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Abstract. In this paper we analyze the simulated behavior of diversified
portfolios in a continuous financial market. In particular, we focus on equally
weighted portfolios. We illustrate that these well diversified portfolios con-
stitute good proxies of the growth optimal portfolio. The multi-asset market
models considered include the Black-Scholes model, the Heston model, the
ARCH diffusion model, the geometric Ornstein-Uhlenbeck volatility model
and the multi-currency minimal market model. The choice of these models
was motivated by the fact that they can be simulated almost exactly and,
therefore, very accurately also over longer periods of time. Finally, we pro-
vide examples, which demonstrate the robustness of the diversification phe-
nomenon when approximating the growth optimal portfolio of a market by
an equal value weighted portfolio. Significant outperformance of the market
capitalization weighted portfolio by the equal value weighted portfolio can be
observed for models.
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1 Introduction

Diversification is a concept that has been successfully applied for centuries. When
constructing a diversified portfolio (DP) the proportion of the value of the hold-
ing in any individual security, relative to the total portfolio value, converges
sufficiently fast to zero as the number of securities increases. In the literature re-
lated to portfolio optimization DPs play a significant role, see Karatzas & Shreve
(1998). Their asymptotic properties have been analyzed by Björk & Näslund
(1998), Hofmann & Platen (2000), Platen (2004a) and Guan, Liu & Chong (2004).
Additionally, a notion of diversification in a particular modern portfolio sense can
be found in Fernholz (2002).

We consider DPs under the benchmark approach described in Platen (2002) and
(2004b). This concept is related to the notion of a growth optimal portfolio

(GOP). The GOP is defined as the portfolio that maximizes expected logarithmic
utility from terminal wealth, see Kelly (1956). The GOP is the best performing
portfolio in the long run and can be used in derivative pricing, risk management
and portfolio optimization. It appears in a wide range of literature including,
for instance, Long (1990), Artzner (1997), Bajeux-Besnainou & Portait (1997),
Karatzas & Shreve (1998), Kramkov & Schachermayer (1999), Becherer (2001),
Platen (2002) and Goll & Kallsen (2003).

In practice, it is difficult to construct proxies of the GOP based on estimates
of risk premia. It is, in principle, not possible to estimate any drift parameter
with sufficient significance to be useful in sample based portfolio optimization,
see Fama & French (2003) and DeMiguel, Garlappi & Uppal (2009). However,
the Diversification Theorem proved in Platen (2005), shows that for a sequence
of regular jump diffusion financial markets, any sequence of DPs is a sequence of
approximate GOPs. This allows one in practice to approximate the GOP by any
well diversified global market index.

This paper aims to demonstrate the robustness of the Diversification Theorem by
simulating the GOP and DPs under various continuous financial market models.
We emphasize that these simulations are exact or almost exact. The only approx-
imation we allow is the approximation of integrals with respect to functions of
finite variation. This avoids typical problems of stochastic numerical simulation
as questions related to the non-Lipschitzness of coefficients, numerical stability
and potential negative values for positive processes, propagation of errors, etc..
By focusing on almost exact simulations we make our results much more reli-
able than is typically achieved when using discrete time approximations of SDEs
based on various schemes. The simulation results presented here give an impres-
sion about the closeness of DPs to the GOP when these are constructed from real
market data, see, for instance, Platen & Rendek (2008).

We will simulate asset prices with dynamics modeled by the multi-asset Black-
Scholes model, see Black & Scholes (1973); the multi-asset Heston model, see
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Heston (1993); the multi-asset ARCH-diffusion model, see Nelson (1990) and
Frey (1997); the multi-asset geometric Ornstein-Uhlenbeck volatility model, see
Wiggins (1987) or Föllmer & Schweizer (1993); and the multi-currency minimal
market model, see Platen (2001). These examples will illustrate the robustness of
the diversification effect. The simulation studies will confirm that the convergence
behavior of DPs towards the GOP appears to be largely model independent. This
provides an important robustness property for applications of the benchmark ap-
proach. Finally, the paper makes the observation that for models, where the
primary security accounts when expressed in units of the GOP are strict super-
martingales, a well diversified portfolio, like the equal value weighted portfolio,
significantly outperforms the typical market portfolio in the long run.

This paper is structured as follows. Section 2 defines DPs in a continuous financial
market. Sections 3-8 describe exact or almost exact simulation of continuous
financial market models. These sections also include simulation study of DPs
under various model dynamics. In Section 3 we consider the multi-asset Black-
Scholes model dynamics; in Section 4 the multi-asset Heston model dynamics;
in Section 5 the multi-asset ARCH diffusion model dynamics; in Section 6 the
multi-asset geometric Ornstein-Uhlenbek volatility model dynamics; in Section 7
the multi-currency minimal market model; and, finally, in Section 8 the multi-
currency generalized minimal market model dynamics. Section 9 concludes.

2 Diversified Portfolios

Given a filtered probability space (Ω,A,A, P ), where A = (At)t∈[0,∞) is the fil-
tration which satisfies the usual conditions, we consider markets with continuous
security prices. Trading uncertainty is modeled by independent standard (A, P )-
Wiener processes W k = {W k

t , t ∈ [0,∞)}, for k ∈ {1, 2, . . . , d} and d ∈ {1, 2, . . .}.
We consider a sequence of continuous financial market (CFM) models SC

(d) indexed

by a number d ∈ {1, 2, . . .}. For given d the corresponding CFM comprises d + 1
primary security accounts, denoted by S0

(d), S
1
(d), . . . , S

d
(d). These include a savings

account S0
(d) = {S0

(d)(t), t ∈ [0,∞)}, which is the locally riskless primary security
account expressed by

S0
(d)(t) = exp

{

∫ t

0

rsds
}

< ∞ (2.1)

for t ∈ [0,∞), where r = {rt, t ∈ [0,∞)} denotes the adapted short rate.

As shown in Platen & Heath (2006), in the dth CFM SC
(d) there exists a unique

GOP Sδ∗
(d) = {Sδ∗

(d)(t), t ∈ [0,∞)}. The dth GOP is a strictly positive portfolio that

maximizes the expected log-utility from terminal wealth, that is E
(

ln
(

Sδ
(d)(T )

))

for any T ∈ [0,∞), over all strictly positive portfolios Sδ
(d) for d ∈ {1, 2, . . .},
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see Kelly (1956). It is a central object in the dth financial market SC
(d) with

outstanding mathematical properties.

In particular, one can use the GOP as benchmark. Let us, therefore, define the jth
sequence of benchmarked primary security account processes Ŝj

(d) = {Ŝj

(d)(t), t ∈
[0,∞)} by the ratio

Ŝj

(d)(t) =
Sj

(d)(t)

Sδ∗
(d)(t)

(2.2)

for t ∈ [0,∞) and j ∈ {0, 1, . . . , d}, d ∈ {1, 2, . . .}.
We also define a benchmarked portfolio process Ŝδ

(d) = {Ŝδ
(d)(t), t ∈ [0,∞)} in

SC
(d), where its value at time t is given by

Ŝδ
(d)(t) =

d
∑

j=0

δj
t Ŝ

j

(d)(t). (2.3)

The self-financing property of this portfolio is visible in the form of the following
stochastic differential equation (SDE)

dŜδ
(d)(t) =

d
∑

j=0

δj
t dŜj

(d)(t) (2.4)

for t ∈ [0,∞). Here, the vector of process of the predictable number of units in-
vested δ = {δt = (δ0

t , δ
1
t , . . . , δ

d
t )

⊤, t ∈ ℜ+} represents the corresponding strategy,
if the Itô integral

∫ t

0

δj
sdŜj

(d)(s) (2.5)

exists for all j ∈ {0, 1, . . . , d}, d ∈ {1, 2, . . .} and t ∈ [0,∞).

All strategies and portfolios we will consider are self-financing. Moreover, since
self-financing portfolios can, in general, become zero or negative in value, we
consider in the following portfolios which are strictly positive.

Furthermore, we define for SC
(d) the fraction πj

δ,t of Ŝδ
(d)(t) that is invested in the

jth benchmarked primary security account Ŝj

(d)(t), j ∈ {1, 2, . . . , d}, at time t,
which is given by the formula

πj
δ,t = δj

t

Ŝj

(d)(t)

Ŝδ
(d)(t)

(2.6)

for j ∈ {1, 2, . . . , d}. Note that fractions can be negative but always sum to one,
that is

d
∑

j=0

πj
δ,t = 1 (2.7)
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for t ∈ [0,∞).

Let us now describe potential proxies for the GOP. For a sequence of CFMs
(

SC
(d)

)

d∈{1,2,... }
we call a corresponding sequence

(

Sδ
(d)

)

d∈{1,2,... }
of strictly positive

portfolio processes Sδ
(d) a sequence of diversified portfolios (DPs) if some constants

K1, K2 ∈ (0,∞) and K3 ∈ {1, 2, . . .} exist, independently of d, such that for
d ∈ {K3, K3 + 1, . . .} the inequality

|πj
δ,t| ≤

K2

d
1

2
+K1

(2.8)

holds almost surely for all j ∈ {0, 1, . . . , d} and t ∈ [0,∞). This means that for
a DP the fractions decline sufficiently fast for increasing d but need not to be
equal.

We need to assume that in a given sequence of CFMs the primary security ac-
counts are sufficiently different. Otherwise, one cannot expect that any diversi-
fication is possible in the market under consideration. To achieve a sufficiently
regular market let us ensure that each of the independent sources of trading
uncertainty influences only a restricted range of benchmarked primary security
accounts. More precisely, we assume the following regularity condition:

E
(

(σ̂k
(d)(t))

2
)

≤ K5 (2.9)

for all t ∈ [0,∞), d ∈ {1, 2, . . .}, k ∈ {1, 2, . . . , d} and a constant K5 ∈ (0,∞).
Here σ̂k

(d)(t) is referred to as the k-th total specific volatility for SC
(d) and is defined

by the sum

σ̂k
(d)(t) =

d
∑

j=0

|σj,k

(d)(t)| (2.10)

for k ∈ {1, 2, . . .}. The (j, k)th specific volatility σj,k

(d), is the volatility of the jth
benchmarked primary security account with respect to the kth source of trading
uncertainty, see Platen & Heath (2006).

Furthermore, to measure the distance between an approximating portfolio Sδ
(d)

and the GOP Sδ∗
(d) we define the tracking rate Rδ

(d)(t) at time t by

Rδ
(d)(t) =

d
∑

k=1

(

d
∑

j=0

πj
δ,tσ

j,k

(d)(t)

)2

(2.11)

for t ∈ [0,∞). Note that one can show that the tracking rate vanishes when Sδ
(d)

equals Sδ∗
(d). This is simply the consequence of the fact that the benchmarked

GOP is a constant and, thus, has zero returns.

For a sequence
(

SC
(d)

)

d∈{1,2,... }
of CFMs a sequence of strictly positive portfolios

(

Sδ
(d)

)

d∈{1,2,... }
is called a sequence of approximate GOPs when the corresponding
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sequence of tracking rates vanishes in probability, that is

lim
d→∞

Rδ
(d)(t) = 0 (2.12)

for all t ∈ [0,∞).

In reality one observes that well diversified, global stock portfolios behave very
similar. This can be mathematically verified without imposing any major mod-
eling assumptions. The Diversification Theorem proved in Platen (2005), shows
that for a regular sequence of CFMs, see (2.9), any sequence of DPs is a sequence
of approximate GOPs. Moreover, for any d ∈ {K3, K3 + 1, . . .} and t ∈ [0,∞),
the expected tracking rate of a given DP can be shown to satisfy the estimate

E
(

Rδ
(d)(t)

)

≤ (K2)
2K5

d2K1
. (2.13)

Here, K1, K2, K5 ∈ (0,∞) and K3 ∈ {1, 2, . . .}.
This theorem is similar to the Law of Large Numbers and of practical significance.
It allows us to approximate the GOP by any diversified global market index. It
is very important to note that this result is model independent. It states that
approximation of the GOP can be achieved by avoiding any calculation of the
exact theoretical GOP fractions. This allows to overcome in practice the problem
of risk premia which is, in principle, not possible with sufficient significance to
be useful in portfolio optimization, see Fama & French (2003) and DeMiguel,
Garlappi & Uppal (2009). By the Diversification Theorem one obtains proxies
for the GOP in a robust manner as will be discussed in Sections 3-8.

In the following sections we illustrate the robustness of the diversification effect
by simulation of diversified portfolios for various market models. By exploiting
the nature of the market dynamics considered the simulation will be performed
exactly or almost exactly. This is highly important since we want to study the
diversification phenomenon over long periods of time.

To keep the presentation simple and transparent we consider in this paper only
two types of indices, market capitalization weighted indices (MCIs) and equally

weighted indices (EWIs). The indices constructed in this study are all self-
financing portfolios. We characterize the indices in terms of fractions as in (2.6).
For an MCI we define the fraction of wealth held in the jth constituent at time
tn by the ratio

πj
δMCI ,tn

=
δj
MCI,tn

Sj
tn

∑d

i=1 δi
MCI,tn

Si
tn

, (2.14)

for j ∈ {1, 2, . . . , d}, where δj
MCI,tn

denotes the number of units of the jth con-
stituent available in the market at time tn. An equally weighted index EWI is
obtained by setting all fractions equal at the beginning of each trading period.
The jth fraction of an EWI is then simply given by the constant ratio

πj
δEWI ,tn

=
1

d
(2.15)
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for j = {1, 2, . . . , d}. Given the respective fractions, the value of a portfolio at
time tn is recursively obtained according to the relation

Sδ
tn

= Sδ
tn−1

(

1 +
d
∑

j=1

πj
δ,tn−1

Sj
tn − Sj

tn−1

Sj
tn−1

)

(2.16)

or equivalently

Sδ
tn

= Sδ
tn−1

+

d
∑

j=1

δj
tn−1

(

Sj
tn − Sj

tn−1

)

. (2.17)

According to a given marked dynamics we simulate for the long period of T = 150
years the benchmarked trajectories of d + 1 = 1001 primary security accounts,
sampling twice a week. For simplicity we set the interest rate to zero. Thus, the
inverse of the benchmarked savings account provides the GOP when denominated
in domestic currency, that is

Sδ∗
t = (Ŝ0

t )
−1. (2.18)

The product of the GOP with the jth benchmarked primary security account
yields the value of the jth primary security account denominated in domestic
currency, that is,

Sj
t = Ŝj

t S
δ∗
t , (2.19)

for j ∈ {0, 1, . . . , d}. The initial values Sj
0, j ∈ {0, 1, . . . , d}, are generated ac-

cording to a Pareto distribution with parameters λ = 1.1 and x0 = λ−1
λ

, see
Simon (1958). For each model we plot the first 20 benchmarked primary security
account processes in the respective figures in Sections 3-8. We also give an im-
pression about the typical squared volatility process in these sections. Moreover,
we plot for each market dynamics the simulated GOP as well as the EWI and the
MCI, constructed from the simulated primary security accounts as described in
(2.19). Additionally, we display in a separate figure for each market dynamics the
benchmarked EWI and the benchmarked MCI. The benchmarked GOP is simply
the constant one.

3 Multi-asset Black-Scholes Model

In this paper we use exact or almost exact simulation techniques for solutions of
SDEs. When using discrete time numerical schemes for simulation there may be
issues when dealing with non-Lipschitz continuous drift or diffusion coefficients.
Also problems concerning numerical stability may arise or negative values could
be obtained for strictly positive processes. Therefore, we describe in the following
sections methods of exact and almost exact simulation of various market models,
which avoid in principle, most of these problems. For simplicity, this presentation
describes simulation methods for independent benchmarked primary security ac-
counts. However, the case of dependent benchmarked primary security accounts

7



0 50 100 150
0

2

4

6

8

10

12

Figure 3.1: Simulated benchmarked primary security accounts under the Black-
Scholes model

can be handled analogously. For details on simulation of correlated assets we
refer to Platen & Rendek (2009).

Let us first describe the standard market model, which is the multi-asset Black-
Scholes model, see Black & Scholes (1973). Under this model the benchmarked
primary security accounts can be represented by the following matrix SDE

dŜt =

d
∑

k=1

B
k
ŜtdW k

t , (3.1)

for t ∈ [0,∞). Here Ŝ = {Ŝt = (Ŝ0
t , Ŝ

1
t , . . . , Ŝ

d
t )

⊤, t ∈ [0,∞)} is a vector of
benchmarked primary security accounts, and B

k = [Bk,i,j]di,j=1 is a d×d diagonal
parameter matrix, with elements

Bk,i,j =
{ bj,k for i = j

0 otherwise
(3.2)

for k, i, j ∈ {1, 2, . . . , d}. Note that Ŝj, j ∈ {1, 2, . . . , d} forms here a martingale.

The multi-asset Black-Scholes model can be simulated exactly. The matrix SDE
(3.1) has an exact solution, see Platen & Heath (2006). The jth benchmarked
primary security accounts can be represented by

Ŝj
t = Ŝj

0 exp

{

− 1

2

d
∑

k=1

(

bj,k
)2

t +

d
∑

k=1

bj,kW k
t

}

. (3.3)

Therefore, for the time discretization 0 < t0 < t1 < · · · < ∞, where ti = ∆i,
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Figure 3.2: Simulated GOP, EWI and MCI under the Black-Scholes model
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Figure 3.3: Simulated benchmarked GOP, EWI and MCI under the Black-Scholes
model

i ∈ {0, 1, . . .}, we obtain the exponential

Ŝj
ti+1

= Ŝj
0 exp

{

− 1

2

(

bj,j
)2

ti+1 + bj,jW j
ti+1

}

(3.4)

for the jth independent benchmarked primary security account under the Black-
Scholes model.

Let us now illustrate the fundamental phenomenon of diversification by simu-
lating in a Black-Scholes market diversified portfolios. This can be exactly per-
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formed without any error as described above. We simulate 1001 independent
benchmarked primary security accounts with bj,j = 0.2 for j ∈ {0, 1, . . . , 1000}
according to (3.4) end display the first 20 resulting trajectories in Fig.3.1. We em-
phasize that these benchmarked primary security accounts are here martingales.
Here, the independent initial value Ŝj

0 is generated using the Pareto distribution
with parameters λ = 1.1 and x0 = λ−1

λ
, see Simon (1958). This models the fact

that there is a great variety in the market capitalization of stocks.

In Fig 3.2 we show the simulated GOP, the EWI and the MCI. In this case the
EWI approximates rather well the GOP. The MCI seems to be initially a good
proxy of the GOP, however after this initial time period it diverges from the GOP.
Most likely some large stock values emerge and the resulting large fractions of
these stocks distort the performance of the market index. These fractions of the
corresponding primary security accounts are simply to large to be acceptable as
those of a DP and, thus violate the conditions of the Diversification Theorem.
This phenomenon is also illustrated in Fig.3.3 where we display the benchmarked
GOP, Ŝδ∗

t = 1, as well as the benchmarked EWI simulated under the Black-
Scholes model and the benchmarked MCI constructed from 1000 benchmarked
primary security accounts. Note that initially in the first 10 years, sometimes the
benchmarked EWI, sometimes the benchmarked MCI performed better. However,
in the long term simulation we clearly see that the benchmarked EWI converges
in the long run to the benchmarked GOP, while the benchmarked MCI tends
downwards. In this figure we also note that the benchmarked MCI has much
larger variance then the benchmarked EWI.

4 Multi-asset Heston Model

The Heston model, see Heston (1993), can be described by a set of two matrix
SDEs in the form

dŜt = diag
(

√

V t

)

diag
(

Ŝt

)(

AdW̃
1

t + BdW̃
2

t

)

, (4.1)

dV t = (a − EV t) dt + F diag
(√

V t

)

dW̃
1

t , (4.2)

for t ∈ [0,∞). Here Ŝ = {Ŝt = (Ŝ0
t , Ŝ

1
t , . . . , Ŝ

d
t )

⊤, t ∈ [0,∞)} is a vector of
benchmarked primary security accounts which are supermartingales, see Platen

& Heath (2006). Moreover, W̃
1

= {W̃ 1

t = (W̃ 1,1
t , W̃ 1,2

t , . . . , W̃ 1,d
t )⊤, t ∈ [0,∞)}

and W̃
2

= {W̃ 2

t = (W̃ 2,1
t , W̃ 2,2

t , . . . , W̃ 2,d
t )⊤, t ∈ [0,∞)} are independent vectors

of correlated Wiener processes. That is

W̃
k

t = C
k
W

k
t , (4.3)

where C
k = [Ck,i,j]di,j=1 and W

k = {W k
t = (W k,1

t , W k,2
t , . . . , W k,d

t )⊤, t ∈ [0,∞)},
k ∈ {1, 2} is again a vector of independent Wiener processes.
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Figure 4.1: Simulated benchmarked primary security accounts under the Heston
model

Additionally, A = [Ai,j ]di,j=1 is a diagonal matrix with elements

Ai,j =
{

̺i for i = j
0 otherwise

(4.4)

and B = [Bi,j]di,j=1 is a diagonal matrix with elements

Bi,j =
{

√

1 − ̺2
i for i = j

0 otherwise.
(4.5)

Moreover, V = {V t = (V 1
t , V 2

t , . . . , V d
t )⊤, t ∈ [0,∞)} is a vector of squared

volatilities, a = (a1, a2, . . . , ad)
⊤; and E = [Ei,j]di,j=1 is a diagonal matrix with

elements

Ei,j =
{ κi for i = j

0 otherwise,
(4.6)

and F = [F i,j]di,j=1 is a diagonal matrix with elements

F i,j =
{

γi for i = j
0 otherwise.

(4.7)

One method for the exact simulation of the Heston model has been discussed in
Broadie & Kaya (2006). We use here a simplified almost exact simulation of the
benchmarked primary security accounts under the Heston model. This method
involves exact simulation of the squared volatility processes and almost exact
simulation of the independent benchmarked primary security accounts, given the
trajectories of the squared volatilities as explained in Platen & Rendek (2009).
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Figure 4.2: Simulated squared volatility under the Heston model

We obtain the value of the jth squared volatility V j
ti+1

at time ti+1, i ∈ {0, 1, . . .},
by sampling directly from the noncentral chi-square distribution χ

′2
νj

(λj) with νj

degrees of freedom and noncentrality parameter λj . That is

V j
ti+1

=
γ2

j (1 − exp{−κj∆})
4κj

χ
′2
νj

(

4κje
−κj∆

γ2
j (1 − e−κj∆)

V j
ti

)

, (4.8)

where νj =
4aj

γ2
j

. Sampling from the noncentral chi-square distribution is discussed,

for instance, in Glasserman (2004). The resulting simulation method for V j is
exact.

Let us now describe the almost exact simulation of the vector of logarithms of
the benchmarked assets X t = ln(Ŝt). Following Broadie & Kaya (2006) we may
represent the jth value of Xj

ti+1
at time ti+1 in the form

Xj
ti+1

= Xj
ti

+
̺j

γj

(

V j
ti+1

− V j
ti
− aj∆

)

+

(

̺jκj

γj

− 1

2

)
∫ ti+1

ti

V j
u du (4.9)

+
√

1 − ̺2
j

∫ ti+1

ti

√

V j
u dW 2,j

u .

Furthermore, the distribution of

∫ ti+1

ti

√

V j
u dW 2,j

u , (4.10)

given the path of V j, is Gaussian with mean zero and variance
∫ ti+1

ti
V j

u du, since V j

is independent of the Brownian motion W 2,j for all j ∈ {1, 2, . . . , d}. Moreover,
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Figure 4.3: Simulated GOP, EWI and MCI under the Heston model
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Figure 4.4: Simulated benchmarked GOP, EWI and MCI under the Heston model

it is possible to approximate
∫ ti+1

ti
V j

u du given the path of the process V j. We use
here the well known trapezoidal rule

∫ ti+1

ti

V j
u du ≈ ∆

2

(

V j
ti

+ V j
ti+1

)

. (4.11)

Consequently,

∫ ti+1

ti

√

V j
u dW 2,j

u ≈ N
(

0,
∆

2

(

V j
ti

+ V j
ti+1

)

)

. (4.12)
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This approximation can be achieved with high accuracy, by the above quadrature
formula. For the multi-asset Heston model this results in an efficient almost exact
simulation technique by conditioning.

We now use for the benchmarked primary security accounts the multi-asset Hes-
ton model with independent prices. We display the first 20 simulated independent
benchmarked primary security accounts under the multi-asset Hestion model in
Fig. 4.1. These benchmarked primary security accounts are supermartingales.
The parameters in (4.8) are estimated by a Heston fit to the SPX surface as of
the close on Sep 15, 2005, see Gatheral (2006). The jth squared volatility pro-
cess is simulated according to (4.8) for initial value V j

0 = 0.0174, aj = 0.0469,
κj = 1.3253, γj = 0.3877, j ∈ {0, 1, . . . , 1000}. The correlation parameter is here
set to ̺j = −0.7165 in order to reflect the leverage effect, see Black (1976). The

initial values Ŝj
0 are again generated from the Pareto distribution. Additionally,

we display in Fig. 4.2 a typical trajectory of the squared volatility process V j

under the Heston model simulated exactly with the formula (4.8).

In Fig 4.3 we display the simulated GOP, EWI and MCI under the Heston model.
Also here the EWI provides a good proxy for the GOP. The MCI however, does
not perform as good as the GOP and the EWI. Additionally, in Fig. 4.4 we
illustrate the benchmarked GOP, Ŝδ∗

t = 1, the benchmarked EWI and the bench-
marked MCI obtained from 1000 benchmarked primary security accounts. This
plot clearly shows the convergence of the benchmarked EWI to the benchmarked
GOP. The benchmarked MCI, similar to the simulation under the Black-Scholes
model, has downward trend.

5 Multi-asset ARCH-diffusion Model

The continuous time limits of some popular time series models in finance can
be described by a multi-dimensional ARCH-diffusion model. The class of ARCH
and GARCH time series models was originally proposed in Engle (1982). The
ARCH diffusion model is obtained as a continuous time limit of the innovation
process of the GARCH(1, 1) and NGARCH(1, 1) models, see Nelson (1990) and
Frey (1997). The ARCH-diffusion model can be described by the following set of
two matrix SDEs in the form

dŜt = diag
(

√

V t

)

diag
(

Ŝt

)(

AdW̃
1

t + BdW̃
2

t

)

, (5.1)

dV t = (a − EV t) dt + F diag (V t) dW̃
1

t , (5.2)

for t ∈ [0,∞). Here Ŝ = {Ŝt = (Ŝ0
t , Ŝ

1
t , . . . , Ŝ

d
t )

⊤, t ∈ [0,∞)} denotes again
a vector of benchmarked primary security accounts which are supermartingales.

Furthermore, W̃
1

= {W̃ 1

t = (W̃ 1,1
t , W̃ 1,2

t , . . . , W̃ 1,d
t )⊤, t ∈ [0,∞)} and W̃

2
=

{W̃ 2

t = (W̃ 2,1
t , W̃ 2,2

t , . . . , W̃ 2,d
t )⊤, t ∈ [0,∞)} are independent vectors of correlated

Wiener processes. Additionally, A = [Ai,j]di,j=1 is a diagonal matrix with elements
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Figure 5.1: Simulated benchmarked primary security accounts under the ARCH-
diffusion model

as in (4.4), and B = [Bi,j]di,j=1 is a diagonal matrix with elements (4.5). Moreover,
V = {V t = (V 1

t , V 2
t , . . . , V d

t )⊤, t ∈ [0,∞)} is a vector of squared volatilities,
a = (a1, a2, . . . , ad)

⊤; E = [Ei,j]di,j=1 is a diagonal matrix with elements as in
(4.6); and F = [F i,j]di,j=1 is a diagonal matrix with elements as in (4.7).

In the given case we can simulate the jth squared volatility process V j, j ∈
{0, 1, . . .} almost exactly by approximating the time integral via the trapezoidal
rule in the following exact representation

V j
ti+1

= exp

{(

−κj −
1

2
γ2

j

)

ti+1 + γjW
1,j
ti+1

}

(5.3)

×
(

V j
t0

+ aj

i
∑

k=0

∫ tk+1

tk

exp

{(

κj +
1

2
γ2

j

)

s − γjW
1,j
s

}

ds

)

.

This yields the approximation

V j∆
ti+1

= exp

{(

−κj −
1

2
γ2

j

)

ti+1 + γjW
1,j
ti+1

}

(5.4)

×
(

V j
t0

+ aj

∆

2

i
∑

k=0

[

exp

{(

κj +
1

2
γ2

j

)

tk − γjW
1,j
tk

}

+ exp

{(

κj +
1

2
γ2

j

)

tk+1 − γjW
1,j
tk+1

}

])

for ti = ∆i, i ∈ {0, 1, . . .}.

Let us now describe the almost exact simulation of the vector Xt = ln
(

Ŝt

)

.

Following Platen & Rendek (2009), we may represent the jth value of Xj
ti+1

at
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Figure 5.2: Simulated squared volatility under the ARCH-diffusion model

time ti+1 in the following way:

Xj
ti+1

= Xj
ti
− 1

2

∫ ti+1

ti

V j
u du +

2̺j

γj

(

√

V j
ti+1

−
√

V j
ti

)

(5.5)

−2̺j

γj

∫ ti+1

ti

(

aj

2
√

V j
u

−
(

κj

2
+

γ2
j

8

)
√

V j
u

)

du

+
√

1 − ̺2
j

∫ ti+1

ti

√

V j
u dW 2,j

u .

Furthermore, the distribution of

∫ ti+1

ti

√

V j
u dW 2,j

u , (5.6)

conditioned on the path of V j , is Gaussian with mean zero and variance
∫ ti+1

ti
V j

u du,

because V j is independent of the Brownian motion W 2,j for all j ∈ {1, 2, . . . , d}.
Moreover, it is possible to approximate

∫ ti+1

ti
V j

u du given the path of the process

V j . We use here the following trapezoidal approximation

∫ ti+1

ti

V j
u du ≈ ∆

2

(

V j
ti

+ V j
ti+1

)

(5.7)

to obtain
∫ ti+1

ti

√

V j
u dW 2,j

u ≈ N
(

0,
∆

2

(

V j
ti

+ V j
ti+1

)

)

. (5.8)
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Figure 5.3: Simulated GOP, EWI and MCI under the ARCH-diffusion model
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Figure 5.4: Simulated benchmarked GOP, EWI and MCI under the ARCH-
diffusion model

Similarly, it is possible to approximate the integral in the form

∫ ti+1

ti

(

aj

2
√

V j
u

−
(

κj

2
+

γ2
j

8

)
√

V j
u

)

du ≈ (5.9)

∆

2





aj

2
√

V j
ti

−
(

κj

2
+

γ2
j

8

)

√

V j
ti

+
aj

2
√

V j
ti+1

−
(

κj

2
+

γ2
j

8

)

√

V j
ti+1



 .

This approximation can be achieved with high accuracy by using the simple
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Figure 6.1: Simulated benchmarked primary security accounts under the geomet-
ric Ornstein-Uhlenbeck volatility model

quadrature formula. We obtain an efficient almost exact simulation technique by
conditioning for the multi-asset ARCH-diffusion model.

Let us now simulate the benchmarked primary security accounts as a multi-
dimensional ARCH diffusion, as described above. We make the squared volatility
process the same for all benchmarked primary security accounts, where we set
a = 0.0469, κ = 1.3253, γ = 1 and V0 = 0.0174, as calibrated by comparison
to the Heston squared volatility process. Furthermore, the driving noise of each
of the benchmarked asset prices is independent from each other. It is, however,
correlated with ̺ = −0.7165 to the corresponding squared volatility process.
In Fig. 5.1 we show the first 20 resulting benchmarked risky primary security
accounts. A typical trajectory of the squared volatility under the ARCH-diffusion
model is displayed in Fig. 5.2.

The Fig. 5.3 display the corresponding GOP, EWI and MCI. Moreover, Fig. 5.4
exhibits the benchmarked GOP, Ŝδ∗

t = 1, the benchmarked EWI and the bench-
marked MCI. Also here the EWI appears to be a very good proxy of the GOP,
while the MCI does not come close enough to the GOP to be acceptable as a
good proxy.
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Figure 6.2: Simulated squared volatility under the geometric Ornstein-Uhlenbeck
volatility model

6 Geometric Ornstein-Uhlenbeck Volatility

Model

Similar as in the Heston and the ARCH-diffusion model we generate the bench-
marked asset prices by using some stochastic volatility that is now a geometric
Ornstein-Uhlenbeck process. The geometric Ornstein-Uhlenbeck volatility model
can be described by the following set of two matrix SDEs in the form

dŜt = diag (exp{V t}) diag
(

Ŝt

)(

AdW̃
1

t + BdW̃
2

t

)

, (6.1)

dV t = (a − EV t) dt + F dW̃
1

t , (6.2)

for t ∈ [0,∞). Here Ŝ = {Ŝt = (Ŝ0
t , Ŝ

1
t , . . . , Ŝ

d
t )

⊤, t ∈ [0,∞)} denotes again
a vector of benchmarked primary security accounts which are supermartingales.

Furthermore, W̃
1

= {W̃ 1

t = (W̃ 1,1
t , W̃ 1,2

t , . . . , W̃ 1,d
t )⊤, t ∈ [0,∞)} and W̃

2
=

{W̃ 2

t = (W̃ 2,1
t , W̃ 2,2

t , . . . , W̃ 2,d
t )⊤, t ∈ [0,∞)} are independent vectors of correlated

Wiener processes. Additionally, A = [Ai,j]di,j=1 is a diagonal matrix with elements
as in (4.4), and B = [Bi,j]di,j=1 is a diagonal matrix with elements (4.5). Moreover,

exp{V } =
{

exp{V t} =
(

exp{V 1
t }, exp{V 2

t }, . . . , exp{V d
t }
)⊤

, t ∈ [0,∞)
}

(6.3)

is a vector of volatilities, whose elements are correlated exponents of the Ornstein-
Uhlenbeck processes. Additionally a = (a1, a2, . . . , ad)

⊤; E = [Ei,j]di,j=1 is a
diagonal matrix with elements as in (4.6); and F = [F i,j]di,j=1 is a diagonal matrix
with elements as in (4.7).
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Figure 6.3: Simulated GOP, EWI and MCI under the geometric Ornstein-
Uhlenbeck volatility model
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Figure 6.4: Simulated benchmarked GOP, EWI and MCI under the geometric
Ornstein-Uhlenbeck volatility model

As before we consider simulation of independent benchmarked primary security
accounts. We obtain the value of the jth volatility exp

{

V j
ti

}

at time ti, i ∈
{0, 1, . . .}, by the following exact solution

exp{V j
ti
} = exp

{

V j
0 e−κjti +

aj

κj

(

1 − e−κjti
)

+ γje
−κjti

i
∑

k=1

∫ tk

tk−1

eκjsdW 1,j
s

}

.

(6.4)
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Here
∫ tk

tk−1

eκjsdW 1,j
s ∼ N

(

0,
1

2κ

(

e2κjtk − e2κjtk−1

)

)

. (6.5)

The resulting simulation method for exp{V j} is exact.

Let us now describe the almost exact simulation of the vector Xt = ln
(

Ŝt

)

.

Again, following Platen & Rendek (2009), we may represent the jth value of
Xj

ti+1
at time ti+1 in the following way:

Xj
ti+1

= Xj
ti
− 1

2

∫ ti+1

ti

e2V
j
u du +

̺j

γj

(

e
V

j
ti+1 − eV

j
ti

)

(6.6)

−̺j

γj

∫ ti+1

ti

((

aj +
γ2

j

2

)

eV
j
u − κjV

j
u eV

j
u

)

du

+
√

1 − ̺2
j

∫ ti+1

ti

eV
j
u dW 2,j

u .

Furthermore, the distribution of

∫ ti+1

ti

eV
j
u dW 2,j

u , (6.7)

conditioned on the path of V j , is Gaussian with mean zero and variance
∫ ti+1

ti
e2V

j
u du,

because V j is independent of the Brownian motion W 2,j for all j ∈ {1, 2, . . . , d}.
Moreover, it is possible to approximate

∫ ti+1

ti
e2V

j
u du given the path of the process

V j . We use here the following trapezoidal approximation

∫ ti+1

ti

e2V
j
u du ≈ ∆

2

(

e2V
j
ti + e

2V
j
ti+1

)

(6.8)

to obtain
∫ ti+1

ti

eV
j
u dW 2,j

u ≈ N
(

0,
∆

2

(

e2V
j
ti + e

2V
j
ti+1

)

)

. (6.9)

Similarly, it is possible to approximate the integral in the form

∫ ti+1

ti

((

aj +
γ2

j

2

)

eV
j
u − κjV

j
u eV

j
u

)

du ≈ (6.10)

∆

2

((

aj +
γ2

j

2

)

eV
j
ti − κjV

j
ti
eV

j
ti +

(

aj +
γ2

j

2

)

e
V

j
ti+1 − κjV

j
ti+1

e
V

j
ti+1

)

.

This approximation can be achieved with high accuracy by using the simple
quadrature formula. We obtain an efficient almost exact simulation technique by
conditioning for the multi-asset geometric Ornstein-Uhlenbeck volatility model.

We now simulate the benchmarked primary security accounts from a multi-
dimensional geometric Ornstein-Uhlenbeck volatility model, as described above.
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Figure 7.1: Simulated benchmarked primary security accounts under the MMM

We make the squared volatility process e2V j

calibrated by comparison to the
Heston and the ARCH-diffusion squared volatility processes, where we set aj =
−2.2143, κj = 1.3253, γj = 0.52 and V j

0 = −2.0257, j ∈ {0, 1, . . . , 1000}. Fur-
thermore, the driving noise of each of the benchmarked asset prices is independent
from each other. It is, however, correlated with ̺j = −0.7165 to the corresponding
squared volatility process. In Fig. 6.1 we show the first 20 resulting benchmarked
risky primary security accounts. A typical trajectory of the squared volatility
under the geometric Ornstein-Uhlenbeck model is displayed in Fig. 6.2.

The Fig. 6.3 displays the corresponding GOP, EWI and MCI. Moreover, Fig. 6.4
exhibits the benchmarked GOP, Ŝδ∗

t = 1, the benchmarked EWI and the bench-
marked MCI. Also here the EWI appears to be a very good proxy of the GOP.
As before the MCI does not come close enough to the GOP to be acceptable as
a good proxy.

7 Multi-currency Minimal Market Model

Let us now consider the stylized multi-currency minimal market model (MMM)
similar to the version of the MMM described in Platen (2001) and Platen & Heath
(2006). This time we model the jth benchmarked primary security account by
the expression

Ŝj
t =

1

Y j
t αj

t

, (7.1)

where αj
t = αj

0 exp{ηjt}, j ∈ {0, 1, . . . , d}. Here ηj is the jth net growth rate for
j ∈ {0, 1, . . . , d}, and Y j

t is the time t value of the square root process Y j , which
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Figure 7.2: Simulated squared volatility under the MMM

satisfies the SDE

dY j
t =

(

1 − ηjY j
t

)

dt +

√

Y j
t dW̃ j

t (7.2)

for t ∈ [0,∞), where we set Y j
0 = 1

ηj for j ∈ {0, 1, . . . , d}. Here W̃ = {W̃ t =

(W̃ 1
t , W̃ 2

t , . . . , W̃ d
t )⊤, t ∈ [0,∞)} is a vector of correlated Wiener processes.

Note also that under the MMM, Sj(ϕj(t)) = Y j
t αj

t is a squared Bessel process of
dimension four in the, so called, ϕj-time. That is,

dSj(ϕj(t)) = 4dϕj(t) + 2
√

Sj(ϕj(t))dW̄ j(ϕj(t)) (7.3)

for t ∈ [0,∞), where one has

ϕj(t) =
αj

0

4ηj

(

exp{ηjt} − 1
)

(7.4)

and

dW̄ j(ϕj(t)) = dW̃ j
t

√

dϕj(t)

dt
. (7.5)

The inverse Ŝj(ϕj(t)) of the jth squared Bessel process of dimension four in ϕj-
time is here represented by the following SDE

dŜj(ϕj(t)) = −2
(

Ŝj(ϕj(t))
)

3

2

dW̄ j(ϕj(t)) (7.6)

for t ∈ [0,∞). It can be shown that Ŝj is a strict supermartingale, see Protter
(2004) and Platen & Heath (2006).
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Figure 7.3: Simulated GOP, EWI and MCI under the MMM model in the log-
scale
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Figure 7.4: Simulated benchmarked GOP, EWI and MCI under the MMM model

Let us now explain the simulation of independent benchmarked primary security
accounts under the MMM. Given the time discretization 0 < t0 < t1 < . . . , where
ti = ∆i, i ∈ {0, 1, . . .} we first obtain (7.4) for i ∈ {0, 1, . . .} and j ∈ {0, 1, . . . , d}.
The next step is to simulate for the jth benchmarked primary security account
four independent Wiener processes W̄ k,j, k ∈ {1, 2, 3, 4} in ϕj time. This can be
achieved by simply calculating

W̄ k,j
ti+1

= W̄ k,j
ti

+
√

ϕj(ti+1) − ϕj(ti)Z
k
i+1, (7.7)
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where Zk
i+1 ∼ N (0, 1) is a standard Gaussian random variable. Here k ∈ {1, 2, 3, 4},

j ∈ {0, 1, . . . , d} and i ∈ {0, 1, . . .}.
Then the jth benchmarked primary security account at time ti+1 is simulated by
the expression

Ŝj
ti+1

= Ŝj
(

ϕj(ti+1)
)

=
1

∑4
k=1

(

wk + W̄ k,j
ti+1

)2 , (7.8)

where Ŝj
0 =

∑4
k=1(w

k)2 and i ∈ {0, 1, . . .}.
Let us now simulate the benchmarked risky primary security accounts according
to the MMM. These processes are strict supermartingales. In our simulation we
use the net growth rate ηj = 0.09 and scaling αj

0 = 0.05 for the MMM and plot in
Fig. 7.1 the first 20 resulting risky benchmarked primary security accounts. The
jth volatility equals under the MMM at time ti the expression Ŝj

ti
αj

ti
. In Fig. 7.2

we plot a typical squared volatility under the MMM.

The GOP, EWI and MCI are displayed in Fig 7.3 in log-scale to see the significant
growth over the time period. The benchmarked GOP, benchmarked EWI and
benchmarked MCI are shown in Fig. 7.4. The EWI represents a good proxy for
the GOP even though the benchmarked primary security accounts are here strict
supermartingales and trend systematically downward, as exhibited in Fig. 7.1.
The MCI again does not perform as good as the EWI and the GOP.

8 Multi-currency Generalized Minimal Market

Model (GMMM)

Let us now describe a generalized version of the MMM, which uses some stochastic
market activity time τj . We model the jth benchmarked primary security account
by the expression

Ŝj
t =

1

Y j(τj(t))αj(τj(t))
, (8.9)

where αj(τj(t)) = αj
0 exp{ηjτj(t)} and

dY j(τj(t)) =
(

1 − ηjY j(τj(t))
)

dτj(t) +
√

Y j(τj(t))dW̃ j(τj(t)) (8.10)

is the SDE of a time transformed square root process, j ∈ {0, 1, . . . , d}. Here W̃

= {W̃ (τj(t)) = (W̃ 1(τj(t)), W̃ 2(τj(t)), . . . , W̃
d(τj(t)))

⊤, t ∈ [0,∞)} is a vector of
correlated Wiener processes in τj-time. Moreover, we use the jth market activity
time

τj(t) = τj(0) +

∫ t

0

mj
sds, (8.11)
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Figure 8.5: Simulated benchmarked primary security accounts under the GMMM
model

where τj(0) > 0, see Breymann, Kelly & Platen (2005). Here the jth market
activity process mj is modeled by a linear diffusion process with SDE

dmj
t = κj

(

m̄j − mj
t

)

dt + γjm
j
tdŴ j

t , (8.12)

for t ∈ [0,∞). Here the Ŵ j are correlated Wiener processes in t-time. Note that
the equation (8.10) can be rewritten for Y j

t in t-time in the following way

dY j
t =

(

1 − ηjY j
t )
)

mj
tdt +

√

Y j
t mj

tdW̄ j
t , (8.13)

for t ∈ [0,∞), where

dW̄ j
t =

√

1

mj
t

dW̃ j(τj(t)), (8.14)

j ∈ {1, 2, . . . , d}.
Since under the GMMM the τj-time is stochastic there will be a need for numerical
integration and the simulation method of the GMMM will be only almost exact. It
can be, however, as accurate as required by making the time step size sufficiently
small.

Given the time discretization 0 < t0 < t1 < . . . , where ti = ∆i, i ∈ {0, 1, . . .}, we
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Figure 8.6: Simulated squared volatility under the GMMM

first obtain the approximate jth market activity

mj∆
ti+1

= exp

{(

−κj −
1

2
γ2

j

)

ti+1 + γjŴ
j
ti+1

}

(8.15)

×
(

mj
t0

+ κjm̄j

∆

2

i
∑

k=0

[

exp

{(

κj +
1

2
γ2

j

)

tk − γjŴ
j
tk

}

+ exp

{(

κj +
1

2
γ2

j

)

tk+1 − γjŴ
j
tk+1

}

])

for ti = ∆i, i ∈ {0, 1, . . .}.
Let us now introduce the ϕ̄j time by the formula

ϕ̄j(ti) = ϕj(τj(ti)) =
αj

0

4ηj

(

exp{ηjτj(ti)} − 1
)

, (8.16)

for i ∈ {0, 1, . . .} and j ∈ {0, 1, . . . , d}. Here we use the trapezoidal rule to
approximate the τ j-time in the form

τj(ti) ≈ τj(0) +
∆

2

i
∑

k=1

(

mj∆
tk−1

+ mj∆
tk

)

(8.17)

for i ∈ {0, 1, . . .}, j ∈ {0, 1, . . . , d}.
Once the ϕ̄j-times are generated the simulation of the jth benchmarked primary
security accounts under the GMMM follows the same method as described above
for the MMM but now in the ϕ̄j time.
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Figure 8.7: Simulated GOP, EWI and MCI under the GMMM model in the
log-scale

0 50 100 150
0

0.5

1

1.5

2

2.5

benchmarked EWI

benchmarked MCI

Figure 8.8: Simulated benchmarked GOP, EWI and MCI under the GMMM
model

As a final model we simulate the multi-currency GMMM. This model generalizes
the MMM by introducing a random market activity time τj . In our simulation
we use one common market time τ defined by the process m with parameters
m̄ = 1, κ = 0.1 and γ = 0.1. The net growth rate ηj and the scaling αj

0 are as
in the MMM. In Fig. 8.5 we illustrate the resulting benchmarked risky primary
security accounts. Under the GMMM the jth squared volatility equal at time ti
the product Ŝj

ti
αj

0 exp{ηjτj(ti)}mj∆
ti

. In Fig.8.6 a typical path of squred volatility
under the GMMM is exhibited.
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The GOP, EWI and MCI are displayed in Fig 8.7 in the log-scale. The bench-
marked GOP, benchmarked EWI and benchmarked MCI are exhibited in Fig.8.8.
Here also the benchmarked primary security accounts are strict supermartingales
and trend downwards in Fig.8.5. This systematic downward trend, however, does
not destroy the property predicted by the diversification theorem that the EWI
constitutes a good proxy of the GOP when observed over a considerably long
time period. The MCI again does not converge in an acceptable manner to the
GOP.

The last two models demonstrated that in the case when the benchmarked pri-
mary security accounts are strict supermartingales, the EWI can significantly
outperform in the long run the MCI. This is an important observation since the
MMM appears to be a reasonably realistic market model.

9 Conclusion

We considered in this paper diversified portfolios under various financial market
models. All benchmarked primary security accounts under the various multi-asset
models are supermartingales. The benchmarked primary security accounts of the
two versions of the multi-currency minimal market model are strict supermartin-
gales, which means that these trend systematically downwards. This is also the
case for the typical market capitalization weighted index. It turns out that well
diversified portfolios, such as the equal value weighted index, approximate the
growth optimal portfolio rather accurately when simulated under all considered
market model dynamics. However, for the two versions where benchmarked pri-
mary security accounts are strict supermartingales the difference between equal
weighted index and market capitalization weighted index is remarkable. This pa-
per successfully illustrates the applicability and robustness of the Diversification
Theorem to large markets.
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Platen, E. (2002). Arbitrage in continuous complete markets. Adv. in Appl.

Probab. 34(3), 540–558.

Platen, E. (2004a). A benchmark framework for risk management. In Stochastic

Processes and Applications to Mathematical Finance, pp. 305–335. Proceed-
ings of the Ritsumeikan Intern. Symposium: World Scientific.

Platen, E. (2004b). A class of complete benchmark models with intensity based
jumps. J. Appl. Probab. 41, 19–34.

Platen, E. (2005). Diversified portfolios with jumps in a benchmark framework.
Asia-Pacific Financial Markets 11(1), 1–22.

Platen, E. & D. Heath (2006). A Benchmark Approach to Quantitative Finance.
Springer Finance. Springer.

Platen, E. & R. Rendek (2008). Empirical evidence on Student-t log-returns
of diversified world stock indices. Journal of statistical theory and prac-

tice 2(2), 233–251.

Platen, E. & R. Rendek (2009). Almost exact simulation of multi-dimensional
stochastic volatility models. (working paper).

Protter, P. (2004). Stochastic Integration and Differential Equations (2nd ed.).
Springer.

Simon, H. A. (1958). The size distribution of business firms. The American

Economic Review 48, 607–617.

Wiggins, J. B. (1987). Option values under stochastic volatility. Theory and
empirical estimates. J. Financial Economics 19, 351–372.

31


