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Abstract

This paper examines a new model of credit risk mea-
surement, the Variance Gamma- Merton one, which seems
to be adequate for describing single default occurrence and
default correlation in turbulent times. It is based on the
notion of business time. Business time runs faster than cal-
endar time when the market is very active and a lot of in-
formation arrives; it runs at a slower pace than calendar
time when few information arrives. We report a calibration
to USA spread data, which shows the accurateness of the
model at the single default level; we also compare the per-
feormance wrt a traditional structural model at the joint
default level.

1 Introduction

This paper examines a new model of credit risk measurement, the
Variance Gamma- Merton one, which seems to be adequate for de-
scribing single default occurrence and default correlation in turbu-
lent times, such as the current, crisis or after-crisis ones. It is based
on the notion of business time. Business time runs faster than cal-
endar time when the market is very active and a lot of information



arrives; it runs at a slower pace than calendar time when few infor-
mation arrives. We report a calibration to USA spread data, which
shows the accurateness of the model at the single default level; we
also compare the performance with respect to a traditional struc-
tural model at the joint default level.
The structure of the paper is as follows: section 2 resumes the

basic pre-crisis structural model of credit risk, both for single and
joint defaults. In the multiple default case it specifies both the ex-
tended and simplified - or factor copula - version. It concludes with
an overview of its shortcomings. Section 3 sets up our alternative,
business-time credit model, both for single and joint default occur-
rences. Section 4summarizes its calibration to USA spread data.
Section 5 presents the calibration to joint defaults. The conclu-
sions follow.

2 The pre-crisis base model of credit

risk

2.1 Single defaults: Merton

The basic pre-crisis structural model of credit risk is inspired by
the seminal paper by Merton (1974). Consider a firm i which has
a single zero coupon debt. It expires at maturity t and has face
value Ki > 0. Default of firm i occurs - at debt maturity - if the
firm’s asset value Vi(t) falls at or below the liability one, Ki(t). The
default probability at maturity t is

Fi(t) = P (Vi(t) ≤ Ki(t)) (1)

while the distribution of the time to default, τ i, is

τ i =

½
t P (Vi(t) ≤ Ki(t))
+∞ P (Vi(t) > Ki(t))

Merton assumes that log asset prices (ln Vi) or asset returns are
normal, i.e. Gaussian. Equivalently, he assumes that the asset value



Vi follows a geometric Brownian motion. Under his assumptions the
(marginal) default probability of firm i is

Fi(t) = Φ(−d2i(t))

where Φ is the (univariate) standard normal distribution,

d2i :=
ln (Vi(0)/Ki(t)) + (μi − σ2i /2)t

σi
√
t

μi and σi are respectively the instantaneous mean return on assets
(r under the risk neutral measure) and its standard deviation.

2.2 Joint defaults

For simplicity, we consider the bivariate case to start with. Two
firms (or names), denoted as i = 1, 2, exist. In Merton’s model, if
one assumes that log assets are jointly normally distributed1, with
correlation coefficient ρ, the joint default probability of two names
with common expiry of debt is

F (t) = P (V1(t) ≤ K1(t), V2(t) ≤ K2(t)) = Φρ (−d21(t),−d22(t))

where Φρ is the (bivariate) standard normal distribution with cor-
relation coefficient ρ.
Using the fact that −d2i(t) = Φ−1(Fi(t)), the joint default prob-

ability can be represented as:

F (t) = Φρ

¡
Φ−1(F1(t)),Φ

−1(F2(t))
¢

This is the so called copula representation of the joint proba-
bility. It is made possible by Sklar’s theorem: for details see for
instance2 Nelsen (1998), or Cherubini, Luciano, Vecchiato (2004).

1As is known, joint normality is a further assumption wrt marginal normal-
ity.

2Both these references not only introduce the notion of copula and Sklar’s
theorem, but also the Gaussian and Students’ copulas, to be used below. Nelsen
is the seminal book in the field, Chr.... is mainly focused on Finance applica-
tions.



The copula which we have obtained is the so-called (bidimensional)
Gaussian copula, defined as

CG (u1, u2) := Φρ

¡
Φ−1(u1),Φ

−1(u2)
¢

Analogously, for the n names, the joint default probability is

F (t) = P (V1(t) ≤ K1(t), ....Vn(t) ≤ Kn(t)) = ΦR (−d21(t), ...,−d2n(t))

which can be written using the corresponding n dimensional
Gaussian copula, with correlation matrix R:

F (t) = ΦR

¡
Φ−1(F1(t)), ...,Φ

−1(Fn(t))
¢

(2)

Instead of joint normality, one can assume a Student t copula
among asset values:

Ct (u1, u2, .., un) := tR,ξ
¡
t−1ξ (u1), t

−1
ξ (u2), ..., t

−1
ξ (un)

¢
where tR,ξ is the n-dimensional Student’s t distribution of parameter
ξ, while tξ is the uni-dimensional Student’s t distribution. In the
Student’s case, the joint default probability is

F (t) = tR,ξ(t
−1
ξ (F1(t)), ..., t

−1
ξ (Fn(t))) (3)

In general, assuming a copula C, one has

F (t) = C(F1(t), ..., Fn(t)) (4)

2.3 Factor copulas, or joint default simplified

If the number of obligors increases, the representations (2) or (4),
in spite of their conceptual simplicity, can become cumbersome.
Therefore, it was common practice before the finincial crisis of the
last years, especially for pricing and hedging applications, which
can involve more than a hundred names, to substitute the actual
copula with the so called factor one, as follows.
Let us assume that the asset value has unit value at time zero

and normalize the log asset value (or asset return) of firm i. The
latter is:

V 0
i =

lnVi − (μi − σ2i /2) t

σi
√
t



An analogous expression holds under the risk neutral, pricing mea-
sure. Assume that each log asset value in the portfolio can be
factorized in a common component Z and an idiosyncratic one, εi,
as follows:

V 0
i = ρiZ +

q
1− ρ2i εi (5)

where ρi ∈ R, Z and εi, i = 1, .., n are independent standard
Gaussian. The weighting coefficients ρi and

p
1− ρ2i are chosen

so that V 0
i is standard normal. The assumptions on the factoriza-

tion are such that not only the log asset values V 0
i s are independent,

conditionally on the common factor Z, but also that the uncon-
ditional linear correlation coefficient between two log asset values
V 0
i and V 0

j is ρiρj. The conditional marginal default probabilities,
pti(z), if K

0
i is the properly normalized log liability,

K 0
i(t) :=

lnKi − (μi − σ2i /2)

σi
√
t

are easily calculated:

pti(z) = P (V 0
i ≤ K 0

i | z) = Φ

Ã
K 0

i − ρizp
1− ρ2i

!
The expressions for the unconditional ones follow by simple inte-
gration over the support of the factor:

Fi(t) =

Z
R
pti(z)ϕ(z)dz (6)

where ϕ is the standard Gaussian density.
Taking into consideration that asset values - and therefore de-

faults - are conditionally independent, the conditional joint default
probability is simply the product of the marginal ones:

F (t | z) =
nY
i=1

pti(z)

It can be written in copula terms using the product copula C⊥. As
the name says, the latter is simply the product of its arguments:

C⊥ (u1, u2, .., un) := u1 × u2 × ..× un



It follows that:

F (t | z) = C⊥
¡
pt1(z), .., p

t
n(z)

¢
The corresponding expressions for the joint unconditional probabil-
ity easily follow:

F (t) =

Z
R

nY
i=1

pti(z)ϕ(z)dz =

Z
R
C⊥

¡
pt1(z), .., p

t
n(z)

¢
ϕ(z)dz (7)

The technique above can be extended beyond the Gaussian case.
In general, if the common factor Z has a density f(z) on the real
line R, it follows from the definition of conditional probability that
the marginal (unconditional) default probabilities can be written
as

Fi(t) =

Z
R
pti(z)f(z)dz (8)

The joint unconditional probabilities can be represented through
the (conditional) product copula C⊥, as desired:

F (t) =

Z
R

nY
i=1

pti(z)f(z)dz =

Z
R
C⊥

¡
pt1(z), .., p

t
n(z)

¢
f(z)dz (9)

2.4 Shortcomings

The traditional, Merton’s type model tends to produce vanishing
spreads at very short maturities. Generally, it underestimates the
actual ones.
The model shows also poor fit over longer maturities, with over-

estimate of risky debt and underestimate of low-risk one. This bias
has been documented by Eom, Helwege, Huang (2004) and was well
known, before the crisis, both in the literature and in the practice.
Merton’s model has been extended in a number of ways. One

main extension consisted in including coupons on debt or debt
covenants. This made default before debt-expiry possible. An-
other important extension consisted in including (riskless) stochas-
tic interest rates. The extensions are well beyond the scope of this



paper. However, once compared with actual spread data, the ex-
tended Merton’s models still provide credit spreads well below the
actual ones for short maturities and - even for longer maturities -
high ratings; well above the actual ones for longer maturities and
low ratings (see Eom, Helwege, Huang (2004)).
The main reason behind the scarce consistency of Merton’s

model with market data is the assumption that the firm value fol-
lows a continuous process. This assumption, which is preserved by
the extensions - be them through coupons, covenants or stochastic
rates - makes the asset value behavior not totally unpredictable.
Intuitively, no surprise can occur. As a consequence, spreads in
Merton’s model are generally too low. They become too high when
volatility is overestimated, namely in the long run and for low credit
ratings. A model is needed which does capture the actual disper-
sion - or volatility - by capturing the possible information arrivals,
including surprises or jumps, appropriately.

3 An alternative, business-time based
model

The alternative model we are going to present is based on the dis-
tinction between calendar and business time. This idea goes back
to Clark (1973) and has been developed, for instance, by Geman,
Madan and Yor (2001), Geman (2005). The idea is that business
- or transaction - time runs faster than calendar time when the
market is very active, trade is high, a lot of information arrives and
consequently asset prices are quite volatile. It runs at a slower pace
than calendar time when few information arrives and volatility is
low.
The aim of adopting the previous distinction in credit risk mod-

els is that of providing both a better theoretical framework and a
better empirical fit.
There is an economic rationale for our choice. The business-

time models can be written as time-changed Brownian motions.
This means that prices are diffusions in business time, not in cal-
endar time. The pace at which business time runs depends of in-



formation and/or trade. Time in quiet trade periods does not
run as in active - or hypersensitive - periods as a boom or a crisis,
when everyone keeps alert, ready to buy or sell. The distinction
between the two times is alike a stochastic clock3. Asset prices are
not any more diffusions, once the stochastic time change has been
accounted for.
The mathematical and statistical rationale is the need for

asset models able to present jumps. As soon as they present jumps
at the trajectorial level they will present skewness, kurtosis and
other deviations from normality at the distributional level. Even
apart from the credit domain, we know that in modern markets
equity prices - which are a component of firm’s assets - present
very often deviations from normality. This is a further motivation
for adopting business-time based models, such as the so called Lévy
models (of the pure jump type) we are going to focus on. Only sud-
den jumps to default can overcome the lack of total unpredictability
of default of diffusive models.
In practice, in Lévy models (of the pure jump type) the shift

from the traditional, Merton’s alike model is accomplished by mak-
ing V 0 a pure jump process. If the time change has value Gt at time
t, the log return in calendar-time is:

V 0
i (t) = θiGt + σiW

(i)
Gt
, t ≥ 0. (10)

with θi ∈ R, σi > 0 and W
(i)
t a time−t Brownian motion typical of

firm i.
In the credit domani, this device was first adopted, as far as we

know, by Madan (2000). He specified the time change to be of the
gamma type with parameter ν. By so doing, he got the so called
Variance Gamma (VG) process for log asset prices, which had been
studied in Madan and Seneta (1990). As in the Merton’s case, it
is quite easy to shift to the risk neutral measure, by adding to the
asset value the component mit, where

mi = r + ν−1 log

µ
1− 1

2
σ2i ν − θiν

¶
.

3It cannot be a deterministic change of time, otherwise no jumps could
occur. See Geman et al. (2005) on tis matter.



This is the choice we are going to adopt in the sequel. In principle, a
number of more sophisticated time changes could be adopted (see
for instance Luciano and Semeraro (2010a,b,c)). For the present
purpose, however, we will see that already the seminal one is enough
to overcome the main shortcomings of the traditional models.

3.1 Single and joint defaults

Given the choice of the Gamma time change, we obtain what we
call a VG-Merton’s model.
Based on (10), the marginal conditional default probability of

firm i, having denoted as vi the log debt value, lnKi, becomes

p1i (z) = Φ

µ
vi −mi − θiz

σi
√
z

¶
, (11)

Its unconditional version is

Fi(1) =

Z +∞

0

p1i (z)
ν−1/ν

Γ(1/ν)
z
1
ν
−1 exp(−z/ν)dz

since

f(z) =
ν−1/ν

Γ(1/ν)
z
1
ν
−1 exp(−z/ν)

is the density of the gamma time change, with Γ(1/ν) the gamma
function.
Based on section 2.3, the joint conditional probability when Z =

z is simply

2Y
i=1

Φ

µ
vi −mi − θiz

σi
√
z

¶
the joint unconditional probability, since conditional indepen-

dency holds, can be written via the factor copula:

F (1) =

Z +∞

0

2Y
i=1

Φ

µ
vi −mi − θiz

σi
√
z

¶
ν−1/ν

Γ(1/ν)
z
1
ν
−1 exp(−z/ν)dz.



4 Marginal calibration: a story of suc-
cess

This section contains the results of an empirical test of the VG
univariate credit model, developed by Fiorani et al. (2010). The
objective of the empirical investigation was - as usual - to apply the
model to real price data and to determine the performance of the
theoretical suggestion behind it. In order to reach the aim, we
◦ Use a subsample of USA spread data to calibrate the VG

parameters σ, ν and θ of a number of firms
◦ Use the calibrated parameters to forecast their credit spreads
◦ Compare the forecasted spreads and the actual ones (which

form the remaining part of the spread sample) to assess the quality
of the theoretical credit model

4.1 Calibration

The data we used were as follows.
◦ The initial calibration was done using one month of data on all

the components of the Dow Jones investment grade Credit Default
Swap (CDS) index (CDX NA IG) and high yield index (CDX NA
HY), for a total of 225 names.
◦ We had a total of approximately 18,700 credit spreads. This

makes our test one of the most extensive empirical test of credit
risk in pure jump structural models presented in the literature to
date.
◦ We considered two possible CDS maturities, namely 5 years

and 10 years, so as to get "time-independent" or "time-robust"
conclusions.
Overall, the statistics of our spread were



Distribution of Average Spreads
Whole Sample

percentiles (bp) 5 year spreads 10 year spreads
5% 23.273 37.227
25% 39.205 56.227
50% 87.045 101.955
75% 240.284 233.477
95% 556.293 625.205
mean .019 .020

st.deviation .0310 .029
skewness 4.560 4.249
kurtosis 28.234 24.608

Other inputs were: the riskless rate r, which we took from the
appropriate US swap curve; the leverage ratio Vi/Fi, which we took,
firm by firm, from balance sheet data; the payout rate (Weighted
average of debt and equity payout) qi, which we obtained by a name-
by-name elaboration on Bloomberg’s data. Last but not least, we
needed the recovery rate, which we got in Fiorani et al. (2010),
using name-by-name data.
The calibration methodology we used was as follows.
◦ We minimized the sum of squared errors between theoreti-

cal and actual spreads over the in-sample (or the first part of the
sample) period
◦ We did two separate calibrations for each firm; one for 5 year

and one for 10 year spreads
Let us drop the dependence on the firm name, i, for simplicity.

We knew that the theoretical spread was proportional to the price
of a put option on a VG underlying, which depends on the initial
firm value V (0), the face value of debtK, the riskless interest rate r,
the payout ratio q, expiration t, as well as on the firm’s parameters .
Let the put value be V GP (V,K, σ, ν, θ, r, q, t). Fiorani et al. show



that

V GP = V (0) exp(−qt)
"
Ψ

Ã
k(d)

r
1− c1
α

, (β + s)

r
α

1− c1
,
t

α

!
− 1
#
+

−K exp(−rt)
"
Ψ

Ã
k(d)

r
1− c2
α

, β

r
α

1− c2
,
t

α

!
− 1
#

(12)

where α .
= 1/v, d is the firm’s quasi-leverage ratio:

d :=
K exp(−(r − q)t)

V (0)
, (13)

the function k(d) is defined as

k(d) :=
1

s

∙
ln

µ
1

d

¶
+

t

α
ln

µ
1− c1
1− c2

¶¸
,

c1 :=
α (β + s)2

2
;

c2 :=
αβ2

2
,

β := −θ/σ2,
and the function Ψ can be obtained from the Hypergeometric func-
tion of two variables and the Bessel function of the second type
The results we got are in the next tables.

VG-Merton model calibrated parameters: σ
5 year horizon 10 year horizon

number of names excluded 3 3
mean .280 .412
st.deviation .387 .533

VG-Merton model calibrated parameters: ν
5 year horizon 10 year horizon

number of names excluded 3 3
mean .389 .296
st.deviation .398 .208



VG-Merton model calibrated parameters: θ
5 year horizon 10 year horizon

number of names excluded 3 3
mean -.223 -.111
st.deviation .290 .298

4.2 Forecast and comparison

Using the calibrated parameters, we forecasted the spreads for the
high yield (HY) and investment grade (IG) firms over the succes-
sive months. We then compared them to the observed spreads.
The analysis of the errors between forecasted and actual spreads
was comprehensive of three types of error: Average Daily Error
(ADE), Percentage Pricing Error (%PE), Average Percentage Er-
ror in Absolute Value (%APE). The ADE for instance is

ADE =

sPM
u=1 (s|ob(u)− s∗|th(u))2

M

where s|ob(u) and s∗|th(u) are respectively the observed and theo-
retical (or forecasted) spread in day u for a specific name or firm,
and the sum is extended over M days.
Here are the results in Fiorani et al. (2010) over five years:

Pricing errors from 5-year CDS’s
percentiles ADEx10000 (bp) PE APE
5% 1.793 .397 .030
10% 2.696 .282 .051
25% 4.152 .148 .071
50% 11.331 .067 .100
75% 22.716 .002 .194
90% 41.33 .112 .295
95% 66.758 .183 .425
mean 26 .075 .150
st. deviation 70 .190 .143



Similar results hold over 10 years. Overall, the errors are ex-
tremely low. This signals the good quality of the prediction. In
particular, the ADE median is just above 10 bps for both 5 and 10
year CDS’s, the mean is 26 bps and 47 bps for 5 and 10 year CDS

4.3 Comparison with Merton’s Model and sim-
ilars

We compared the above performance with the results for the Mer-
ton’s model in Eom, Helwege and Huang (2004). We focused on the
behavior of the previous model first in terms of under/overprediction,
then in terms of bias.
For the prediction, we can examine the following table:¯̄̄̄

¯̄̄̄
¯̄

Merton’s VG-from 5 years VG-from 10 years
Mean %PE −50.4% 7.5% 6.6%
sd %PE 72% 19% 17%

Mean %APE
sd %APE

78%
40%

15%
14%

14%
13%

¯̄̄̄
¯̄̄̄
¯̄

where sd stands for standard deviation.
Merton’s model tends to underestimate the spreads. The under-

estimation disappears when using VG. Merton’s mean errors and
their sds are much larger then the ones produced by VG. Among
the models tested by Eom, Helwege and Huang, the best perform-
ing model was Geske’s model with a mean %APE of 65.7% and sd
28.3%, much worse than ours.
We then considered the bias. Indeed, as we said above, Merton’s

model severely underestimates short term spreads. To adjust for
Merton’s model main problem, alternative models severely overes-
timate the high-risk spreads and underestimate low-risk ones. Does
the VG model suffer from the same bias? In order to answer , we
separated our dataset in 4 groups: HY (riskier) versus IG (safer)
and 5 year versus 10 year spreads.
Consider for instance the 5-year IG CDS.



Pricing errors from 5-year IG CDS’s
percentiles ADEx10000 (bp) PE APE
5% 1.460 -.172 .040
10% 2.007 -.120 .059
25% 3.054 -.044 .078
50% 5.053 .065 .106
75% 12.700 .140 .194
90% 18.868 .342 .383
95% 22.716 .457 .465
mean 8.3 .075 .171
st. deviation 7.4 .227 .172

The %PE mean is 7.5%, low and positive. This means that
there is low overpricing . The APE mean is low too. This means
that there is no compensation. So there is no bias in this case.
Fiorani et al. consider also the other groups.
◦ IG and HY errors are very close to each other, for 5 and 10

years.
◦ Errors have the same signs at the same percentile (this is

shown by the %PE)
◦ The ADE shows an higher error in terms of basis points,

because HY’s spreads are much higher than IG ones. When we
scale by the size of the error, such as in the %PE and %APE, IG
and HY error sizes are very close.
The conclusions of the univariate analysis then were:

• The Merton’s VG model presents small errors both in ab-
solute terms and in comparison to Merton’s model and to
other structural models;

• Merton’s underprediction is amended by its VG version, with-
out introducing other biases (such as overprediction of HY
CDS spreads, which is typical of the refinements of Merton’s
model)

• The VG-Merton’s model performs well for both HY and IG
spreads and for both 5 and 10 year spreads.



5 Joint calibration and factor default
probabilities

Once VG is shown to be superior at the single-default level, one
can use it for joint default assessment.
As an example, we report the results obtained in Luciano (2006).

Here a sample of five names was selected: Autozone, Ford, Kraft,
Walt Disney, Whirlpool. The parameters of their asset values un-
der the VG hypothesis had been derived (from CDS prices) in Lu-
ciano and Schoutens (2006). Dependence was computed under the
assumption of a unique change of time for all the firms in the sam-
ple. This simplified the calibration, because the computation of
the assets’correlation or dependence was not required. However,
the methodology can be generalized4.
The next two tables present respectively their calibrated joint

probabilities under the traditional Merton’s model and its VG ex-
tension

Joint default probabilities, Merton model
Autozone Ford Kraft Walt Disney Whirlpool

Autozone 6.065 0.030 0.053 0.508
Ford 6.065 0.080 0.143 1.356
Kraft 0.030 0.080 0.001 0.007
Walt Disney 0.053 0.143 0.001 0.012
Whirlpool 0.508 1.356 0.007 0.012

Joint default probabilities, VG model
Autozone Ford Kraft Walt Disney Whirlpool

Autozone 2.421 0.599 0.712 1.215
Ford 2.421 0.966 1.149 2.035
Kraft 0.599 0.966 0.350 0.565
Walt Disney 0.712 1.149 0.350 0.667
Whirlpool 1.215 2.035 0.565 0.667

Intuition suggests that neglecting jumps - or fat tails or sudden
information arrival and the volatility it creates - leads to underes-
timating joint default probabilities. The percentage differences in

4Luciano and Semeraro (2010b,c) extend the theoretical model wrt this
restriction.



the Merton’s and pure jump default probabilities visualized below
confirm the intuition. They also point out the exceptions: this is
important, in that the differences rationalize our financial sensation
showing that it does not hold unconditionally.
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The previous table is important in that respect. We know that
standard models were poor predictors of the recent financial crisis,
since they underestimated joint default, as the above Merton model
does in the example. The previous table shows that models able
to overcome such problem - at the joint, not only the single level -
exist.

6 Conclusions

We have presented an innovative model for credit risk evaluation,
based on Madan (2000), Luciano and Semeraro (2010b,c). We have
strengthened the theoretical model presentation with an assessment
of its empirical performance, based on Fiorani, Luciano, Semeraro
(2010), Luciano (2006).
The model seems to perform well on market data. This happens

because - by construction - it captures jumps - i.e. sudden changes -
in asset values. Based on the previous analysis, we dare to suggest
that its use could complement future analyses of credit risk, in
turbulent times such as the present one, when sudden information
arrivals are - so to say - everyday life.
Our model however is not the only one in this strand of lit-

erature: for an account of the state of the art, see Cariboni and
Schoutens (2009).
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