, a comparison of higher

order properties is required to rank the estimators. For example, covariance structure QMLE

may be preferred to GMM in terms of its second-order bias.

There is a number of simulation-based papers that document significant finite sample

biases of the GMM estimator compared with alternative estimators using suboptimal weight-

ing, including the QMLE (see, e.g., Altonji and Segal, 1996; Clark, 1996; Horowitz, 1998).
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For instance, Clark (1996) reports simulation results in which Gaussian MLE of covariance

structures is unbiased even with non-normal data while the optimal GMM is severely biased.

Aside from the simulation results, second order bias comparison of the QMLE and the

GMM first-order equivalents for covariance structure models is not a well studied problem.

There are general theoretical results that compare the second order bias of GMM and (Gener-

alized) EL (see Newey and Smith, 2004; Newey et al., 2005; Anatolyev, 2005) and MLE and

GMM (see Rilstone et al., 1996) but they are not specialized to covariance structures. Given

the QMLE robustness property discussed above, such specialized results would be of value

because they may favor the traditional QMLE over the so called asymptotic distribution free

covariance structure estimators commonly used in practice (see, e.g., Browne, 1984; Satorra,

1992; Muthen, 1989).

There are some specialized theoretical and simulation-based results on asymptotic bias of

MLE and GMM for certain classes of covariance structure models, such as factor models and

structural equation models (see, e.g., Ogasawara, 2004, 2005). They suggest that QMLE of

some parameters in these types of models possesses an asymptotic robustness property in the

sense that its standard errors and first order asymptotic biases do not change under deviations

from normality. Example 2 of this paper contains a similar result – it shows that when the

QMLE standard errors are robust to deviations from normality, QMLE biases coincide with

those of EL. This result is of independent interest – it describes the circumstance in which

QMLE is clearly preferred to GMM.

Besides comparisons with other estimators, a specialized expression of QMLE bias for

covariance structures permits construction of a bias-corrected QMLE. I do not pursue this

point further in this paper although, given the derived bias expression, this is a straightforward

excercise. Finally, the stochastic expansion I use allows for the QMLE bias to be expressed

in terms of higher order moments of the distribution. This expression is simpler than the

one in terms of cumulants, which is available in the literature (see, e.g., Rothenberg, 1984;

McCullagh, 1987; Ogasawara, 2005).

Higher order stochastic expansions are based on the Taylor approximation of the first-order
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conditions at the true value. The expansions have the following form

√
N(β̂ − βo) = µ + N− 1

2 τ + Op(N−1), (6)

where µ and τ are Op(1) random vectors. Since QMLE and the GMM first-order equivalents

are
√

N consistent, their first-order bias, which can be obtained by taking the expectation of

the first term, is zero. Similarly, the first-order variances can be obtained as the expectation

of the outer product of the first term. The second-order bias is based on the expectation

of the first two terms in (6). Alternatively, the second-order bias can be obtained using the

Edgeworth approximation to the distribution as in Rothenberg (1984) and McCullagh (1987).

General expressions for µ and τ of extremum and minimum distance estimators with many

examples can be found in Newey and Smith (2004); Rilstone et al. (1996); Newey et al. (2005);

Ullah (2004). For instance, Newey and Smith (2004) in Lemma A4 of Appendix provide a

general form of µ and τ for m-estimators. Derivation of higher order stochastic expansions

involves higher order derivatives of the objective functions. Rilstone et al. (1996) use a recur-

sive definition of derivatives. Here, I follow Newey et al. (2005) and Newey and Smith (2004)

in using the traditional definition because I do not go to orders higher than two and because

I wish to compare the QMLE bias to the GMM and EL bias expressions they derive.

2 Proofs and Discussion

Let G(θ) denote the Jacobian matrix of the 1
2q(q+1) distinct second-order moments in (4) and

let D denote the duplication matrix that transforms vech into vec (see Magnus and Neudecker,

1988, p. 49). Also, define the Moore-Penrose inverse of D, D+ = (D′D)−1D′. Note that

G ≡ G(θ) =
∂m(Zi, θ)

∂θ′
= −∂vech(Σ)

∂θ′
.

The following lemma is used in derivation of the main results of the paper. It is well known

and thus given without proof (see, e.g., Chamberlain, 1984).

Lemma 2.1 The first order condition for θ̂QMLE is

G′D′(Σ⊗Σ)−1D [vech(S)− vech(Σ)] = 0. (7)
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In proofs of the main results I follow Newey and Smith (2004) and use an alternative

way of writing the first order condition, which circumvents the need to operate with the

inverse. Define λ = −D′[Σ(θ) ⊗ Σ(θ)]−1DmN (θ), where mN (θ) = 1
N

∑N
i=1 m(Zi;θ) =

vech(S)− vech(Σ). Then the QMLE of θ also solves the following equation

sN (β) ≡ 1
N

N∑

i=1

si(β) = 0,

where

si(β) = −

 G′λ

m(Zi;θ) + [D′(Σ⊗Σ)−1D]−1λ


 = −


 G′λ

m(Zi;θ) + [D+(Σ⊗Σ)D+′]λ


 .

So the QMLE of θ is identical to the upper part of the (p+ q2)-vector β = (θ′, λ′)′ that solves

this equation.

Define

Mj =
∂2si(β)
∂β′∂βj

, where βj is the j-th element of β, (8)

R = {G′[D+(Σ⊗Σ)D+′]−1G}−1 = [G′D′(Σ⊗Σ)−1DG]−1,

Q = RG′[D+(Σ⊗Σ)D+′]−1 = RG′D′(Σ⊗Σ)−1D,

P = D′(Σ⊗Σ)−1D(I−GQ).

Note that Mj does not depend on i because derivatives of mi are not random. As before, I

use subscript o to denote matrices evaluated at βo = (θ′o,0′)′.

Theorem 2.1 The estimator β̂QMLE satisfies (6) with

µ =


 Qo

Po


 1√

N

N∑

i=1

[vech(Si)− vech(Σo)], (9)

τ = 1/2


 −Ro Qo

Q′
o Po




p+q2∑

j=1

µjMjoµ,

where µj is the j-th element of µ.

Proof. Let M̄(β) = 1
N

∑N
i=1

∂si(β)
∂β′ , M(β) = E∂si(β)

∂β′ , M̄j(β) = 1
N

∑N
i=1

∂2si(β)
∂β′∂βj

and β̄ be

between β̂ and βo. Note that because ∂si(β)
∂β′ is non-random, M̄(β) = M(β). By the second-
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order Taylor expansion of (7) around βo, we have

sN (β̂) = 0

= sN (βo) + M̄(βo)(β̂ − βo) +
1
2

p+q2∑

j=1

(β̂j − βoj)M̄j(β̄)(β̂ − βo)

= sN (βo) + M(βo)(β̂ − βo) + [M̄(βo)−M(βo)](β̂ − βo)

+
1
2

p+q2∑

j=1

(β̂j − βoj)Mj(βo)(β̂ − βo) +

+
1
2

p+q2∑

j=1

(β̂j − βoj)[M̄j(β̄)−Mj(βo)](β̂ − βo).

Since M̄(βo) = M(βo), the third term in the last equation is zero. Also note that the last

term is Op(N−3/2).

Assume that M̄(βo) is not singular. Then,

β̂ − βo = −[M(βo)]
−1sN (βo)

−1
2
[M(βo)]

−1
p+q2∑

j=1

(β̂j − βoj)Mj(βo)(β̂ − βo)

+Op(N−3/2). (10)

But M(βo) = −

 0 G′

o

Go D+(Σo ⊗Σo)D+′


, sN (βo) = −


 0

mN (θo)


 and the second term

is Op(N−1). It follows that

β̂ − βo =
1√
N


 Qo

Po


 1√

N

N∑

i=1

[vech(Si)− vech(Σo)] + Op(N−1)

=
1√
N

µ + Op(N−1). (11)

Substituting (11) into (10), multiplying by
√

N and collecting terms of the same order yields

the result. ¤
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Note that Eµ = 0 and the first order variance of β̂QMLE based on (9) can be written as

Eµµ′ =


 Qo

Po


E[m(Zi,θo)m(Zi,θo)′]


 Qo

Po



′

=


 QoCoQ′

o QoCoP′
o

PoCoQ′
o PoCoP′

o


 , (12)

where C = D+∆D+′ and I have used the fact that E[m(Zi, θ)m(Zi, θ)′] = D+∆oD+′. The

upper left p×p block of (12) is the traditional expression for the asymptotic variance of θ̂QMLE

(see, e.g., Chamberlain, 1984).

Let B denote the second order bias of the relevant estimator. Using (6), the bias can be

written in terms of the expected value of τ as

B = Eτ/N.

Thus, an explicit form of the QMLE bias contains EµjMjoµ, j = 1, . . . , p + q2. But Mjo can

be written as

Mjo = − ∂2

∂β′∂βj


 G′λ

m(Zi, θo) + [D+(Σ⊗Σ)D+′]λ




∣∣∣∣∣∣
θ=θo,λ=0

=





−

 0 Gj′

o

Gj
o Ωj

o


 , j = 1, . . . , p

−

 Gj−p,o 0

Ωj−p,o 0


 , j = p + 1, . . . , p + q2

where Gj
o = ∂

∂θj
G

∣∣∣
θ=θo

, Gj−p,o = ∂
∂θ [G′ej−p]

∣∣
θ=θo

, Ωj
o = ∂

∂θj
[D+(Σ⊗Σ)D+′]

∣∣∣
θ=θo

, Ωj−p,o =

∂
∂θ′ [D

+(Σ⊗Σ)D+′ej−p]
∣∣∣
θ=θo

, and ej−p is a q2-vector of zeros with the (j − p)-th element

equal to 1. Therefore Mj is non-random and we can write

EµjMjoµ =





−

 0 Gj′

o

Gj
o Ωj

o


Eµµ′ej , j = 1, . . . , p

−

 Gj−p,o 0

Ωj−p,o 0


Eµµ′ej , j = p + 1, . . . , p + q2,

(13)
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where ek is a p + q2-vector of zeros with the k-th element equal to 1. Substituting (12) into

(13) and simplifying yields the result of the following theorem.

Theorem 2.2 The second order bias of β̂QMLE can be written as follows

BQMLE = − 1
2N


 −Ro Qo

Q′
o Po








p∑

j=1


 0 Gj′

o

Gj
o Ωj

o





 QoCoQ′

o

PoCoQ′
o


 ej

+
p+q2∑

j=p+1


 Gj−p,o

Ωj−p,o


 QoCoP′

oej−p



 , (14)

where Co = D+∆oD+′ and ek is the zero vector of relevant dimension in which the k-th

element is 1.

Newey and Smith’s (2004, Theorems 4.1 and 4.6) second-order bias for the GMM and the

EL estimators of θo can be written as follows

BEL = − 1
2N

QEL
o

p∑

j=1

Gj
oR

EL
o ej (15)

BGMM = BEL +
1
N

QEL
o E[m(Zi, θ)m(Zi, θ)′PEL

o m(Zi, θ)] (16)

where

QEL = RELG′[Em(Zi, θ)m(Zi, θ)′]−1

REL = (G′[Em(Zi, θ)m(Zi, θ)′]−1G)−1 (17)

PEL = [Em(Zi, θ)m(Zi,θ)′]−1(I−GQEL)

It is not clear how these compare to BQMLE in general. The examples that follow show several

cases when such comparisons are possible. Example 1 shows the obvious point that if the

data are normally distributed, the upper block of BQMLE is equal to BEL, while the extra

term in BGMM is generally non-zero. This is expected but the derivation of this result is

useful because of what follows in Example 2. In Example 2, I deviate from normality and

instead consider the condition of equal (first-order) asymptotic efficiency of QMLE and GMM

(EL) derived in Prokhorov (2009). It turns out that when the asymptotic efficiency property

of QMLE is robust to deviations from normality, that is when Prokhorov’s (2009) condition
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holds, QMLE’s asymptotic bias is also robust to such deviations, that is, QMLE’s and EL’s

biases are identical. Finally, Example 3 shows a situation when the size of QMLE bias is

smaller than that of GMM.

Example 1 – multivariate normality. In order to show that BQMLE(θo) = BEL under

normality, recall that for the multivariate normal distribution, the fourth moments can be

expressed in terms of the second moments as follows (see, e.g., Magnus and Neudecker, 1988,

p. 253)

∆o = (Σo ⊗Σo)(Iq2 + Kq2) = (Iq2 + Kq2)(Σo ⊗Σo), (18)

where Ik is the identity matrix of dimension k, Km2 is the commutation matrix, i.e. such an

m2 ×m2-matrix that Km2 vec(A) = vec(A′), for any m×m matrix A.

Using this fact along with the properties of D+ (see, e.g., Magnus and Neudecker, 1988,

p. 49), it is easy to show that

QoCoQ′
o = 2Ro,

QoCoP′
o = 0.

Note that this makes the QMLE variance matrix (12) block-diagonal just like its EL counter-

part (see, e.g., Qin and Lawless, 1994, Theorem 1).

We can now use these simplifications to rewrite (14) as follows

BQMLE = − 1
2N


 −Ro Qo

Q′
o Po








p∑

j=1


 0 Gj′

o

Gj
o Ωj

o





 2Ro

0


 ej





= − 1
2N


 −Ro Qo

Q′
o Po





 0

2
∑p

j=1 Gj
oRoej




= − 1
N


 Qo

∑p
j=1 Gj

oRoej

Po
∑p

j=1 Gj
oRoej


 . (19)

The upper block of (20) does now look similar to (15) but not identical. The difference is that

the expression for BQMLE contains D′(Σ⊗Σ)−1D, while BEL contains 1
2E[m(Zi,θ)m(Zi,θ)′] =

1
2D

+∆oD+′. But for the normal distribution, D+∆oD+′ = 2D+(Σ ⊗Σ)D+′. If we further
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note that [D+′(Σ⊗Σ)D+]−1 = D′(Σ⊗Σ)−1D, then

REL = {G′[2D+(Σ⊗Σ)D+′]−1G}−1

= 2[G′D′(Σ⊗Σ)−1DG]−1

= 2R,

QEL = RELG′[2D+(Σ⊗Σ)D+′]−1

= RG′D′(Σ⊗Σ)−1D

= Q,

which confirms that the bias expressions are identical.

Finally, the second term of BGMM contains the third moments of mi, i.e. the sixth moments

of Zi. This term is generally non-zero.

Example 2 – equal asymptotic variance of QMLE and EL. Prokhorov (2009) shows

that the asymptotic variance of QMLE of covariance structures and GMM and its first order

equivalents, including EL, is identical under the following condition. Let Co ≡ D+∆oD+′

and Ao ≡ D′(Σo ⊗ Σo)−1D. Then equal asymptotic efficiency occurs if and only if Go is

in the column space of CoAoGo, i.e., for some q(q+1)
2 × q(q+1)

2 matrix D, Go = CoAoGD.

Clearly, in Example 1 this condition holds with D = 2 because for normal data Co = 2Ao.

Given that the asymptotic weighting matrix used in GMM and its first-order equivalents is

G′C−1
o , the condition G′

oC−1
o = D′G′

oAobasically means that the equations solved by QMLE

are asymptotically first-order equivalent to the equations solved by GMM and EL up to a

linear transformation – this is why the estimators are equally (first-order) efficient. It turns

out that under this condition, BQMLE(θo) = BEL so the robustness property of QMLE carries

over to its first-order bias.

First, note that, similar to Example 1, this condition implies that QoCoP′
o = 0 and
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QoCoQ′ = D−1R, assuming D is not singular. To see this, write omitting the subscript

QCP′ = R[G′ACA−G′ACAG′(G′AG)−1A]

= R[D′−1G′A− D′−1G′AG′(G′AG)−1A] = 0

QCQ′ = RG′ACAGR

= RG′A′GD−1R

= D−1R.

Then, BQMLE simplifies as follows:

BQMLE = − 1
2N


 −Ro Qo

Q′
o Po





 0

∑p
j=1 Gj

oQoCoQ′
oej




= − 1
2N


 Qo

∑p
j=1 Gj

oD−1Roej

Po
∑p

j=1 Gj
oD−1Roej


 . (20)

Finally, to see that BQMLE(θ) = BEL, note that since G′C−1 = D′G′A, then REL = (G′C−1G)−1 =

RD′−1 and QEL = RELG′C−1 = RD′−1D′G′A = Q. The asymptotic bias of QMLE remains

equal to that of EL even when the distribution is non-normal so long as the condition of equal

first-order efficiency holds.

Example 3 – Student-t covariates. Let Zi be correlated realizations from bivariate

Student-t distribution with degrees of freedom ν = 7. The parameter of interest is the covari-

ance ρ from

V(Zi) =




7
5 ρ

ρ 7
5


 ,

which, given ν, takes values in [− ν
ν−2 , ν

ν−2 ] = [−7
5 , 7

5 ]. This is a situation for which the general

comparison from Example 2 does not apply. However, using the expressions for biases of
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Figure 1: Left panel: second-order bias times sample size for EL (thick), QMLE (thiner), and

GMM (thin) in Example 3; Right panel: relative biases, i.e. second-order bias times sample

size over true parameter value, for QMLE (thick) and GMM (thin) in Example 3.

QMLE, EL and GMM, it is possible to show the following:1

BEL = 0

NBQMLE(ρ) =
196 ρ

(
49− 25 ρ2

)2

3 (49 + 25 ρ2)3

NBGMM =
140 ρ

(
2401 + 4900 ρ2 − 3125 ρ4

)

(343 + 125 ρ2)2

Both QMLE and GMM are (second-order) biased in this example and their biases are

not the same in general. Figure 1 shows how the size of the biases changes over ρ. The left

panel plots BEL (thick line), NBQMLE(ρ) (thinner line), and NBGMM (thin line), while the

right panel plots the relative biases, i.e. NBQMLE(ρ)
ρ (thick line) and NBGMM

ρ (thin line). Several

important observations can be made from Figure 1. First, the GMM bias is much more severe

than the QMLE bias for all value of ρ except ρ = 0, |ρ| = 7
5 , for which the three biases are

equal to zero. The direction of the bias corresponds to the sign of correlation between the

covariates. It is zero if the covariates are uncorrelated or if their correlation is one. Second,

it is perhaps surprising how small is the QMLE bias compared to GMM. The relative bias of

QMLE is several times smaller than GMM and the relative bias of QMLE is larger the closer

ρ is to zero but vanishes as correlation grows.
1A mathStatica code deriving these expressions is available at:

http://alcor.concordia.ca/~aprokhor/papers/student_t_theta_BIAS.nb

13



References

Altonji, J. G. and L. M. Segal (1996): “Small-sample bias in GMM estimation of covariance structures,”

Journal of Business and Economic Statistics, 14, 353–366.

Anatolyev, S. (2005): “GMM, GEL, Serial Correlation, and Asymptotic Bias,” Econometrica, 73, 983–1002.

Browne, M. W. (1984): “Asymptotically distribution-free methods for the analysis of covariance structures.”

British Journal of Mathematical and Statistical Psychology, 37, 62–83.

Chamberlain, G. (1984): “Panel data,” in Handbook of Econometrics, ed. by Z. Griliches and M. D. Intrili-

gator, vol. II, 1248–1313.

Clark, T. E. (1996): “Small-Sample Properties of Estimators of Nonlinear Models of Covariance Structure,”

Journal of Business and Economic Statistics, 14, 367–73.

Horowitz, J. L. (1998): “Bootstrap methods for covariance structures,” The Journal of Human Resources,

33, 39–61.
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