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Abstract

We develop a new nonparametric test of common values in first-price auctions and
apply it to British Columbia (BC) Timber Sales. The test is based on the behavior
of the CDF of bids near the reserve price. We show that the curvature of the CDF is
drastically different under private values (PV) and common values (CV). We then show
that the problem of discriminating between PV and CV is equivalent to estimating the
lower tail index of the bid distribution. Our approach allows for unobserved auction
heterogeneity of an arbitrary form, and in particular doesn’t require the number of
potential bidders to be observable. Drawing on the existing and recent literature on tail
index estimation, we characterize the B. Hill (1975) tail index estimator for panels with
stochastic dimension and a new semi-parametric estimator of the asymptotic variance
for robust inference. For BC Timber Sales, we find overwhelming support for CV.

Keywords: first-price auctions, common values, private values, tail index, timber
auctions

1 Introduction

The province of British Columbia (BC) in Canada is in legal possession of a massive forested
area, and the sale of timber is one of its major sources of revenue. In 2003, partly in response
to pressure from the US to create a more competitive market for timber in Canada or face a
high import duty, BC initiated a major reform of its timber industry. In particular, the US
proposal had called for the establishment of an auction mechanism as the main instrument
of timber pricing.!

*We thank various seminar audiences for their comments. The second author thanks Vadim Marmer for
helpful discussions at the early stages of this project.

'The proposal draft is available at http://www.for.gov.bc.ca/het/softwood/softwood_lumber_
framework.pdf, accessed on 28 April, 2009.
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Prior to 2003, the Ministry of Forests? sold some timber rights through auctions under
the Small Business Forest Enterprise Program (SBFEP) first studied in Paarsch (1997).
In 2003, this program was transformed into BC Timber Sales (BCTS), an independent
organization that aims to generate the best possible financial return from publicly-owned
timber, provide timber harvesting opportunities, and set a credible reference point for the
price of harvested timber. An additional 10 percent of the annual cut was being gradually
transferred from long-term lease holders, large forestry firms that still harvest about 67
percent of the cut, to be auctioned through BCTS (Niquidet (2008)). The auction prices
now serve as the basis for a market pricing system (MPS) that determines stumpage rates
for long-term lease holders.

The BCTS auctions are sealed-bid, first-price. But a very important practical question
is whether this is the best auction format to use. Milgrom and Weber (1982) have shown
that with common values, an open auction is revenue superior to the first-price, sealed-bid
auction.? Other policy recommendations, e.g. how the reserve prices should be set, how
many bidders to invite, what entry fee to impose etc. differ depending on whether the values
are private or common. In addition, as Laffont and Vuong (1996) have shown, models with
common values are often nonparametrically non-identified , while private value models are
often identified.

Timber auctions have attracted significant amount of attention in the economics liter-
ature, most of which focusses on the US. But the question of which model, private values
(PV) or common values (CV), is more appropriate, hasn’t been fully resolved.* Baldwin
(1995) and Athey and Levin (2001) argue for the presence of common values, while Bald-
win, Marshall, and Richard (1997), Haile (2001), and Haile and Tamer (2003) adopted a
PV paradigm.

In BCTS, a concurrent event, the Mountain Pine Beetle epidemic, may have greatly
increased uncertainty about the quality of the timber, so common values might have been
present at least to some extent over the period of our study. We develop a "reduced-
form” nonparametric test of common versus private values that utilizes the main feature of
BCTS: binding reserve prices. In BCTS, bidders submit bonus bids, equal to the amounts
over and above the reserve price. The highest bidder pays the bonus bid plus the reserve
price. No negative bonus bids are allowed, which makes the reserve price strictly binding.
Other relevant features of BCTS, discussed in more length in the empirical section of the
paper, include likely bidder symmetry: the bidders primarily are small logging firms, and
competition is highly localized.

Our approach is structural in the sense that it is based on auction theory, but at the same
time is “reduced-form” in the sense that it tests the prediction of the theory directly. We
show that under PV, there must be excessive clustering of bids around the reserve price,
relative to the degree of clustering under CV. A very rough intuition for this difference
is as follows. Let r be the reserve price. Suppose bidders receive signals S; that are
unbiased estimates of the value of the object. First, let’s look at what happens in a second-
price auction. Under PV, it is well known that only the bidders with signals 5; > r will

2Now known as the Ministry of Forests and Range.

3There is also empirical evidence to the importance of this effect, e.g. in Shneyerov (2006).

“When we say CV, we mean a general model with interdependent values, not necessarily pure common
values.



participate, and they will bid their signals, B; = S;. Under CV, as Milgrom and Weber
(1982) have shown, only bidders with signals above a certain cutoff s*, where s* > r, will
participate The reason is the potential winner’s curse. The bidders with signals just above
the reserve can only win if their rivals do not participate, which is bad news. A more subtle
fact is that these marginal bidders will bid strictly more than their values conditional on
winning. In a second-price auction, the bid only affects the value to the extent it affects
the price. The price however is only affected on the margin, when the rival highest bid Y;
”crosses” bid B;. Because higher Y; indicates higher ex-post object value, this event of ”bid
crossing”, or winning on the margin, is not as bad news as simply winning the auction. In
the latter event, the highest rival bid Y; < B;, while in the former, Y; = B;. This means
that under CV, there will be a gap between the reserve price and the lowest bid.?

Things are a bit different in a first-price auction (our case), where bidders shade their
bids relative to the ”counterfactual” bids they would submit in the second-price auction.
Under PV, bidders with signals slightly above the reserve price cannot shade too much - the
reserve price anchors their bids. This leads to excessive bid clustering around the reserve.
Under CV, there is much less clustering because the ”counterfactual” bids of the marginal
bidders are well above the reserve price.

Our innovation is to use the tail index x of a distribution of bids as a measure of
clustering around the reserve price. The tail index measures the curvature of the CDF in
the tail, and is a popular approach to modelling extreme quantiles in economics and finance
(see e.g. Chernozhukov and Du (2007) for a formal definition of the tail index and a review
of applications). To our knowledge, our paper is the first to apply tail index methodology
to a fundamental problem in industrial organization. We show that x must be 1 under
CV, and 1/2 under PV.% The test is based on nonparametric tail index estimation and
inference (Hill (1975), Hsing (1993) and more recently Hill (2009b)). A version of Hill’s
(1975) estimator # is used to estimate the tail index and perform tests. The estimator is
remarkably easy to implement, and the asymptotically most powerful tail index-based test
of CV versus PV is simply a one-sided t-test . Our testing approach works even when there
is unobserved auction heterogeneity, and the number of potential bidders is unobservable,
since the tail index is preserved when the distribution is aggregated along any dimension.”

The approach in this paper is inspired by Hendricks, Pinkse, and Porter (2003) (a
more detailed discussion appears in Hendricks and Porter (2007)) who also noted that the
behavior of bids around the reserve price is different under PV and CV. Specifically, the
lower bound of the support of pseudo-values (see Guerre, Perrigne, and Vuong (2000), GPV
hereafter, for the definition, and also see Athey and Haile (2002)) is equal to r under PV
but is strictly greater than r under CV. Hendricks, Pinkse, and Porter (2003) did not
propose a statistical test based on this restriction. Our contribution is to propose such a
test. Moreover, our testing approach does not require nonparametric estimation of pseudo-
valuations and results in simple null and alternative hypotheses. The power of the test is
such that it allows us to give a definite answer for BCTS.

®This is also observed in Milgrom and Weber (1982) in footnote 26 on page 1111.

5Thus the distribution of bids has a Paretian tail under PV (see Chernozhukov and Du (2007) for a
definition). This evidently marks a rare case of naturally occurring Paretian tails (cf. 7).

"Krasnokutskaya (2003) argues for the importance of accounting for the unobserved heterogeneity in the
estimation of auction markups. See also the discussion in Paarsch, Hong, and Haley (2006).



An early approach to testing for common values was to check if bids increases mono-
tonically with the number of potential bidders; a non-monotonic pattern was believed to
provide evidence for common values. This approach was initiated by Gilley and Karels
(1981), and applied to second-price sealed-bid and English auctions by Paarsch (1991) and
Bajari and Hortacsu (2004). However, Pinkse and Tan (2005) have shown that in first-price
auctions, this pattern can also arise if values are private and affiliated.

The first paper that adopted a structural approach to this problem is Paarsch (1992),
where a parametric testing method is developed and applied to the auctions of tree planting
contracts in BC. The recent literature has focussed on nonparametric approaches. Haile,
Hong, and Shum (2003) propose a nonparametric test of PV versus CV. Their approach is
entirely different from ours and is based on the variation in the number of bidders across
auctions. They implement their test on a sample of US Forest Service (USFS) timber
auctions and obtain mixed results. Haile, Hong and Shum’s approach does not require a
binding reserve price, but requires the number of potential bidders to be observable.® This
is not the case in our application, precisely because the reserve price is binding.

Recently, Hortacsu and Kastl (2008) proposed a test of common values when some bid-
ders have information about rivals’ bids, and applied it to Canadian Treasury Bill auctions.”
Their approach is tailored to the environment of Canadian Treasury Bill auctions and is
also entirely different from ours.

As well as applying the tail index methodology to an important problem in empirical
auctions, our paper also makes a number of econometric contributions, by extending the
Hill (1975) tail index estimator to imbalanced panels where bids are nonlinearly dependent
within auctions of random size. Thus, the sample size is itself a random variable correlated
with the bids in an unknown way. The literature is silent concerning extremal statistics
with stochastic sample size, and there are only a few applications of tail index estimation
for panel data (e.g. Mikosch and C. de Vreis (2006); Jongen, Verschoor, Wolff, and Zwinkels
(2006)). By exploiting theory developed in Hsing (1991), Hill (2009a), and Hill (2009b), the
celebrated Hill-estimator is shown to be asymptotically normal where the stochastic nature
of bid counts is irrelevant.

Finally, a test of PV against CV requires robust estimators of the asymptotic variance
of the tail index estimator. We propose a new consistent semi-parametric estimator of
the asymptotic variance designed for auction data, and compare it to Hill (2009b)’s non-
parametric estimator. In Monte-Carlo simulations, the nonparametric variance estimator
strongly dominates the semi-parametric estimator under a null of PV, and both lead to
sharp inference under the alternative of CV.

We implement our test on a BCTS dataset that contains all auctions conducted from
January 14, 2004 to December 14, 2006. This period corresponds to an outbreak of the
Mountain Pine Beetle, a factor that affected the quality of timber in the province. This
epidemics was unexpected, and logging firms in BCTS likely faced elevated uncertainty
about the quality of the timber over the period covered in our dataset. Common value
factors may have played an increasingly important role over that period. Our test strongly

8In USFS auctions, the reserve price is typically non-binding and the number of potential bidders is
observable. See Baldwin, Marshall, and Richard (1997), Haile (2001) and Haile and Tamer (2003).

9In Canadian Treasury bill auctions, bidders naturally fall into two groups - dealers and customers, and
the former have an informational advantage over the latter.



rejects private values in favor of a model with a common value component.

2 The Model and Testable Restrictions

The model is a slight specialization of the canonical symmetric model of Milgrom and Weber
(1982). There are N > 2 potential loggers that consider bidding in a sealed-bid, first-price
auction for a tract of timber. The tract is assumed to have value U; to logger ¢, and this value
may not be fully known at the time of the auction. Prior to the auction, loggers cruise the
tract area and collect information about the timber, such as its quality, the composition of
the species, etc. Also, they may have some information about the market value of the logs,
as well as about their own harvesting costs. All this information is summarized by a scalar
signal S;. Loggers may have common as well as private components in their valuations.
The common component is V. The valuation of the bidder is U; = u(V, S;), where u is a
nonnegative, continuous and nondecreasing function.!® As in Milgrom and Weber (1982),
we assume that the vector (V,Si,...,Sn) is drawn from some joint distribution F' with
density f that satisfies the affiliation property.!! We assume that the support of F is
[v,7] % [s,5]", where v < 7, s < 5, that F has continuous partial derivatives of all orders on
the interior of its support, i.e. F € C*®([v,v] X s, §]N), and that the density f is positive
everywhere on the support. The model is symmetric: the function « is the same for all
bidders, and the distribution F' is symmetric in bidders’ signals.

If u(V,S;) does not depend on V, we have a PV model (an affiliated private values
model, or APV, if the signals are strictly affiliated). Otherwise we have a CV model. Let
Y; = max,, S;. Milgrom and Weber (1982) have shown that in a symmetric equilibrium,
the bidding strategy B (s) satisfies the differential equation

(v (s) = B(s)) frijs, (sls) — B' (s) Fyys, (s]s) =0, (1)

where

v(s)=E{U;|S; =s,Y; = s},

). We assume

the value of the object conditional on ”just” winning the auction with bid B (s
"(s) > 0 for all

that v (s) is a differentiable function, and that its derivative is positive, v
s€ls, 3]

This differential equation has a unique solution subject to the boundary condition
B (s*) = r. Only the bidders with signals S; > s* can win the auction, and we assume
that only they bid. In general the screening level s* € [s, 5], but we assume that the reserve
price is binding: s* € (s,5). In a symmetric equilibrium, a bidder with signal S; = s* can
only win if his potential rivals all draw signals below the screening level, S; < s*. His value
conditional on winning is w (s*), where

w(s) = E{U;|S; = s,Y; < s}.

YMilgrom and Weber (1982) allow more generally U; = u(V, S;, {S; };zi), e allow the valuation of a
given bidder to depend on rivals” signals directly, not only through the common component V. Nothing
would change if we adopted this more general specification. We decided to stick to a simpler specification
because it is easy to interpret empirically in our application.

"Le.,f (min{z,y}) f (max {z,y}) > f (z) f (y) .See Milgrom and Weber (1982).



By definition, this bidder is a marginal bidder, i.e. is indifferent between entering or not, and
makes zero expected profit. The marginal bidder bids r, and the zero expected profit con-
dition together with the fact that the reserve price is binding implies that s* is determined
implicitly from the equation

w(s*) =r.

As was first noted in Hendricks, Pinkse and Porter (2003) in their study of wildcat sales
in Outer Continental Shelf (OCS) auctions, there is a difference in bidders’ behavior around
the reserve price under private and common values. Under PV, there is no scope for the
winner’s curse, and therefore

r=w(st) =v(s"),

which implies B’ (s*) = 0. Under CV, on the other hand,
r=w/(s*) <v(s"),

and the slope is positive, B’ (s*) > 0.

The difference in the slope B’ (s*) under PV and CV leads to a difference in the curvature
of the distribution of bids around b = r. Our testing approach is based on a measure of this
curvature, formally captured in the notion of the tail index. It is convenient to normalize
the bids

B

Bf=——-1.
r

Let G* (b) be the equilibrium distribution of the normalized bids,
G* (b) = P{B*(S;) <b|S; > s*}.

The lower bound of the support of G* is 0. The (left) tail index of this distribution is
defined as x > 0 such that

G*(b)=c-b"-(14+0(1)) asb]O,

where ¢ > 0.12
In the proposition below, we derive the tail indexes of G*(b) under CV and PV, and
even stronger, characterize the decay scale of G* (b) as b | 0.

Proposition 1 Under CV, G*(b) = c-b" - (14+0 (V")) as b | 0 with ¢ > 0 and k = 1.
Under PV, G*(b) =c-b"-(14+ 0O (b%)) as b | 0 with ¢ >0 and k = 1/2.

Proof. In this proof we smoothly extend the bidding strategy B* and the distribution
function Fg,g,>¢ from the domain [s*,5] to an open domain D. that includes s* as an
interior point, D, = (s* — ¢,s* 4+ ¢) where £ > 0 is sufficiently small. Under CV, since
B* (s*) > 0, the Inverse Function Theorem implies that for a small enough ¢ > 0, B* is a
diffeomorphism, so that the inverse bidding strategy B*~! is also smooth (on B* (D.)).!3

23ee Chernozhukov and Du (2007) for a discussion of tail indexes and their applications in economics
and finance.

13A smooth map f: D — Y C R defined on some open domain D C R™ is called a diffeomorphism if it
is one to one and onto, and the inverse map f~' is smooth (Guillemin and Pollack (1974), page 3).



Then Fg,|g,>¢+ © B*~1 is smooth on D, as a composition of two smooth functions, and in
particular is twice continuously differentiable. Therefore

P{B*(5) <b|Si>s"} = Fg 52 (B ()
= ¢h(1+0 D)

as b | 0, where ¢ > 0. This proves the tail index representation under CV.

Under PV, B* has a critical point as s = s*, B* (s*) = 0, and the Inverse Function
Theorem doesn’t apply. However, the critical point is non-degenerate. Re-writing the
differentiating equation (1) in terms of B* and differentiating with respect to s at s = s*
gives

(v (%) = 7B (%) Finjs (5%1s") = 7B (5%) Py, (s7]5%) = 0,

which implies
B (s,) = Dt IV,
TFYl\Sl (8*’3*)

The Morse Lemma (Guillemin and Pollack (1974), p. 42) states that if a smooth function
f : D — R, defined on an open subset D C R™, has a non-degenerate critical point
a € D, i.e. the Hessian matrix (hj) of f at a is non-singular, then there exists an open
neighborhood Dy of a (Dg C D), and diffeomorphisms y; : Dy — R such that Vz € Dy,
f (@) = f(a)+ 320 3708 hijyi (x) yj (z). Our case is single-dimensional, and this lemma
specializes to f (z) = f (a)+f" (a)y (z)? for some diffeomorphism y : Dy — R. If f” (a) > 0,
y can be chosen as +(f (z) — f (a))% ifz>aand —(f(z)— f (a))% if < a, and being a
diffeomorphism, y has a smooth inverse.

Here the Morse Lemma implies that 8 : D. — R defined as

oo { e

9
)

Nj= N

—B*(s)2, s<s*

is a diffeomorphism on D.. Since

N|=

P{B*(S;) <b|S; > s} = P{B*(S)2 <b

= Fg 5,55 (87(b

[T

|5 > 5%}

)

and Fg,|g,>g © 71 is smooth as a composition of two smooth functions, we conclude that
under PV,

P{B" (S;) S b|S; = s} = b3 (1+ O(b2)),
as b | 0 for some ¢ > 0. Q.E.D.

2.1 Discussion

Working directly with the first-order Bayesian-Nash equilibrium conditions of the bidding
game as in GPV, Hendricks, Pinkse and Porter (2003) have shown that in a PV environment,



the "markup” (the difference between the valuation and the bid) is 0 in the limit as b | r,

G blb
lim Y|87(|) =0, (2)

blr gy|B (b]b)

while in a CV environment o ol
v (b]b) 0. 3)

blr gy|B (b]b)

where Gy g (y|b) is the distribution of the maximum rival’s bid ¥; conditional on own bid
B; = b. They mention that these conditions are potentially testable. However, in OCS
auctions, there are relatively few bids around the reserve price to implement such a test.
The government often rejects high bids near the reserve price. In addition, in a model with
a secret reserve price, (2) is no longer true.

But, if the reserve price is not secret and is strictly binding, as in our application,
there may be quite a few bids around the reserve. As a matter of fact, clustering of bids
around the reserve is observed in BC Timber Sales (see Figure 9 in Section 5) While our
computer simulations suggest that such clustering can occur to some extent in both models
(see Figure 1 in Section 4), there is much more pronounced, ”excessive” clustering under
PV. The reason for this is that under PV, the slope of the bidding strategy at s* is 0,
B’ (s*) = 0, which means that bidders with signals somewhat over the screening level will
bid very close to the reserve price. Indeed, our Proposition 1 implies that limy), g (b) = +o0.
(However, unlike in Wilson’s Drainage Tract Model (Wilson (1969)), there is no mass point
at r.) Under CV, on the other hand, B’ (s*) > 0, so there is a positive and finite density of
bids g (b) at b = r.

In principle, the conditions (2) and (3) are testable, but there is a serious practical
complication in that the density in the denominator in (2) becomes infinite as b | r. In
addition, a practical implementation of such a test would require conditioning on various
object characteristics, which is likely to lead to a curse of dimensionality given the sample
sizes typically available in applications.

One could also attempt to test if the marginal density of bids is infinite at b = r by
using a transformation of bids proposed in GPV: BT (s) = (B (s) — r)1/27 which leads to a
finite density of Bf (S;) at b = 0. The density of BT (S;) is positive at b = 0 under PV, and
is zero under CV. One could then attempt to estimate this density nonparametrically. GPV
do not consider testing of CV versus PV. Since the PV is often a natural null hypothesis,
the power of the test would be weak since the null includes small positive values of the
density that are practically indistinguishable from the alternative. Our approach, on the
other hand, results in simple hypotheses for both the null (x = 1/2) and the alternative
(k=1).

Haile, Hong and Shum (2008) propose a test based on pseudo-valuations as in GPV,
and on the exogenous variation in the number of bidders in the auction. (If the number of
bidders is endogenous,they propose an instrumental variable approach). For a bidder who
submitted bid b in the first-price auction, the pseudo-valuation

GY\B (b]b;m)

hm)=b+ 9v|B (0]b;m)

(4)



is equal to the corresponding counter-factual bid in the second-price auction, B (b;n) =
E{U;|B; = b,max;—1,  n:j+i Bj = b; n}.'* Even though it is in general impossible to deter-
mine the direction of the effect of competition on bids in a first-price auction even under
PV (Pinkse and Tan (2005)), it is possible to do so in a second-price auction under both
PV and CV. For a fixed value of b, B (b;n) is constant in n under PV but is decreasing in
n under CV. Haile, Hong and Shum use this property as a basis of a nonparametric test-
ing approach. But in order to correctly impute the pseudo-values when there is a binding
reserve price, it is necessary to observe the number of potential bidders N. The maximum
rival’s bids Y is then set equal to either the actual bid (if the rival is active), or to 0 if the
rival is not active. In our application, the reserve price is binding, and it is very difficult to
obtain a precise measure of potential competition. For that reason, we have not attempted
to implement the Haile, Hong and Shum testing approach on our data.

3 Estimation and Testing Framework

3.1 Data Generating Process (DGP)

We assume that a sample of L auctions is available, and index the auctions by [ =1, .., L.
Each auction is characterized by a reserve price r;, characteristics x; and the number of
potential bidders N;. The data generating process is further specified as follows.

1. The vectors (ry, z;, Ny) are drawn independently across [ from some distribution with
support [r, 7] x X' X [ﬂ, N] (X ¢ R? and compact, 2 < N < N < 00).

2. Conditional on (77,2, N;) (I = 1,..., L), the signals S; ; of potential biddersi =1, ..., N}
and the common value components V; are drawn independently across [ from distri-
butions with conditional densities f (v, s1, ..., Sy |r, z) symmetric in the s; arguments,
with support [v, 9] X [s, §]N. The conditional density f (v, s1, ..., SN|r, x) is smooth in
(v, 81, ..., sn) for all (r,x) on the support.

3. Only the bidders whose signals exceed the screening level, S;; > s* (r;, 7, N;), submit
bids. It is assumed that the reserve prices are always binding, i.e. s* (7, z;, N;) € (s, 3).
Let n; be the number of active bidders in auction [. We index the active bidders as
i = 1,...,n;. The total number of observations in the sample is n = ), n;. Our
assumption N < oo implies that 0 < n; < 7 = N. The bids of active bidders are
determined according to

big=B(Sip, 2, N, (i=1,..,m),
where the bidding strategy B is found as the solution to (1).

The data available to the econometrician consists of an (independent and identically
distributed across ) sample of observations

{{bz‘,l}izly,,,m 3T Ty nz}

4This observation is due to Shneyerov (2006).

I=1,..,.L




Consider the distribution of normalized bids

=L (5)

Working with this distribution has the advantage that the lower bound of the support of bz .
is 0 regardless of the covariates, and the tail behavior can be characterized around b = 0.
We assume that the environment (PV or CV) is fixed, so that the conditional distribution
of bids has the tail representation

G* (blry, x, Ny) = c(ry,x, N) - 0" - (1+ O (b%)) asb 0. (6)

where ¢ (r, z;, Ny) > 0 on [r,7] x X X [ﬂ, N]—a.e. and the tail index k is independent of
(r1, 27, Ny), and equal to 1 under PV and to 1/2 under CV by Proposition 1.

Remark 2 We assume that N; is unobservable, and in addition, certain components of
x; may also be unobservable. However, taking expected values in (6) conditional on any
observable vector z;, we still obtain the tail representation

G* (blar) = B {e (i, Ni) [z} - b - (14 O (b)) asb | 0. (7)

where E{c(r;,x;, N;) |z} > 0. This means that under our assumptions, the tail index rep-
resentation is preserved conditional on any observable vector z;, and even unconditionally.

3.2 The Hill-Estimator

In view of Remark 2, in this paper we consider an unconditional version of the estimator.
The Hill-estimator of the tail index is based on the following alternative representation:

k' =FE{lng—1In byl Inb;, <Ing} +O(¢~) asq | 0. (8)

That is, x~! is the mean distance of the log-normalized bid In b;, below some low threshold
Ing, as ¢ | 0. Presentation (8) follows from properties of regularly varying functions:

ffoo (Inx) dG* (x)
G* (q)
JR G (e) do
- G (9)
_ finog ce™dx - (14 O(q"))
cq® - (14 0(¢q"))
=1 +0(q"),

E{lng—1Inbj;|Inbj; <lng} =Ilng—

where the second line follows from integration by parts, and the third line follows from

Proposition 1, by substituting G*(e”) = ce"*(1 + O(q")) for G*(q) = ¢¢" - (1 + O(q")).
Equation (8) suggests a natural way of estimating the (inverse of) the tail index s~

by a sample analogue, with an appropriately chosen sequence of ¢ | 0 as the sample size

1

10



goes to infinity.!> Namely, let {b}}/_; be the sample stacking all bids b, let bZ‘j) be the ;"
sample order statistic of b, bZ‘l) < b&) < - < b>(kn)’ and let {m,} be an intermediate order
sequence: 1 < m,, < n, m, — oo and my,/n — 0 as L — oo (e.g. Leadbetter, Lindgren, and

Rootzen (1983)). Then the sequence of ¢ is chosen as O, +1)> and the Hill (1975) estimator

of k7! is simply the sample average'®
1 LN (e »
ot = == > (Wb 40y — Inbf) 9)

m
mo=1 +

Since auction sizes {nl}le are random variables, trivially n and therefore the number of
bids near the reserve price m,, are also random.

In the ii.d case with deterministic sample size n Hall (1982) shows /%;ni is consistent
for k=1 and asymptotically normal with the asymptotic variance equal to 2. However,
our setting is not i.i.d. because bids may be correlated within an auction. Even though the
literature contains several result for the non ii.d. case (e.g. Resnick and Starica (1998),
Hsing (1991), Hill (2009b)), these results are for time-series data, and they do not transfer
immediately to our setting of an unbalanced panel with stochastic auction sizes.

In Appendix A we establish asymptotic normality of /%,;i for bids governed by our
auction data generating process. If the number of order statistics m, used in the Hill-
estimator grows to infinity with the sample size, but not too fast, m,, — oo with probability
one and m,, = 0,(n?3), then (Theorem 5)

/2 .
n_ (a1 -1
(A, —K7) = N(0,1),
Vrnin
2 -
where vy, is the mean-squared error of &, :

vfnn =F [mn (’%;111 — /fl)Q] .

In view of the bid tail decay characterized in Proposition 1 and m,, = op(nz/ 3), asymptoti-
cally the bias of ’%;111 is negligible and the mean-squared error approximates the variance of
B

Remark 3 Fven though the unconditional Hill estimator of k is consistent, an estimator
obtained by first conditioning on observable auction characteristics, and then averaging the
conditional estimators, could be more efficient. However, the normalization of bids (5)
is likely at least to some extent remove the effect of covariates on bids.'" For example,
if we assume a multiplicative structure Vi = a (x) Vi, Sii = a(x;) Sy and r = a(x;) 7,
where (‘N/,Si,l,ﬁ) and x; are independent, then b;; = a(z;) I;,;J, where l;“ and x; are also
independent.*® This implies that by = (Z)u/?“l) — 1 and z; are likewise independent, and

5In the following we write (2)+ to denote max{z, 0}.

18Other estimators exist but none have been shown to be as robust to unknown forms of dependence and
heterogeneity. See the literature reviews in Hill (2009b) and Hill (2009a).

17See the recent paper by Roberts (2008) that proposes a general argument.

18 A variant of this specification was also considered in Krasnokutskaya (2003).
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conditioning on x; is not necessary. However, even in this specification, the dependence
between b7, and n; generally remains, so in principle one could benefit from conditioning
on ny. But our Monte-Carlo simulations have shown that in samples of typical size, even
though the reduction in the variance of the estimator can be substantial, it is overwhelmed
by the small sample bias.*®

3.3 Variance Estimation

An important practical question is how to estimate v?nn in the presence of dependent bids

in auctions of random size. We propose a new semi-parametric estimator 1772%, and compare

it to Hill’s (2009) nonparametric kernel estimator &3%
Assume for the sake of exposition auction sizes n; are deterministic.2® The nonparamet-

ric estimator &TQM follows from a trivial expansion of the mean-squared-error U,an

1 & b; 1 m
2:nE— IM — Rt — Emsm

where we write Uy, ¢ := (ln(b’("mn+1)/b§))+ — (my/n)k~t. Although a natural estimator of

Vp,, appears to be 1/my 30y Upny, sUny ¢ With Uss, ¢ o= (I(bf,, p) /60)+ — (mn/n)Az,
it is not guaranteed to be positive (Newey and West (1986)). Hill (2009b) exploits a now

classic approach in the literature that trims the cross-products Uy, sUnm,, + (cf. Newey and
West (1986), Andrews (1991), de Jong and Davidson (2000)):

6-2 = Z k S _t /’)/n) Mn,S mn7t7 (10)

nst 1

where k denotes a standard kernel function with bandwidth 7, — oco. The kernel k((s —
t)/7,,) asymptotically negligibly trims cross-products Up,,, sUnm, ¢ at large displacements |s
— t| so that &%% > 0 with probability one for all n > 1 while ostensibly retaining consistency
(Newey and West (1986)). As a bonus, a fully nonparametric approach allows the analyst
to have only a vague idea about cross auction dependence and heterogeneity.

Since the kernel k((s — t)/7,) trims Uy, sUpm, ¢ and the bandwidth -, gauges the
amount of trimming, some care for choosing ,, must be taken. In general as long as v,,/n
— 0 sufficiently fast then 6727% > 0 with probability one and 63% / vfnn 2, 1 for a large class
of kernels, including the popularly used Bartlett kernel k(z) : = (1 — |z])+ (Theorem 8).

The promise of é}?nn lies in the fact that it directly approximates linear dependence in
{Um, +}}—, without any parametric information concerning this dependence. This is non-
trivial since every component Up,, ; 1= (ln( (1) /b)) + — (mp/n)k~! contains the order
statistic b’(" A1) which is dependent on other bldS by the nature of our auction data. In
fact, this 1mphes we cannot exploit cross-auction independence to further simplify the above

19The simulations are available on request.

2We show in Theorem 5 of Appendix A that allowing stochastic auction sizes {m}le does not alter
asymptotic arguments. We may without loss of generality simply treat {nl}{;l, and therefore the total
number of bids n and bids near the reserve price m,,, as constants.
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expansion of v?nn. In order to see this, write the vfnn—expansion in bid-auction notation:

TL[l ’I’le

Z ZZE Mt mn,ylz]

ll,lz 1:=1 j=1

where Up,, i1 = (ln(b(m +1)/b* )i — (mn/n)s~t. Even though bids b, and b7, are
independent across auctions [; # ls, the presence of b( A1) makes each Up,, ;;, nonlinearly
dependent on every other U, ;. Thus, we cannot say E[Up,, i1,Unm,, ji.] = 0 for l1 # lo
without further information about bid dependence.

Nevertheless, we can exploit a useful asymptotic approximation of the Hill-estimator
(Theorem 5) based on arguments in Hsing (1991) and Hill (2009a) to reduce vZ, under
cross-auction independence. The resulting estimator of vfnn is (cf. Lemma 6 and Theorem
7)

L n;—1

. - 1 .
. nmi+2m—n§:§_: ng — i) X ém,, (7). (11)

S
I

Since #,,> is the asymptotic variance estimator for iid data (Hall (1982)), 92, includes a

correction term due to within-auction bid dependence. In particular, é,,, (i) estimates tail

dependence between bids b 1 and bj +il for all possible displacements®! i € {1,...i; — 1}:

mf’i

S 1 17 -
Cmn = fz Z < M, J,0 Hmi[mn:j:l) X (Umn7]+ll m}LIan+l l) (12)

=1

Note we define I, ;; == I(b} < O, Jrl)) — mp/n, and L; := Y F (ny — i), denotes the

total number of bid pairs {b* } that enter into ¢, (7). By convention we set &, (1) =

7,0 ]+Zl
0 if there is no more than one auction with displacement .22 See Appendix A for complete
details on the derivation of (11), and for a proof of consistency ©2, /v2, 2,1 (Theorem 7).

A drawback to non-kernel estimators of the type @Enn is @%n < 0 is possible with non-

negligible probability for any finite sample, even though 1772% 2, lim v,2nn > 0. The kernel
estimator by construction has &Enn > 0 with probability one for any sample.

3.4 Test of PV against CV

Since m}/ 2(/%,_,11 — k1) is asymptotically normal, an Asymptotically Most Powerful (AMP)

test of PV Hy : K = 1/2 against CV H; : k = 1 is equivalent to a one-sided test of PV
against £ > 1/2. By an extension of the Neyman-Pearson Lemma?? it is easy to show the

21Neighbor bids b3, and b}, ; have the smallest displacement of 1, and the greatest possible bid displace-
ment is 7; — 1 (first to last bid in the largest auction).

22For example, if there is only one auction ! with the maximum observed number of bids 7, then there is
only one bid pair in the sample {b7 ;,b;_; ;} with bid displacement 7 — 1. In this case we set ém,, (7 — 1)
=0.

Z3Cf. Wald (1941) and Karlin and Rubin (1956).
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one-sided AMP test of Hy at nominal significance level 8 € [0, 1] reduces to

lim P (ml/? (i = 2) v, < ~Zofvm, ) =0

m m
L—oo "

where Zy is the upper 0""-quantile of a standard normal distribution. Simply compute the
t-ratio
tim, = mi/? (it —2) /o

Mn
for any consistent estimator 92 of v?nn. Under PV (k = 1/2) we can easily use Theorem 5

in Appendix A and Cramér’s theorem to deduce t,,, 4N (0,1). Conversely, under CV (k
= 1) it follows |t,,, | — oo with probability one.

4 A Monte-Carlo Study

4.1 Data Generating Processes

We consider a model where bidders may have a common as well as private value components
in their valuations as in Wilson (1998).24 Suppose the log of bidder 4’s true valuation u; is a
sum of a common value component v and an idiosyncratic component a;: u; = v+ a;, where
v is normally distributed with mean p, and variance o2, while a; is normally distributed
with mean 0 and variance o2. Generally, the bidders do not observe their valuations, but
observe signals s; that are informative about the valuations: s; = u; +¢;, where the ”noise”
term ¢; is also mean zero normally distributed, with variance o2. This model nests naturally
a private values environment within a common values one. If o, = 0, then the environment
is PV, and the private values are correlated to the extent that o, > 0. (If also o, = 0, then
the environment is independent private values, IPV.) But if 0. > 0, then the true valuations
are unobservable, and we have a model with a common value component.

Figure 1 shows numerically computed bidding strategies B (s) and bid densities g (b)
for two examples of the above model.?® In the first example (the CV example, on the left
panel), we set 0, = 0, = 0. = 0.3. In the second example (the PV example, on the right
panel) we set o, = 0, = 0.3 and 0. = 0. In both examples, N = 6, the mean log valuation
i, = log 100 and the reserve price is $80. A barely noticeable, but important difference
between the graphs in the top panel is that under PV the bidding strategy has zero slope
at s = s* (the right graph), while it has a positive slope there under CV (the left graph).
This behavior of the bidding strategy translates into a profoundly different behavior of the
density of bids g (b) around the reserve price, illustrating the power of our Proposition 1
(see the graphs on the lower panel). Under CV, ¢ (b) is continuous around r. But under
PV, the density around the reserve price has a ”"spike”. (The fact that the slope of B (s) is
zero at s = s* implies that the density is unbounded.)

The randomly generated PV and CV samples are {b;; : i =1, ..., nl}lel for L = 250, 000.
The data set is broken into R = 250 samples of L = 1000 auctions. For each PV and CV

24See also Hong and Shum (2002) for an application to highway procurement auctions.
25 A Mathematica notebook used to compute these examples is available at http://artyom239.
googlepages.com
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sample the Hill-estimator I%;ﬁn and corresponding semi-parameter and nonparametric vari-

ance estimators vp,, and &3,% are computed over the tail fractile window m,, € {5,...,200}
with a Bartlett kernel and bandwidth?6 ~, = n-??>. As a benchmark we also report the
2.5% and 97.5% quantiles of the simulation sample of #,,;" .

4.2 Tail Inference

Let 9% denote either @%% or &fnn. We plot the 95% asymptotic confidence band using

each 92, and the 2.5% and 97.5% simulation quantiles. We also plot AMP test rejection
frequencies under the one-sided null of PV and the alternative of CV, at the 5% level. See
Figures 2-5.

The Hill-estimator uniformly hovers near #,, = 2 when bids are generated under PV,
and near /%;Li = 1 under CV, both supporting Proposition 1. Using simulation sample
quantiles as a benchmark, the most accurate asymptotic 95% band under CV is derived
using the semi-parametric estimator 27,2%

The 0y, -based t-ratio, however, renders rejection frequencies of the PV null significantly
above 5% for all m,, > 25. The 6,,,-based t-ratio’s rejection frequencies, by comparison,
hover near 5% for most fractiles m,,. Thus, when using asymptotic Gaussian critical values
the kernel estimator results in the best approximation of the 5% nominal test size. The
semi-parametric 92, leads to substantial over rejection of the null (Figure 3).

In the case of CV data rejection frequencies are above .95 in all cases for each t-test
and all tail fractiles m,, > 45. Together, rejection frequencies under both PV and CV are
the most uniformly accurate (near 5% under PV, near 100% under CV) when the kernel
estimator &?nn is used.

Clearly @%n tends to be smaller than &%Ln given the wider 6,,,-based band under PV and
CV, and under PV the 9,,,-based band is even tighter than the 2.5% and 97.5% simulation
quantiles. But the simulation mean and variance of @,%Ln are smaller than those for Fffnn
under both PV and CV: the simulation variance of 17,2% is roughly half that of 63% for all m,,
due to the relatively few auction pairs that enter ﬁfnn. Further, {)?nn is slightly skewed left
over most m,, while &,an is slightly skewed right over all m,,. Thus, @,an tends to produce
small outliers under PV and CV. Despite the 0, -based 95% band being roughly identical
to the simulation 2.5% and 97.5% quantiles under CV, the band is only an average over R
= 250 samples, and the average band does not reveal the small but significant ”outliers”.
The rejection frequency under the PV null, however, clearly captures these few outliers in
the form of a disproportionately large rejection frequency.

But the latter discussion only partially explains why the two tests have different rejection
frequencies: it fails to explain why the kernel-based ratio renders a frequency near the
normal size when an asymptotic Gaussian critical value is used. Notice that although only
Van exploits cross-auction bid independence, it approximates the variance of a random
variable that itself only asymptotically approzimates /%;L}L (see Theorem 5 and Lemma 6
in Appendix A). In fact, the approximation is required precisely so we can exploit bid

1

0

%6The bandwidth must satisfy v, = o(n'/?) to ensure consistency |62, — v2, | % 0. See Theorem 5 in
Appendix A. We repeatedly find ~v,, ~ nd for & € [.2, .25) to be superior across data generating processes
based on a massive array of simulations of a large variety data generating processes ranging from iid, to
block-wise independent auction data, to dependent and heterogeneous time series.
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independence across auctions. Conversely, &%ndirectly approximates the second moment

of &0 — k7! for each n (Hill (2009b)) hence the t-ratio m%/z(/?fl — 2)/6m, under PV

mn
1/2 /41

is closer to the standard normal law than m; (&, — 2)/0m,. Moreover, the average bid

sample size is 3000 which is large enough to promote approximate normality for m}/ 2(/%;51

— 2) under PV. Thus, mi/Q(/?fi — 2)/64,, is comparatively closer to a (0, 1)-Gaussian

m
law?”, and therefore a (0, 1)-Gaussian critical region better describes my/ 2(%;&} —2)/6m,

under PV than m./ 2(/%;1" — 2)/0pm,,. This is an important distinction: while the 0y, -based
95% bands better match the 2.5% and 97.5% simulation quantiles, other bands (99%, 90%,
85%, ...) based on ¥, do not fair as well, in particular under PV since my/ 2(/%;111 — 2)/0m,,

does not closely follow the standard normal law.

5 So, Are There Common Values in BCTS?

The BCTS sells timber through first-price, sealed-bid auctions, and it has developed a com-
plex system of reserve prices, also known in the industry as upset rates. The reserve prices
are set in dollars per cubic meter of timber. Bids must be submitted as bonus payments,
i.e. the dollar amounts per cubic meter over and above the reserve prices. Negative bonus
bids are not allowed. This feature makes the reserve prices strictly binding, a necessary
condition for our testing approach. When the timber is harvested and scaled, the successful
bidders pay for the actual volume of timber.?

Besides maximizing the revenue to the Crown, BCTS also implements a market pricing
system that uses auction high bids for setting stumpage rates for timber under long-term
tenure contracts. (Approximately 70 percent of the annual cut is allocated to long-term
tenure.) BCTS maintains an active database that contains historical information on timber
sales in the province. Both stumpage rates and reserve prices are set using predicted high
bids in comparable auctions.

The predicted high bids are computed using an estimated regression model, with adjust-
ments for harvesting situations not well represented in the BCTS dataset (e.g. helicopter
single standing stem selection etc.). The reserve price is set at 70 percent of the estimated
high bid in the auction. A printout of a regression model used for coastal sales and the list
of variables in exhibited in the Appendix.?? The variables are selected as those thought by
BCTS likely to explain a large portion in the variation of high bids, and it is reasonable
to conjecture that these are the same main variables that affect bidders’ valuations. They
include average log selling prices in the region, net cruise volume, estimated species compo-
sition on the tract, and measures of distance to the closest major location (e.g. Vancouver,
Nanaimo, Prince Rupert, etc.). The list of variables is not long, but probably detailed

2"This is demonstrated by Kolmogorov-Smirnov tests of standard normality on simulated sequences of
m}/%k;ﬁl — 2)/0m,, and m}/z(/%;zh — 2)/6m,. The KS p-value for m}/z(/%;zh — 2)/6m,, is significantly

1/2(A_1

larger than the p-value for my/'“ (&, — 2)/vm, for every m, > 60, a fractilce range on which the empirical

test size based on m./ 2(/%;111 — 2)/6m,, is roughly 5%. The simulation results are available upon request.
28Some Further details of BCTS are described in Roise (2005) and Niquidet (2008).
29The printout extracted from the booklet that describes the market pricing system. The booklet was
published by the BC Minstry of Forests and Range online, and is avaiable at http://www.1llbc.leg.bc.ca/

public/PubDocs/bcdocs/370415/MPSCoast . pdf.
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enough to capture the main aspects of auction heterogeneity, so normalizing the bids by
the reserve price is likely to homogenize the bids to a large extent. For this reason, we
do not incorporate any covariates in the empirical implementation of our test beyond the
normalization of bids by the reserve prices.

5.1 Why Should We Expect Common Values in BCTS?

Paarsch (1997) assumed a private values model in his study of SBFEP, the predecessor of
BCTS. But things have changed in BC since then, both because of new features in the
BCTS program, and because of certain concurrent events discussed below.

The value of a timber tract to a bidder depends the on the price of logs produced from
the timber. The price depends on the composition of timber species, the quality of timber,
and on market conditions. BCTS collects data on log prices for various timber species on a
regular basis, and publishes them on its website in log price reports. A report for the coastal
area covering the 12 months period ending December, 2006 is included in the Appendix.
As is evident from this report, there were considerable price differences both across species
and across quality grades. The average price over the period covered by the report was
about $83/m3. White Pine had a considerably lower price, about $53/m?, while Cedar
had a considerably higher price, about $123/m3. Also, grade ”D” Fir had a price of about
$393/m?, almost 10 times as much as grade ”J”.

BCTS provides estimates of the species composition at the time of sale, but these are
just estimates, and the actual fractions of species on the tract can deviate considerably, as
documented in Athey and Levin (2001) for the US Forest Service auctions. Given that logs
from different species may have considerably different market prices, this ”composition”
effect may create uncertainty about the average price of logs from the auctioned timber.
In SBFEP auctions studied in Paarsch (1997), even though bidders could only submit one
bonus bid as in BCTS, the upset rates varied according to the species. In effect, the winner
of the auction ended up paying different prices for different species. This may have allowed
bidders to insure against the ”composition” effect, by equalizing profit margins on different
species. In BCTS, bidders end up paying one ”total” price, and cannot insure away the
”composition” effect, facing larger uncertainty in log prices.

Over the period covered in our dataset, an additional factor influencing the quality of
timber in the province was in play: the epidemic of Mountain Pine Beetle.?? It affected the
predominant merchantable timber species, the Lodgepole Pine. According to an estimate
by the BC Ministry of Forests and Range, since late 1990s beetles have killed over 620
million cubic meters of timber, covering over 130,000 square kilometers (see Figure 6). The
BCTS conducts aerial surveys to determine the degree of beetle infestation of a forest area.
A definite sign of beetle infestation is the change of the color of pine needles, from green to
yellow to red. However, these measurements are imprecise because the needles don’t start
to turn colors until many months after the initial attack. The implication for our study is
that not only the quality of the logs was lower over the period in the data, but also that
there may have been substantial uncertainty about the quality at the time of bidding for a

39Some information about the Mountain Pine Beetle epidemic in BC can be found in the Mountain Pine
Beetle Action Plan, available at the BC Ministry of Forests and Range website, at http://www.for.gov.
bc.ca/hfp/mountain_pine_beetle/MPB_ActionPlan_ProgressReport.pdf (accessed on 28 April, 2009).

17



tract.

Our data were collected from the BCTS website.3! The raw data is in the form of
PDF files for each sale. We have all bonus bids, the reserve price, the identities of the
bidders and also data on the characteristics of the sale (e.g. the location, the species of
trees present, slope etc.). The reserve prices and bids are quoted per 1m? of timber. Our
dataset comprises of all auctions conducted from January 14, 2004 to December 14, 2006.
The sample contains 611 auctions and a total of 1874 bids. For each auction, the reserve
price as well as the bonus bids are available for all bidders. The summary statistics of the
sample are shown in Table 1. It is evident that there is substantial heterogeneity in timber
tract values, as reflected by the variances of both bids and reserve prices. The heterogeneity
persists even when bids are normalized by the reserve prices.

5.2 Can Bidders Be Treated Symmetrically?

Our testing approach has been developed under the assumption that bidders are symmetric.
Paarsch (1997) also treated bidders symmetrically in his study of SBFEP. But how well is
symmetry supported in BCTS? Since one of the goals of BCTS is to obtain market value for
the timber by promoting entry, the eligibility requirements in BCTS were somewhat relaxed.
In particular, the eligibility is no longer restricted to small logging firms. In principle, any
entity in BC that (i) is an individual 19 years of age or older or (ii) a corporation registered in
British Columbia; and, has one year logging experience or own a timber processing facility,
can participate for a two-year period. by paying a small registration fee (250 Canadian
dollars). But many features of the SBFEP have been preserved in BCTS, e.g. the tracts
are still quite small and, as important, no firm is allowed to hold more than five licenses
at the same time. This alone is likely to limit the participation of large mills and timber
processing companies.

In our data, we find no evidence of major players. Figure 7 contains the frequencies
of participation by firms in the auctions over the period covered by our data. About half
of the bidders participated in only one auction. Even the maximum of the participation
rate is very small, 15 out of 611 auctions, or the rate of about 0.02.This also implies
that information asymmetries, for example due to superior information about the beetle
infestation, are unlikely in this market.

But even though the participating firms are primarily small loggers, relatively high
transportation costs may create asymmetries if there is entry by distant firms. However,
there is evidence that competition in BCTS is highly localized. Paarsch (1997) reports that
in SBFEP, 90 percent of the sales in a particular district only involving firms from that
district. Our data on firm locations allow us to provide even stronger evidence on a highly
localized nature of this market.

We have information on the addresses of most firms (we were able to identify the loca-
tions of 580 out of 684 firms). Some information about site locations is also available, but
unfortunately not sufficiently precise to pinpoint their precise geographic coordinates. Of-
ten, the raw data files contained a description of the location relative to some identifier such
as a road, a lake etc. In principle, this information could be used to determine approximate
coordinates of the site, but this is likely to be hard and wasn’t attempted in this study.

3mttp://www.for.gov.bc.ca/bets/, accessed in January 2007.
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We can still measure the degree of firms’ distance asymmetry by looking at within-
auction differences in the coordinates of bidding firms. In each auction, we determined the
”center” by averaging latitudes and longitudes of the firms that participated. A distance
variable for each firm was constructed by computing its distance in miles to the auction’s
"center”. The frequency plot of the distance variable is given in Figure 8. Over a third of the
bids (657 out of 1874) were submitted by firms within 20 miles of the corresponding center,
and only 207 bids (just slightly over 15%) by bidders farther than 100 miles. According to
this measure, the competition in BCTS is indeed highly localized. This and our previous
discussion imply that bidder asymmetries are not substantial.

5.3 Test Results

Figure 9 shows the histogram of normalized bonus bids. The histogram exhibits an overall
declining pattern consistent with our findings in the numerical examples (Figure 1), for
both PV and CV environments.?? There is some evidence of bid clustering around the
reserve price. This could be evidence of a PV environment, but could also be a statistical
artifact, especially since our numerical examples have also identified some clustering under
CV. The tail index test however provides robust and conclusive evidence. The results of the
estimation of the tail index x~! are reported in Figure 10, where we plot the asymptotic
95% confidence bands #,,! 4 1.969/./m, over the same fractile window m,, € {5, ...,200}
used in the simulation, where 92 denotes either semi-parametric or nonparametric estimator
92, or 62, . The CV value k=1 = 1 lies within the confidence band for over 70% (55%) of

Mn
the fractiles m,, when &fnn (f}fnn) is used, while the PV value k=% = 2 never lies in either

band.

Test p-values based on both asymptotic variance estimators are displayed in Figure 11.
The fractile is again restricted to the window m,, € {5,...,200}. There is no evidence at
any fractile m,, for PV: p-values are no larger than .0045 for the test based on @%% or &fnn.
Since &?nn not only trumps 42, in simulation experiments but leads to accurate test sizes

under the PV null and impressive power under CV, the evidence overwhelmingly points to
CV.

6 Concluding Remarks

In this paper, we have developed a new tail-index nonparametric, asymptotically most
powerful test of common values in first-price auctions and applied it to BC Timber Sales,
an important institution both in the economy of British Columbia and in the larger context
of the United States-Canada soft lumber dispute.

The test is based on auction theory, but is reduced-form in the sense that it is based
on the properties of bids distribution, which is directly observable. The test exploits the
difference in the clustering of bids near the reserve price. A measure of such clustering is
provided by the tail index. We have shown that the tail index of the bid distribution is equal
to one-half under private values, but is equal to one if there is a common-value component
in bidders’ valuations. The estimation of the tail index is a well-studied problem in econo-
metrics, where the Hill-estimator is by far the most widely-used method. But the available

32Roise (2005) presents a similar pattern in his Figure 8, without normalizing bids by the reserve price.
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asymptotic results do not cover our setting of imbalanced panels with stochastic dimension
and conditional sub-sample heterogeneity. Our econometric contribution is to develop a
nonparametric asymptotic inference framework for the Hill-estimator in this setting. These
methods are potentially useful in other contexts.

Our nonparametric tail-index test has uncovered common values in BCTS beyond any
reasonable doubt. Simply put, the bids do not cluster around the reserve price as much
as they should if values were purely private. Why is this important? Recall that BCTS
pursues a goal of obtaining the maximal revenue for the Crown, and currently uses first-
price, sealed-bid auction mechanism. To the extent that common values are present, theory
(Milgrom and Weber (1982)) suggests that BCTS would obtain a higher expected revenue
if it adopted an ascending-bid auction. Shneyerov (2007) proposes nonparametric methods
for estimation and bounding of such counter-factual revenues. In addition, Tang (2009)
has recently developed nonparametric bounds for expected revenues under counter-factual
reserve prices. An application of these methods to BC Timber Sales would be an interesting
topic for future research.
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Appendix A: Tail Index Asymptotics and Inference

In this appendix we characterize the limit distribution of the Hill-estimator for imbal-
anced panels with stochastic dimension. We derive the new semi-parametric asymptotic
variance estimator 92, in (11) specifically tailored to auction data, and prove Hill (2009a)’s

m
nonparametric estimator &2”” in (10) is trivially consistent for auction data.
L

Fo=o ({n),

It is convenient to denote
the sigma-algebra we use for conditioning on the realizations of auction sizes n; for a given
sample of auctions of size L. In view of Proposition 1 and Remark 2, we have the following
conditions satisfied for bids b7,

A1l (conditional tail) The left-tail behavior of b;, satisfies for every i and Las b | 0
G*(b|F L) :=P (b, <blFL) =¢ xb"(1+0(b")), k>0, (13)
where the F 1-measurable random variable ¢; > 0 F -a.e..

A2 (cross-auction independence) b, is possibly dependent over i within auction I, and
independent across auctions 1.

We require one more piece of information concerning tail dependence. Since our DGP
implies b;; is stationary in the tails, for a given auction size n; we assume without loss of
generality tail dependence depends only on bid displacement in the following sense.

A3 (tail stationarity) b}, is conditionally tail stationary: P(bf, < be ", b7, < be™"|F )
for any scale u,v > 0 depends only on auction size n; and bid displacement |i — j| as
b\, 0. In particular, P(b;l < gmue ", b7 < dm,e "|FL) = P(bil < aneiu’biﬂifﬂ,l
< gm.€ "|F L) + op(mp/n) x e 7Y for every bid-pair i,j5 € {1,...,m} and every

auction | € {1, ..., L}.
Now define the lower m,, /n*’-conditional quantile sequence {g,,, } according to3>

n
—G"* (¢m, |F L) — 1 as L — oo. (14)
n
Since auction sizes n; are random, so are the number of sample extreme bids m, and
therefore the extreme bid threshold gy, .

Al Asymptotic Normality

Since &, = 1/my, > 7 (In b, +1)/ by )+ is constructed from dependent bids b} and there-
fore a dependent order statistic b’("mn 1y asymptotics are greatly simplified by a tail-array
expansion that allows us to replace bz“mn 1) with the bid threshold g, . Certain aspects of

the following argument are inspired by Hsing (1991). See Hill (2009a) and Hill (2009b).

338ee Leadbetter et al (1983: Theorem 1.7.13).
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Since n, m,, and ¢, are all random variables, throughout we operate conditionally by
treating the auction sizes as known constants {n;}7 ;. We then demonstrate that conditional
and unconditional inference are the same asymptotically.

Denote by (Ingm,, /bf)+|F L and I(bf < gm,e™)|F r bid tail information for a given
random draw {n;}L ;. Similarly, define a zero mean tail array conditioned on {n;}~,,

{Tiw:1<e<n) =T ) =0, -0 ()

where

L * *
USE = (g, /60) |F 1 — E [(0 g, /7). [F L]

1D () o= 1 (6] < qmne™) [F 1 — G (qmne "IF L) u>0,

and compactly write

I(L)t = I(L)t (u/ml/Z) and Téan),t =T (u/m1/2>

Mn, Mn,t

We write interchangeably the stacked {U(L t I,an) ' m t} or the auction/bid array { PNt
7 L) }

Mo, 8,00~ mp,i,00°
Now define the conditional and population mean-squared-error:

- 1\2
1)72%|L =F [mn (Bl — k1) |FL} and v2, =F [ mn|L}
Note v2, is not in general the variance of my Y 2(;1 m> — k1) because £, is biased (e.g.
Hall (1982), Segers (2002)). Nevertheless, a characterization of the asymptotic variance of
’%;zi for a stochastic dimensional panel is expedited by the following result.

THEOREM 5 Under A1 and A2, for any o(Up>1F 1)-measurable intermediate order se-
quence {my}, my — 0o a.s. and my, = 0,(n*3), the Hill-estimator conditionally on

{nl}lL:I

my/? (ki — k) P = 1/2 Z )+ op(1 (15)

Further, unconditionally

1/2
Tin (Rt —&71) <, N(0,1) where vZ, = O(1) (16)
U,
where 2
e DL (17)
vmn|L

Remark 1: Limit (16) is identical to the ones established in Hill (2009a: Theorem
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5; 2009b: Theorem 5.1), hence the stochastic nature of random auction sizes {n;} is non-
influential in the limit. Indeed, (17) means asymptotic variance estimation can proceed as
if {n;}L_, were deterministic.

Remark 2: Limit (16) is arguably supported by a weak limit theorem for cadlag
functionals with stochastic index (Theorem 14.4 of Billingsley (1999)). In that context it is
assumed there exists a mapping g : N — R4 such that n/g(L) — 6 where 6 is a constant,
or a random variable under sharp regulatory conditions. In our case we do not require any
information on the nature of n although plim; ., n/L = E[n;] < n clearly exists since n;
is iid and bounded.

Remark 3: In the iid case v2, — £ (Hall (1982)), but other auction data special
cases lead to the same result. See below.

A.2 Semi-Parametric Inference

Since bids b}, are independent across auctions under A2, use asymptotic approximation
(15) to deduce, conditional on auction sizes {n;}~ |,

2 L mn
Urznn|L < 1/2 ZZ mn,zl‘FL> = Z Z [ mn]l’FL]
=11,j=1

Mn =1 i=1

m
depends only on the auction size n; and bid displacement | — j|. In particular, by station-

arity A3 and Lemma B.1 in Appendix B

G~ eSS E[(18.) 1)

Cross-auction independence A2 and tail stationarity A3 imply for n sufficiently large E [T( )Z Lol Z\F A

" l=1 i=1
1 L n;— 1
(L) (
20 2 (=i < BT < Tl
=1 i=1
In the first term observe under Al Lemma B.2 asserts (n/mn)E[(Téln 1l) Fr] 2 w2
Along with n = Y7, n; and (17) this proves the following claim.
LEMMA 6 Under A1-A8 the unconditional variance satisfies
~ (0 D)
s 1 B L)
ngrgov N +2nggomnlz;2 m — 1) XE[T Tmn71+zl|FL
2
Remark: If bids are everywhere independent then F [T( )1 1% T(L) 1l = [Tr(nL aalF Ll

x E [T’r(nLn),j,l|F ] = 0 hence the classic result limy,_, v%% = x~2. Synonymously and triv-
ially, if all auctions have one bid n; = 1 with probability one then limy_ .., fufnn = k2. As
long as asymptotically there are infinitely many auctions with more than one bid (n; > 1)

the iid asymptotic variance =2 is wrong, and without more information on the nature of
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bid dependence within auctions £ [TT(nLn)” x TP j ;|F 1] cannot be simplified.

mn

Lemma 6 provides the basis for the structure of the semi-parametric estimator 92, in

Mn

(11), where ¢, (1) defined in (12) estimates within-auction bid tail dependence E[T ;L)

1,0 X
(L) PN . (L) (L)
Tmn,1+z',l|FL]' In order to ensure ¢, () is consistent for E[Tmn,l,l X T 1 yi

characterize how many auctions contain bid displacement ¢. Recall L, = Zle(nl — i)y
denotes the number of bid pairs {b7 07} at displacement ¢ that enter into ép,, (7).

|F ] we must

A4 (bid displacement) Asymptotically every bid displacement occurs infinitely often: L;
— 00 as L — oo for each i = 1..n — 1.
THEOREM 7 Under A1-A4, liminf,>1v2, >0 and my/n'/? — oo a.s., 02, jv2, 5 1.
Finally, Hill (2009a)’s kernel asymptotic variance estimator 62, in (10) is easily consis-
tent for blockwise independent bids in auctions of stochastic size. Although a large class
of kernel functions k(z) can be considered in the following arguments, including Parzen,
Tukey-Hanning, and Quadratic-Spectral, by far the Bartlett kernel k(z) = (1 — |z])+ is the
most popular in the economics literature. See Hill (2009b), cf. Andrews (1991) and de Jong
and Davidson (2000). Since n is random and in practice the bandwidth ,, is a function of
n, we must treat v,, as a random variable.

A5 (kernel) k(z) = (1 — |2])4, Y — 00 .5, v, = 0p(my/n'/?), m, = op(n) and
My /nt/? — 00 0o a.s.

THEOREM 8 Under AI-A8 and A5 é)’?nn > 0 with probability one. Additionally if

o . P
liminf,> v, > 0 then 62, /v, = 1.

Remark 1: Notice v,, = 0p(m,/n'/?) = o0,(n) and m,, = o,(n) imply ~,, = o0,(n'/?)
must hold. In general v,, = o0,(n) ensures 62, > 0 a.s. (e.g. de Jong and Davidson (2000)),

while specifically v,, = op(my,/ nt/ 2) promotes consistency by reducing the effects of persis-
tence between distant events (Hill (2009b)). This is trivially satisfied under cross-auction
independence since ”distant events” are simply bids in different auctions of uniformly finite
size n; < 1 < oo.

Remark 2: We require sufficiently many tail observations m,, /nl/ 2 & o0 a.s. to
ensure the estimators b’(*m +1) and /%;1}1 that occur in every U,,, + do not affect the limit of
A2
T, -

A.3 Formal Proofs
Proof of Theorem 5.

Step 1: Consider approximation (15) and write b; @) = by |F 1, an arbitrary bid given
all auction sizes. By conditioning on {n;}£ | it follows {m,} and {gm,} are sequences of
known constants. We therefore need only show the conditions of Lemma A.7 of Hill (2009a)
are satisfied for the data generating process of conditional bids {b; (L)}. It suffices if b; (L)
has tail (13), and {I(b} < gm, e *)|F L} is geometrically Ls-Near Epoch Dependent on some
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geometrically strong mixing base {¢;}. Condition A1 ensures the regularly varying tail (13),
cf. Proposition 1.

Stationary blockwise independence A2 with blocks of finite size n; < i < oo ensures
{I(b; < ¢m, e ™)|F r} is no more than n-dependent and therefore stationary geometrically
strong mixing (Ibragimov and Linnik (1971)), hence {I(b; < g¢m,e ")|F L} is stationary
geometrically Lo-NED on itself as a geometrically strong mixing base (e.g. Ibragimov and
Linnik (1971); Gallant and White (1988), Hill (2009b))34. This proves (15).

Step 2: In order to prove the unconditional limit (16) we will first verify the conditional
limit:
ml/2 .
" (&t — &™) [FL 5 N(0,1) where v2, L= Op(1). (18)
U’mn |L n

The latter follows from approximation (15) since under Corollary 3.3 of Hill (2009a)

1 < (1 J
—75 2 T/ Tt = N (0,1), (19)

Mn =1

where U%ML = E(l/m}/2 iy T,(nLn)’t|FL)2. The conditions of Hill (2009a)’s Corollary 3.3

are easily satisfied since b, ) has tail (13) under A1, and {I(b} < gm, e ™)|F L} is stationary
Lo-NED with arbitrary size on a strong mixing base with arbitrary size by Step 1. Notice
(15), (18) and (19) imply U72nn|L/O-znn\L 2.

Step 3: Now consider claims (16) and (17). Approximation (15) and limit (19) imply

m1/2
lim P ( (R -k < z|FL>

L—oo Umn|L

. 1 AL
= lim P ( 7 Tr(nn),t/Umn|L +o0p,(1) < z) =P(Z<2),
t=1

L—oo my

where Z is an unconditional Gaussian law with zero mean and unit variance. Bounded
convergence therefore implies

: mrll/Q ~—1 -1 . mizm A1 -1
LILH;OP ('Umn|L (H,mn — K ) < z) = LIEI;OE P <Umn|L (/@mn — K ) < z]FL)
: mizﬂ ~—1 -1
- E LILH;OP <Umn|L e ) z]FL)
= P(Z<z).

348pecifically, if 3; is the o-field induced by the infinite past of €;, 3¢ := o (e, : 7 < t), then some stochastic
process {z } is geometrically L2-NED on {S:} if sup; <;,, E(2 — E[zﬂ%iﬂz]f = o(p'") for any sequence
of positive integers {l,}, I, — oo, and p € (0,1). If S, is adapted to z; then the Lp-NED property is

trivial since sup; <,,, F(z: — E[zﬂ%fﬁz])? = 0. Hill (2009a)’s result requires the L2-NED base to be strong

mixing. But block-wise independence implies bids {b; (L)} are geometrically strong mixing and therefore
L2-NED on themselves as a geometrically strong mixing base.
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Since Z is a N(0,1)-law it follows instantly v2, /v, L 21 by the definition v2, =
Elmy (ki — 572 m

Proof of Theorem 7. Assume auction sizes {nl}lel, and therefore n and m,,, are deter-
ministic since by Theorem 5 there is no improvement in generality by allowing stochastic

ny. Define
L (=),

. 1
Cm, (1) = fz Z mn,J TT(nl:L)J-i"Ll

=1
Use Lemma B.1 in in Appendix B to deduce tail stationarity A3 and the construction L; =
L . .
2121 (g — @)+ imply

Elem,@)|F1] = 1

Mh

(= i)s % B TS, < TS F L]+ op (ma /)

-
= BT < T P L]+ o (ma/n).

mn,1,0 m

1

Now use Lemma 6 to write

L n;—1

1
Uiy =K 22— Y (=) X E e, (0)|F L] + 0p(1).
M=
The Theorem 5 implication /%T_ni =rk24+0 (1/m1/2) the Lemma B.3 assertions |én,, (7)
— Cm, ()] = op(l/mn) and |cm,, (1) — Elem, (4)|F ]| = op(1/my,), auction size boundedness

n < n < oo, Yo M = n by construction, and m,,/n'/? — oo a.s. and liminf,,>; V2,

> 0 by supposition together imply \@?nn / vfnn — 1] is bounded by

L n;— 1
K @fnn—vfnn| < fo 2 72‘+K ZZ (ng — i) |ém,, (1) — cm,, (1)

[

1 L n;—1
+E— D> (=) lem, () = Elem, 0)|F L]+ 0p (1)
=1 i=1
= Op(1/my/?) + 0p(nfmy) = 0,(1).
[

Proof of Theorem 8. Under the stated assumptions and the line of proof of Theorem
5, all conditions of Hill (2009b)’s Theorem 6 hold for bids {b; (L)} conditioned on auction
sizes {n;}£ ;. Therefore plim;_, [73nn/v12nn|L = 1. Since v?nn/vfnnw 2, 1 by Theorem 5 the
proof is complete. m

Appendix B: Supporting Lemmata

The following results are straightforwardly verified under the maintained assumptions.
Consult Hill and Shneyerov (2009) for proofs.
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LEMMA B.1 Under A1-A3 for n sufficiently large E[Tr(nl;)7i7lT'r(rL[;),j,l|FL] depends only on
auction size n; and bid displacement |i — j|. In particular E[Téi)“Tg;)jﬂFL] =
BT T F L)+ op(ma/n) Vi, g € {1, forall 1 <1< L.

LEMMA B.2 Under A1 (n/m,)E[(T", )2 ] & w72 F p-ace.

LEMMA B.3 Under A1, A2, A4 and m,/n'? — 0o a.s., supj<ici_1 [ém, (1) — cm, (1)

= 0p(1/mn) and supi<i<n 1 Cm, (1) = Elem, (@)|F L]l = 0p(1/mn).
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Figure 1: Bidding strategies and bid densities for CV (left panel)

models.

B(s)

g(b)

105}
100]

80 &

95¢
90+
85¢

0.10p
o.osf
0.06f
0.04f
o.ozf

0.00!

444546474849505.1

S

32

B(s)

g(b)

105

100

95

90

85

80

0.10

0.08

0.06

0.04

0.02

0.00

44 45 4.6 47 48 49

N

80

85

90

95

and PV (right panel)

100



5.0

4.0 4

3.0

2.0

b(kern)

1.0

0.0 1

-1.0
5 30

55

80

105

130

Tail Fractile m(n)

155

180

—1k

— b(kern)

b(asym)

— b(quant)

Figure 2: Simulated PV data : The tail index estimator /%,;}1. b(-) denotes the asymptotic
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Figure 6: The outbreak of Mountain Pine Beetle in the province of British Columbia.
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Table 1: Summary statistics

Variable Description Mean  Std. Dev. Min Max
Auction date Date on which the auction was held 14-Jan-05  14-Dec-06
Bonus bid $ amount over the reserve price per m. 10.277 9.947 0.000 63.550
Price Maximum bid 12.749 12.271 0.010 63.550
Reserve price Upset rate per m3 28.655 10.858 0.250 50.220
Normalized bid Bid divided by upset rate 0.457 0.599 0.000 5.278
Normalized price Price divided by upset rate 0.581 0.740 0.000 5.278
Distance Distance from bidder's to site location 44.898 52.278 0.000 411.364
Volume Estimated volume of timber (m3) 26,372 20,944 200 122,113
Number of bidders Number of bidders in the auction 4.560 2.230 1 10
Estimated fractions of various wood
Species composition:  species in percentages
Lodgepole 48.068 38.508 0.000 100.000
Spruce 12.696 15.609 0.000 93.000
Douglas-fir 9.382 20.618 0.000 99.000
Other 29.867 37.449 0.000 100.000
Number of observations 1835
Number of auctions 611




Predicted Bid

3-Month Average Log
Selling Price

2" Growth Fir %

2" Growth Hembal %
Old Growth Hembal %
Slope

Volume per Hectare

Helicopter Logging %

Haul Distance
Number of Bidders

Volume
Cable Yarding %

Cruise Grades

Location

Barge Distance

MARKET PRICING SYSTEM - COAST
APPENDIX 1
List of Variables

Estimated winning bid for the cutting authority ($/m”.

Average coniferous log selling price estimate ($/m’) based upon log
grades and species for the cutting authority area, and schedules of
log market values collected and published by Revenue Branch.

The fraction of the coniferous cruise volume that is second growth
Douglas-fir.

The fraction of the coniferous cruise volume that is second growth
hemlock.

Fraction of coniferous cruise volume that is old growth hemlock
and balsam.

Average side slope percentage for the cutting authority area that is
not harvested by helicopter.

Volume per hectare in m*/ha. Calculated by dividing the total net
coniferous cruise volume (m®) by the total merchantable area (ha).

Fraction of the total net cruise volume (which includes deciduous
volume) that is required to be helicopter yarded plus the volume
yarded by skyline (i.e., logs fully suspended) greater than 600 m
straight line yarding distance measured from the centre of the
closest possible landing into the cut block.

Truck haul distance (km).

Estimated number of bidders that would compete for the cutting
authority.

Total net cruise volume of coniferous timber (m?).

Fraction of the total net cruise volume (which includes deciduous
volume) that needs to be cable yarded.

Cruise Grades = 1, where 50 percent or greater of the total net
cruise volume has used the cruise compilation as the source of log
grades for the appraisal, otherwise Cruise Grades = 0.

The straight line distance (km) from the geographic centre of the
cutting authority area to the nearest location listed below:
Vancouver, Chilliwack, Merritt, Victoria, Nanaimo, Campbell
River, Prince Rupert, Terrace, Houston.

Barge distance is the barging distance (km) between the appraised
point of origin and the point of appraisal for the cutting authority
area.

Revenue Branch, Ministry of Forests (January 16, 2004) 7



MARKET PRICING SYSTEM - COAST
APPENDIX 2

MPS Coast Equation —~-Winning Bid

Dependent Variable: Real Winning Bid (for stands > 2,500 m3)
Method: Least Squares

Sample: January 1, 1999 to December 31, 2002

Included observations: 248

White Heteroskedasticity-Consistent Standard Errors & Covariance

Variable Coefficient  Std. Error t-Statistic Prob.

Constant -22.14037  5.944577 -3.724466 0.0002

Cruise Grades 3.460424  1.651467 2.095363 0.0372

2" Growth HemBal_% -19.00256  4.440790 -4.279094 0.0000

3-Month Average Log Selling Price 0.784393  0.061253 12.80572 0.0000

*LN (Old Growth HemBal_% + 0.01)  -2.879611  0.605312 -4.757236 0.0000

Slope -0.166169  0.052742 -3.150589 0.0018

Helicopter Logging_% -40.09100  3.506940 -11.43190 0.0000

*LN(Volume per Hectare/1000) 11.94704  1.827940 6.535793 0.0000

*LN(Number of Bidders) 10.06841 1.477136 6.816169 0.0000

Haul Distance -0.034161  0.020904 -1.634167 0.1036

Barge Distance -0.011281  0.002742 -4.114145 0.0001

R-squared 0.757806 Mean dependent var 44.39302

Adjusted R-squared 0.747587 S.D. dependent var 22.83775

S.E. of regression 11.47385 Akaike info criterion 7.761359

Sum squared resid 31200.86 Schwarz criterion 7.917196

Log likelihood -951.4085 F-statistic 74.15553

Durbin-Watson stat _ 1.608942_ Prob(F-statistic) _ 0.000000

*LN means natural logarithm.

Revenue Branch, Ministry of Forests (January 16, 2004) 8
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