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ABSTRACT 

Research and development (R&D) in the field of nanomaterials is expected to be a major 

driver of innovation and economic growth. Consequently, it is of great interest to understand 

which factors facilitate the creation of new technological knowledge. The existing literature 

has typically addressed this question by employing a knowledge production function based on 

firm-, regional- or even country-level data. Estimating the effects for the entire national 

system of innovation, however, assumes poolability of regional data. We apply our reasoning 

to Germany, which has well-known regional disparities, in particular between the East and the 

West. Based on analyses at the NUTS-3 regional level, we find different knowledge 

production functions for the East and the West. Moreover, we investigate how our results are 

affected by the adoption of alternative aggregation levels. Overall, our findings suggest that a 

careful evaluation of poolability and aggregation is required before estimating knowledge 

production functions at the regional level. 
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INTRODUCTION 
 

Innovation studies frequently recognize the importance of nanotechnology as it can have a 

wide array of potential applications - e.g. in biotechnology, chemistry or material sciences - 

and it is expected to result in incremental and radical innovations (Meyer 2006), substantially 

contributing to economic growth and employment (Bozeman et al. 2007). Most of its 

applications are expected to result specifically from so-called ‘nanomaterials’. The term refers 

to functional structures sized less than 100 nanometres (Youtie et al. 2008), which give the 

material specific properties, allowing them to be used in new ways and to bring about new 

effects in larger structures of which they are part. 

In this perspective, it seems all the more important for regions to find ways of benefiting 

from the expected growth of nanomaterial applications. Initially, innovation systems had been 

referred to nation states (Edquist 1997; Lundvall 1992; Nelson 1993), but the concept has 

been extended to the regional level as well (Cooke et al. 2000; Cooke et al. 1997; Howells 

1999). While being part of the national system of innovation, a regional system of innovation 

can be defined as a regional network between public and private research to adapt, generate 

and extend knowledge and innovations (Buesa et al. 2006; Howells 2005). Many regions have 

recognized the importance of promoting research activities in nanotechnology, which has led 

to the establishment of ‘science parks’ and ‘nanoclusters’, substantially supported by public 

policy. Moreover, as nanomaterials are still in their infancy and related products at an early 

phase of their life-cycles, cooperation between universities, public research institutes and 

private businesses seems to be critical to create the required knowledge for actually benefiting 

from nanomaterials research. 

For these reasons it is important to examine whether different regions produce innovations 

in differenty ways. In this respect, it is of particular interest to investigate the innovative 

capabilities of regions that have been in an economical transition vis-à-vis regions with 

established industrial structures. For example, Germany is often studied by making a 

distinction between the East and the West, where different economic systems had been in 

place until the reunification in 1990 (Brixy & Grotz 2004; Fritsch 2004; Günther 2004). In 

this article we argue that institutional differences between these regions continue to influence 

the effectiveness of scientific knowledge production in a key technological area like 

nanomaterials. Hence, we apply appropriate econometric techniques to this problem, while 

not neglecting the issue of knowledge spillovers across regions that might produce spatial 

correlation and unreliable statistical inference. 
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So-called ‘poolability’ issues are not new to the study of German regions or of regional 

systems of innovation. In this regard, earlier empirical evidence (Bode 2001, 2002, 2004a, b) 

shows mixed results with regard to several poolability hypotheses. In analyses on regional 

innovative activities and R&D spillovers as well as on agglomeration externalities in 

Germany, tests carried out on the North/South of Germany or on agglomerated/peripheral 

regions do not suggest poolability problems, while additional tests on high/low innovativeness 

and labor productivity indicate that caution should be used in pooling regional data in the 

German knowledge production context. On the other hand, such issues are discussed very 

briefly in the above literature, and often without a informative presentation of the findings 

(Bode 2001). In this regard, our contribution aims at providing a more explicit treatment of 

poolability problems in innovation analyses. 

We also tackle one further problem, that is, whether the modifiable areal unit problem 

(MAUP) is a relevant issue to our data and the economic relationship we analyse. In other 

words, we check if our results are robust to aggregation issues. This is important because 

inventors often do not live where the research facilities they work at are located, which may 

induce bias in our estimates (patents are attributed to the place of residence of the inventor). 

By testing regions at different aggregation levels, we aim at eliminating this mismatch. 

The remainder of the article is structured as follows. We first introduce the concept of 

knowledge production functions and describe our dataset and the econometric estimation and 

testing method. Subsequently, we present our results first for the whole of Germany and 

afterwards for East and West Germany subsets of our data. Finally, we set out our results 

concerning aggregation issues and conclude with limitations of our study and avenues for 

further research. 

 

 

THE MODEL: KNOWLEDGE PRODUCTION IN 

NANOMATERIALS 
 

Today, it has almost become conventional wisdom that most developed market economies are 

based on knowledge. Its creation has typically been modeled in the context of knowledge 

production functions (Griliches 1979), for which the basic idea is that investments in 

knowledge, which may be embodied in people and technology, increase the productivity of 

capital and labor resulting in new products and processes. It is therefore important to explore 

the factors leading to knowledge creation in an emerging technology field. Endogenous 
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growth theory postulates that knowledge production increases with research input, and in 

particular with human capital (Aghion & Howitt 1992; Romer 1990). In this article, the 

objective is to analyse the determinants of knowledge production by linking the observable 

innovative output – patents – to observable inputs. We focus on three types of inputs: private 

and public investments in research and development (R&D) (both in terms of personnel), as 

well as the technological specialization of a region which also represents the stock of 

knowledge scientists can draw from. This knowledge stock identifies a specific technological 

specialization profile which can be assumed to lead to a certain technology competence of a 

region (Jones 1995; Porter & Stern 2001; Romer 1990). 

Patents have been frequently employed as measures of output in a knowledge production 

function framework (for example, Griliches 1990; Patel & Pavitt 1997) since they can be 

characterized as intermediary outcomes of the innovation process (see, for example, Acs et al. 

2002). Nevertheless, several disadvantages are associated with the use of patents (Griliches 

1990). First, not all inventions are patentable, and not all inventions are patented as firms may 

choose other protection strategies like secrecy or complexity of design. Furthermore, although 

a granted patent exhibits a certain level of originality and newness, research has shown that 

the actual value of patents is highly skewed, leading to a ‘long tail’ in the distribution of the 

patent value (Harhoff et al. 2003). As a consequence, only a few patents are economically 

highly valuable. 

Hence, our knowledge production function can be written as follows: 

 

 α β χ ε ,i i i i iy x z a= + + +  (1) 

 

where: yi is the output of the knowledge production function in region i, xi is the research 

input; zi is the stock of knowledge of the region; ai includes other variables affecting 

innovation output; εi is the error term assumed to be i.i.d. with a zero mean and constant 

variance; α, β and χ are the parameters to be estimated. 
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DESCRIPTION OF THE EMPIRICAL APPLICATION 
 

Description of the data – Due to the cross-cutting nature of nanomaterials and their use in 

a variety of scientific fields, the identification of nanomaterial patents is not trivial. Several 

different search strategies have been developed by bibliometricians and patent analysts to 

single out the field of nanomaterials (Hullman & Meyer 2003; Schummer 2004; Zitt & 

Bassecoulard 2006). We make use of the results of a search strategy that evolved from a 

collaborative project with a major European chemicals company, which is one of the largest 

patent applicants in nanomaterials with a specialized department for patent information 

research. Our analysis focuses on patent applications at the European Patent Office as these 

patents are typically assumed to have a higher quality in contrast to patent applications at 

national patent offices. For these European patent applications the costs of filing the 

application are much higher which should presumably discourage poor quality patent 

applications. Besides the nanomaterial patent data which are used as dependent variable, all 

explanatory variables are obtained from the German National Statistical Office and the 

European Statistical Office (Eurostat) at the German district (kreise) level (NUTS-3). There 

are 439 NUTS-3 regions in Germany. 

When employing patent data, patent applicant and inventor should be carefully 

distinguished. The applicant is the holder of the patent rights while the document itself also 

shows the name(s) of the inventor(s). Differences between the applicant and the inventor are 

relevant when it comes to the spatial assignment of a patent as they are typically not located in 

the same place. In this respect, inventors tend to be geographically dispersed around the 

applicant’s location. Taking this location as the focal point would, however, lead to a 

substantial bias as most large firms maintain several R&D units while all patents are applied 

for from the firm’s headquarter. We therefore focus on the inventor’s location. Moreover, as 

there could be several inventors on a patent document, we apply a fractional counting 

approach to assign every inventor mentioned the respective share of the nanomaterial patent. 

Building on our knowledge production function framework, we regress the number of 

nanomaterial patents on private and public investments in R&D, on the regional 

specialization, as well as on control variables and a spatial filter which takes into account the 

spatial autocorrelation in our data. Regarding the explanatory variables, we use the number of 

industrial and public sector R&D employees as a proxy for human capital inputs. To take the 

technological specialization of a region into account, we analyse the patent applications in 

other technology fields like mechanics, electronics, chemicals and pharmaceuticals. Patent 
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applications in further technology fields are left out of the estimation as a reference group. As 

nanomaterials have a cross-cutting nature, our specialization patterns can also be assumed to 

reflect the stock of technological knowledge available to the scientists. We compute the 

shares of the number of patent applications in each field over the total number of patent 

applications to yield our regional specialization pattern excluding any potential size effect. 

Finally, we control for several other regional characteristics. First, we include the shares of 

employees working in the manufacturing and services sector, as well as the GDP per capita in 

logs (also included as a squared and as a cubic term). While the sector shares should give an 

insight on the economic orientation of a region, the GDP per capita should map its level of 

economic development. Moreover, we add three dummy variables indicating the centrality, 

urbanization and agglomeration patterns of a region.1 Our measures account for time lags in 

the knowledge production function by using the sum of nanomaterial patents applied for in 

the years from 2000 to 2004, while all explanatory variables are based on the year 2000.2 

Figure 1 provides a map of the number of nanomaterial patents in each German district. On 

the one hand, there is not a smooth geographical distribution of patents in Germany. On the 

other hand, the spatial distribution of the patent applications cannot be considered random. A 

prevalence of high values for the Western regions of Germany can be highlighted. Most of the 

patents appear to be located in the major German cities and in specialized regions. Inversely, 

the East German kreise are characterized, with few exceptions, by low patenting activities. 

In the following, we will argue that (i) spatial econometric adjustments are necessary but 

that (ii) poolability of the 439 regions is questionable. 

 

Estimation Method – On the basis of the model and data presented above, we follow 

Grimpe and Patuelli (2010) and propose the estimation of negative binomial regressions. In 

addition, we stick to Grimpe and Patuelli’s estimation framework by employing, when 

necessary, spatial filters (Griffith 2003) in order to account for spatial autocorrelation. The 

main characteristics and advantages of our estimation strategy are summarized below. 

Our model explains the output of the knowledge production function, which is measured 

here as a count of patent applications. This variable does not have values smaller than 0, and 

is an integer. Log-linear or Poisson regressions are commonly used for estimating models 

with count data as a dependent variable. Further, data over- or under-dispersion with respect 

to the underlying statistical distribution are observed in economics, in which case, simple log-

linear or Poisson estimators are inefficient. This problem is often tackled by using negative 

binomial estimations, which assume, as a data-generating function, a two-stage model 
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including an unobserved variable E (gamma-distributed) with mean 1 and variance 1/θ, and a 

discrete variable (the dependent) Poisson-distributed conditionally to E with mean μ and 

variance μ + μ2/θ (see, for example, Venables & Ripley 2002). The dispersion parameter θ is 

fitted iteratively (by maximum likelihood or by means of a moment estimator). 

 

Legend:
Nanomaterials

patent applications
0
1
2-3
4-10
11-78

 
Figure 1: Geographic distribution of patent applications in nanomaterials 

 

The above estimation framework is augmented with the use of spatial filtering methods in 

the case of spatial autocorrelation. Spatial autocorrelation (Cliff & Ord 1981) refers to the 

correlation between the values of a georeferenced variable to be attributed to the proximity of 

the georeferenced objects (regions, point patterns, and so on). It is most commonly measured 

by means of Moran’s I (MI, Moran 1948). This statistic is computed as 
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( ) 2
, ,( )( ) ( ) ,i j i j i j ii j i j i

I N w x x x x w x x⎡ ⎤⎡ ⎤= − − −⎢ ⎥⎣ ⎦ ⎣ ⎦∑ ∑ ∑ ∑ ∑  where: N is the number of 

georeferenced units; xi is the value of the variable X for unit i; and wi,j is the value of cell (i, j) 

of a spatial weights matrix W (defined below). Positive values of Moran’s I imply positive 

spatial autocorrelation, and vice versa. The computation of the Moran’s I requires the use of a 

spatial weights matrix W, which defines the relations of proximity between georeferenced 

units. Binary spatial weights matrices are often used, where a value of 1 for the generic cell (i, 

j) implies that the two units i and j are neighbors, while the opposite applies for the value 0.3 

It has been shown that, when regression residuals are spatially correlated, the regression 

coefficients may be biased and/or have inefficient standard errors (depending on whether 

spatial dependence or a spatial error process is present; Anselin & Griffith 1988). Several 

econometric techniques have been developed over the last two decades to control for spatial 

autocorrelation (see, for example, Anselin 1988; Griffith 1988), but they are based – with few 

exceptions – on the assumption of normality. We employ an eigenvector-decomposition-

based spatial filtering technique (Griffith 2003, 2006), which allows to relax the normality 

assumption and can therefore be applied to regressions with any underlying statistical 

distribution. The spatial filtering technique used is related to the computational formula of the 

Moran’s I. It extracts orthogonal and uncorrelated numerical components (eigenvectors) from 

a given (N x N) spatial weights matrix (Tiefelsdorf & Boots 1995), therefore drawing 

comparisons to principal components analysis. The extracted eigenvectors represent the latent 

spatial autocorrelation – to be looked for in a georeferenced variable – which is due to the 

chosen spatial weights matrix. Formally, we extract the eigenvectors of the following 

modified spatial weights matrix: 

 

 T T( ) ( ),N N− −I 11 W I 11  (2) 

 

where: W is the given geographic weights matrix; I is an (N x N) identity matrix; and 1 is an 

(N x 1) vector containing only ones. The sequence in which the eigenvectors are extracted 

maximizes the residual Moran’s I values. Consequently, the first extracted eigenvector, e1, is 

the one which shows the greatest Moran’s I value among all eigenvectors of the modified 

matrix. The second extracted eigenvector, e2, is the one which shows the greatest Moran’s I 

value while being uncorrelated to e1. The process continues with the final extraction of (N – 1) 

eigenvectors. The resulting set of vectors is the complete set of all possible (mutually) 

orthogonal and uncorrelated map patterns (Getis & Griffith 2002). 
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After selection on the basis of a Moran’s I threshold value,4 stepwise regression and manual 

backward elimination (see Grimpe & Patuelli 2010), a subset of the above eigenvectors – all 

statistically significant at least at the 5 per cent level – is employed as additional regressors in 

the estimation of our model. From a spatial dependence point of view, these eigenvectors – 

their linear combination being hereforth referred to as our ‘spatial filter’ – account for the 

residual spatial autocorrelation resulting from the regression analysis. 

 

Poolability – Testing for poolability is equivalent to testing for sub-sample stability of the 

estimated regression coefficients. The question underlying the econometric procedures labeled 

as ‘poolability tests’ is whether a single model can fit all the data we are analysing or it is 

better to specify different models for different subsets of the dataset. 

For sake of simplicity, suppose the observations of a dataset can be grouped in two groups. 

For instance, we might wish to investigate a dataset of either different individuals or regions 

or sectors over time. Another example might be a sectoral/regional dataset across different 

countries or wider regions, as in our case. 

Our target is to model the conditional expectation of a dependent variable, y, given a set of 

independent variables x, ( | ),ig igE y x  where i = 1, …, I and g = 1, …, G are two indices 

identifying each observation according to the groups they belong to. Suppose we specify a 

linear model of ( | )ig igE y x  and we want to test if β, the vector of the coefficients, is the same 

for all i or not. Our restricted model will be: 

 

 β ,ig ig igy x u= +  (3) 

 

while our unrestricted model will be: 

 

 β ,ig ig i igy x u= +  (4) 

 

where uig is the error. In other words, our null hypothesis is H0 : βi = β. 

Two tests for poolability can be distinguished according to the assumptions regarding the 

distribution of the errors. The Chow test assumes that uig ~ N (0, σ2), whereas the Roy-Zellner 

test assumes u ~ N (0, Σ), with 

 

 2 2
μ( , ) σ σ ,ig jh vCov u u = +  for i = j and g = h; (5) 
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 2
μ( , ) σ ,ig jhCov u u =  for i = j and g ≠ h, (6) 

 

where j = 1, …, I, h = 1, …, G and Σ is the IG x IG variance-covariance matrix of the error 

term (Baltagi 2001). Of course, it would also be possible to test the hypothesis βg = β5. 

The tests and criteria above, however, rely on the assumptions of linearity of the model for 

( | ),ig igE y x  and of normality of the errors. However, both these assumptions do not suit our 

setting. Since we adopted a maximum likelihood estimator, we follow Watson and Westin 

(1975) and we use a likelihood ratio test for poolability: 

 

 λ 2(log log ),u rL L= −  (7) 

 

where log Lu is the log of the likelihood of the unrestricted model, and log Lr is the one of the 

restricted model. λ is asymptotically distributed as a χ2 with a number of degrees of freedom 

equal to the number of restrictions. 

There is a rich empirical literature on poolability testing. For example, Vaona (2008) and 

Vaona and Patuelli (2008) show that the finance-growth nexus does not display statistically 

significant heterogeneity at the regional level in Italy. Schiavo and Vaona (2008) tackled the 

same issue across countries. Nunziata (2005) focused on the poolability of the unemployment 

effect of labor market institutions across different OECD countries. Van den Berg et al. 

(2008) used poolability tests to assess whether financial crises are caused by the same factors 

homogenously across different countries. Hahn (2008) adopted a Roy-Zellner test for 

poolability while studying profitability and contestability in the Austrian banking sector. 

Vaona and Pianta (2008) applied poolability tests to the determinants of innovation across 

different economic sectors and firm-size classes. Additionally, Baltagi and Griffin (1983) 

studied the demand for gasoline in OECD countries by means of poolability tests. 

Our poolability analysis, which focuses on the German East and West divide, is presented in 

the next section. 
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POOLABILITY OF GERMAN INNOVATION DATA 
 

Baseline Model for Germany – In the first step, we estimate the baseline model for all 

German NUTS-3 regions including the spatial filter (SF). Table 1 shows the results. 

 

Table 1: Baseline negative binomial model results for nanomaterial patenting (439 

NUTS-3 regions)  

Baseline model (SF)  Coefficients 
Human capital inputs  
Industry-funded R&D employees (in logs)       0.272 (0.051)*** 
Government-funded R&D employees (in logs)       0.051 (0.022)** 
Regional specialization  
Share of mechanics patents     –1.148 (0.881) 
Share of electronics patents       1.465 (0.854)* 
Share of chemicals patents       3.684 (0.885)*** 
Share of pharmaceuticals patents       0.971 (1.057) 
Controls  
Share of employees in manufacturing     –0.013 (0.007)** 
Share of employees in services       0.032 (0.018)* 
GDP per capita (in logs)   227.496 (124.194)* 
GDP per capita (in logs)2   –22.134 (12.118)* 
GDP per capita (in logs)3       0.717 (0.394)* 
Population (in logs)       0.097 (0.047)** 
Central city dummy     –0.541 (0.131)*** 
Urbanization dummy       0.448 (0.137)*** 
Agglomeration dummy       0.369 (0.115)*** 
Spatial filter       1.000 (0.056)*** 
Intercept –781.14 (423.743)*** 
θ 4.745 
Observations 439 
Null deviance (dof) 2,128.302 (438) 
Residual deviance (dof)    420.120 (382) 
AIC 1,703.897 
MI –0.099** 
***, ** and * denote significance at the 1, 5 and 10 per cent levels. Robust standard errors in 

parentheses. 

 

 

Our results indicate that knowledge production in nanomaterials is in fact mainly driven by 

both the government- and industry-funded R&D personnel. This supports the predictions of 

our model that inputs to the R&D process in terms of qualified R&D employees support the 

creation of new knowledge in an emerging field of technology. The importance of 
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government-funded R&D personnel confirms that nanomaterials are in a rather early stage of 

commercialization, as universities and public research institutes mainly focus on basic 

research and technology development in contrast to the more application-driven research of 

private firms. 

Regarding the technological specialization of the stock of knowledge available in a region, 

our results show a high importance of chemicals and electronics patents. Moreover, 

nanomaterials patenting also tends to be facilitated by a rather modern economic structure of a 

region as pointed out by the coefficients for the manufacturing and services sectors. Finally, 

our results further show that the number of inhabitants of a region matters considerably, and 

that agglomeration and urbanization foster the creation of nanomaterials patents. 

In the following section, we will focus on the test of the poolability hypothesis and conduct 

separate analyses for the resulting regions. 

 

Poolability of West and East German Districts – The empirical findings set out in 

Table 1 indicate that it is possible to clearly identify, for the German NUTS-3 regions, a 

knowledge-production function in the field of nanomaterials. 

However, inference from the above results would imply that the production function found 

is common to all German districts - a highly desirable assumption whose soundness, though, 

could be challenged. In fact, the regional economic literature on Germany is rich in examples 

where a distinction is made between more and less developed areas of the country, primarily 

along the former border between West and East Germany (see, amongst others, Brixy & 

Grotz 2004; Fritsch 2004; Günther 2004). In particular, Fritsch (2004) shows that West and 

East Germany have dramatically different regional growth regimes. In the innovation field, 

Günther (2004) finds that, while both West and East German firms are involved in innovation 

cooperation, the better productivity advantages experienced in West Germany are due to 

different economic structures. 

As a consequence, we propose to test for the poolability of our model with respect to the 

West/East subdivision. Formally, we test the hypothesis: 

 

 0 W E:β β β,H = =  (8) 

 

where βW and βE are the vectors of the regression coefficients computed over the West and 

East German subsamples, respectively, while β is the vector of the regression coefficients 

computed for the baseline model (see Table 1). 
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Therefore, we compare the restricted model estimated (under H0) in the preceding section 

and the unrestricted model, which is obtained by interacting all explanatory variables with 

two dummies, identifying West and East German districts, respectively.6 The likelihood ratio 

test for the two models (see Equation (7)), under 16 restrictions, returns a value of 89.18, 

which rejects H0 with a 99.9 per cent probability, and confirms that our model cannot be 

pooled for West and East German districts. Consequently, separate models will be estimated 

for the two macro-areas. 

Following the estimation strategy outlined above, we compute two new sets of candidate 

eigenvectors for the two new contiguity matrices related to West and East Germany. These 

eigenvectors will be employed for the computation of spatial filters, when required by 

autocorrelated regression residuals. 

Table 2It follows that our pooled results hold for West Germany, as both private and public 

research institutions significantly and positively affect nanomaterials research, while in East 

Germany nanomaterial patenting is predominantly driven by industry. This finding is 

interesting when keeping in mind that, since reunification, the East German economy has 

been typically lagging behind the West German one. 

 

Table 2 presents the coefficient estimates obtained for West and East Germany. The 

estimation carried out for the 326 West German districts supports the results obtained for the 

baseline model, carrying consistent signs and significance levels. We can again identify 

significant effects of privately- and government-funded R&D employees and, consistently 

with the baseline results, for a regional specialization in electronics, chemicals and 

pharmaceuticals. Regarding the control variables, we see positive size, urbanization and 

agglomeration effects, as well as an effect of a service-oriented economic structure of the 

region. 

With regard to the estimates obtained for the 113 East German districts, our results change 

dramatically. We now find a significant effect only for the share of employees in industry-

funded R&D. Almost no other significant effect can be identified, aside from a (complex) 

effect of per capita GDP, and a positive effect of agglomeration, which is consistent with the 

West German and the baseline estimations. No spatial filter is necessary, since the regression 

residuals are spatially uncorrelated. 

It follows that our pooled results hold for West Germany, as both private and public 

research institutions significantly and positively affect nanomaterials research, while in East 

Germany nanomaterial patenting is predominantly driven by industry. This finding is 
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interesting when keeping in mind that, since reunification, the East German economy has 

been typically lagging behind the West German one. 

 

Table 2: Unpooled negative binomial model results for nanomaterial patenting (West 

and East German NUTS-3 regions) 

West/East Germany unpooled models  
West Germany East Germany 

Human capital inputs   
Industry-funded R&D employees (in logs)       0.251 (0.060)***            0.606 (0.178)*** 
Government-funded R&D employees (in 
logs) 

      0.088 (0.023)***            0.010 (0.057) 

Regional specialization   
Share of mechanics patents     –0.435 (0.896)          –4.389 (2.986) 
Share of electronics patents       2.267 (0.811)***            0.372 (2.542) 
Share of chemicals patents       4.774 (0.887)***            0.257 (2.769) 
Share of pharmaceuticals patents       2.229 (1.043)**            0.211 (2.685) 
Controls   
Share of employees in manufacturing       0.004 (0.008)          –0.027 (0.040) 
Share of employees in services       0.063 (0.023)***            0.056 (0.074) 
GDP per capita (in logs)   102.673 (145.243)      7005.964 (3,167.495)** 
GDP per capita (in logs)2   –10.513 (14.030)      –705.083 (320.675)** 
GDP per capita (in logs)3       0.356 (0.451)          23.642 (10.818)** 
Population (in logs)       0.115 (0.062)*          –0.088 (0.133) 
Central city dummy     –0.591 (0.155)**          –0.306 (0.692) 
Urbanization dummy       0.473 (0.165)***            0.406 (0.395) 
Agglomeration dummy       0.367 (0.137)***            1.024 (0.292)*** 
Spatial filter       1.000 (0.092)*** – 
Intercept –335.234 (500.378) –23,194.329 (10,425.958)**

θ 3.476 1.863 
Observations 326 113 
Null deviance (dof) 1,250.619 (325) 350.422 (112) 
Residual deviance (dof)    340.524 (295)   91.446   (97) 
AIC 1,460.688 297.167 
MI –0.013 0.043 
***, ** and * denote significance at the 1, 5 and 10 per cent levels. Robust standard errors in 

parentheses. 

 

 

Table 3 provides some guidance on the interpretation of the industry human capital 

coefficients found for East and West Germany. Once regressing the number of industry R&D 

employees on the remaining explanatory variables of our knowledge production function 

model, we find that, in West Germany, it is strongly correlated to the local stock of 

knowledge, while, in East Germany, no significant correlation shows up. Consequently, firms 

in the West appear to choose the location of their research facilities in order to exploit the pre-
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existing stock of knowledge. Inversely, in the East, because of its poor stock of knowledge, 

the R&D activities of firms are mostly based on qualified human resources. From a policy 

perspective, it seems sensible to particularly foster the development of a ‘critical mass’ of 

specialized competence in East German locations and also to favor specialization and 

accumulation of knowledge. 

 

Table 3: Relationship between the number of industry-funded R&D employees 

(dependent variable, in logs) and other innovation indicators 

 West Germany East Germany 
Share of mechanics patents   2.820 (1.098)** –0.193 (1.163) 
Share of electronics patents   3.929 (0.937)***   0.261 (1.414) 
Share of chemicals patents   2.297 (1.142)** –0.544 (1.087) 
Share of pharmaceuticals patents   4.136 (1.361)***   1.628 (1.791) 
*** and ** denote significance at the 1 and 5 per cent level, respectively. Robust standard errors 

in parentheses. Regressors include an intercept and the control variables shown in Table 2. 

 

 

GEOGRAPHICAL AGGREGATION AND THE INVENTOR’S 

LOCATION 
 

This section is devoted to the analysis of the findings presented above for different levels of 

spatial aggregation. The potential problem that we will try to address is pointed out by 

Grimpe and Patuelli (2010), who note that patent application data do not refer unambiguously 

to the location of where the research was actually performed. Instead the applicant’s address – 

typically the firm’s headquarter – and the residence address of the inventor(s) are given. 

Consequently, if the inventors tend to live in districts surrounding the ones in which the 

research facilities are located, a distortion in the data could emerge, generating, for example, 

artificial spatial autocorrelation. Such issue can be included in the framework of the 

modifiable areal unit problem (MAUP, Openshaw 1984), which refers to the possibility of 

observing varying levels of correlation between aggregate variables depending on the given 

choice of geographical boundaries. 

In order to verify if the inventor’s location problem is of any significance to our case study, 

we re-estimate our baseline model for different geographical aggregation levels. Since the 

main factor involved in the potential mismatch between the location of the research facilities 

and of the inventor’s residence is commuting choices, we use, as our alternative geographical 
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aggregation levels, functional regions. Functional regions (see, for example, OECD 2002) are 

often defined as areas which include an inner ‘core’ (often a city’s central business district), 

and a surrounding area which has a high degree of interaction internally and with the core. 

Practically, functional regions are made up to represent homogeneous regional labor markets, 

and usually defined by aggregating smaller areas/regions in order to minimize the share of 

inter-regional commuting. It should be noted, however, that higher aggregation levels may not 

lead to improved estimates, if the newly-formed areas are too wide to capture the variance of 

the economic process being studied (Haining 1990).7 

For our analysis, we define functional regions in four different ways: (i) 271 labor market 

regions (‘Arbeitsmarktregionen’ of the ‘Gemeinschaftsaufgabe Verbesserung der regionalen 

Wirtschaftsstruktur’, which we will refer to as ‘Aggregation 1’) which are intended mostly for 

public subsidy policies, and are viewed as quasi-functional regions; (ii) 150 functional regions 

defined in Eckey et al. (2006) by means of factor analysis based on commuting flows 

(‘Aggregation 2’); (iii) 97 planning regions (‘Raumordnungsregionen’; ‘Aggregation 3’), 

which always include a central business district and its surrounding areas; and (iv) 52 

functional regions defined in Kropp and Schwengler (2008) through hierarchical clustering 

(‘Aggregation 4’). Hence, we analyse increasingly aggregated data. Before estimating our 

knowledge production function model for the new aggregation levels, we decide to exclude 

the dummy variable for central cities from all new analyses, since it would not anymore single 

out central business district regions. With regard to the urbanization and agglomeration 

dummies, we reclassify the regions according to the predominant feature (the modal score) 

within each aggregated region. 

Our starting assumption is that the aggregation level used in our baseline model is well 

suited. If it is not so, we can expect our empirical findings at higher aggregation levels to be 

more meaningful (or to show higher significance levels). If instead the maximum level of 

disaggregation (NUTS-3) is a necessary condition for identifying significant effects of our 

variables of interest, then we may expect our results to deteriorate as aggregation increases. 

Table 4 shows the results obtained, which require careful interpretation. 
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In the case of Aggregation 1 (271 regions), only industry R&D is significant, while, for 

Aggregations 2, 3 and 4 (150, 97 and 52 regions), neither private or public R&D are more 

than just marginally significant (i.e., below our chosen minimum level of significance of 5 per 

cent). Clearly, the effect of population (size of the regions) remains significant in all 

estimations, while specialization in chemicals shows diminishing levels of significance as 

aggregation increases. Overall, we note a moderate variation of coefficient estimates and 

significance levels. From a comparison with the results of Table 1, it is evident that 

aggregating the initial NUTS-3 regions does not provide better information on the estimated 

knowledge production function and the related regression parameters. It is noteworthy that, 

when estimating the knowledge production function for higher levels of aggregation (2, 3 and 

4), no significant residual spatial autocorrelation is left, and consequently a spatial filter is not 

necessary (larger regions appear to capture better industrial agglomerations), probably as an 

effect of the chosen aggregation criteria. 

Our results suggest that the aggregation level of the baseline model is the most appropriate 

(among the ones considered) for our analysis, since the estimates appear to deteriorate as we 

move towards higher aggregation levels. This is presumably due to the considerable loss of 

information and variation in the data, and to the different objectives and underlying criteria of 

the aggregation levels adopted. For example, functional regions, differently from NUTS-3 

districts, are not real administrative entities, and therefore cannot put in place policies aiming 

to foster innovation. On the other hand, the tendency of industry-R&D to remain significant at 

finer levels of aggregation might be explained by firms contrasting the diffusion of their 

expertise. 

 

 

CONCLUSIONS 
 

This article has focused on two issues. First we checked whether different regions can be 

pooled within the same sample when estimating a knowledge production function for 

nanomaterial patents in Germany. Secondly, we tackled the issue whether estimating a 

knowledge production function at different levels of regional aggregation has an impact on 

econometric results. This analysis has been performed in order to account for the fact that 

there is typically a geographical mismatch between the location of the inventor and the actual 

location of the research facility where the inventive work was carried out. 
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Regarding poolability, we have found that East Germany has a statistically different 

knowledge production function from West Germany. We found that in East Germany 

innovation in nanomaterials is positively correlated with the number of industry-funded R&D 

employees but no role is played by government-funded R&D employees and by the stock of 

accumulated knowledge represented by the share of mechanics, electronics, chemicals and 

pharmaceutical patents. On the contrary, in West Germany the opposite turns out to be true. 

This is rather worrying, as it would seem that in a field like nanomaterials, where basic 

research (still) plays an important role, East Germany seems to rely only on the private sector 

without having an adequate level of knowledge and effective government-funded R&D 

activities to successfully support this engine of growth. On the other hand, in West Germany, 

firms tend to locate their research facilities so to exploit spillovers from public research 

facilities and the existing stock of knowledge. 

Finally, we found that the level of aggregation at which we analyse our sample matters, as 

estimates performed at higher aggregation levels eventually lead to less reliable results. 

Moreover, our findings suggest that the NUTS-3 aggregation level chosen in our baseline 

model is most appropriate, since it is the only one at which, after accounting for spatial 

autocorrelation, it is possible to identify significant effects of our variables of interest, and to 

suggest policy actions, because of the administrative nature of the NUTS-3 districts. 
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1 While the centrality and urbanization dummy variables are partially exclusive (in the source nine-point index 

districts could be central, urbanized or rural), agglomeration levels concern all districts, making the related 
dummy variable independent from the previous two. 

2 This choice shelters us from a possible endogeneity bias, as innovation takes time to spread and to have an 
impact on local economies.  

3 For a discussion of different approaches to the definition of proximity, as well as of standardization schemes, 
see, for example, Tiefelsdorf et al. (1999), Getis and Aldstadt (2004) and Patuelli et al. (2010a, b). 
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4 We choose a threshold of MI(en) / maxn[MI(en)] > 0.25, where MI(en) is the MI computed on a generic 

eigenvector en. According to Griffith (2003), this threshold roughly corresponds to a 95 per cent explained 
variance in a regression of a generic georeferenced variable Z on WZ. 

5 There exist other tests as well. A review is offered in Baltagi (2001). 
6 For poolability testing purposes, both models (restricted and unrestricted) are computed without a spatial filter, 

in order to ensure the use of the same set of explanatory variables. 
7 ‘The results of any statistical analysis will be conditional on the scale, orientation and origin of the grid as well 

as the scale of the study area. Properties of the surface at scales smaller than the sampling grid will not be 
detectable since they will have been filtered out while processes operating at scales larger than the study area 
will display sufficient variation within the study area.’ (Haining 1990, p. 47) 




