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Abstract

This paper introduces a new method for estimating large variance matrices. Start-

ing from the orthogonal decomposition of the sample variance matrix, we exploit the

fact that orthogonal matrices are never ill-conditioned and therefore focus on im-

proving the estimation of the eigenvalues. We estimate the eigenvectors from just

a fraction of the data, then use them to transform the data into approximately or-

thogonal series that we use to estimate a well-conditioned matrix of eigenvalues. Our

estimator is model-free: we make no assumptions on the distribution of the random

sample or on any parametric structure the variance matrix may have. By design, it

delivers well-conditioned estimates regardless of the dimension of problem and the

number of observations available. Simulation evidence show that the new estimator

outperforms the usual sample variance matrix, not only by achieving a substantial

improvement in the condition number (as expected), but also by much lower error

norms that measure its deviation from the true variance.
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1 Introduction

Variance matrices are an important input for various applications in social sciences. Ex-

amples go from financial time series, where variance matrices are used as a measure of risk,

to molecular biology, where they are used for gene classification purposes. Yet estimation

of variance matrices is a statistically challenging problem, since the number of parameters

grows as a quadratic function of the number of variables. To make things harder, conven-

tional methods deliver nearly-singular (ill-conditioned) estimators when the dimension k

of the matrix is large. As a result, estimators are very imprecise and operations such as

matrix inversions amplify the estimation error further.

One strand of the literature has tackled this problem by trying to come up with methods

that are able to achieve a dimensionality reduction by exploiting sparsity, imposing zero re-

strictions on some elements of the variance matrix. Wu and Pourahmadi (2003) and Bickel

and Levina (2008a) propose banding methods to find consistent estimators of variance ma-

trices (and their inverse). Other authors resort to thresholding (Bickel and Levina, 2008b,

and El Karoui, 2009) or penalized likelihood methods (see, e.g., Fan and Peng, 2004 for the

underlying general theory) to estimate sparse large variance matrices. Notable examples

of papers using the latter method are Huang, Pourahmadi and Liu (2006) and Rothman,

Bickel, Levina and Zhu (2008). Recently, Lam and Fan (2009) propose a unified theory of

estimation, introducing the concept of sparsistency, which means that (asymptotically) the

zero elements in the matrix are estimated as zero almost surely.

An alternative approach followed by the literature is to achieve dimensionality reduction

using factor models. The idea is to replace the k individual series with a small number of

unobservable factors such that they are able to capture most of the variation contained in

the original data. Interesting examples are given by Fan, Fan and Lv (2008), Wang, Li,

Zou and Yao (2009) and Lam and Yao (2009).

A third route is given by shrinkage, which entails substituting the original ill-conditioned

estimator with a convex combination including it and a target matrix. The original idea

is due to Stein (1956). Applications to variance matrix estimation include Jorion (1986),

Muirhead (1987) and Ledoit and Wolf (2001, 2003, 2004). Intuitively, the role of the

shrinkage parameter is to balance the estimation error coming from the ill-conditioned

variance matrix and the specification error associated with the target matrix. Ledoit and

Wolf (2001) propose an optimal estimation procedure for the shrinkage parameter, where

the chosen metric is the Frobenius norm between the variance and the shrinkage matrix.

Finally, within the family of multivariate ARCH models, Engle, Shephard and Sheppard

(2008) are able to estimate time-varying variance matrices allowing for the cross-sectional

dimension to be larger than the time series one. The main idea behind their approach is to
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use bivariate quasi-likelihoods for each pair of series and aggregate them into a composite

likelihood. This also helps in improving the computational efficiency.

In this paper, we introduce a new method to estimate large nonsingular variance matri-

ces. We propose a different approach for tackling this problem. Starting from the orthogo-

nal decompositions of symmetric matrices, we exploit the fact that orthogonal matrices are

never ill-conditioned, thus identifying the source of the problem as the eigenvalues. Our

task is then to come up with an improved estimator of the eigenvalues. We achieve this by

estimating the eigenvectors from just a fraction of the data, then using them to transform

the data into approximately orthogonal series that we use to estimate a well-conditioned

matrix of eigenvalues.

The result is a well-conditioned consistent estimator, which performs very well in terms

of mean squared error and other traditional precision criteria. Because of the orthogonal-

ization of the data, the resulting estimate is always nonsingular, even when the dimension

of the matrix is larger than the sample size. Our estimator outperforms the traditional one,

not only by achieving a substantial improvement in the condition number (as expected), but

also by lower error norms that measure its deviation from the true variance. This is an im-

portant result, given that the existing literature shows that gains in reducing ill-conditioning

are associated with small (or no) gains in the precision of the better-conditioned estimator

(see, e.g., Fan, Fan and Lv, 2008).

Our method has a number of attractive features. First, it is model-free, in the sense

that no assumptions are made on the densities of the random sample or on any underlying

parametric model for the structure of the variance matrix. Second, it always delivers

nonsingular well-conditioned estimators, hence remaining precise when further operations

(such as inversions) are required.

This paper is organized as follows. Section 2 introduces the proposed estimator and

establishes its main properties. By means of a Monte-Carlo experiment, Section 3 studies

the finite-sample properties of the estimator and provides guidance on its use in practice.

Finally, Section 4 concludes.

2 The new estimator

This section contains two parts. First, we briefly present the setup and the intuition for

why the new estimator will perform well. Then, we investigate the estimator’s properties

and describe the optimal choice of two subsampling parameters. We do so for the simplest

formulation of our estimator, which is to be generalized in Subsection 3.3 later.
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2.1 The setup and the idea behind the estimator

Let Σ := var(x) be a finite k × k positive definite variance matrix of x. Suppose we have

an i.i.d. sample {xi}ni=1, arranged into the n × k matrix X := (x1, . . . ,xn)′ on which we

base the usual estimator (ill-conditioned when k is large)

Σ̂ ≡ v̂ar(x) :=
1

n
X ′MnX,

where Mn := In − 1
n
ını
′
n is the demeaning matrix of dimension n and ın is a n× 1 vector

of ones. The assumption of an i.i.d. setup is not as restrictive as it may seem: the data can

be filtered by an appropriate model (rather than just demeaning by Mn) and the method

applied to the residuals; for example, fitting a VAR model (if adequate) to a vector of time

series and applying the method to the residuals. We will stick to the simplest setup, so as

to clarify the workings of our method.

We can decompose this symmetric matrix as

(1) Σ̂ = P̂ Λ̂P̂ ′,

where P̂ is orthogonal and has typical column p̂i (i = 1, . . . , k), Λ̂ being the diagonal

matrix of eigenvalues of Σ̂; e.g. see Abadir and Magnus (2005) for this and subsequent

matrix results and notation in this paper. The condition number of any matrix is the ratio

of the largest to smallest singular values of this matrix, a value of 1 being the best ratio.

By orthogonality, all the eigenvalues of P̂ lie on the unit circle and this matrix is always

well-conditioned for any n and k. This leaves Λ̂ as the source of the ill-conditioning of the

estimate Σ̂. We will therefore consider an improved estimator of Λ: a simple consistent

estimator of P will be used to transform the data to achieve approximate orthogonality of

the transformed data (in variance terms), hence yielding a better-conditioned estimator of

the variance matrix.

We can rewrite the decomposition as

(2) Λ̂ = P̂ ′Σ̂P̂ = diag(v̂ar(p̂′1x), . . . , v̂ar(p̂′kx))

since Λ̂ is diagonal by definition. Now suppose that, instead of basing P̂ on the whole

sample, we base it on only m observations (say the first m ones, since the i.i.d. setup

means that there is no gain from doing otherwise), use it to approximately orthogonalize

the rest of the n−m observations (as we did with p̂′ix) which are then used to reestimate

Λ. Taking m→∞ and n−m→∞ as n→∞, standard statistical analysis implies that

the resulting estimators are consistent. Notice that the choice of basing the second step

on the remaining n−m observations comes from two considerations. First, it is inefficient

to discard observations in an i.i.d. setup, so we should not have fewer than these n − m
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observations. Second, we should not reuse some of the first m observations because they

worsen the estimate of Λ, as will be seen in Proposition 1 below, hence making m the only

subsampling parameter in question. Proposition 2 will show that the precision of the new

estimator is optimized asymptotically by m ∝ n and will be followed by a discussion of

how to calculate the optimal m by resampling in any finite sample.

2.2 Investigation of the estimator’s properties

To summarize the procedure in equations, we start by writing

(3) X ′ = (x1, . . . ,xn) =: (X ′1,X
′
2) ,

where X1 and X2 are m × k and (n−m) × k, respectively. Calculating v̂ar(x) based on

the first m observations yields

(4)
1

m
X ′1MmX1 = P̂1Λ̂1P̂

′
1,

whence the desired first-step estimator P̂1. Then, estimate Λ from the remaining observa-

tions by

(5) dg
(

v̂ar(P̂ ′1x)
)

=
1

n−m
dg
(
P̂ ′1X

′
2Mn−mX2P̂1

)
=: Λ̃

to replace Λ̂ of (1) and obtain the new estimator

(6) Σ̃ := P̂ Λ̃P̂ ′ =
1

n−m
P̂ dg

(
P̂ ′1X

′
2Mn−mX2P̂1

)
P̂ ′.

Note that we use the traditional estimator of variance matrices v̂ar(·) in each of the two

steps of our procedure, albeit in a different way. When we wish to stress the dependence

of Σ̃ on the choice of m, we will write Σ̃m instead of Σ̃. There are three remarks to make

here. First, by standard statistical analysis again, efficiency considerations imply that we

should use dg(v̂ar(P̂ ′1x)) rather than v̂ar(P̂ ′1x) in the second step given by (5)–(6), since by

doing so we impose the correct restriction that estimators of Λ should be diagonal. Second,

the estimate Σ̃ is almost surely nonsingular, like the true Σ, because of the use of dg in

(5). Third, we choose to demean X2 by its own mean (rather than the whole sample’s

mean) mainly for robustness considerations, in case the i.i.d. assumption is violated, e.g.

due to a break in the level of the series.

We now turn to the issue of the choice of the last n−m observations, rather than reusing

some of the first m observations in addition to the last n−m in (5). The following relies on

asymptotic results, rather than the exact finite-sample arguments based on i.i.d. sampling

that were used in the previous subsection.
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Proposition 1 Define yi := xi − x, where x := 1
n

∑n
i=1 xi, and consider the estimator

Λ̃j :=
1

n− j
dg

(
P̂ ′1

n∑
i=j+1

yiy
′
iP̂1

)

for j = 0, 1, . . . ,m. It is assumed that the fourth-order moment of x exist. As n−m→∞
and m → ∞, the condition number of Λ̃j is minimized with probability 1 by choosing

j/m→ 1.

Before we prove this proposition, we make the following remark. The estimator Λ̃j

differs slightly from the one used in (5) for j = m, because of the demeaning by the whole

sample’s mean x in the proposition, as opposed to X ′2Mn−mX2 demeaning the last n−m
observations by their own sample mean. The difference tends to zero with probability 1

as n − m → ∞ and does not affect the leading term of the expansions required in this

proposition. Also, the assumption of the existence of the fourth-order moments for x is

sufficient for the application of the limit theorem that we will use to prove the proposition,

but it need not be a necessary condition.

Proof. For m > j + 2,

Λ̃j =
1

n− j
dg

(
P̂ ′1

m∑
i=j+1

yiy
′
iP̂1

)
+

1

n− j
dg

(
P̂ ′1

n∑
i=m+1

yiy
′
iP̂1

)
(7)

=
m− j
n− j

dg (Sj) +
n−m
n− j

Λ̃m,

which is a weighted average of dg (Sj) and Λ̃m with

Sj :=
1

m− j
P̂ ′1

m∑
i=j+1

yiy
′
iP̂1.

Notice the special case S0 = Λ̂1 by (4), which is the ill-conditioned estimator that arises

from the traditional approach. Intuitively, we should get a better-conditioned estimator

here by giving more weight to the latter component of the weighted average, the one that

Λ̃m represents. We will now show this by means of the law of iterated logarithm (LIL).

Recalling that m,n − m → ∞ and P̂1 asymptotically orthogonalizes the two
∑

i yiy
′
i

sums in (7), the two limiting matrices for the components in (7) are both diagonal and

we can omit the dg from Sj. This omission is of order 1/
√
m and will not affect the

optimization with respect to j, so we do not dwell on it in this proposition for the sake of

clarity. It will however affect the optimization with respect to m, as we will see in the next

proposition.

For any positive definite matrix, denote by λ1 the largest and λk the smallest eigenvalue.

The condition number is asymptotically equal to the ratio of the limsup to the liminf of the
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diagonal elements (which are the eigenvalues here because of the diagonality of the limiting

matrices) and is given with probability 1 by

cn :=
λ1 + ω1δn
λk − ωkδn

,

where the LIL yields δn :=
√

2 log (log (n)) /n and ω2
i /n as the asymptotic variance (which

exists by assumption) of the estimator of λi. Writing c for c∞ = λ1/λk,

(8) cn =
λ1 + ω1δn
λk − ωkδn

=

(
c+

ω1δn
λk

)(
1 +

ωkδn
λk

+O(δ2
n)

)
= c+

ω1 + cωk
λk

δn +O(δ2
n).

This last expansion is not necessary to establish our result, but it will clarify the objective

function. Applying this formula to the two matrices in (7) and dropping the remainder

terms, we get the asymptotic condition number of Λ̃j as

C := c+
ω1 + cωk
λk (n− j)

(√
2 (m− j) log (log (m− j)) +

√
2 (n−m) log (log (n−m))

)
,

which is minimized by letting j/m → 1 since lima→0 a log (log a) = 0 and n > m (hence

n − j ≥ 1). The condition m > j + 2, given at the start of the proof, ensures that

log (m− j) > 1 and that C is real. The cases m = j, j+ 1, j+ 2 are not covered separately

in this proof, because they are asymptotically equivalent to m = j + 3 as m→∞.

Note the conditions n − m → ∞ and m → ∞, needed for the consistency of the

estimator. We now turn to the final question, inquiring how large m should be, relative

to n. As in the previous proposition, the approach will be asymptotic. We will need, in

addition, to assume the existence of fourth-order moments for x when we consider MSE-

type criteria for the estimation of Σ.

Define the following criteria for the (inverse) precision of the new estimator Σ̃:

(9) Rl(Σ̃) := E(|| vec(Σ̃ −Σ)||ll), l = 1, 2,

and

(10) Rl,S(Σ̃) := E(|| vech(Σ̃ −Σ)||ll), l = 1, 2,

where the l-th norm is ||a||l := (
∑j

i=1 |ai|l)1/l for any j-dimensional vector a. In the case

of k = 1, these criteria reduce to the familiar mean absolute deviation (MAD) and mean

squared error (MSE) for l = 1, 2, respectively. The half-vec operator, vech, selects only

the distinct elements of a general symmetric matrix. If Σ has a Toeplitz structure (as in

the case of autocovariance matrices for stationary series), σij depends only on the distance

|i− j| from the diagonal and we define

(11) Rl,T(Σ̃) := E(||(Σ̃ −Σ)e1||ll), l = 1, 2,
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where e1 := (1,0′k−1)′ is the first elementary vector: postmultiplying a matrix with it selects

the first column of that matrix.

Since the dimension k is finite as n increases, there is asymptotically no difference in

considering the usual, the S, or the T version for each l. However, we advocate the use of

the relevant criterion in finite samples, in order to give the same weight to each distinct

element in Σ.

Proposition 2 As n − m → ∞ and m → ∞, the precision criteria in (9)–(11) are

optimized asymptotically by taking m ∝ n.

Proof. The result will be obtained by deriving a stochastic expansion for Λ̃ and balancing

the nonzero second-order terms in m and n.

Since standard asymptotics give that Σ̂1 = P̂1Λ̂1P̂
′
1 is
√
m-consistent, both components

P̂1, Λ̂1 will be
√
m-consistent:

P̂1 = P
(
1 +Op

(
1/
√
m
))

and Λ̂1 = Λ
(
1 +Op

(
1/
√
m
))

;

otherwise, Σ̂1 6= Σ (1 +Op (1/
√
m)) in general. Furthermore, the Op (1/

√
m) terms will

be nonzero because of the standard i.i.d. setup. Defining yi := xi − x2, where x2 :=
1

n−m
∑n

i=m+1 xi, we have

Λ̃ =
1

n−m
dg

(
P̂ ′1

n∑
i=m+1

yiy
′
iP̂1

)
= dg

(
P̂ ′1Σ̂2P̂1

)
,

where Σ̂2 = Σ
(
1 +Op

(
1/
√
n−m

))
and the Op

(
1/
√
n−m

)
term is nonzero. As a result,

Λ̃ = dg
(
P ′
(
1 +Op

(
1/
√
m
))
Σ
(
1 +Op

(
1/
√
n−m

))
P
(
1 +Op

(
1/
√
m
)))

= Λ+Op

(
1/
√
m
)

+Op

(
1/
√
n−m

)
+Op

(
1/
√
m (n−m)

)
.

Balancing the remainder terms gives m ∝ n: the term with a larger order of magnitude

dominates asymptotically and should be reduced until all three terms are equally small,

whatever the chosen norm (l = 1, 2). The stated result follows from the definition of the

estimator Σ̃ in (6) and P̂ being unaffected by m for any given n.

Because of the i.i.d. setup, we can use resampling methods as a means of automation

of the choice of m for any sample size. Standard proofs of the validity of such procedures

apply here too. We shall illustrate with the bootstrap in the next section.

3 Simulations

In this section, we run a Monte Carlo experiment to study the finite-sample properties of

our two-step estimator and compare it to the usual sample variance matrix. In particular,
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we are interested in answering the question of how large m should be relative to n in order

to balance the estimation of P (need large m) and the estimation of Λ (need small m). To

this end, we employ the precision criteria defined in equations (9)–(11). Additionally, we

investigate the reduction in the condition number of the two-step estimator (c̃n−m) relative

to the sample variance matrix benchmark (ĉn). We do these calculations both for the

simple version of our estimator seen so far, as well as for a more elaborate one introduced

in Subsection 3.3 where we investigate its performance. Finally, Subsection 3.4 investigates

the automation of the choice of m.

Our simulation design is as follows. We let the true variance matrix Σ have Toeplitz

structure with typical element given by σij = ρ|i−j|, i, j = 1, . . . , k, where ρ ∈ [0, 1] and

k ∈ {30, 100, 250} is the dimension of the random vector x to which the variance matrix

pertains. We consider three different correlation values, ρ ∈ {0.5, 0.75, 0.95}, covering

scenarios of mild (ρ = 0.5) and relatively high (ρ = 0.75, 0.95) correlation but omitting the

case ρ = 0 of a scalar matrix Σ = σ2Ik.
1 The random vector x is drawn either from the

normal distribution or from the multivariate Student t distribution with eight degrees of

freedom (denoted t(8)), with population mean equal to zero (without loss of generality).

All simulations are based on 1,000 Monte Carlo replications, to save computational time.

For example, the simulations for k = 250 and n = 500 with 1,000 replications required

about 73 hours of run time. The exercise for k = 30 was repeated with 10,000 replications

and essentially identical results were obtained.

3.1 Estimator’s Precision

We start with dimension k = 30 and simulate random samples of size n ∈ {20, 30, 50}. The

results are summarized in the left panels of Tables 1–2. Starting from the mean squared

error, R2,S(Σ̃), reported in Table 1, we see that the two-step estimator is more precise in

small samples as long as ρ is less than the extreme 0.95. The MSE tends to be smaller for

small values of m. The reduction in the mean squared error is very large, but decreases with

ρ and is more pronounced for data generated from the fat-tailed Student t distribution.

Restricting attention to the distinct elements of the true variance matrix by looking at

R2,T(Σ̃) in Table 2, we get similar conclusions: large gains in precision are found for small

values of m, except for the case of ρ = 0.95. However, we find that the optimal m is slightly

larger in the case of R2,S(Σ̃) than for R2,T(Σ̃). This is due to the former criterion giving

1The case of a scalar matrix is obvious (and differs from the slightly more general case of diagonal
matrices which we simulated for a few cases and will report qualitatively). This is because Q(σ2Ik)Q′ =
σ2Ik for any orthogonal Q, not necessarily the true P that we try to estimate. In other words, we do not
need consistency of the estimate of P as a result, and the optimal choice of m is as small as possible. The
case of a scalar matrix (which is rare) is essentially the case of scalar estimation of one variance.
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more weight to repeated off-diagonal elements which we have seen to require a larger m.

The choice of criterion to use in practice will depend on the user’s objective function: some

applications may prefer the precision of all the elements (e.g. for CAPM estimation in

finance), while others may care only about the distinct underlying parameters of interest.

The results for k = 100 and k = 250 are reported in the left panels of Tables 3–4 and

5–6, respectively. In the case of k = 100 we simulate samples of size n ∈ {50, 100, 250},
whereas, for k = 250, n ∈ {100, 250, 500}.

Across the various precision measures, we observe similar patterns to the case of k =

30. Sizeable improvements in precision are found for all data generating processes except

ρ = 0.95. For the alternative precision measures, R2(Σ̃), R1(Σ̃), R1,S(Σ̃), and R1,T(Σ̃),

the results are qualitatively similar and are omitted to save space. The main difference is

that the optimal m for the MAD criteria are determined largely by n, and are robust to

the dimensions k, to the distribution (Gaussian or t(8)), and to ρ as long as it was not the

extreme ρ = 0.95. These m were comparable to the MSE-optimal ones for intermediate

values of ρ, but holding across the range, hence somewhat smaller overall.

3.2 Reduction in ill-conditioning

Moving to analyze the reduction in ill-conditioning, the left panel of Table 7 reports the

average ratio of condition numbers c̃n−m/ĉn for k, n and m. Note that for n ≤ k, the sample

variance matrix is singular and hence its condition number is not defined. Starting from

the case k = 30, we find that choosing small m delivers the largest improvements in the

conditioning of the estimated variance matrix, and that the gains are massive. Moreover,

the condition number appears to be relatively insensitive to the choice of m as long as it

remains smaller than approximately half of the sample size. Within this range, the two-step

estimator achieves about 15-20 times smaller condition number than the sample variance

matrix. See also Figure 1, for a graphical display of the results.

The general picture emerging from the case k = 30 is confirmed for k = 100 and k = 250,

with gains that are generally increasing in k and condition numbers that seem to be less

sensitive to m as k increases.

An attractive feature of the two step estimator is that the reduction in ill-conditioning

is preserved even in situations where k ≥ n and the conventional estimator is not positive

definite. Unreported simulation results show that, for example, when n = 20, k = 30,

m = 5, condition numbers for Σ̃ are on average 40% higher than the corresponding ones

obtained when n = 50, k = 30, m = 5, but still much lower than those of the sample

variance matrix.
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3.3 Resampling and averaging

In the previous section, we constructed the estimator Σ̃ by basing P̂1 on the first m

observations in the sample and using it to approximately orthogonalize the remaining n−
m observations. This is, of course, only one out of

(
n
m

)
possibilities of choosing the m

observations to calculate P̂1, all of them being equivalent due to the i.i.d. assumption.

In this subsection, we investigate how much does averaging over the different possibilities

improve our original estimator Σ̃. The intuition behind this is that averaging will reduce

the variability that comes with the choice of any one specific combination of m observations.

More specifically, averaging over Σ̃m := P̂ Λ̃mP̂
′ is the same as averaging over Λ̃m, since P̂

is based on the full sample and hence does not depend on m. As a result, the asymptotic

expansions of Λ̃m (e.g. as in Proposition 2) lose the higher-order terms that have zero

mean.

Let X ′s := (X ′1,s,X
′
2,s), where X ′1,s :=

(
xs1,1, . . . ,x

s
1,m

)
is obtained by randomly sam-

pling without replacement m columns from the original X ′, and X ′2,s :=
(
xs2,1, . . . ,x

s
2,n−m

)
is filled up with the remaining n−m columns from X ′ that were not selected for X1,s. Let

Σ̃m,s denote our estimator calculated from Xs, and let

(12) Σ̃m,S :=
1

S

S∑
s=1

Σ̃m,s

denote the average over S samples. Computational burden makes the choice S =
(
n
m

)
prohibitive, especially for large n. Unreported simulation results nonetheless show that

relatively small number of samples S suffices to reap most of the benefits of averaging. To

illustrate them, we have included Figure 2, where we vary S on the horizontal axis: we can

see that all the benefits to be achieved occur very quickly for small S and there is not much

to be gained from taking a large S. We simulated S = 10, 20, . . . ., 100 but only plotted

10, . . . , 50 together with no-averaging at the origin of the horizontal axis.

The right panels of Tables 1–7 report results obtained by averaging over S = 20 samples.

Starting from efficiency measures, one can immediately gauge the improvements due to

averaging. For k = 30 (Tables 1 and 2), the various efficiency measures are improved

markedly. Benefits decrease as ρ increases, but remain substantial (about 50%).2 For

k = 100 (Tables 3 and 4), we observe a similar pattern. In the case of the student t

distribution, the two-step estimator is now more (or as) efficient than the sample variance

matrix even when ρ = 0.95. For large matrices (k = 250, Tables 5 and 6), we observe that

the the two-step estimator is now more efficient than the sample variance matrix when

ρ = 0.95 in the Gaussian case as well. Efficiency improvements are typically larger than

2Unreported simulation results show that, in the case of diagonal matrices, averaging improves efficiency
measures by an order of magnitude.
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those obtained by other approaches to estimate variance matrices (shrinkage, banding and

thresholding; see Bickel and Levina, 2008b, Table 1, p.2598).

Important improvements are also observed in the condition number of the averaged

two-step estimator (see Table 7). The largest (relative) improvements are obtained for

k = 30, are slightly decreasing in k and seem to be uniform over the different values of ρ.

3.4 Data-dependent procedures to choose m

We next turn to the optimal choice of m in practical applications. One possibility is to

use resampling techniques. The i.i.d. setup of the previous section implies that standard

bootstrap applies directly to our estimator. We denote by Xb :=
(
xb1, . . . ,x

b
n

)′
a bootstrap

sample obtained by drawing independently n observations with replacement from the orig-

inal sample X = (x1, . . . ,xn)′. The corresponding bootstrap versions of Σ̂ and Σ̃m are

denoted by Σ̂b and Σ̃m,b, respectively. Given B independent replications of Σ̂b and Σ̃m,b,

we define

Σ̂B :=
n

(n− 1)B

B∑
b=1

Σ̂b, and Σ̃m,B :=
1

B

B∑
b=1

Σ̃m,b,

where Σ̂B is the average bootstrapped sample variance matrix rescaled in order to remove

the bias (which is O(1/n)), and Σ̃m,B is the average bootstrapped Σ̃m. To balance the

trade-off between variance and bias, we find the m that minimizes

1

B

B∑
b=1

(vech(Σ̃m,b − Σ̃m,B))′(vech(Σ̃m,b − Σ̃m,B))

+

(
1

B

B∑
b=1

vech(Σ̃m,b − Σ̂B)

)′(
1

B

B∑
b=1

vech(Σ̃m,b − Σ̂B)

)
,

where the first term estimates the “variance” associated with the distinct elements of

Σ̃m, while the second term approximates the squared “bias”. Simple algebra shows that

minimizing this objective function with respect to m is equivalent to minimizing

1

B

B∑
b=1

||vech(Σ̃m,b − Σ̂B)||22,

which is computationally more convenient (it is also possible to use the l1 norm instead of

l2 norm). In practice, we set up a grid M = {m1,m2, . . . ,mM}, where 1 ≤ m1 ≤ mM ≤ n

and calculate the objective function for each m ∈ M. The grid may be coarser or finer

depending on the available computational resources. The bootstrap-based optimal m is

then given by

mB := argmin
m∈M

1

B

B∑
b=1

||vech(Σ̃m,b − Σ̂B)||22.

12



Results are reported in Table 8 and in general show a very good performance of the sug-

gested procedure. The bootstrap selects mB very close to the optimal m and the percentage

increase in the mean squared error of the bootstrap-based estimator is minimal, well below

1%.

Another possibility is offered by observing that the precision of Σ̃m,S is relatively stable

over a wide range of m, approximately m ∈ [0.2n, 0.8n] (see Tables 1–6). This suggests to

construct an estimator based on averaging Σ̃m,S over m. This “grand average” estimator

is defined as

(13) Σ̃M,S :=
1

M

∑
m∈M

Σ̃m,S,

where M is the number of elements in M. Results are reported in Tables 1–7. The

performance of Σ̃M,S is very good in terms of precision. In many cases Σ̃M,S is the most

precise estimator. The price to pay for this increase in precision is a slight increase in

ill-conditioning (with respect to Σ̃ calculated with the smallest m), since the condition

number seems to be monotonically increasing in m.

4 Conclusion

In this paper, we provide a novel approach to estimate large variance matrices. Exploiting

the properties of symmetric matrices, we are able to identify the source of ill-conditioning

related to the standard sample variance matrix and hence provide an improved estimator.

Our approach delivers more precise and well-conditioned estimators, regardless of the di-

mension of the problem and of the sample size. Theoretical findings are confirmed by the

results of a Monte-Carlo experiment, which also offers some guidance on how to use the

estimator in practice.

The substantial reduction in ill-conditioning suggests that our estimator should perform

well in cases where matrix inversions operations are required, as for example in portfolio

optimization problems. This substantial application is currently being investigated and is

beyond the scope of this paper.
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Table 8: Bootstrap-based mB, for k = 30, n = 50, Gaussian distribution.

ρ

0.5 0.75 0.95

Optimal m 20 21 16

Median 24 22 16

Mean 23.5 22.1 16.3

Std. Dev. 1.22 1.61 2.31

Min 20 16 11

10% quantile 22 20 13

25% quantile 23 21 15

75% quantile 24 23 18

95% quantile 25 24 19

Max 27 26 23

Increase in MSE 0.49% 0.05% 0.00

Notes: This table reports results for the bootstrap procedure to choose m in order to minimize the

mean squared error (MSE). The first line reports the value of m that minimizes R2,S(Σ̃m). The last

line “Increase in MSE” reports the percentage increase in MSE by choosing the bootstrap-based mB as

opposed to the optimal m. For example, for ρ = 0.5 the bootstrap suggests taking mB = 24, which

results in the MSE being 6.905, while the optimal MSE at m = 20 is 6.871, hence an increase of 0.49%.

All results are based on 1,000 simulations and 1,000 bootstrap replications.
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Figure 1: Ratio of condition numbers c̃n−m/ĉn, averaged over simulations, for k = 30,

n = 50, ρ = 0.5 and x ∼ Nk(0,Σ). Here, we illustrate the general version of the two-step

estimator: we estimate P1 using the first m1 observations and use the last m2 (instead of

n−m1) observations to calculate Σ̃. In the notation of Proposition 1, m2 := n− j.
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Figure 2: Ratio of condition numbers c̃n−m/ĉn (left panel) and R2,S(Σ̃m,S) (right panel),

averaged over S simulations (horizontal axes), for k = 30, n = 50, and x ∼ Nk(0,Σ).
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