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Abstract

This paper deals with models allowing for trending processes and cyclical compo-

nent with error processes that are possibly nonstationary, nonlinear, and non-Gaussian.

Asymptotic confidence intervals for the trend, cyclical component, and memory parame-

ters are obtained. The confidence intervals are applicable for a wide class of processes,

exhibit good coverage accuracy, and are easy to implement.
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1 Introduction

To start, consider the basic model

 = 1 + 2+   = 1 2   (1.1)

where E() = 0. When {} is a long-memory stationary process, with memory parameter
 ∈ (−12 12), the problem of estimating such models has been studied extensively in the

literature. Yajima (1988, 1991) derived conditions for consistency and asymptotic normality

of Least Squares (LS) estimators of the parameters of a regression model with nonstochastic

regressors, when the errors {} have long memory. Dahlhaus (1995) suggested an efficient
weighted least squares estimator for 1 and 2 and investigated its asymptotic properties

in the case of a polynomial regression with stationary errors. Nonlinear regression models

with long memory errors have been investigated by Ivanov and Leonenko (2004, 2008). The

estimation of a trend when {} has  ∈ [0 32) was discussed by Deo and Hurvich (1998),
but they did not estimate  and they required {} to have a linear structure with restrictive
asymptotic weights.

There is a large literature on the estimation of  in the case of long memory. Fewer

papers have so far considered an extended range for  to include regions of nonstationarity.

Assuming that {} is observed, to estimate , Velasco (1999, 2003) used data differencing
and data tapering, and he noted that this inflates the estimator’s variance. Robinson

(2005) suggested an adaptive semiparametric estimation method for the case of a polynomial

regression with fractionally-integrated errors, employing in his Monte-Carlo study a tapered

estimate of . An alternative approach was developed by Shimotsu and Phillips (2005) who

introduced an exact local Whittle estimation method based of fractional diffencing of {},
which is valid when a nonstationary process {} is generated by a linear process. Abadir,
Distaso, and Giraitis (2007) extended the classical Whittle estimator to the Fully-Extended

Local Whittle (FELW) estimator that is valid for a wider range of  values, allowing for

nonstationary {} but not for deterministic components.
The present papers focuses on the estimation of the linear regression model (1.1) and

its extended version

 = 1 + 2+ 3 sin() + 4 cos() +   = 1 2   (1.2)

which allows for stationary and nonstationary errors {} and a cyclical component with
 ∈ (0 ). We assume that  is known in (1.2), and so we treat separately the boundary
case  = 0 as model (1.1), effectively covering  ∈ [0 ) in the paper but not the unrealistic
case of  =  that leads to  = 1 + 2+ 4 (−1) + . We do not propose a method of

estimation for ; see Nandi and Kundu (2003) and references therein for the estimation of 

in the context of a short-memory linear process and no linear trend. Estimating  is beyond

the scope of this paper, though (as we will show) our procedure allows for time-varying 

and/or multiple cyclical components with different frequencies .. For expository purposes,
we refrain from writing these features into the model given in this introduction.

In this paper, we estimate β := (1 2 3 4)
0 by LS and generalize (for the presence

of trend and cycle) the Fully-Extended Local Whittle (FELW) estimator of  given in

Abadir, Distaso, and Giraitis (2007). We also provide a simpler alternative form for the
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FELW estimator. We show that our estimators are consistent and we obtain their rates

of convergence and limiting distributions, as well as confidence intervals based on them.

The asymptotic properties of our LS estimators of 1 2 turn out to be unaffected by (and

robust to) the unknown cyclical component.

The papers listed earlier require the assumptions of linearity or Gaussianity of the error

process. However, our estimation procedure allows for a wide range of permissible values of

the memory parameter  and for possibly nonstationary, nonlinear, and nonnormal processes

{}. By virtue of {} being modeled semiparametrically, the procedure also allows for
seasonality and other effects to be present in {} at nonzero spectral frequencies.

In Section 2, we investigate the LS estimators of 1 2 3 4, while Section 3 is con-

cerned with the parameters of the process {}. Section 4 contains the results of simula-
tion experiments on the performance of the estimators suggested earlier. It is technically

straightforward to extend our results to higher-order polynomials and to values of  outside

the interval −12    32 to which we restrict our attention in this paper. We do not

report such extensions in order to simplify the exposition and because most economic series

will not require more than a linear trend or  outside −12    32. The proofs of the

main results are given in Section 5.

We use
→ and

→ to denote convergence in probability and in distribution, respectively.

We write i for the imaginary unit, 1 for the indicator of a set , bc for the integer part
of ,  for a generic constant but . for specific constants. The lag operator is denoted by
L, such that L = −1, and the backward difference operator by ∇ := 1− L. We define
 ∧  := min { } and  ∨  := max { }.
Definition 1.1. Let  =  + , where  = 0 1 2  and  ∈ (−12 12). We say that
{} is an I() process (denoted by  ∼ I()) if

∇ =   = 1 2 

where the generating process {} is a second order stationary sequence with spectral density

() = 0 ||−2 + (||−2) as → 0 (1.3)

where 0  0.

Notice that there are two parameters of interest in this definition, 0 and .

2 Estimation of β

We will use Ordinary LS (OLS) estimation of β, because of its ease of application, its

consistency, and its asymptotic normality. Feasible Generalized LS (GLS) applied to (1.1)

would require us to specify the autocovariance structure explicitly, which is not usually

known, so OLS is more in line with the semiparametric approach of our paper. Even so,

assuming the autocovariance structure is known and is correctly specified, it has been shown

that the loss of efficiency will not be substantial in this context. For example, Table 1 of

Yajima (1988) implies that the maximal loss of asymptotic efficiency by OLS compared

to the BLUE is 11% when estimating 1 and 2, and 2% when estimating the mean of

3



the differenced data (hence 2 of the original data). These will correspond to our cases

 ∈ (−12 12) and  ∈ (12 32), respectively, as will be seen later. These efficiency
bounds apply to GLS as well, since it is a linear estimator, thus limiting the efficiency loss

of OLS relative to GLS.

Below it will be shown that the rates of convergence of the OLS estimators depend on

the order of integration  of , and their limits depend on the the long run variance 
2
 of

{} which needs to be estimated. Property (1.3) of the spectral density  implies that

2 = lim
→∞E

Ã
−12−

X
=1



!2
= lim

→∞−1−2
Z 

−

µ
sin(2)

sin(2)

¶2
()d (2.1)

= ()0

where 0 is defined in (1.3) and

() :=

Z ∞

−∞

µ
sin(2)

2

¶2
||−2d =

(
2
Γ(1−2) sin()

(1+2)
 if  6= 0

2 if  = 0

To derive the asymptotic distribution of estimators of (1 2), we introduce the following

condition on the generating process {} of Definition 1.1.

Assumption FDD. The finite-dimensional distributions of the process

() := −12−
bc+1X
=1

 0 ≤  ≤ 1 (2.2)

converge to those of the Gaussian process ∞(), that is,

()
→ ∞() as →∞

Assumption FDD together with asymptotic (1.3) of spectral density  imply that

∞() = 12+() 0 ≤  ≤ 1

where 12+() is a fractional Brownian motion. By definition, 12+() is a Gaussian

process with zero mean and covariance function

( ) := E
³
12+()12+()

´
=
1

2
(1+2 + 1+2 − | − |1+2) 0 ≤   ≤ 1

(2.3)

2.1 Model (1.1)

In order to estimate the slope parameter 2 and the location parameter 1 of model (1.1),

we use the OLS estimators b2 = P
=1( − ̄)(− ̄)P

=1(− ̄)2
(2.4)
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and b1 = ̄ − b2̄ (2.5)

where ̄ = −1
P

=1 and ̄ = −1
P

=1  = ( + 1)2 are the sample means of the

variables. We shall show that the estimator (b1 b2) is valid for both models, (1.1) and (1.2),
and the cyclical component of model (1.2) does not affect the asymptotic properties of this

estimator. The regressors of model (1.1) are asymptotically orthogonal to the additional

cyclical ones in model (1.2), when we normalize them all to make the matrix of sum-of-

squares asymptotically nonsingular. In standard regression analysis, where {} has short
memory, the asymptotic distribution of the OLS estimators of (1 2) is unaffected by the

choice of models. Here, we show inter alia that this still holds for the values of  that we

consider.

Define the following functions of :

22 :=

⎧⎨⎩(12)2
³

1
2+3

− 1
4

´
 if  ∈ [−12 12]

(12)2 2−1
8(2+1)(2+3)

 if  ∈ (12 32]
(2.6)

and

21 := 1 + 36

µ
1

2+ 3
− 1
4

¶
 12 :=

18(2− 1)
3 + 2

 (2.7)

Set

 2 := 32−(b2 − 2)  1 := 12−(b1 − 1)

Theorem 2.1. Assume that  follows model (1.1), and {} is an I() process with  ∈
(−12 32) and  6= 12.

(i) Then, as →∞,

E(22)→ 2
2
2 if  ∈ (−12 32) (2.8)

E(21)→ 2
2
1 if  ∈ (−12 12) (2.9)

(ii) If the generating process {} satisfies Assumption FDD, then, as →∞,

 2 → N(0 2
2
2) if  ∈ (−12 32) (2.10)

( 1  2) → N(0Σ2) if  ∈ (−12 12) (2.11)

where N(0Σ2) is a zero mean Gaussian vector with the covariance matrix

Σ2 := 2

µ
21 12
12 22

¶


(iii) Results (i) and (ii) remain valid if  follows the model (1.2) with unknown .

(iv) Results (i) and (ii) hold if  = 1 + 2+  +  with any deterministic trend 
such that

P
=1  = (12+), as →∞.

5



The results of Theorem 2.1 are derived under unrestrictive Assumption FDD that re-

quires only a finite second moment of {}. They do not assume that the generating process
{} has higher moments, or a linear structure with regularly decaying weights  ∼ −

as in Deo and Hurvich (1998). Notice that the mean of  cannot be estimated consistently

if  ≥ 12, a general feature of integrated models, which is why the results on b1 are limited
to the case   12. Constructing confidence intervals for 2 below will use the estimate

2
2 of 22, where b is a consistent estimate of . Although we exclude the value  = 12
by assumption, b may take value  = 12 with a negligible probability. For this reason,

definition (2.6) of 22 includes the boundary value  = 12.

Remark 2.1. Results (i)-(ii) of Theorem 2.1 remain valid for a process = 1+2++
where

 =

X
=1

(3 sin() + 4 cos())

with unknown parameters 3  4   , assuming that 0    ,  = 1  . They also

remain valid when the  ’s vary deterministically over time, so long as they satisfy the

condition in (iv). Such changes include a finite number of breaks as a special case.

2.2 Model (1.2)

To estimate the parameter vector β = (1 2 3 4)
0 of model (1.2), we shall use the OLS

estimator eβ := (e1 e2 e3 e4)0 = S−1t (2.12)

where S = ()=14 and t = ()=14, with elements

 :=

X
=1

   :=

X
=1

 (2.13)

such that

1 := 1 2 :=  3 := sin() 4 := cos()

Theorem 2.1 and Theorem 2.2 below show that, in spite of the cyclical component, the

earlier LS estimator (b1 b2) given in (2.4)-(2.5) can be applied to model (1.2) without loss
of efficiency and that, under the unrestrictive Assumption FDD, it has the same asymptotic

distribution as the LS estimator (e1 e2) of the larger model.
Deriving the asymptotic normality of the LS estimators of the parameters 3 4 requires

an additional assumption, that the generating process {} is a linear process

 =

∞X
=0

−  (2.14)

where {} are real nonrandom weights,
P∞

=0 
2
  ∞, and {} are i.i.d. variates with

zero mean and unit variance. This assumption is because e3 and e4 involve trigonometric
sums that cannot be transformed into integrals of the process {()}, whence the need
to impose assumptions directly on {} rather than on the convergence of its partial sum

6



process {()}. In the case here, asymptotic normality is obtained by assuming that {}
is a linear process.

Define

 2 := 32−(e2 − 2) 1 := 12−(e1 − 1)

  :=
(

12√

(e − ) if   1

32−√

(e − ) if  ≥ 1

for  = 3 4, where  is such that   has a limiting variance of 1. It will be derived in
Theorem 2.2(i) as

 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
4() if − 1

2
   1

2


()

sin2(2)
 if 1

2
   1

2(1−)()
sin2(2)

+ 2(
2
111 + 2222 + 21212

+4(
1
2
+ 2) + 4

2
) if 1 ≤   3

2


(2.15)

with

11 :=
1

1 + 2
 12 :=

6− 1
8(1 + 2)

 22 :=
1

2(1 + 2)

³
1− 1

(3 + 2)

´
(2.16)

1 := −81 + 12−12 2 := 121 − 24−12
 :=

1

4
+

1

1 + 2
− 1

4
 3 := −

cos((+ 12))

2 sin(2)
 4 :=

sin((+ 12))

2 sin(2)


Observe that, for 1 ≤   32,  is bounded but oscillates with . Although for  

1 in (2.15) the term 2(1−)() sin2(2) is asymptotically negligible, we found that
preserving it improves the coverage probabilities in finite samples.

Theorem 2.2. Assume that  follows model (1.2). Suppose that {} is an I() process
with  ∈ (−12 32) and  6= 12, such that the spectral density  is continuous at . In
the case of  ∈ (12 32), assume that E ¡20¢ ∞.

(i) Then, E(21) and E(22) satisfy (2.9) and (2.8) with b1 b2 replaced by e1 e2. For
 = 3 4, as →∞,

E(2) ∼ 1 for  ∈ (−12 32)
(ii) If the generating process {} satisfies Assumption FDD, then  2 and ( 1   2)

satisfy (2.10) and (2.11), respectively.

(iii) If the generating process {} is a linear process (2.14), then for  ∈ (−12 12),

( 1   2   3  4) → N(0Σ4) (2.17)

where N(0Σ4) is a zero mean Gaussian vector with covariance matrix

Σ4 :=

⎛⎜⎜⎝
2 

2
1 2 12 0 0

212 2 
2
2 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎠ 
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For  ∈ (12 32),

 2 → N
³
0 2

2
2

´
 (2.18)

  → N(0 1)  = 3 4 (2.19)

In particular, for 12    1,

( 2   3  4) → N
³
0diag(2

2
2 1 1)

´
 (2.20)

To make this theorem operational, we need to estimate the unknown parameters  and

. Some actual estimators will be proposed in the next section, but in the meantime we

have the following result which is valid for any estimators satisfying a weak condition for

consistency.

Corollary 2.1. Suppose that the assumptions of Theorem 2.2(iii) are satisfied, and that

we have estimators b, b2, and b() with the property
b = + (1 log) b2 = 2 + (1) b() = () + (1)

Then, as →∞,

32−b 2 (e2 − 2)
→ N(0 1) if  ∈ (−12 32) (2.21)

and, for  = 3 4, r
b

(e − )
→ N(0 1) if  ∈ (−12 1)

32−qb

(e − )
→ N(0 1) if  ∈ [1 32)

where b is the corresponding estimate of .

Using the above results, we can write an asymptotic confidence interval (CI) of size 1−
for 1 and 2 as"e1 − 

1 b
12−   e1 + 

1 b
12− 

#


"e2 − 
2 b

32−   e2 + 
2 b

32− 
#

valid for ||  12 and −12    32, respectively, where  denotes here the quantile of

the standard normal distribution satisfying Pr(|N(0 1)|  ) = . Similarly for 3 and 4,

the corresponding intervals in the cases −12    1 and 1 ≤   32 are⎡⎣e −
s b


  e +

s b




⎤⎦ 
⎡⎣e −

qb

32−
  e +

qb

32−


⎤⎦   = 3 4;
8



see Section 4 concerning the positivity of estimates of . This implies that the length

of the intervals for 1 and 2 increase when the parameter  approaches the bounds 12

and 32. The length of CIs for 3 4 does not depend on  when   1 and increases

when  approaches 32. Theorem 2.2 shows that as long as {} is an I() process, the
LS estimators e1 e2 e3 e4 are consistent and the rate of convergence is known. As in the
previous subsection which dealt with the simpler model (1.1), consistent estimation of the

intercept 1 is not possible when   12. However, and perhaps surprisingly, we can still

estimate consistently 3 and 4 of the bounded cyclical component when   12.

The asymptotic normality of e1 and e2 holds under the weak Assumption FDD, whereas
asymptotic normality of e3 e4 follows under the assumption that the generating process
{} is linear. Only a finite second moment of   is required.
Remark 2.2. Assumption FDD with a Gaussian limit is satisfied for a wide class of gener-

ating processes {}. In the case of a linear process, convergence of the finite-dimensional
distributions of () to those of a Gaussian process 12+ has been known for some

time; e.g. see Ibragimov and Linnik (1971, Theorem 18.6.5) and Davydov (1970). In the

case of EGARCH processes, it was shown by Surgailis and Viano (2002). Taqqu (1979) and

Giraitis and Surgailis (1985) have shown that Assumption FDD is satisfied for wide class

on nonlinear transformations  = () of stationary Gaussian I() sequences {}.
Although FDD is satisfied for a large class of nonlinear process, it does not cover non-

linear processes whose partial sum process has a non-Gaussian limit ∞. The latter case
is specific and of limited interest in applications since, although it allows consistent OLS

estimation of (1 2), one does not have a simple data-based procedure for the computation

of its critical values.

3 Estimation of  and 2

In this section we discuss estimators for the unknown parameter  of the I() process

{} and the long-run variance 2 of {}. We start with a model with no deterministic
components, then generalize it to models (1.1) and (1.2).

3.1 Model with no deterministic components

Assume in this subsection that we observe the process {}, which follows  ∼ I(0) with
0 ∈ ( ) ⊂ (−12 ∞) 0 6= 12 32 52 · · ·  (3.1)

Then, 0 can be estimated using the FELW estimator developed in Abadir et al. (2007)

which extends to nonstationarity the classical local Whittle estimator (see Robinson

(1995b)). In this subsection, we write the estimator in a form that is equivalent to the

original FELW estimator, but in a way that is simpler to use. The estimators are identical

due to the algebraic relation of the periodograms presented in Lemma 4.4 of Abadir et al.

(2007).

Denote by

() := |()|2 () := (2)
−12

X
=1

ei
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the periodogram and discrete Fourier transform of {}, where  = 2,  = 1     

denote the Fourier frequencies. For  = 0 1 2 , define

(  ) := |1− ei |−2∇()

for all  ∈ ( − 12  + 12],  = 0 1 2     The points 0 =  + 12 are excluded from

(3.1) because they lead to the spectral density of ∇ not being integrable.

The FELW estimator b ≡ b of 0 is defined asb := argmin∈[] () (3.2)

where

() := log

⎛⎝ 1



X
=1

2|1− ei |−2 ∇()

⎞⎠− 2


X
=1

log  (3.3)

for  ∈ ( − 12  + 12],  = 0 1 2     and the bandwidth parameter  is such that

→∞  =  ()

as  → ∞. We can think of  as determined by any given : for any  chosen to evaluate

the objective function (), we have a corresponding  such that  ∈ ( − 12  + 12].
For example,

() :=

⎧⎨⎩log
³
1


P
=1 

2 ()
´
− 2



P
=1 log  if  ∈ (−12 12]

log
³
1


P
=1 

2|1− ei |−2 ∇()
´
− 2



P
=1 log  if  ∈ (12 32]

Remark 3.1. In applying the estimation method, the sample data must be enumerated

to allow to compute the difference ∇1. For example, if [ ] = [−12 32] then the
data should be enumerated as 0  , whereas if [ ] = [−12 52] then it should be
−1 0  .

In the case of 0 ∈ (−12 32), we shall estimate the scale parameter 0 of (1.3) by

b(
b) := 1



X
=1

2


 (  b)
and the long-run variance 2 by

b2 ≡ b2(
b) = (b− )b(

b) for b ∈ ( − 12  + 12]  = 0 1 (3.4)

In Dalla, Giraitis, and Hidalgo (2006) for ||  12 and Abadir et al. (2007) for general

, it was shown that under weak (ergodicity type) assumptions on the generating process

{}, the FELW estimator is consistent at a rate faster than 1 log,

b− 0 = (1 log) (3.5)
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This is sufficient to write  = 
(1+(1)). Consistency of b did not require the assumption

that {} be a Gaussian or a linear process. Under the same conditions, in Theorem 2.1 of

Abadir et al. (2007), consistency of the estimator of 0 was shown,

b(
b) → 0

which together with (3.5) implies consistency of the estimator of the long-run variance,b2(
b) → 2 . Asymptotic normality of the FELW estimator in Abadir et al. (2007) was

derived for the case of a linear generating process {}.

3.2 The two models with deterministic components

Assume now that {} is not observed. In model (1.1), to estimate  we use the detrended
observations b =  − b2 =  + 1 + (2 − b2)  = 0 1   (3.6)

where b2 is the OLS estimator (2.4). In regression (1.2), we use instead
b =  − e2− e3 sin()− e4 cos()

=  + 1 + (2 − e2)+ (3 − e3) sin() + (4 − e4) cos()  = 0 1  (3.7)
where e2 e3 e4 is the OLS estimator (2.12). The FELW estimator b is computed using
the series {b}. Henceforth, we write b for b only.

Recall that for 0  −12, the FELW estimator is exactly (not just asymptotically)

invariant with respect to the mean because of the property
P

=1 e
i = 0 when  is

constant; and for 0  12, it is so with respect to a linear trend because of the inherent

differencing in the estimation procedure; see Abadir et al. (2007). In regression models

(1.1) and (1.2), we assume that  ∈ (−12 32) and hence the minimization in (3.2) that
yields b is carried out over [−12 32].

We show below that the estimator of  based on {b} has the same asymptotic properties
as in case when {} is observed. We shall need the following assumption.

Assumption L. {} is a linear process (2.14) such that: the i.i.d. noise {} in (2.14) has
finite fourth moment, the spectral density

() = ||−2(0 + 21 + (2)) as → 0 (3.8)

for some  ∈ (−12 12), 0  0, and the transfer function () :=
P∞

=0 e
i , is such

that
d()

d
= (|()|) as → 0+

The i.i.d. assumption imposed on {} in (2.14) is only needed for expository purposes
and can be relaxed to martingale difference.

Theorem 3.1. Assume that  ∼ I(0), where 0 ∈ (−12 32), 0 6= 12. Suppose that

the generating process {} is a linear process (2.14) satisfying Assumption L.
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(i) Then, √
(b− 0)

→ N(0 14) if  = (45) (3.9)

and, if 45 = (1), then

()2(b− 0)
→
(

1
90(2)2

 if 0 ∈ (−12 12)
1

90(2)2
+ 1

108(2)2
 if 0 ∈ (12 32) (3.10)

If  is proportional to 45, we get a CLT but the limiting mean is not zero.

(ii) The results of (i) remain valid if b = b is computed using:
a) b of (3.6) obtained from model (1.1),

b) b of (3.7) obtained from model (1.2).

The estimation of 1 and 2 in Corollary 2.1 requires only (1 log) consistency of

an estimator b of 0, and does not assume {} to be a linear process. However, if one is
interested in obtaining the asymptotic normality of b, then this is derived in Theorem 3.1

under the assumption that {} is a linear process.

4 Simulation results

In this section, the finite sample performance of the asymptotic results given earlier are

assessed through simulations. We let the errors {} be generated from a Gaussian fractional
ARIMA(1  0) noise with unit standard deviation, where the autoregressive parameter 

is equal to −05 0 05. Throughout the simulation exercise, the number of replications is
10,000, the sample size  = 500. The memory parameter  is estimated using the Local

Whittle bandwidth parameter  = b65c = 56. We have also tried two other bandwidths
which are not reported for space considerations:  = b7c = 77 whose results are almost
indistinguishable from b65c, and  = b8c = 144 whose results are dominated by b65c.
For more details on our choice of bandwidth, see Abadir et al. (2007), Dalla et al. (2006),

and Shimotsu and Phillips (2005). Under some additional restrictions, the optimal  can

be chosen using the data-driven methods of Henry and Robinson (1996) or Andrews and

Sun (2004).

We start with the case when the data generating process follows model (1.1). Using as-

ymptotic CIs, we report Coverage Probabilities (CPs) in Table 1. The CPs are satisfactory,

with a few exceptions: low values of  and , and high values of .

We then move to the estimation of the regression parameters 1 2 3 4. Corollary

2.1 established consistency and a central limit theorem for the LS estimators e2 e3 e4 when
 ∈ (−12 32) and e1 when  ∈ (−12 12). Using asymptotic CIs, we report CPs in
Table 2. CPs for 1 and 2 are very similar to those reported in Table 1. For 3 and 4,

we observe a deterioration of CPs at the opposite extremes of the table: low  and , and

high  and . Notice that in the Monte Carlo exercise, apart from , all the remaining

parameters needed to construct CIs are estimated. A consistent estimator of the spectral

density at  is given as follows. Define

( ; ) :=

(
(2)−12

P
=1 e

i −12    12;

(2)−12
P

=1 e
i ( − −1) 12    32
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Then,

b() = 2



b2c−1X
=1

()
¯̄̄
( − ; b)¯̄̄2  (4.1)

where

() = −1
³sin(2)
sin(2)

´2
  =

j
13

k


We confirm numerically the positivity of the factor  of (2.15) whose estimate appears in

the finite sample approximation of the variances of e,  = 3 4. We have not proved b  0

analytically for any sample size , but we have checked numerically that, for  = 1 · · ·  1000
and a dense grid of  ∈ [1 15) and  ∈ (0 ), the minimum of the function

2111 + 2222 + 21212 + 4(
1

2
+ 2) + 4

2


(appearing in ) is positive. It is also possible to use max(0 b), namely truncating the

estimate of  to zero if negative, although simulations show that this is not necessary.

It is worth mentioning that the CPs improve and become very close to the nominal ones

when infeasible CIs (ones based on the “true” memory parameter and spectral density)

are calculated. A full set of tables is not reported for space reasons and is available upon

request.

Table 3 provides a check for Remark 2.1. Comparing the mean squared errors (MSEs)

of both misspecified and correctly specified LS estimators of 1 and 2, it is immediate

to see that there is no loss of precision caused by misspecification here. Therefore, if the

purpose is only the consistent estimation of location and trend parameters, then one can

ignore modelling cyclical components and just estimate a simple mean plus trend model.

Of course, this is not true in the case of testing hypotheses on 1 and 2, since in the

latter case one has to estimate 2 , which requires a correct specification of the model. The

specification

 = 1 + 2+  + 

 =

3X
=1

(3 sin() + 4 cos())

with 31 = 41 = 1, 32 = 42 = 12, 33 = 43 = 32, 1 = 2, 2 = 4, 3 = 32,

was also tried and gave very similar results.

Table 4 reports the results of estimation of the fractional integration parameter  when

the series are detrended and the extended local Whittle estimator b of the previous section
is used. We check the performance of the estimator for a range of values of  ∈ (−12 32).
The table confirms some previous findings of the literature on Whittle estimation of the

memory parameter. In particular, we observe a slight negative bias for  = −5 and  = 0

and a higher, positive bias when  = 5. The MSEs of b are generally slightly higher
than those of b in Abadir et al. (2007), reflecting the contribution of the estimation of

deterministic components.

These are general features that hold for the whole range considered for , except at the

lower boundary of our interval. For  = −4 and  = −05  = 0 the estimator of  is less
biased and, in the case where  = 0, it is (slightly) positively biased.
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5 Appendix. Proofs

Preliminary facts. Assume that  ∼ I(), where −12    32 and  6= 12. Property
(1.3) together with definition of () and (2.1) implies that, for any 0   ≤ 1, as →∞,

E
¡
 2 ()

¢→ 2
1+2 = E

¡
 2∞()

¢
 max

0≤≤1
E
¡
 2 ()

¢ ≤  (5.1)

Also, for any 0   ≤  ≤ 1, one has the equality
E
¡
 2 ()

¢
= E(([()− ()] + ())

2)

= E((()− ())
2) + 2E(()())− E( 2 ())

where E((()− ())
2) ∼ E(((− ))2), which together with (5.1) yields the equality

E(()())→ 2( ) = E (∞()∞())  (5.2)

where ( ) = E
³
12+()12+()

´
is given by (2.3).

For 0    , we compute the elements  of the symmetric matrix S of (2.13) as

11 =

X
=1

1 = ; 12 =

X
=1

 = 22 + 2;

13 =

X
=1

sin () =
cos(2)− cos((+ 12))

2 sin(2)
= (1); (5.3)

14 =

X
=1

cos () =
sin((+ 12))

2 sin(2)
− 1
2
= (1); (5.4)

22 =

X
=1

2 = 33 + 22 + 6;

23 =

X
=1

 sin () = 
sin()− sin((+ 1))

4 sin2(2)
+

sin()

4 sin2(2)
= ();

24 =

X
=1

 cos () = 
cos()− cos((+ 1))

4 sin2(2)
− sin

2(2)

2 sin2(2)
= ();

33 =

X
=1

sin2 () =
1

2

X
=1

(1− cos (2)) = 2 +(1);

34 =

X
=1

sin () cos () = (12)

X
=1

sin (2) = (1);

44 =

X
=1

cos2 () =

X
=1

(1− sin2 ()) = 2 +(1); (5.5)

by means of sin() = (ei − e−i) (2i) and cos() = (ei + e−i)2. Denote ; =P
=1 ,  = 1  4 and set

 ≡ ; := −1 ;  = 1  4
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where ⎛⎜⎜⎝
1

2

3

4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
12+

32+

(12)∨(−12)

(12)∨(−12)

⎞⎟⎟⎠ 

Set ∗ = |1|+ + |4|
By the well-known property of LS estimators,

eβ ≡ (e1 e2 e3 e4)0 = β + S−1

⎛⎜⎜⎝
1;
2;
3;
4;

⎞⎟⎟⎠ 

Inverting the symmetric matrix S, defined by (2.13), and bearing in mind the formulae for

 above which are valid for 0    , we obtain a symmetric matrix

S−1 = −1

⎛⎜⎜⎝
4 −6−1 (−813 + 1223−1)−1 (−814 + 1224−1)−1
 12−2 (1213 − 2423−1)−2 (1214 − 2424−1)−2
  2 0

   2

⎞⎟⎟⎠

+−1

⎛⎜⎜⎝
(−1) (−2) (−2) (−2)

 (−4) (−3) (−3)
  (−2) (−1)
   (−2)

⎞⎟⎟⎠ 

Then,

S−1

⎛⎜⎜⎝
1;
2;
3;
4;

⎞⎟⎟⎠ = S−1

⎛⎜⎜⎝
12+1;

32+2;

12∨(−12)3;

12∨(−12)4;

⎞⎟⎟⎠

=

⎛⎜⎜⎝
−12+[1 +(−1∧(1+))∗]
−32+[2 +(−1∧(1+))∗]

−32+[3 ] + −12∧(32−)[23; +(−1)∗]
−32+[4 ] + −12∧(32−)[24; +(−1)∗]

⎞⎟⎟⎠ 

where

1 = 41; − 62;

2 = −61; + 122;

3 = 13(−81; + 122;) + (23)(121; − 242;)

4 = 14(−81; + 122;) + (24)(121; − 242;)

Hence, Ã
 1
 2

!
=

µ
1 +(−1∧(1+))1

2 +(−1∧(1+))2

¶
; (5.6)
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  = 23; + −1+ + −1  if − 12    1 (5.7)

= 23; +  + −1  if 1 ≤   32

for  = 3 4, where E| |2 ∞ for  = 1  4 because E|;|2 ∞ in view of Lemma

5.1 below.

In the case of the LS estimator (b1 b2), we haveÃ b1b2
!
=

µ
1
2

¶
+

µ
11 12
21 22

¶−1µ
1;∗
2;∗

¶
 (5.8)

where ∗ =  + 3 sin() + 4 cos(). Then,µ
1;∗
2;∗

¶
=

µ
1;
2;

¶
+

µ
13 + 14
23 + 24

¶
=

µ
1;
2;

¶
+

µ
(1)

()

¶
 (5.9)

where 13 14 23 24 are elements of S satisfying |13|+ |14| = (1) |23|+ |24| = ()

as it was shown above in the derivation of the elements of S. Sinceµ
11 12
21 22

¶−1
= −1

µ
4 +(−2) −6−1 +(−3)

−6−1 +(−2) 12−2 +(−4)

¶


then µ
11 12
21 22

¶−1µ
1
2

¶
=

µ
11 12
21 22

¶−1µ
12+1;

32+2;

¶
=

µ
−12+[41; − 62; +( 0)]

−32+[−61; + 122; +( 0)]

¶


where  0 = |1|+ |2|. Hence,Ã b1b2
!
=

µ
1
2

¶
+

µ
−12+[1 +( 0)]
−32+[2 +( 0)]

¶
 (5.10)

Ã
 1
 2

!
=

µ
1 + −11
2 + −12

¶
 (5.11)

where E| |  ∞ for  = 1 2 since E|;|2  ∞ in view of Lemma 5.1 below. Hence,

the LS estimators (b1 b2) and (e1 e2) are equivalent:Ã
 1
 2

!
=

Ã
1 +(

−1∨(1+))
2 +(

−1∨(1+))

!
 (5.12)

Define the 4× 4 matrix Ψ ≡ Ψ = ()=14 as

Ψ :=

⎛⎜⎜⎝
2 22 0 0

22 2(3 + 2)
−1 0 0

0 0 () 0

0 0 0 ()

⎞⎟⎟⎠ (5.13)
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if −12    12, and

Ψ :=

⎛⎜⎜⎜⎜⎝
2


1+2

2

(6−1)

8(1+2)
0 0

2

(6−1)

8(1+2)

2


2(1+2)

³
1− 1

(3+2)

´
0 0

0 0 ()4 sin
2(2) 0

0 0 0 ()4 sin
2(2)

⎞⎟⎟⎟⎟⎠
(5.14)

if 12    1. Lemma 5.1 will show that, under general assumptions,³
cov(; ;)

´
=14

→Ψ (5.15)

Proof of Theorem 2.1. Since the estimator b2, (2.4) is invariant with respect to a shift
of , we can set 0 = 0 for 12    32.

(i) Since the estimators b1 and b2 can be written as linear combinations of variables
1 and 2, (5.10) together with Lemma 5.1 implies the limits (2.8)-(2.9).

(ii)-(iii). In view of expansion (5.10) and (5.15),Ã
 1
 2

!
=

µ
41 − 62

−61 + 122

¶
+

µ
(1)

(1)

¶


Denote by (1 2) a zero mean Gaussian vector with the covariances

cov( ) =     = 1 2

We shall show that

(1; 2;)
→ (1 2) (5.16)

By the Cramer-Wold device, (5.16) holds if and only if for any real numbers  ,

1; + 2;
→ 1 + 2 (5.17)

Convergence (5.16) implies that

( 1   2) → (41 − 62−61 + 122)

Since var(41 − 62) = 21, var(−61 + 122) = 22, and cov(41 − 62−61 + 122) =
12, where 

2
1, 12, and 22 are given by (2.7)-(2.6), this completes proof of (2.10)-

(2.11).

It remains to prove (5.17).

Case of ||  12. Then,  =  . Using the notation (), (2.2), and summation by

parts, we can write,

1; =

X
=1

 = 12+(1)− +1

2; =

X
=1

 = −
−1X
=1

X
=1

 + 

X
=1


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= 32+[−
Z 1

0

()d + (1)] + [

X
=1

 − +1] (5.18)

Whence

1; = (1) + (1) 2; = −
Z 1

0

()d + (1) + (1)

Case of 12    32. Then,  = 1 + , and the definition of the I() model implies

 =
P

=1  + 0, where by assumption E
¡
20
¢
∞. Using notation (2.2), write

1; =

X
=1

 =

X
=1

1; + 0 = 32+
Z 1

0

()d + 0 (5.19)

2; =

X
=1

 =

X
=1

1; + 0

X
=1

 (5.20)

= 32+
Z 1

0

(bc+ 1)


()d + 0(
2)

= 32+[

Z 1

0

()d +(
−1)] + 0(

2)

in view of (5.1), observing that 0(
2) = (

32+), since E
¡
20
¢
 ∞ and   12. In

this case,

1 =

Z 1

0

()d + (1) 2 =

Z 1

0

()d + (1)

Note that {()  ∈ [0 1]},  ≥ 0 is a sequence of real valued measurable processes
with the paths from the space 2[0 1], i.e.

R 1
0
 2 ()d ∞, and for any reals , , and ,

 := 

Z 1

0

()d + 

Z 1

0

()d + (1)

is continuous real valued bounded functional from 2[0 1] to R. Relations (5.1) and (5.2)
and Assumption FDD imply that the process () satisfies the conditions of the weak

convergence criterion in the space 2[0 1] by Cremers and Kadelka (1986), which implies

the convergence to the Gaussian limit


→ 

Z 1

0

∞()d + 

Z 1

0

∞()d + ∞(1)

which proves (5.17).

(iv) Set 1 :=
P

=1 , 2 :=
P

=1 . In (iv) it is assumed that 1 = (12+).

Summation by parts yields

2 = −
−1X
=1

1 + 1 +

−1X
=1

(12+) + (12+) = (32+)
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Denote b01 b02 the OLS estimators corresponding to case  = 0. Then (5.8)-(5.9) imply

that b = b0 +,  = 1 2 where

|1| ≤ (−1|1|+ −2|2|) = (−12+)

|2| ≤ (−2|1|+ −3|2|) = (−32+)

Since results (i) and (ii) of Theorem 2.1 are valid for b0 ,  = 1 2, they remain true for b,
 = 1 2, because the terms 1 and 2 are negligible.

Lemma 5.1. Assume that  ∼ I(), with −12    32,  6= 12, and let →∞.
If −12    1, then

cov(; ;)→ 2    = 1  4 (5.21)

where  are entries of the matrix Ψ, defined by (5.13)-(5.14).

If 1 ≤   32, then

cov(; ;) → 2    = 1 2 (5.22)

var(;) =
2(1−)()
4 sin2(2)

(1 + (1)) + 2
2
  = 3 4 (5.23)

cov(1; ;) = 22 + (1)  = 3 4 (5.24)

cov(2; ;) = 2 + (1)  = 3 4 (5.25)

where  are entries of matrix (5.14), and ,  are defined in (2.16).

Proof of Lemma 5.1. Denote for   = 1  4,

 := E (;;) = −1 −1 E(;;) = −1 −1 E

Ã
X
=1



X
=1



!


Case of ||  12. Then,  =  ,  = , and ; ≡ ; =
P

=1 . Properties

(5.1)-(5.2) of () and the dominated convergence theorem imply that, for   = 0 1, as

→∞,

E
³Z 1

0

()d
´³Z 1

0

()
d
´
→ 2

Z 1

0

Z 1

0

( )
dd; (5.26)

E
³
(1)

Z 1

0

()d
´
→ 2

Z 1

0

( 1)d;

E
¡
 2 (1)

¢ → 2 (1 1) = 2 

Writing 1;, 2; as in (5.18), (5.26) implies

11 = −1−2E(1;)2 → 2 ;

22 = E(−32−2)2 = E
³
(1)−

Z 1

0

()d
´2
+ (1)
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→ 2

³
(1 1)− 2

Z 1

0

(1 )d +

Z 1

0

Z 1

0

( )dd
´

= 2(1− 1 + (3 + 2)−1) = 2(3 + 2)
−1;

12 = E
³
−12−1−32−2

´
= E

³
(1)− −12−+1

´³
−
Z 1

0

()d + (1)
´
+ (1)

→ 2

³
−
Z 1

0

(1 )d +(1 1)
´
= 2(−12 + 1) = 22

To obtain the remaining  with   = 3 4, set  :=
P

=1 e
i  = 1  4 and

write

 = ()
−1

X
=1

E() = ()
−1
Z 

−
()(−)()d (5.27)

Denote by

() :=

X
=1

ei = ei(+1)2
sin(2)

sin(2)

the Dirichlet kernel. Then, since sin() = (ei − e−i) (2i) and cos() = (ei + e−i)2,
1() = () (5.28)

3() =

X
=1

ei sin() = ((+ )ei −(− )e−i)(2i) (5.29)

4() =

X
=1

ei cos() = ((+ )ei +(− )e−i)2

which implies

|()|2 = (|(+ )|2 + |(− )|2)4 +(|(+ )| |(− )|)
|Re[3()4(−)]| ≤ |(− )(+ )]|

For any   0,

|()| ≤   ≤ || ≤ ; |()| ≤ 


1 + ||  || ≤ 2 −  (5.30)

If  is continuous at , then a standard argument, using (1.3) and (5.30), implies that, as

→∞,

−1−2
Z 

−
|()|2()d→ 2 

−1
Z 

−
|(± )|2()d→ 2()Z 

−
|(+ )| |(− )|()d ≤  log

20



Z 

−
|()| |(± )|()d ≤ (log+ 2∨0)

Therefore,

 = −1
Z 

−
|()|2()d = −1

Z 

−

h
(|(+ )|2 + |(− )|2)4

+ (|(+ )| |(− )|)
i
()d→ ()  = 3 4 (5.31)

|34| ≤ −1
Z 

−
|(+ )| |(− )|()d→ 0

|1| ≤ −1−
Z 

−
|()| (|(+ )|+ |(− )|)()d (5.32)

→ 0  = 3 4

It remains to obtain 2  = 3 4. By (5.18), write 2; as

2; = −
−1X
=1

1; + 1:

By (5.30),

max
1≤≤

|()| ≤  max
1≤≤

(1 + ||) ≤ (1 + ||)

Hence, by (5.27), (5.28), and (1.3),

max
1≤≤

|E(1;;) | ≤ max
1≤≤

Z 

−
|()| (|(+ )|+ |(− )|)()d

≤ 

Z 

−



1 + || (|(+ )|+ |(− )|)()d ≤ (log+ 2∨0)) (5.33)

Therefore, for  = 3 4,

|2| ≤ −2−(
−1X
=1

|E(1;;) |+ |E(1:;) |)

≤ −2−( log+ 2∨0)→ 0

which completes proof of (5.21) with Ψ as in (5.13), corresponding to ||  12 .
Case of 12    32. Recall that  = 1 +  and E

¡
20
¢
= (1). Consider first

 ,   = 1 2. Then by (5.19), (5.20), and (5.26), for   = 1 2, with 1 = 12+ and

2 = 32+,

 = ()
−1E

h
(

X
=1

−1)(
X

=1

−1)
i
→  = 2

Z 1

0

Z 1

0

−1( )
−1dd

which yields

11 =
2

1 + 2
; 12 = 2

6− 1
8(1 + 2)

; 22 = 2
1

2(1 + 2)

µ
1− 1

(3 + 2)

¶

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Similarly, we obtain the convergence

−1 −12−E(;1;) ∼ E
h
(

X
=1

−1)( − 0))
i

(5.34)

→ 2

Z 1

0

−1( 1)d = 22 if  = 3;

= 2(
1

4
+

1

1 + 2
− 1

4
) = 2 if  = 4

which will be used below.

Next we obtain  ,   = 3 4. The definition of the I() model implies  =P
=1  + 0. Then,

; =

X
=1

 =

X
=1



X
=1

 + 0

X
=1

 =

X
=1

(

X
=

) + 0

X
=1

 (5.35)

For  = 3 4, 3 = sin() and 4 = cos(). Using (5.3)-(5.4), it follows that |
P

=1 | ≤
 and

X
=

sin() =
cos(( − 12))− cos((+ 12))

2 sin(2)
;

X
=

cos() =
sin((+ 12))− sin(( − 12))

2 sin(2)


Since cos(( − 12))= cos() cos(2) + sin() sin(2) and sin(( − 12))=

sin() cos(2)− cos() sin(2) then

3; =
4; cos(2) + 3; sin(2)− cos((+ 12))1;

2 sin(2)
+ |0|(1) (5.36)

4; =
sin((+ 12))1; − 3; cos(2) + 4; sin(2)

2 sin(2)
+ |0|(1) (5.37)

Using (5.31)-(5.32), we obtain

E
¡
23;

¢
=

E
³
24;

´
cos2(2) + E

³
23;

´
sin2(2) + cos2((+ 12))E

³
21;

´
+ ()

4 sin2(2)

=
() + cos

2((+ 12))2
1+2

4 sin2(2)
+ ()

= 
()

4 sin2(2)
+ 2−12

2
3 + ()

A similar argument shows that

E
¡
24;

¢
= 

()

4 sin2(2)
+ 2−12

2
4 + ()
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which proves that for  = 3 4,

 → ()

4 sin2(2)
 if (12    1)

=
2(1−)()
4 sin2(2)

(1 + (1)) + 2
2
 if (1 ≤   32)

which proves (5.22) and (5.23).

Next, for 12    1,

|34| = −1|E(3;4;) |
≤ −1(|E ¡24;¢− E ¡23;¢ |+ |E(3;4;) |+ |E(1;3;) |+ |E(1;4;) |)
≤ −1(() +(log) + ()) = (1)

Finally, we show that  = (1) for  = 1 2,  = 3 4, when 12    1. By (5.36)-

(5.37),

|E (;;) | ≤ (|E(;1) |+ |E(;3;) |+ |E(;4;) |+E(|0;|))
By (5.34),

|E(;1) | ≤ 
−12

Observe that for  = 1  4, |E ¡20;¢ | ≤ (E ¡20¢E³2;´)12 ≤  since E
¡
20
¢
∞

and E
³
2;

´
≤ 2

 , as it was shown above.

Using (5.19)-(5.20) and (5.33), we obtain for  = 3 4,

|E(;;) | ≤ 

X
=1

−1|E(;;) |+()E (|0;|)

≤ 
³
−1

X
=1

(log+ 2∨0) + +12
´
= ((2∨0 + 12))

since 3 = 4 = 12. Since for  = 3 4 , 1 = 1+, 2 = 2+, then

| | ≤ ()
−1(

−12 + +2∨0 + +12 +) = (1)

which completes proof of (5.21).

To prove (5.24) and (5.25) in the case of  ≥ 1, recall that 3 = 4 = −12, 1 =

12+, and 2 = 32+. Then, by (5.36)-(5.37),

3; =
1

2−1
(4;

cos(2)

sin(2)
+ 3;) + 31; + |0|−+12;

4; =
1

2−1
(4; − 3;

cos(2)

sin(2)
) + 41; + |0|−+12

In (5.34) it was shown that

E(1;1;)→ 22 E(2;1;)→ 2
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We show that

E(;;)→ 0  = 1 2  = 3 4 (5.38)

which together with estimates above implies (5.24) and (5.25).

By (5.19), (5.20), and (5.33),

|E(;;) | ≤ −1 −1 (
X
=1

−1|E(;;) |+  |E(0;) |)

≤ −2
X
=1

(log+ 2∨0) +−1 (E
¡
20
¢
E
¡
2;

¢
)12 → 0

which proves (5.38) and completes the proof of Lemma 5.1.

Proof of Theorem 2.2.

1. Proof of (i)-(ii). By (5.6),

 1 = 41; − 62; +(−1∧(1+))1 = 41; − 62; + (1)

 2 = −61; + 122; +(−1∧(1+))2 = −61; + 122; + (1)

where E|2 | ≤ ,  = 1 2. Therefore the same argument used in the proof of Theorem

2.1 implies statements (i) and (ii) of Theorem 2.2 about e1 and e2.
By (5.7), for  = 3 4 and −12    32,p

  = 0∧(−1+)(11; + 22;) + 2; + −1  (5.39)

where 1 2 are defined in (2.16), and E|2| ≤ . Hence, for  = 3 4, (i) follows from

(5.39), applying Lemma 5.1.

2. Proof of (iii). Assume that −12    1. Since  1 ,  2 ,  3 , and  4 are linear
combinations of the variables ;  = 1  4, convergence (2.17) and (2.20) follow from

(5.40) of Lemma 5.2 below by the same argument as that used in the proof of Theorem 2.1.

If 1 ≤   32, then (2.18) and (2.19) follow from (5.41) and Lemma 5.1.

Lemma 5.2. Assume that the conditions of Theorem 2.2 (iii) are satisfied.

(i) If −12    1, then for any real numbers ,  = 1  4,

 :=

4X
=1

;
→

4X
=1

 =:  →∞ (5.40)

where (1  4) ∼ N(0Ψ) with Ψ given by (5.13).

(ii) If 1 ≤   32, then

(var())
−12

→ N(0 1) (5.41)

Proof. (i) For −12 ≤   1, by Lemma 5.1, the matrix Ψ is the limit covariance

matrix of the vector t. Therefore 2 := var() → 2 := var() as  → ∞ It remains to

show

−1 
→ N(0 1) (5.42)
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We shall show that  can be written as

 =

X
=−∞

 + (1) (5.43)

with some weights  such that

∗ := max
−∞≤

| | = (1) (5.44)

First we show that (5.43) and (5.44) imply (5.42). Assume first that E|| ∞ for all

 ≥ 1. To prove (5.42), it suffices to show for any  ≥ 3, the -th order cumulant of −1 
satisfies

 → 0 →∞

Since {} is a sequence of i.i.d. variables, then

 = (0)

X
=−∞

 

where (0) is the -th order cumulant of the variable 0. Since 
2
 → 2  0, then by

(5.44), for  ≥ 3,

|| ≤ |(0)|(∗)−2−
X

=−∞
2 ≤ |(0)|(∗)−+2 → 0

to prove (5.42).

Assume now that not all moments of  are finite. Fix   0, set − = 1| |≤ ,
+ = 1| |  and write

 = − + +  − :=
X

=−∞


−
  − :=

X
=−∞


+
 

As we showed above, for any fixed   0, −
→  , where  ∼ N(0 2var(− )), and

var(− )→ var() = 1 as  →∞. On the other hand, as →∞,

var(+ ) = var(
+
1 )

X
=−∞

2 ∼ var(+1 )2 → 0  →∞

which in view of a standard argument implies (5.42).

To prove (5.43) and (5.44) it suffices to show that ;,  = 1  4 can be written as

; =

X
=−∞


()
 + (1)  = 1  4

with weights 
()
 satisfying

max
−∞≤

|() | = (1) (5.45)
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1. Assume that −12    12. Then  = , where {} is a linear process (2.14),
and

; = ; = −1

X
=1

 =

X
=−∞


()


where


()
 = −1

X
=∨1

− 

First, we show that

max
1≤≤

|
X
=1

| ≤ (log+ ∨0)

Since  is square summable, it can be written in the form  =
R 
− e

ib()d, where b()
is a square integrable function. In addition, the spectral density of  can be written as

() = 2|b()|2 Hence, for 1 ≤  ≤ , by (5.30) and (1.3),

|
X
=1

| = |
Z 

−

X
=1

eib()d| ≤ Z 

−
|()||b()|d ≤ 

Z 

−



1 + ||
q
()d

≤ (log  + ∨0) ≤ (log+ ∨0) (5.46)

Therefore,

|(1) | = −12− |
X

=∨1
− | ≤ −12−(log+ ∨0) = (1)

Using summation by parts and (5.46), we obtain that

|
X

=∨1
− | ≤

−1X
=1

|
X

=∨1
− |+ |

X
=∨1

− | ≤ (log+ ∨0)

which implies

|(2) | = −32− |
X

=∨1
− | ≤ −12−(log+ ∨0) = (1)

Finally, for  = 3 4, bearing in mind that 3 = sin() 4 = cos()

|() | = −12|
X

=∨1
− | ≤ −12

X
=∨1

|− |

≤ −12
X

=∨1:|−|≤log
|− |+ −12

X
=∨1:|−|log

|− |

≤ −12 log+ (
∞X

log

||2)12 → 0 →∞
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to complete proof of (5.45).

2. Assume that 12    1. By (5.35), we can write

; = −1

X
=1

∗ + (1) =

X
=−∞


()
 + (1)

where


()
 = −1

X
=∨1

∗−  ∗ =
X
=



It remains to show that 
()
 satisfies (5.45). For  = 1 2, we have 1 = 1 and  = , and

summation by parts gives

|()| ≤ −1
³−1X
=1

|||
X

=∨1
− |+ |||

X
=∨1

− |
´
≤ −1 (log+ ∨0) = (1)

For  = 3 4, (5.3)-(5.4) imply that |∗| ≤ , and (5.45) follows using the same argument

as in the case −12    12.

(ii) The proof of (5.41) follows using the same argument as (5.40) in the case of 12 

  1. Differently from case (i), for case (ii) covering 1 ≤   32, var() remains bounded

but it may oscillate with  in view of Lemma 5.1, which requires normalization by
p
var().

Proof of Theorem 3.1. (i) Asymptotic results (3.9)-(3.10) follow from Theorem 2.2 and

Corollary 2.1 of Abadir et al. (2007).

(ii) a) Write b =  + 1 +  (5.47)

where  =  if −12  0  12,  =  − −1 if 12  0  32. In Theorem

2.5 and Corollary 2.1 of Abadir et al. (2007), it was shown that (3.9)-(3.10) are valid if

 ∼ I(0), 0 ∈ (−12 32) and 0 6= 12,  satisfies Assumption L, and  is such that

X
=1

| − +1| = (
−12+) (12  0  32) (5.48)

To prove (3.9)-(3.10) in case (ii) a), it suffices to note that b can be written as (5.47) with
 = (2 − b2) and, by Theorem 2.1, b2 − 2 = (

−32+0) which implies the validity
of (5.48).

(ii) b) Then, (5.47) holds with

 =

3X
=1

;  ;1 = (2−b2) ;2 = (3−b3) sin() ;3 = (4−b4) cos()
(5.49)

Write () := (2)
−12P

=1 e
i.

To prove the consistency b → 0, it suffices to check (see the proof of Theorem 2.5 (i)

in Abadir et al. (2007), p. 1371 and Lemma 4.1) that for any 0    1

−1
X
=1

()−2 |()|2 = (1) (5.50)
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To verify (5.50) for (5.49), it suffices to check that

 := −1
X
=1

()−2 | ()|2 = (1)  = 1 2 3 (5.51)

Asymptotics (3.9)-(3.10) follow (see (4.24)-(4.25) of the proof of Theorem 2.5 (iii) in Abadir

et al. (2007), p. 1373), if the trend  satisfies (5.50) and

−1
X
=1

()− | log() + 1|( |()|+ 
2
 |()|2) = (

−12) (5.52)

To prove (5.52), it suffices to show that

∗ := −1
X
=1

| log() + 1|( | ()|+ 
2
 | ()|2) = (

−12)  = 1 2 3

(5.53)

For  = 1, (5.51) and (5.53) were shown in Abadir et al. (2007), Lemma 4.1 and (4.25).

It remains to prove (5.51) and (5.53) for  = 2; for  = 3 the proofs following using the

same argument. By Theorem 2.1, b3− 3 = (
−12∧(32−0)),  = 1 2. This implies that

|1()| ≤ −12|b3 − 3| |3()| = (
−(1∧(2−0)))

and observing that (5.29) and (5.30) yields

|3()| ≤ |( + )|+ |( − )| ≤ [(1 + | + |)−1 + (1 + | − |)−1] ≤ 

because  ≤  ≤ 2 as →∞

Hence, if −12   ≤ 1, then

2 = (1)
−1−2

X
=1

()−2

= (1)
−2+2||−1

X
=1

()− = (1)
−2+2|| = (1)

∗2 = (1)
−1

X
=1

(| log()|+ 1)( −1 + 
2
 −2) = (

||−1) = (
−12)

If 1    32, then  = 1 +  where 0 ≤   12, and

2 = (1)
−1−2(2−0)

X
=1

()−2 = (1)
−2+4 = (1)

∗2 = (1)
−1

X
=1

(| log()|+ 1)( −2+0 + 
2
 −4+20)
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= (1)
−1−1

X
=1

(| log()|+ 1)() = (1)
−1 = (

−12)

which implies (5.53) for  = 2 and completes proof of Theorem 3.1.
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Table 1: Coverage probabilities of 90% confidence intervals for the LS estimator.a

 = −5  = 0  = 5

1 2 1 2 1 2
 = −4 0.97 0.96 0.95 0.96 0.88 0.89

 = −2 0.91 0.91 0.86 0.87 0.88 0.87

 = 0 0.85 0.85 0.83 0.86 0.88 0.86

 = 2 0.85 0.86 0.84 0.85 0.87 0.87

 = 4 0.81 0.85 0.80 0.82 0.82 0.87

 = 6 0.85 0.83 0.89

 = 8 0.86 0.82 0.90

 = 1 0.86 0.83 0.90

 = 12 0.85 0.85 0.90

 = 14 0.81 0.80 0.79
a
Notes: This Table reports coverage probabilities of the 90% confidence intervals constructed using the asymptotic
theory developed in Section 2. In particular, the data generating process is given by

 = 1 + 2+   ∼ I()

1 2 are estimated using Ordinary Least Squares. The long memory parameter  and the long run variance 
2


are estimated using the FELW method and formula (3.4), respectively, applied to the residuals  =  − .

Table 2: Coverage probabilities of 90% confidence intervals for the LS estimator.a

 = −5  = 0  = 5

1 2 3 4 1 2 3 4 1 2 3 4
 = −4 0.95 0.95 0.84 0.84 0.95 0.95 0.86 0.88 0.88 0.88 0.92 0.91

 = −2 0.89 0.91 0.84 0.85 0.86 0.86 0.87 0.88 0.86 0.86 0.93 0.92

 = 0 0.84 0.87 0.86 0.87 0.86 0.87 0.91 0.90 0.86 0.84 0.94 0.94

 = 2 0.84 0.84 0.88 0.87 0.82 0.84 0.91 0.92 0.89 0.86 0.93 0.93

 = 4 0.79 0.86 0.91 0.90 0.79 0.83 0.93 0.93 0.81 0.87 0.94 0.94

 = 6 0.86 0.85 0.86 0.86 0.88 0.87 0.86 0.91 0.91

 = 8 0.87 0.84 0.83 0.85 0.87 0.87 0.89 0.91 0.89

 = 1 0.87 0.85 0.88 0.85 0.89 0.88 0.90 0.92 0.92

 = 12 0.86 0.90 0.90 0.85 0.91 0.92 0.90 0.92 0.92

 = 14 0.82 0.93 0.93 0.82 0.92 0.92 0.80 0.82 0.82
a
Notes: This Table reports coverage probabilities of the 90% confidence intervals constructed using the
asymptotic theory developed in Section 2. In particular, the data generating process is given by

 = 1 + 2+ 3 cos() + 4 sin() +   = 2  ∼ I()

1 2 3 4 are estimated using Ordinary Least Squares. The long memory parameter  and the long

run variance 2

are estimated using the FELW method and formula (3.4), respectively, applied to the

residuals  =  − . The estimator of the spectral density () is given by formula (4.1).
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Table 3: Root MSEs of LS estimators.ae1 e2 b1 b2
 = −4 0.018138 6.70865e-5 0.018173 6.72490e-5

 = −2 0.036291 0.000130 0.036311 0.000130

 = 0 0.089922 0.000309 0.089924 0.000309

 = 2 0.244466 0.000761 0.244473 0.000761

 = 4 0.901005 0.002061 0.901016 0.002061

 = 6 0.005568 0.005568

 = 8 0.016482 0.016482

 = 1 0.049259 0.049259

 = 12 0.169340 0.169340

 = 14 0.754884 0.754873
a
Notes: This Table reports root mean squared errors of the LS estimators of
deterministic components. In particular, the data generating process is given
by

 = 1 + 2+ 3 cos() + 4 sin() +   = 2  ∼ I()

1 2 are the LS estimators when the model is correctly specified, while 1 2
denote the LS estimator for the misspecified model.

Table 4: Bias and Root MSEs of the estimator b for different values of .
Bias RMSE Bias RMSE Bias RMSE

 = −5  = 0  = 5

 = −04 -0.004406 0.082613 0.005228 0.080757 0.101875 0.129679

 = −02 -0.026378 0.085891 -0.010943 0.080904 0.087739 0.119000

 = 0 -0.036340 0.087974 -0.019628 0.080196 0.082967 0.116947

 = 02 -0.041281 0.090194 -0.028645 0.089280 0.080431 0.113747

 = 04 -0.043690 0.090695 -0.028162 0.090983 0.084435 0.120408

 = 06 -0.030618 0.091283 -0.016453 0.089691 0.091507 0.125162

 = 08 -0.027204 0.089273 -0.012923 0.085367 0.096704 0.125939

 = 10 -0.027851 0.080885 -0.011396 0.077266 0.088296 0.120020

 = 12 -0.023571 0.082448 -0.009434 0.081665 0.090578 0.119118

 = 14 -0.022104 0.082663 -0.005929 0.077420 0.096853 0.123975
a
Notes: This Table reports bias and Root MSE of the FELW estimator of . In particular, the data
generating process is given by

 = 1 + 2+ 3 cos() + 4 sin() +   = 2  ∼ I()

The long memory parameter  is estimated using the FELW method applied to the residuals  =
 − .
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