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S.1 Introduction and notation

This paper contains supplemental materials for Marmer, Shneyerov, and Xu (2011),

MSX hereafter. It establishes validity of the bootstrap delta-method expansion (65)

in Appendix E of MSX.

In what follows, the statistics with superscript † denote the bootstrap analogues

of the statistics computed using the original data. To simplify the notion, we will

suppress the subscript indicating the bootstrap sample number for bootstrap objects

(m). Let P † denote probability conditional on the original sample. We use E† and

V ar† to denote expectation and variance under P † respectively.

Let π† denote the distribution of N †l implied by P †, i.e.

π†(N) = P †(N †l = N)

= L−1

L∑
l=1

1(Nl = N)

= π̂ (N) ,
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where π(N) = P (Nl = N). Also, define

p†(N) = P †(y†il = 1|N)

=
L∑
l=1

(nl/N)P †
(
n†l = nl|N

)
=

∑L
l=1 (nl/N) 1 {Nl = N}∑L

l=1 1 {Nl = N}
= p̂ (N) ,

where p (N) = P (yil = 1|Nl = N).

We say ζL = O†p(λL) if for all ε > 0 there is ∆ε > 0 such that for all L ≥ Lε,

P (P †(|ζL/λL| > ∆ε) > ε) < ε. We say ζL = o†p (λL) if P † (|ζL/λL| > ε) →p 0 for all

ε > 0 as L→∞.

S.2 Auxiliary results

In this section, we present some simple results concerning the stochastic order (with

respect to P †) of the bootstrap statistics. Let θ̂L be a statistic computed using the

data in the original sample, and let θ̂†L be the bootstrap analogue of θ̂L.

Lemma S.1 (a) Suppose that θ̂L = θ + op (δL) and θ̂†L = θ̂L + o†p (δL). Then, θ̂†L =

θ + o†p (δL).

(b) Suppose that θ̂L = θ +Op (δL) and θ̂†L = θ̂L +O†p (δL). Then, θ̂†L = θ +O†p (δL).

Proof. For part (a), since θ̂L is not random under P †,

P †
(
δ−1
L

∣∣∣θ̂†L − θ∣∣∣ > ε
)
≤ P †

(
δ−1
L

∣∣∣θ̂L − θ∣∣∣ > ε

2

)
+ P †

(
δ−1
L

∣∣∣θ̂†L − θ̂L∣∣∣ > ε

2

)
= 1

(
δ−1
L

∣∣∣θ̂L − θ∣∣∣ > ε

2

)
+ op (1) .

For the first summand, we have that for all ε, η > 0,

P
(

1
(
δ−1
L

∣∣∣θ̂L − θ∣∣∣ > ε

2

)
> η
)

= P
(
δ−1
L

∣∣∣θ̂L − θ∣∣∣ > ε

2

)
→ 0.

The proof of part (b) is similar.
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Lemma S.2 Suppose that E†(θ̂†L)2 = Op(λ
2
L). Then θ̂†L = O†p(λL).

Proof. Since E†(θ̂†L)2 = Op(λ
2
L), for all ε > 0 there is ∆ε > 0 such that P (E†(θ̂†L)2 >

∆2
ελ

2
L) < ε. Let ∆̃2

ε = ∆2
ε/ε. Then, we can write

P (E†(θ̂†L)2 > ∆̃2
εελ

2
L) < ε (S.1)

for all L large enough. By Markov’s inequality,

P †

(∣∣∣∣∣ θ̂†LλL
∣∣∣∣∣ ≥ ∆̃ε

)
≤
E†
(
θ̂†L

)2

λ2
L∆̃2

ε

.

Thus, for all ε > 0 there is ∆̃ε, such that for all L large enough,

P

(
P †

(∣∣∣∣∣ θ̂†LλL
∣∣∣∣∣ ≥ ∆̃ε

)
> ε

)
≤ P

E†
(
θ̂†L

)2

∆̃2
ελ

2
L

> ε

 < ε,

where the last inequality is by (S.1).

S.3 Main result

The validity of (65) in MSX follows from Lemma S.3 below, which is similar to Lemma

3 in MSX. Given the results in Lemma S.3, (65) can be shown by the same arguments

as those in the proof of Proposition 7 in Appendix C in MSX, and by applying Lemma

S.1.

Lemma S.3 Suppose that assumptions of Lemma 3 in MSX hold. Then, for all x in

the interior of X and N ∈ N ,

(a) ϕ̂† (x) = ϕ̂ (x) +O†p
(
Lhd

)−1/2
.

(b) π̂† (N |x) = π̂ (N |x) +O†p
(
Lhd

)−1/2
.

(c) p̂† (N, x) = p̂ (N, x) +O†p((Lh
d/ logL)−1/2 + hR).

(d) supb∈[b(N,x),b̄(N,x)] |Ĝ
∗,† (b|N, x)− Ĝ∗ (b|N, x) | = O†p((Lh

d/ logL)−1/2 + hR).
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(e) supτ∈[ε,1−ε] |q̂∗,† (τ |N, x) − q̂∗ (τ |N, x) | = O†p((Lh
d/ logL)−1/2 + hR), for any 0 <

ε < 1/2.

(f) supb∈[b1(N,x),b2(N,x)] |ĝ∗,† (b|N, x)−ĝ∗ (b|N, x) | = O†p((Lh
d+1/ logL)−1/2+hR), where

b1 (N, x) and b2 (N, x) are defined in (40) and (41) in MSX.

(g) supτ∈[τ1(N,x),τ2(N,x)] |Q̂∗,† (τ |N, x)− Q̂∗ (τ |N, x) | = O†p((Lh
d+1/ logL)−1/2 + hR).

(h) Q̂∗,†(β̂† (τ,N, x) |N, x) = Q̂∗ (β (τ,N, x) |N, x)+O†p((Lh
d+1/ logL)−1/2 +hR) uni-

formly in τ such that β (τ,N, x) ∈ [τ1(N, x) + ε, τ2(N, x)− ε], for any 0 < ε <

(τ2(N, x)− τ1(N, x))/2.

Proof. Part (a) follows from the uniform strong approximation in Chen and Lo

(1997), Proposition 3.2.

For part (b), write

π̂ (N |x) = π̂ (N, x) ϕ̂ (x) , where

π̂ (N, x) =
1

Lhd

L∑
l=1

1 (Nl = N)
∏d

k=1K

(
xkl − xk

h

)
.

By Proposition 3.2 in Chen and Lo (1997), (Lhd)1/2(π̂ (N, x) − Eπ̂(N, x)) = O†p(1).

By the Taylor expansion of π̂† (N |x), the result in part (a), and since ϕ̂ (x) is bounded

away from zero with probability approaching one by Assumption 3(b) and Lemma

3(a) in MSX,

(
Lhd

)1/2 (
π̂† (N |x)− π̂ (N |x)

)
=

1

ϕ̂ (x)

(
Lhd

)1/2 (
π̂† (N, x)− π̂ (N, x)

)
− π̂† (N, x)

(ϕ̂ (x))2

(
Lhd

)1/2 (
ϕ̂† (x)− ϕ̂ (x)

)
+ o

((
Lhd

)1/2 (
ϕ̂† (x)− ϕ̂ (x)

))
=O†p (1) .

The proof of part (c) is similar to that of part (b) and therefore omitted.

We prove part (d) next. The proof is similar to the proof of Lemma B.1 in Newey

(1994). For fixed x in the interior of X and N ∈ N , write

Ĝ∗ (b∗, N, x) = Ĝ (b∗|N, x) p̂ (N, x) π̂ (N |x) ϕ̂ (x) ,
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so that

Ĝ∗ (b,N, x) =
1

NL

L∑
l=1

nl∑
i=1

Til,

Til =
1

hd
yil1 (bil ≤ b) 1 {Nl = N}

∏d
k=1K

(
xkl − xk

h

)
, (S.2)

and let

Ĝ∗,† (b,N, x) =
1

nL

L∑
l=1

nl∑
i=1

T †il (b) ,

T †il (b) =
1

hd
y†il1

(
b†il ≤ b

)
1
{
N †l = N

}∏d
k=1K

(
x†kl − xk

h

)
.

Next, for the chosen values N and x, let

I =
[
b (N, x) , b̄ (N, x)

]
,

I = ∪JLk=1Ik,

where the sub-intervals Ik’s are non-overlapping and of length

sL =
logL

L
. (S.3)

Denote as ck the center of Ik. Note that I, Ik, ck depend on N and x. Denote as κ(b)

the interval containing b, i.e. b ∈ Iκ(b). Since

Ĝ∗ (b,N, x) = E†T †il(b),

we can write

Ĝ∗,† (b, n, x)− Ĝ∗ (b, n, x) = A†L (b)−B†L (b) + C†L (b) , where

A†L (b) =
1

NL

L∑
l=1

Nl∑
i=1

(
T †il (b)− T

†
il

(
cκ(b)

))
,

B†L (b) =
1

NL

L∑
l=1

nl∑
i=1

(
E†T †il (b)− E

†T †il
(
cκ(b)

))
,
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C†L (b) =
1

NL

L∑
l=1

nl∑
i=1

(
T †il
(
cκ(b)

)
− E†T †il

(
cκ(b)

))
.

In the above decomposition, A†L(b) is the average of the deviations of T †il (b) from

its value computed using the center of the interval containing b, and B†L(b) is the

expected value under P † of A†L(b). The terms supb∈I |A
†
L (b) | and supb∈I |B

†
L (b) | are

small when sL is small.

For A†L we have∣∣∣T †il (b)− T †il (cκ(b)

)∣∣∣
≤ h−d (supK)d y†il1

(
N †l = N

) ∣∣∣1(b†il ≤ b
)
− 1

(
b†il ≤ cκ(b)

)∣∣∣
≤ h−d (supK)d y†il1

(
N †l = N

)
1
(
b†il ∈ Iκ(b)

)
, (S.4)

where the second inequality holds because |1(b†il ≤ b)− 1(b†il ≤ cκ(b))| is equal to zero

if b†il 6∈ Iκ(b) and is at most 1 if b†il ∈ Iκ(b). Thus,

∣∣∣A†L (b)
∣∣∣ ≤ h−d (supK)d

1

NL

L∑
l=1

N∑
i=1

y†il1
(
N †l = N

)
1
(
b†il ∈ Iκ(b)

)
. (S.5)

Next,

E†

(
1

NL

L∑
l=1

N∑
i=1

y†il1
(
N †l = N

)
1
(
b†il ∈ Ik

))
= E†

(
y†il1

(
N †l = N

)
1
(
b†il ∈ Ik

))
= E†

(
y†il1

(
N †l = N

)
P †
(
b†il ∈ Ik|y

†
il = 1, N †l = N

))
= E†

(
1
(
N †l = N

)
p† (N)P †

(
b†il ∈ Ik|y

†
il = 1, N †l = N

))
= π† (N) p† (N)P †

(
b†il ∈ Ik|y

†
il = 1, N †l = N

)
.

Further,

E†
[

1

nL

L∑
l=1

N∑
i=1

y†il1
(
N †l = N

)
1
(
b†il ∈ Ik

)
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− P †
(
b†il ∈ Ik|y

†
il = 1, N †l = N

)
π† (N) p† (N)

]2

≤

≤
P †
(
b†il ∈ Ik|y

†
il = 1, N †l = N

)
π† (N) p† (N)

NL
, (S.6)

and by Lemma S.2,

1

nL

L∑
l=1

N∑
i=1

y†il1
(
N †l = N

)
1
(
b†il ∈ Ik

)
= P †

(
b†il ∈ Ik|y

†
il = 1, N †l = N

)
π† (N) p† (N)

+O†p

P †
(
b†il ∈ Ik|y

†
il = 1, N †l = N

)
π† (N) p† (N)

NL

1/2

= P †
(
b†il ∈ Ik|y

†
il = 1, N †l = N

)
π† (N) p† (N)

×

1 +O†p

 1

P †
(
b†il ∈ Ik|y

†
il = 1, N †l = N

)
π† (N) p† (N)NL

1/2
 . (S.7)

Now, by a similar argument,

P †
(
b†il ∈ Ik|y

†
il = 1, N †l = N

)
π† (N) p† (N)

=
1

NL

L∑
l=1

N∑
i=1

yil1 (Nl = N) 1 (bil ∈ Ik)

= P (bil ∈ Ik|yil = 1, Nl = N) π (N) p (N)

×

(
1 +Op

(
1

P (bil ∈ Ik|yil = 1, Nl = N)π (N) p (N)NL

)1/2
)

≤ sup
k=1,...,JL

P (bil ∈ Ik|yil = 1, Nl = N) π (N) p (N)

×

(
1 +Op

(
1

infk=1,...,JL P (bil ∈ Ik|yil = 1, Nl = N) π (N) p (N)NL

)1/2
)
.

(S.8)
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Furthermore, for all Ik’s(
inf

b∈I,x∈X
g∗ (b|N, x)

)
sL ≤ P (bil ∈ Ik|yil = 1, Nl = N) ≤

(
sup

b∈I,x∈X
g∗ (b|N, x)

)
sL.

(S.9)

Equations (S.5)-(S.9) together imply that

∣∣∣∣sup
b∈I

A†L (b)

∣∣∣∣ = O†p

(
h−dsL

(
1 +Op

(
1

sLL

)1/2
))

= O†p

(
logL

Lhd

)
, (S.10)

where the last equality is by (S.3).

By (S.4), (S.8), and (S.9), for B†L (b) we have∣∣∣∣sup
b∈I

B†L (b)

∣∣∣∣ ≤ sup
b∈I

E†
∣∣∣T †il (b)− T †il (cκ(b)

)∣∣∣
≤ h−d (supK)d π† (n) sup

k=1,...,JL

P †
(
b†il ∈ Ik|y

†
il = 1, N †l = N

)
= O†p

(
logL

Lhd

)
. (S.11)

Note that C†L(b) depends on b only through ck’s, and therefore

sup
b∈I
|C†L(b)| ≤ max

k=1,...,JL
|C†L(ck)|. (S.12)

A Bonferroni inequality implies that for any ∆ > 0,

P †

((
Lhd

logL

)1/2

max
k=1,...,JL

|C†L(b)| > ∆

)
≤

≤
JL∑
k=1

P †

(∣∣∣∣∣
L∑
l=1

N∑
i=1

(
T †il (ck)− E

†T †il (ck)
)∣∣∣∣∣ > ∆NL

(
logL

Lhd

)1/2
)
. (S.13)

By (S.2), |T †il(ck)| ≤ h−d(supK)d and∣∣∣T †il (ck)− E†T †il (ck)∣∣∣ ≤ 2(supK)dh−d.
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Further, by (S.6)-(S.9), there is a constant 0 < D1 <∞ such that

V ar†
(
T †il (ck)

)
≤ D1h

−2dsL (1 + op (1))

= D1h
−d (logL/

(
Lhd

))
(1 + op (1)) .

We therefore can apply Bernstein’s inequality (Pollard, 1984, page 193) to obtain

P †

(∣∣∣∣∣
L∑
l=1

N∑
i=1

(
T †il (ck)− E

†T †il (ck)
)∣∣∣∣∣ > ∆NL

(
logL

Lhd

)1/2
)

≤ 2 exp

(
−1

2

∆2N2L2 logL
Lhd

NLD1h−d (1 + op (1)) logL
Lhd

+ (2/3) ∆N(supK)dh−dL
(

logL
Lhd

)1/2

)

= 2 exp

(
−1

2

∆2N (logL)1/2 (Lhd)1/2

D1 (logL/ (Lhd))1/2 (1 + op (1)) + (2/3) ∆(supK)d

)

= 2 exp

(
− ∆N

(4/3) (supK)d + op (1)
(logL)1/2 (Lhd)1/2

)
, (S.14)

where the equality in the last line is due to Lhd/ logL → ∞. The inequalities in

(S.12)-(S.14) together with (S.3) imply that there is a constant 0 < D2 < ∞ such

that

P †

((
Lhd

logL

)1/2

sup
b∈I
|C†L(b)| > ∆

)

≤ 2JL exp

(
− ∆N

(4/3) (supK)d + op (1)
(logL)1/2 (Lhd)1/2

)
≤ D2s

−1
L exp

(
− ∆N

(4/3) (supK)d + op (1)
(logL)1/2 (Lhd)1/2

)
≤ D2 exp

(
logL

(
1− ∆N

(4/3) (supK)d + op (1)

(
Lhd

logL

)1/2
))

= op (1) ,

where the equality in the last line is by Lhd/ logL → ∞. By a similar argument as

in the proof of Lemma S.2,

sup
b∈I
|C†L(b)| = o†p

(
Lhd

logL

)−1/2

. (S.15)
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The result of part (d) follows from (S.10), (S.11), and (S.15).

The proof of part (e) is similar to that of Lemma 3(e) in MSX. First, by similar

arguments as in the proof of Lemma 3(e), one can show that b(N, x) ≤ q̂∗,†(ε|B, x) ≤
q̂†(1 − ε|n, x) ≤ b̄(N, x) with probability P † approaching one (in probability), and

that uniformly over τ ∈ [ε, 1− ε],

Ĝ∗,†
(
q̂†(τ |N, x)|N, x

)
= τ +O†p

(
Lhd

)−1

Next,

G∗
(
q̂∗,†(τ |N, x)|N, x

)
− Ĝ∗,†

(
q̂∗,†(τ |N, x)|N, x

)
= G∗

(
q̂∗,†(τ |N, x)|N, x

)
− τ +O†p

(
Lhd

)−1

= G∗
(
q̂∗,†(τ |N, x)|N, x

)
−G∗ (q∗ (τ |N, x) |N, x) +O†p

(
Lhd

)−1

= g∗
(
q̃∗,† (τ |N, x) |N, x

) (
q̂∗,†(τ |N, x)− q∗ (τ |N, x)

)
+O†p

(
Lhd

)−1
,

where q̃† denotes the mean value, or

q̂∗,†(τ |N, x)− q∗ (τ |N, x)

=
G∗
(
q̂∗,†(τ |N, x)|N, x

)
− Ĝ∗,†

(
q̂∗,†(τ |N, x)|N, x

)
g∗ (q̃∗,† (τ |N, x) |N, x)

+O†p
(
Lhd

)−1
.

By part (d) of this lemma, Lemma 3(d) in MSX, and Lemma S.1(b),

sup
τ∈[ε,1−ε]

∣∣q̂∗,†(τ |N, x)− q∗ (τ |N, x)
∣∣ = O†p

(
Lhd

)−1
. (S.16)

As in the proof of Lemma S.1 and since q̂∗ (τ |N, x) is non-random under P †, for all

ε > 0 there is ∆ε > 0 such that

P
(
P †
(
Lhd |q̂∗ (τ |N, x)− q∗ (τ |N, x)| > ∆ε

)
> ε
)

= P
(
1
(
Lhd |q̂∗ (τ |N, x)− q∗ (τ |N, x)| > ∆ε

)
> ε
)

= P
(
Lhd |q̂∗ (τ |N, x)− q∗ (τ |N, x)| > ∆ε

)
< ε, (S.17)

where the inequality in the last line is by 3(e) in MSX. Furthermore, the last result

holds uniformly in τ ∈ [ε, 1− ε]. The result in part (e) of the lemma then follows by

10



(S.16) and (S.17).1

The result in part (f) is implied by Proposition 3.2 in Chen and Lo (1997). The

proof of parts (g) and (h) is similar to that of Lemma 3(g) and (h) in MSX.
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