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Abstract 

 
 

Peru is a South American country that is divided into two parts by the Andes Mountains. 
The rich historical, cultural and geographic diversity has led to the inclusion of ten 
Peruvian sites on UNESCO’s World Heritage List. For the potential negative impacts of 
mass tourism on the environment, and hence on future international tourism demand, to 
be managed appropriately require modelling growth rates and volatility adequately. The 
paper models the growth rate and volatility (or the variability in the growth rate) in daily 
international tourist arrivals to Peru from 1997 to 2007. The empirical results show that 
international tourist arrivals and their growth rates are stationary, and that the estimated 
symmetric and asymmetric conditional volatility models all fit the data extremely well. 
Moreover, the estimates resemble those arising from financial time series data, with both 
short and long run persistence of shocks to the growth rate in international tourist 
arrivals. 
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1. Introduction 

 

Peru is a South American country, bordering Ecuador and Colombia to the north, Brazil 

to the east, Bolivia to the southeast, Chile to the south, and the Pacific Ocean to the west 

(see Figure 1). It is the 20th largest country in the world, with a territory of 1,285,220 

km², and has a population of over 28 million (July 2007 estimate). The country is divided 

into two parts by the Andes Mountains, which cross the territory parallel to the Pacific 

Ocean. The east of the Andes up to the border with Brazil is covered by the Amazon 

rainforest, corresponding to about 60% of the country’s territory. It is in the Peruvian 

territory, precisely at the mountain peak Nevado Mismi located in the Andes, that the 

Amazon River has its glacial source. The largest rivers in the country are integral parts of 

the upper Amazon Basin. 

  

The country’s climate is influenced by the proximity to the Equator, the presence of the 

Andes, and the cold waters from some Pacific currents. As a result of this combination, 

there is wide diversity in the climate, ranging from the dryness of the coast, to the 

extreme cold of the mountain peaks, and to heavy rainfall in the Amazon region.  

  

Peru is one of the few areas in the world where there has been indigenous development of 

civilization, as the home of the Inca Empire, which emerged in the 15th Century as a 

powerful state and the largest empire in pre-Columbian America. The Inca Emperor was 

defeated in 1532 by the Spanish, who imposed colonial domination of the country. 

During this domination, silver mining with Indian forced labour became the basic 

economic activity, rendering considerable revenues for the Spanish Crown. However, the 

Royal income was reduced considerably over the years due to widespread smuggling and 

tax evasion. The Spanish Crown tried to recover control over its colonies by a series of 

tax reforms, which yielded numerous revolts across the continent. Finally, after 

successful military campaigns, Peru proclaimed independence from Spain in 1821.  

  

Cultural diversity is one of the major attractions of Peru, and arises from a combination 

of different traditions over several centuries. Important contributions to its cultural 
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diversity include native Indians, Spanish colonizers, and ethnic groups from Africa, Asia 

and Europe. There are also Pre-Inca and Inca cultures, with impressive achievements in 

architecture, such as the world famous holy city of Machu Picchu. 

  

Peruvian cuisine is also linked to the diversity of the country, and uses many different 

ingredients that are combined through distinctive techniques. Climatic differences 

contribute to the success of the Peruvian cuisine by allowing the production and 

integration of a wide variety of flora and fauna in the country.  

  

The music in Peru follows similar diversification, combining Andean, Spanish and 

African rhythms, instruments and expressions. In recent decades, a new ingredient given 

by the reccent urbanization has influenced traditional Andean expressions and increased 

the musical variety.  

  
As a result of such rich historical, cultural and geographic environments, Peru attracts 

short, medium and long haul tourists from all over the world to visit its territory. The 

major destination of the country is the region of Cuzco, accounting for about 27% of 

international tourist arrivals. In this region are located the city of Cuzco, which was the 

capital of the Inca Empire, the spiritual city of Machu Picchu, and the Sacred Valley of 

the Incas. Another important destination, which is visited by around 13% of international 

tourists, is the region of Lima, the capital of Peru, where the major attraction is the 

historical side of Lima. In third place, which receives around 11% of total international 

tourists, is the city of Arequipa, located in the valley of the volcanoes. Taking as a whole, 

these three regions receive around 51% of the international tourists to Peru. 

 

UNESCO’s World Heritage List includes properties that form part of the world’s cultural 

and natural heritage with outstanding universal value. The City of Cuzco and the Historic 

Sanctuary of Machu Picchu were inscribed as World Heritage Sites in 1983, while the 

historical centre of the City of Arequipa was inscribed in 2000. There are presently seven 

other Peruvian sites on the World Heritage List. Owing to the destructive effects of 

unbridled mass tourism, the retention of Machu Picchu on the World Heritage List is a 
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matter of great importance, even though Machu Picchu, was recently voted one of the 

New Seven Wonders of the World.  

  

In 2006, Peru received about 908,000 tourists from around the world. The majority of 

international tourists to Peru come from North America, with around 37% of the total, 

and from Europe, with around 30%. In North America, the USA is the major source of 

tourists to Peru, accounting for about 31% of the total. In Europe, the major sources of 

international tourists are Spain, United Kingdom, France, Germany and Italy, with 

average proportions that range from 6% to 4% of the total of Europeans who visit Peru 

annually. South America accounts for around 22% of international tourist arrivals to 

Peru, with Argentina, Colombia, Chile and Brazil being the major sources, with each 

having shares of around 4% of the total.    

  

Economically, international tourism has not yet achieved the status of an important 

activity for the country’s finances. According to the Ministry of External Commerce and 

Tourism of Peru, the consumption of international tourism as a proportion of GDP 

increased from 0.5% in 1992 to 1.8% in 2005. However, after a significant increase in the 

late 1990’s, the participation of international tourism in GDP decreased to 1.4% in 2004, 

and has been hovering at around 1.8% since 2003. This represents international tourism 

revenues of only $1.4 billion to the country on an annual basis. Consequently, there is 

clearly significant room for improvement in international tourism receipts. However, the 

potential negative impacts of mass tourism on the environment, and hence on future 

international tourism demand, must be managed appropriately. In order to manage 

tourism growth and volatility, it is necessary to model the growth and volatility in 

international tourist arrivals adequately. 

  

The primary purpose of the paper is to model the growth and volatility (that is, the 

variability in the growth rate) in international tourist arrivals to Peru. Information from 

1997 to 2007 is used on daily international arrivals at the Jorge Chavez International 

Airport in Lima, which is the only international airport in Peru. By using daily data, we 

can approximate the modelling and management strategy and risk analysis to those 
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applied to financial time series data. Although the volatility in international tourist 

arrivals has been analyzed at the monthly time series frequency in Chan, Lim and 

McAleer (2005), Divino and McAleer (2008), Hoti, McAleer and Shareef (2005, 2007), 

and Shareef and McAleer (2005, 2007, 2008), to the best of our knowledge there is no 

other work that models daily international tourist arrivals. The paper also contributes with 

the recent literature applying econometric techniques on forecasting tourism demand, 

where important references are Athanasopoulos et al. (2009), Bonham et al. (2009), and 

Gil-Alana et al. (2008).   

 

From a time series perspective, there are several reasons for using daily data as compared 

with lower frequency data at the monthly or quarterly levels. Among other reasons, 

McAleer (2008) discusses how daily data can lead to a considerably higher sample size, 

provide useful information on risk in finance, lead to the determination of optimal 

environmental and tourism taxes, enable aggregation of high frequency data to yield 

aggregated data with volatility, analyze time series behavior at different frequencies 

through aggregated data, investigate whether time series properties have changed over 

time, capture day-of-the-week effects through differential pricing strategies in the tourism 

industry, including airlines, tourist attractions and the accommodation sector, and 

determine optimal tourism marketing policies through exploiting day-of-the-week 

effects to enable tourism operators to formulate pricing strategies and tourism 

packages to increase tourist arrivals in periods of low demand. 

 

The empirical results show that the time series of international tourist arrivals and their 

growth rates are stationary. In addition, the estimated symmetric and asymmetric 

conditional volatility models, specifically the widely used GARCH, GJR and EGARCH 

models, all fit the data extremely well. In particular, the estimated models are able to 

account for the higher volatility persistence that is observed at the beginning and end of 

the sample period. The empirical second moment condition also supports the statistical 

adequacy of the models, so that statistical inference is valid. Moreover, the estimates 

resemble those arising from financial time series data, with both short and long run 

persistence of shocks to the growth rates of international tourist arrivals. Therefore, 
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volatility can be interpreted as risk associated with the growth rate in international tourist 

arrivals1. 

  

The remainder of the paper is organized as follows. Section 2 presents the daily 

international tourist arrivals time series data set and discusses the time-varying volatility. 

Section 3 performs unit root tests on both the levels and logarithmic differences (or 

growth rates) of daily international tourist arrivals for Peru. Section 4 discusses 

alternative conditional mean and conditional volatility models for the daily international 

tourist arrivals series. The estimated models and empirical results are discussed in 

Section 5. Finally, some concluding remarks are given in Section 6.  

 

2. Data 

 

The data set comprises daily international tourist arrivals at the Jorge Chavez 

International Airport, the only international airport in Peru, which is located in the city of 

Lima, the capital of Peru. The data are daily, with seven days each week, for the period 1 

January 1997 to 28 February 2007, giving a total of 3,711 observations. The source of the 

data was the Peruvian Ministry of International Trade and Tourism.  

 

Figure 2 plots the daily international tourist arrivals, the logarithm of daily international 

tourist arrivals, and the first difference (that is, the log-difference or growth rates) of daily 

international tourist arrivals, as well as the volatility of the three variables, where 

volatility is defined as the squared deviation from the sample mean. There is higher 

volatility persistence at the beginning and at the end of the period for the series in levels 

and logarithms, but there is a single clear dominant observation in the series in around 

2000. This extreme observation is 31 December 1999, which is higher than the typical 

decrease in international tourist arrivals in December each year. However, this 

observation is not sufficiently influential to affect the empirical results as there is no 

                                                 
1 See McAleer and da Veiga (2008a, b) for some applications of risk modelling and management to forecast 
value-at-risk (VaR) thresholds and daily capital changes.  
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significant change when this observation is deleted from estimation and testing. An 

increasing deterministic trend is present for the whole period in both series.  

 

The series in log differences is clearly trend stationary and does not show higher 

volatility at the beginning or end of the sample, but there is clear volatility persistence. It 

is interesting that the single clear dominant observation in the logarithmic series is 

mirrored in the log difference series. 

 

On an annual basis, the number of international tourist arrivals to Peru has shown an 

average growth rate of 8.8%, as illustrated in Figure 3. The lowest growth rate was 

observed in 2000, with an increase of just 0.8% over the previous year, while the highest 

growth rate occurred in 2005, when there was a significant increase of 27.1% over 2004. 

In the sample period as a whole, there was an increase of around 110% in international 

tourist arrivals to Peru, which would seem to indicate a reasonably good performance in 

the tourism sector over the decade. Nevertheless, annual average international tourist 

arrivals of 620,000 reveal that there is scope for a significant increase in international 

tourism to Peru. However, the potential negative impacts of mass tourism on the 

environment, and hence on future international tourism demand, must be managed 

appropriately. In order to manage tourism growth and volatility, it is first necessary to 

model growth and volatility adequately. 

 

In the next section we analyze the presence of a stochastic trend by applying unit root 

tests before modeling the time-varying volatility that is present in the logarithmic and 

log-difference (or growth rate) series. 

 

3. Unit Root Tests 

 

It is well known that traditional unit root tests, primarily those based on the classic 

methods of Dickey and Fuller (1979, 1981) and Phillips and Perron (1988), suffer from 

low power and size distortions. However, these shortcomings have been overcome by 
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modifications to the testing procedures, such as the methods proposed by Perron and Ng 

(1996), Elliott, Rothenberg and Stock (1996), and Ng and Perron (2001).  

  

We applied the modified unit root tests, given by MADFGLS and MPPGLS, to the time 

series of daily international tourist arrivals in Peru. In essence, these tests use GLS de-

trended data and the modified Akaike information criterion (MAIC) to select the optimal 

truncation lag. The asymptotic critical values for both tests are given in Ng and Perron 

(2001).  

 

The results of the unit root tests are obtained from the econometric software package 

EViews 5.0, and are reported in Table 1. There is no evidence of a unit root in the 

logarithm of daily international tourist arrivals to Peru (LY) in the model with a constant 

and trend as the deterministic terms, so that LY is trend stationary. For the model with 

just a constant, however, the null hypothesis of a unit root is not rejected at the 5% 

significance level. For the series in log differences (or growth rates), the null hypothesis 

of a unit root is rejected for both specifications under the MADFGLS test.  

 

These empirical results allow the use of both levels and log differences in international 

tourist arrivals to Peru to estimate the alternative univariate conditional mean and 

conditional volatility models given in the next section.  

 

 

4. Conditional Mean and Conditional Volatility Models 

 

The alternative time series models to be estimated for the conditional means of the daily 

international tourist arrivals, as well as their conditional volatilities, are discussed below. 

As Figure 1 illustrates, daily international tourist arrivals, logarithm of daily international 

tourist arrivals, and the first difference (that is, the log difference or growth rate) of daily 

international tourist arrivals, to Peru show periods of high volatility followed by others of 

relatively low volatility. One implication of this persistent volatility behaviour is that the 

assumption of (conditionally) homoskedastic residuals is inappropriate.  
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For a wide range of financial data series, time-varying conditional variances can be 

explained empirically through the autoregressive conditional heteroskedasticity (ARCH) 

model, which was proposed by Engle (1982). When the time-varying conditional 

variance has both autoregressive and moving average components, this leads to the 

generalized ARCH(p,q), or GARCH(p,q), model of Bollerslev (1986). The lag structure 

of the appropriate GARCH model can be chosen by information criteria, such as those of 

Akaike and Schwarz, although it is very common to impose the widely estimated 

GARCH(1,1) specification in advance.  

 

In the selected conditional volatility model, the residual series should follow a white 

noise process. Li et al. (2002) provide an extensive review of recent theoretical results for 

univariate and multivariate time series models with conditional volatility errors, and 

McAleer (2005) reviews a wide range of univariate and multivariate, conditional and 

stochastic, models of financial volatility. When (logarithmic) international tourist arrivals 

data, as well as their growth rates, display persistence in volatility, as shown in Figure 1, 

it is natural to estimate alternative conditional volatility models. As mentioned 

previously, the GARCH(1,1) and GJR(1,1) conditional volatility models have been 

estimated using monthly international tourism arrivals data in Chan, Lim and McAleer 

(2005), Hoti, McAleer and Shareef (2005, 2007), Shareef and McAleer (2005, 2007, 

2008), and Divino and McAleer (2008). 

 

Consider the stationary AR(1)-GARCH(1,1) model for daily international tourist arrivals 

to Peru (or their growth rates, as appropriate), ty :   

 

1, 2121 <++= − φεφφ ttt yy                 (1) 

 

for nt ,...,1= , where the shocks (or movements in daily international tourist arrivals) are 

given by:  
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and 0,0,0 ≥≥> βαω  are sufficient conditions to ensure that the conditional variance 

0>th . The AR(1) model in equation (1) can easily be extended to univariate or 

multivariate ARMA(p,q) processes (for further details, see Ling and McAleer (2003a). In 

equation (2), the ARCH (or α ) effect indicates the short run persistence of shocks, while 

the GARCH (or β ) effect indicates the contribution of shocks to long run persistence 

(namely, α  + β ). The stationary AR(1)-GARCH(1,1) model can be modified to 

incorporate a non-stationary ARMA(p,q) conditional mean and a stationary GARCH(r,s) 

conditional variance, as in Ling and McAleer (2003b).  

 

In equations (1) and (2), the parameters are typically estimated by the maximum 

likelihood method to obtain Quasi-Maximum Likelihood Estimators (QMLE) in the 

absence of normality of tη , the conditional shocks (or standardized residuals). The 

conditional log-likelihood function is given as follows: 
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The QMLE is efficient only if tη  is normal, in which case it is the MLE2. When tη  is not 

normal, adaptive estimation can be used to obtain efficient estimators, although this can 

be computationally intensive. Ling and McAleer (2003b) investigated the properties of 

adaptive estimators for univariate non-stationary ARMA models with GARCH(r,s) 

errors. The extension to multivariate processes is complicated. 

 

As the GARCH process in equation (2) is a function of the unconditional shocks, the 

moments of tε  need to be investigated. Ling and McAleer (2003a) showed that the 
                                                 
2 See, for example, McAleer and da Veiga (2008a, b) for the use of alternative univariate and multivariate 
distributions for financial data.  
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QMLE for GARCH(p,q) is consistent if the second moment of tε  is finite. For 

GARCH(p,q), Ling and Li (1997) demonstrated that the local QMLE is asymptotically 

normal if the fourth moment of tε  is finite, while Ling and McAleer (2003a) proved that 

the global QMLE is asymptotically normal if the sixth moment of tε  is finite. Using 

results from Ling and Li (1997) and Ling and McAleer (2002a, 2002b), the necessary and 

sufficient condition for the existence of the second moment of tε  for GARCH(1,1) is 

1<+ βα  and, under normality, the necessary and sufficient condition for the existence of 

the fourth moment is 12)( 22 <++ αβα .  

 

As discussed in McAleer et al. (2007), Elie and Jeantheau (1995) and Jeantheau (1998) 

established that the log-moment condition was sufficient for consistency of the QMLE of 

a univariate GARCH(p,q) process (see Lee and Hansen (1994) for the proof in the case of 

GARCH(1,1)), while Boussama (2000) showed that the log-moment condition was 

sufficient for asymptotic normality. Based on these theoretical developments, a sufficient 

condition for the QMLE of GARCH(1,1) to be consistent and asymptotically normal is 

given by the log-moment condition, namely  

 

0))(log( 2 <+ βαηtE .    (3) 

 

However, this condition is not easy to check in practice, even for the GARCH(1,1) 

model, as it involves the expectation of a function of a random variable and unknown 

parameters. Although the sufficient moment conditions for consistency and asymptotic 

normality of the QMLE for the univariate GARCH(1,1) model are stronger than their log-

moment counterparts, the second moment condition is far more straightforward to check. 

In practice, the log-moment condition in equation (3) would be estimated by the sample 

mean, with the parameters α  and β , and the standardized residual, tη , being replaced 

by their QMLE counterparts.  

 

The effects of positive shocks (or upward movements in daily international tourist 

arrivals) on the conditional variance, th , are assumed to be the same as the negative 
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shocks (or downward movements in daily international tourist arrivals) in the symmetric 

GARCH model. In order to accommodate asymmetric behaviour, Glosten, Jagannathan 

and Runkle (1992) proposed the GJR model, for which GJR(1,1) is defined as follows:  

 

,))(( 1
2

11 −−− +++= tttt hIh βεηγαω               (4) 

 

where 0,0,0,0 ≥≥+≥> βγααω  are sufficient conditions for ,0>th  and )( tI η  is an 

indicator variable defined by: 
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 as tη  has the same sign as tε . The indicator variable differentiates between positive and 

negative shocks of equal magnitude, so that asymmetric effects in the data are captured 

by the coefficient γ . For financial data, it is expected that 0≥γ  because negative 

shocks increase risk by increasing the debt to equity ratio, but this interpretation need not 

hold for international tourism arrivals data in the absence of a direct risk interpretation. 

The asymmetric effect, γ , measures the contribution of shocks to both short run 

persistence, 
2
γα + , and to long run persistence, 

2
γβα ++ .  

 

Ling and McAleer (2002a) showed that the regularity condition for the existence of the 

second moment for GJR(1,1) under symmetry of ηt  is given by: 

 

1
2
1

<++ γβα ,   (5) 

 

while McAleer et al. (2007) showed that the weaker log-moment condition for GJR(1,1) 

was given by: 
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0])))((ln[( 2 <++ βηηγα ttIE ,  (6) 

 

which involves the expectation of a function of a random variable and unknown 

parameters. 

 

An alternative model to capture asymmetric behaviour in the conditional variance is the 

Exponential GARCH (EGARCH(1,1)) model of Nelson (1991), namely:  

 

111 log||log −−− +++= tttt hh βγηηαω ,  1|| <β  (7) 

 

where the parameters α , β  and γ  have different interpretations from those in the 

GARCH(1,1) and GJR(1,1) models. Leverage, which is a special case of asymmetry, is 

defined as 0<γ  and || γα < . 

 

As noted in McAleer et al. (2007), there are some important differences between 

EGARCH and the previous two models, as follows: (i) EGARCH is a model of the 

logarithm of the conditional variance, which implies that no restrictions on the 

parameters are required to ensure 0>th ; (ii) moment conditions are required for the 

GARCH and GJR models as they are dependent on lagged unconditional shocks, whereas 

EGARCH does not require moment conditions to be established as it depends on lagged 

conditional shocks (or standardized residuals); (iii) Shephard (1996) observed that 

1|| <β  is likely to be a sufficient condition for consistency of QMLE for 

EGARCH(1,1); (iv) as the standardized residuals appear in equation (7), 1|| <β  would 

seem to be a sufficient condition for the existence of moments; and (v) in addition to 

being a sufficient condition for consistency, 1|| <β  is also likely to be sufficient for 

asymptotic normality of the QMLE of EGARCH(1,1).  

 

Furthermore, EGARCH captures asymmetries differently from GJR. The parameters α  

and γ  in EGARCH(1,1) represent the magnitude (or size) and sign effects of the 

standardized residuals, respectively, on the conditional variance, whereas α  and γα +  
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represent the effects of positive and negative shocks, respectively, on the conditional 

variance in GJR(1,1).  

 

5. Estimated Models 

 

The conditional mean model was estimated as AR(1), ARMA(1,1), ARMA(1,2), 

ARMA(2,1) and ARMA(2,2) processes, with AR(1) or ARMA(1,1) generally being 

empirically preferred on the basis of AIC and BIC (see Table 2).  

 

The estimated conditional mean and conditional volatility models for the logarithm of 

tourist arrivals and the log-difference (or growth rate) of tourist arrivals are given in 

Table 3. The method used in estimation was the Marquardt algorithm. As shown in the 

unit root tests, the logarithmic and log difference (or growth rate) series are stationary. 

These empirical results are supported by the estimates of the lagged dependent variables 

in the estimates of equation (1), with the coefficients of the lagged dependent variable 

being significantly less than one in each of the estimated six models. Significant ARCH 

effects are detected by the LM test for ARCH(1) for LY, though not for DLY. The 

Jarque-Bera LM test of normality rejects the null hypothesis in all six cases.  

 

As the second moment condition is less than unity in each case, and hence the weaker 

log-moment condition (which is not reported) is necessarily less than zero (see Table 2), 

the regularity conditions are satisfied, and hence the QMLE are consistent and 

asymptotically normal, and inferences are valid. The EGARCH(1,1) model is based on 

the standardized residuals, so the regularity condition is satisfied if 1|| <β , and hence 

the QMLE are consistent and asymptotically normal (see, for example, McAleer at al. 

(2007)). 

 

The GARCH(1,1) estimates for the logarithm of international tourist arrivals to Peru 

suggest that the short run persistence of shocks is 0.118 while the long run persistence is 

0.921. As the second moment condition, 1<+ βα , is satisfied, the log-moment condition 

is necessarily satisfied, so that the QMLE are consistent and asymptotically normal. 
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Therefore, statistical inference using the asymptotic normal distribution is valid, and the 

symmetric GARCH(1,1) estimates are statistically significant.  

 

If positive and negative shocks of a similar magnitude to international tourist arrivals to 

Peru are treated asymmetrically, this can be evaluated in the GJR(1,1) model. The 

asymmetry coefficient is found to be positive, namely 0.309, which indicates that 

decreases in international tourist arrivals increase volatility. This is a similar empirical 

outcome as is found in virtually all cases in finance, where negative shocks (that is, 

financial losses) increase risk (or volatility). Thus, shocks to tourist arrivals and the 

growth rate of tourist arrivals resemble financial shocks. They can be interpreted as risk 

associated to tourist arrivals. Moreover, the long run persistence of shocks is estimated to 

be 0.857. As the second moment condition, 1
2
1

<++ γβα , is satisfied, the log-moment 

condition is necessarily satisfied, so that the QMLE are consistent and asymptotically 

normal. Therefore, statistical inference using the asymptotic normal distribution is valid, 

and the asymmetric GJR(1,1) estimates are statistically significant. 

 

The interpretation of the EGARCH model is in terms of the logarithm of volatility. For 

the logarithm of international tourist arrivals, each of the EGARCH(1,1) estimates is 

statistically significant, with the size effect, α , being positive and the sign effect, γ , 

being negative. The conditions for leverage are satisfied for LY, but not for DLY. The 

coefficient of the lagged dependent variable, β , is estimated to be 0.763, which suggests 

that the statistical properties of the QMLE for EGARCH(1,1) will be consistent and 

asymptotically normal.  

 

The GARCH(1,1) estimates for the log difference (or growth rate) of international tourist 

arrivals to Peru suggest that the short run persistence of shocks is 0.139 while the long 

run persistence is 0.891, which is very close to the corresponding estimates for the 

logarithm of international tourist arrivals. As the second moment condition is satisfied, 

the log-moment condition is necessarily satisfied, so that the QMLE are consistent and 
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asymptotically normal, and hence the symmetric GARCH(1,1) estimates are statistically 

significant.  

  

The GJR(1,1) estimates for the log difference (or growth rate) of international tourist 

arrivals to Peru suggest that the asymmetry coefficient is positive at 0.187, which 

indicates that decreases in the growth rate in international tourist arrivals increase 

volatility. The short run persistence of positive shocks is 0.025, the short run persistence 

of negative shocks is 0.212 (= 0.025 + 0.187), and the long run persistence of shocks is 

0.898. As the second moment condition is satisfied, the log-moment condition is 

necessarily satisfied, so that the QMLE are consistent and asymptotically normal. 

Therefore, as in the case of asymmetry in financial markets, statistical inference using the 

asymptotic normal distribution is valid, and the asymmetric GJR(1,1) estimates are 

statistically significant. 

 

For the log difference (or growth rate) of international tourist arrivals, each of the 

EGARCH(1,1) estimates is statistically significant, with the size effect, α , being positive 

and the sign effect, γ , being negative. The coefficient of the lagged dependent variable, 

β , is estimated to be 0.913, which suggests that the statistical properties of the QMLE 

for EGARCH(1,1) will be consistent and asymptotically normal.  

 

Overall, the QMLE for the GARCH(1,1), GJR(1,1) and EGARCH(1,1) models for both 

the logarithm and log difference of international tourist arrivals, are statistically adequate 

and have sensible interpretations. 

 

The estimated conditional mean and conditional volatility models for the logarithm of 

annualized tourist arrivals and the log-difference (or growth rate) of annualized tourist 

arrivals are given in Table 4. The annualized series would appear to have a unit root, 

whereas the growth rate does not. Significant ARCH effects are detected for LYMA, 

though not for DLYMA. The Jarque-Bera LM test of normality rejects the null 

hypothesis in only two of six cases. The GARCH(1,1) model has short run persistence of 

shocks of 0.15 and long run persistence of shocks of 0.75. The GJR(1,1) model does not 
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have significant asymmetry, so that GARCH(1,1) is preferred. The second moment 

condition is satisfied, so the QMLE are consistent and asymptotically normal, and the 

log-moment condition is necessarily satisfied. The EGARCH(1,1) estimates are 

significant, including the asymmetry coefficient, albeit marginally. However, the 

conditions for leverage are not satisfied for LYMA or DLYMA. Again, the QMLE are 

statistically adequate, so that inferences are sensible and statistically valid. 

 

The correlation matrix of the forecasts in logarithmic levels and logarithmic first 

differences (or growth rates) are given in Tables 4 and 5. The forecasts in Table 4 can be 

very high at 0.999, but they can also be much lower between the annualized and original 

data series, as depicted in Figures 4 and 6, respectively. However, all of the correlations 

for the forecasts in log-differences are very high in Table 5, which is captured in the 

annualized international tourist forecasts in Figures 5 and 7. These results suggest that 

annualized figures are much easier to forecast and manage than are their daily 

counterparts. 

 

The forecasts presented in Figures 4 to 7 are out-of-sample dynamic forecasts derived 

from each estimated model reported in Tables 3 and 4. The models were estimated using 

daily international tourist arrivals data to Peru from 1/1/1997 to 2/28/2007. Then out-of-

sample daily forecasts are calculated for the period from 1/3/2007 until 2/28/2008. Thus, 

Figures 4 to 7 plot the actual series and the daily forecasts one year ahead.  

 

It is worth noting that the high volatility of the daily series makes it somewhat difficult to 

predict the log-level and log-difference of international tourist arrivals to Peru. In both 

cases, as presented in Figures 4 and 6, respectively, the forecasts are roughly able to 

identify a trend in the data. On the other hand, for the annualized daily series plotted in 

Figures 5 and 7, respectively, the models succeed in predicting the one-year ahead 

annualized series. Comparing the relative performance of the alternative models, there is 

no significant differences in the forecasts arising from the GARCH, GJR, and EGARCH 

models.  
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6. Concluding Remarks 

 

The rich historical, cultural and geographic diversity that arises from a combination of 

different traditions over several centuries has led to the inclusion of ten Peruvian sites on 

UNESCO’s World Heritage List of properties that form part of the world’s cultural and 

natural heritage with outstanding universal value. These sites, particularly the City of 

Cuzco, the Historic Sanctuary of Machu Picchu, which was recently voted one of the 

Seven New Wonders of the World, and the historical centre of the City of Arequipa, are 

the major attractions for short, medium and long haul international tourists.  

 

As international tourism has not yet achieved the status of an important economic activity 

for Peru’s finances, there is significant room for improvement in international tourism 

receipts. However, the potential negative impacts of mass tourism on the environment, 

and hence on future international tourism demand, must be managed appropriately. In 

order to manage tourism growth and volatility, it is necessary to model growth and 

volatility adequately. 

 

The paper modelled the growth and volatility (or variability in the growth rate) in daily 

international tourist arrivals to Peru from 1997 to 2007. The empirical results showed that 

the time series of international tourist arrivals and their growth rates are stationary. In 

addition, the estimated symmetric and asymmetric conditional volatility models, 

specifically the widely used GARCH, GJR and EGARCH models, all fit the data 

extremely well. In particular, the estimated models were able to account for the higher 

volatility persistence that was observed at the beginning and end of the sample period for 

both the logarithm and log difference (or growth rate) of international tourist arrivals. The 

empirical second moment condition also supported the statistical adequacy of the models, 

so that statistical inferences were valid. Moreover, the estimates resemble those arising 

from financial time series data, with both short and long run persistence of shocks to the 

growth rates of international tourist arrivals. Therefore, volatility can be interpreted as 

risk associated with the growth rate in international tourist arrivals. 
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Extensions of the models and data used in the paper to the multivariate level using 

modern systems methods is a topic of current research. For a theoretical comparison of 

alternative dynamic models of conditional correlations and conditional covariances, see 

McAleer et al (2008). The alternative conditional volatility models can also be used to 

forecast value-at-risk thresholds. A panel data analysis of temporal and spatial 

aggregation of alternative tourist destinations, incorporating conditional volatility models, 

could also be a useful direction of research.  
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Figure 1 – Map of Peru 
 

 
Source: Wikipedia 
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Figure 2 – International Tourist Arrivals and Volatility 
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Figure 3 - International Tourist Arrivals to Peru 
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Figure 4 
Forecasts of International Tourist Arrivals to Peru in Log-Levels 

 

 
 
 
 

 
Figure 5 

Forecasts of Annualized International Tourist Arrivals to Peru in Log-Levels 
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Figure 6 

Forecasts of International Tourist Arrivals to Peru in First Differences 
 

 
 
 
 

 
Figure 7 

Forecasts of Annualized International Tourist Arrivals to Peru in First Differences 
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Table 1 - Unit Root Tests 
 

Variables MADFGLS MPPGLS Lags Z 

LY -3.84** -19.98** 27 {1, t} 
LY -0.41 -0.73 28 {1} 
ΔLY -98.41** -2890.48** 0 {1, t} 
ΔLY -5.27** -0.46 30 {1} 

 
Notes:  
LY is the logarithm of international tourist arrivals to Peru.  
The critical values for MADFGLS and MPPGLS at the 5% significance level are  
–2.93 and –17.3, respectively, when Z={1,t}, and –1.94 and –8.1, respectively, when Z={1}.  
** denotes the null hypothesis of a unit root is rejected at the 5% significance level.  
 

 
 
 
 
 
 

Table 2 - Information Criteria for Alternative ARMA Models 
 

Variable IC AR\MA 0 1 2 
LY AIC 1 -0,6553 -0,9224 -0,9301 
 BIC   -0,6519 -0,9174 -0,9234 
 AIC 2 -0,8290 -0,9334 -0,9376 
  BIC   -0,8239 -0,9267 -0,9293 
LYMA AIC 1 -12,268 -12,278 -12,339 
 BIC   -12,264 -12,272 -12,331 
 AIC 2 -12,283 -12,398 -12,401 
  BIC   -12,278 -12,391 -12,392 
DLY AIC 1 -0,7938 -0,9304 -0,9358 
 BIC   -0,7905 -0,9254 -0,9291 
 AIC 2 -0,8236 -0,9413 -0,9425 
  BIC   -0,8185 -0,9346 -0,9341 
DLYMA AIC 1 -12,282 -12,4 -12,402 
 BIC   -12,278 -12,394 -12,394 
 AIC 2 -12,354 -12,403 -12,407 
  BIC   -12,349 -12,395 -12,398 

 
Notes: IC denotes information criteria, AIC is the Akaike 
information criterion, and BIC is the Schwarz information criterion. 
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Table 3 – Estimated Conditional Mean and Conditional Volatility Models 

 

Dependent variable: LY  Dependent variable: DLY  Parameters GARCH GJR EGARCH GARCH GJR EGARCH 

1φ   
 

*0.954
)07.0(

 *0.892
)07.0(

 *0.854
)06.0(

 *0.001
)002.0(

−  *0.008
)002.0(

−

 
*0.01

)002.0(
−  

2φ  
  

*0.872
)01.0(

 *0.879
)009.0(

 *0.883
)01.0(

 *0.464
)016.0(

−

 

*0.452
)02.0(

−

 
*0.452

)02.0(
−  

ω  
 

*0.002
)000.0(

 *0.005
)000.0(

 *0.976
)09.0(

−  *0.003
)000.0(

 *0.003
)000.0(

 *0.473
)06.0(

−  

GARCH/GJR α  
 

*0.118
)01.0(

 *0.027
)01.0(

−

 
-- *0.139

)01.0(
 **0.025

)01.0(

 
-- 

GARCH/GJR β  
 

*0.803
)02.0(

 *0.688
)025.0(

 -- *0.752
)02.0(

 *0.780
)02.0(

 -- 

GJR γ   
 

-- *0.316
)03.0(

 -- -- *0.187
)02.0(

 -- 

EGARCH α  
 -- -- *0.176

)02.0(
 -- -- *0.196

)02.0(
 

EGARCH γ   
 

-- -- *0.245
)02.0(

−  -- -- *0.141
)01.0(

−  

EGARCH β  
 

-- -- *0.763
)02.0(

 -- -- *0.913
)01.0(

 

Diagnostic       

Second moment 0.921 0.857  0.891 0.898  
ARCH(1) LM test 
[p-value] 

20.17 
[0.000] 

7.08 
[0.008] 

10.80 
[0.001] 

0.011 
[0.916] 

0.088 
[0.766] 

0.033 
[0.855] 

Jarque-Bera 
[p-value] 

128.48 
[0.000] 

126.49 
[0.000] 

162.25 
[0.000] 

452.21 
[0.000] 

330.35 
[0.000] 

349.97 
[0.000] 

 
Notes:  
LY is the logarithm of international tourist arrivals to Peru, and DLY is the log difference (or growth rate). 
Numbers in parentheses are standard errors.  
* The estimated coefficient is statistically significant at the 1% significance level. 
** The estimated coefficient is statistically significant at the 5% significance level. 
The log-moment condition is necessarily satisfied as the second moment condition is satisfied. 
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Table 4 – Estimated Conditional Mean and Conditional Volatility Models 

 

Dependent variable: LYMA  Dependent variable: DLYMA  Parameters GARCH GJR EGARCH GARCH GJR EGARCH 

1φ   
 

*0.001
)000.0(

−  
 

*0.001-
)000.0(

*0.001
)000.0(

−  *0.000
)000.0(

 *0.000
)000.0(

 *0.000
)000.0(

 

2φ  
  

*1.000
)000.0(

 *1.000
)000.0(

 *1.000
)000.0(

 *0.107
)019.0(

 *0.106
)019.0(

 *0.107
)018.0(

 

ω  
 )000.0(

0.000  
)000.0(

0.000  *0.618
)127.0(

−  *0.000
)000.0(

 *0.000
)000.0(

 *0.488
)111.0(

−  

GARCH/GJR α  
 

*0.150
)058.0(

 **0.150
)066.0(

 
-- *0.061

)008.0(
 *0.066

)009.0(
 -- 

GARCH/GJR β  
 

*0.600
)16.0(

 **0.600
)15.0(

 
-- *0.919

)011.0(
 *0.917

)011.0(
 -- 

GJR γ   
 

-- )09.0(
0.050  -- -- )008.0(

0.012−  -- 

EGARCH α  
 -- -- *0.153

)017.0(
 -- -- *0.129

)016.0(
 

EGARCH γ   
 

-- -- **0.014
)007.0(

 -- -- **0.010
)005.0(

 

EGARCH β  
 

-- -- )008.0(
0.967  -- -- *0.975

)007.0(
 

Diagnostic       

Second moment 0.750 0.775  0.980 0.977  
ARCH(1) LM test 
[p-value] 

19.277 
[0.000] 

27.486 
[0.000] 

4.748 
[0.029] 

1.469 
[0.226] 

1.287 
[0.257] 

2.864 
[0.091] 

Jarque-Bera 
[p-value] 

12.97 
[0.001] 

20.47 
[0.000] 

0.91 
[0.633] 

2.74 
[0.254] 

1.63 
[0.441] 

0.92 
[0.630] 

 
Notes:  
LYMA is the logarithm of annualized international tourist arrivals to Peru, and DLYMA is the log difference 
(or growth rate). 
Numbers in parentheses are standard errors.  
* The estimated coefficient is statistically significant at the 1% significance level. 
** The estimated coefficient is statistically significant at the 5% significance level. 
The log-moment condition is necessarily satisfied as the second moment condition is satisfied. 
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Table 5 - Correlation Matrix: Forecasts of the Series in Log-Levels 
 

 Model 
GARCH-

LY 
GARCH-
LYMA 

GJR- 
LY 

GJR- 
LYMA 

EGARCH-
LY 

EGARCH-
LYMA 

GARCH-LY 1.000      
GARCH-LYMA -0.323 1.000     
GJR-LY 0.999 -0.332 1.000    
GJR-LYMA -0.323 1.000 -0.332 1.000   
EGARCH-LY 0.999 -0.310 0.998 -0.310 1.000  
EGARCH-LYMA -0.324 0.999 -0.334 0.999 -0.312 1.000 
 
 
 
 
Table 6 - Correlation Matrix: Forecasts of the Series in Log-Differences 
 

Model  
GARCH-

DLY 
GARCH-
DLYMA 

GJR-
DLY 

GJR-
DLYMA

EGARCH-
DLY 

EGARCH-
DLYMA 

GARCH-DLY 1.000      
GARCH-DLYMA 0.999 1.000     
GJR-DLY 1.000 0.999 1.000    
GJR-DLYMA 0.999 1.000 0.999 1.000   
EGARCH-DLY 1.000 0.999 1.000 0.999 1.000  
EGARCH-DLYMA 0.999 1.000 0.999 1.000 0.999 1.000 
 

 

 


