
QUANTITATIVE  FINANCE RESEARCH CENTRE QUANTITATIVE  F 

 

 

 

 

 

 

 

INANCE RESEARCH CENTRE 

 

 

 

 

 

 

QUANTITATIVE  FINANCE RESEARCH CENTRE 

 

                       Research Paper 256                            

 

 The Representation of American Options Prices                                              
under Stochastic Volatility and Jump-Diffusion Dynamics   

 Gerald Cheang, Carl Chiarella and Andrew Ziogas 

                                                                                                                                  
ISSN 1441-8010                                                            www.qfrc.uts.edu.au   

b r o u g h t  t o  y o u  b y  C O R EV i e w  m e t a d a t a ,  c i t a t i o n  a n d  s i m i l a r  p a p e r s  a t  c o r e . a c . u k

p r o v i d e d  b y  R e s e a r c h  P a p e r s  i n  E c o n o m i c s

https://core.ac.uk/display/6248294?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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Abstract. This paper considers the problem of pricing American options when the

dynamics of the underlying are driven by both stochastic volatility following a square

root process as used by Heston (1993), and by a Poisson jump process as introduced

by Merton (1976). Probability arguments are invoked to find a representation of the

solution in terms of expectations over the joint distribution of the underlying process.

A combination of Fourier transform in the log stock price and Laplace transform in

the volatility is then applied to find the transition probability density function of the

underlying process. It turns out that the price is given by an integral dependent upon

the early exercise surface, for which a corresponding integral equation is obtained.

The solution generalises in an intuitive way the structure of the solution to the corre-

sponding European option pricing problem in the case of a call option and constant

interest rates obtained by Scott (1997).
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1. Introduction

Derivative securities are commonly written on underlying assets with return dynamics

that are not sufficiently well described by the geometric Brownian motion process pro-

posed by Black & Scholes (1973) and Merton (1973). There have been numerous efforts

to develop alternative asset return models that are capable of capturing the leptokurtic

features found in financial market data, and subsequently use these models to develop

option prices that accurately reflect the volatility smiles and skews found in market

traded options. There are two classical ways of developing option pricing models that

are capable of generating such behaviour; the first is to add jumps into the price process

for the underlying asset, as originally proposed by Merton (1976); the second is to allow

the volatility to evolve stochastically, for instance according to the square-root process

introduced by Heston (1993).

While both alternative models have proven valuable in capturing the leptokurtosis found

in realised market returns, Cont & Tankov (2004b) indicate that a model combining both

jump-diffusion and stochastic volatility features can lead to even better results. Such

a model is proposed by Bates (1996), combining the features of the models by Merton

(1976) and Heston (1993). A similar model is considered by Scott (1997), generalised to

allow for stochastic interest rates. Scott explores the pricing of European options under

these dynamics, but American options are not considered.

There seems to have been very little research on American option pricing under sto-

chastic volatility models with jump-diffusion, despite the fact that many traded options

contain early exercise features. In this paper we consider the problem of pricing Ameri-

can options under the combined stochastic volatility and jump-diffusion model of Bates

(1996). We focus here on the representation of the solution. We use change of measure

and probabilistic arguments to obtain the general form of the American option price

as well as the associated integro-partial differential equation. Implementation of this

form requires knowledge of the joint transition probability density function for the log

stock price and volatility, which we obtain by solving the corresponding Kolmogorov

backward equation using integral transform methods.
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With regard to the probability approach, this was developed by Karatzas (1988) when

the underlying follows pure diffusion dynamics and extended by Pham (1997) to the

case of jump-diffusion dynamics. Here we shall extend this approach to the situation

when the underlying follows jump-diffusion dynamics.

The remainder of this paper is structured as follows. Section 2 outlines the free boundary

problem that arises from pricing an American call option under stochastic volatility and

jump-diffusion dynamics and discusses change of measure results. Section 3 derives a

representation of the American option price. Section 4 applies transform techniques

to solve the underlying Kolmogorov integro-partial differential equation (IPDE) for the

transition probability density function. Section 5 applies this to the representation of

Section 3 to obtain the expressions for the option price and free boundary. Here a

more detailed discussion on the incompleteness of the model is found. Finally Section 6

concludes. Most of the lengthy mathematical derivations are given in appendices.

2. Problem Statement - The Merton-Heston-Bates Model

In this section we derive the representation of the option value by using the probabilistic

arguments originally applied to the American option pricing problem by Karatzas (1988)

and extended to the stochastic volatility case by Touzi (1999) and the jump-diffusion

case by Pham (1997).

Assume a filtered probability measure space (Ω,F , {Ft},P), where P is the market mea-

sure, and the filtration {Ft} generates all the relevant processes required in our model.

Let CE be the price of a European call option at time t written on a stock the price of

which at time t is denoted St and strike price K. The price of its American counterpart

is denoted by CA. For the underlying dynamics, we assume that the stochastic differ-

ential equation (SDE) for S is given by the jump-diffusion process proposed by Merton

(1976), in conjunction with the square root volatility process by Heston (1993). Thus

the dynamics for St are governed by the SDE system

dSt = µSt−dt+
√
vtSt−dZ1,t + St−

∫

R

(ey − 1)(p(dy, dt) − λmP(dy)dt), (1)

dvt = κv(θ − vt)dt + σ
√
vtdZ2,t. (2)
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In (1), µ is the instantaneous return per unit time, vt is the instantaneous squared

volatility per unit time, and Z1,t is a standard Wiener process under the measure P.

There is a Poisson marked point process ({Yi}Nt

ı=1, Nt) with the associated Poisson arrival

process Nt and the associated counting measure p(dy, dt) under the measure P. Its

compensator under the P-measure is λmP(dy)dt. The arrival intensity of Nt is λ under

P. Conditional on the jump event occurring the distribution of the return jump-size

is mP(dy). The (return) jump-sizes Yi arriving at different times are assumed to be

independently and identically distributed with densitymP(dyi) = mP(dy). The expected

jump-size increment under the measure P is

κ =

∫

R

(ey − 1)mP(dy),

so that we can also write (1) as

dSt = (µ− λκ)St−dt+
√
vtSt−dZ1,t + St−

∫

R

(ey − 1)p(dy, dt). (3)

We denote the moment generating function of the return jump-size in the P-measure by

MP,Y (u) = EP[euY ].

For now we do not make any assumptions on the distribution of the return jump-sizes

except that its moment generating function exists. Note that Nt, Y and the Wiener

components are otherwise uncorrelated.

In (2), θ is the long-run mean for vt, κv is the rate of mean reversion, σ is the in-

stantaneous volatility of the variance process vt per unit time, and Z2,t is a standard

Wiener process correlated with Z1,t such that dZ1,t.dZ2,t = ρdt. This is basically a CIR

square-root process (Cox, Ingersoll & Ross (1985)).

Let r be the risk-free rate of interest, and assume that the stock pays a continuously

compounded dividend yield at rate q. Here we assume that r and q are both constant,

although the results which follow can be readily generalised to facilitate the case where

r and q are deterministic functions of time with some boundedness conditions. It will
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also be convenient to introduce the correlation matrix

Σ =


1 ρ

ρ 1


 .

We introduce the vector notation Zt = (Z1,t, Z2,t)
⊤ for the Wiener processes, and ζt =

(ζ1,t, ζ2,t)
⊤ for the market prices of Z1 and Z2 risk. Note that ζ2,t is referred to as the

market price of variance risk. We provide assumptions on the parameters of the model

(1) and (2) so that the components of ζt = (ζ1,t, ζ2,t)
⊤ are strictly positive and do not

explode in finite time and that there will exist solutions to (1) and (2). Hence the first

assumption:

Assumption 2.1. The parameters µ, λ, κv, θ and σ are all positive constants. The

parameters in (2) satisfy

2κvθ ≥ σ2 (4)

and the instantaneous correlation between the Wiener components satisfy

−1 < ρ < min
(κv

σ
, 1
)
. (5)

We will show in Appendix 1 that (4) allows us to conclude that the variance process vt

neither explodes nor makes excursions to zero in finite time under the various measures

that we consider in the model. We will also show that (5) ensures that the solution to

(1) takes the form

S(t) = S(0) exp

(
(µ− λκ)t− 1

2

∫ t

0
vudu+

∫ t

0

√
vudZ1,u +

Nt∑

i=1

Yi

)
, (6)

where

exp

(
−1

2

∫ t

0
vudu+

∫ t

0

√
vudZ1,u − λκt +

Nt∑

i=1

Yi

)
(7)

is a strictly positive martingale under P. The condition (5) also ensures that an equiv-

alent solution to (1) under a suitable risk-neutral measure also exists and that the

discounted stock yield process under this measure is a martingale. The assumption of

the constant parameters in the SDEs in Assumption 2.1 basically means that (St, vt) is

jointly Markov.
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The model in (1) and (2) is inherently incomplete in the Harrison & Pliska (1981) sense.

Even without the jumps, the Heston (1993) stochastic volatility model is incomplete

since there are two sources of Wiener risk and one traded asset, and this incompleteness

can lead to situations where there is only an equivalent strictly local martingale mea-

sure, or even multiple option prices (see Sin (1998) and Heston, Loewenstein & Willard

(2007)). The jump-component introduces another source of randomness into the model.

In order to facilitate the analysis, a Radon-Nikodým derivative is needed for the trans-

formation of measures from the original market measure P to some equivalent measure

Q. Because of the incompleteness, the parameters in the Radon-Nikodým derivative will

either have to be calibrated or chosen with specific financial economic scenarios in mind.

For instance, one could choose the parameters in the Radon-Nikodým derivative that

minimizes the relative entropy of Q with respect to P subject to the martingale condi-

tion for the discounted stock yield processes being met, this corresponds to the minimal

entropy martingale measure found in Miyahara (2001). Alternatively, one could seek

to find the values of the parameters that would minimize the divergence EP

[(
dQ
dP

)q]
in

the manner of Jeanblanc, Klöppel & Miyahara (2007). Yet another approach would be

to choose the unspecified parameters by calibrating the model to market data, with the

aim of minimizing the relative entropy of the calibrated risk-neutral measure relative

to the original measure, as done in Cont & Tankov (2004a). It is not the aim of this

paper to discuss how these parameters in the Radon-Nikodým derivative are chosen, we

shall simply assume that they have been selected by one or other of the various possible

methods.

In Heston et al. (2007) and Lewis (2000), it is pointed out if the volatility goes to zero

or to infinity within the lifespan of the option, then there are multiple option prices.

The minimal price is the risk-neutral price

EQ

[
CE(ST , vT , T )

er(T−t)

∣∣∣∣Ft

]
, (8)

where Q is a measure under which both the discounted stock yield process
{

Steqt

ert

}
and

the discounted risk-neutral option price process are martingales. We show in Appendix 1

that condition (5) ensures that the discounted stock yield process is a strictly positive
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martingale under Q. Since (St, vt) is jointly Markov, we can express the risk-neutral

price of a European option with non-path dependent payoff as

C̄E(S, v, t) = EQ

[
CE(ST , vT , T )

er(T−t)

∣∣∣∣St = s, vt = v

]
, (9)

that is, it allows us to write the option prices as some function of St, vt and time t.

The possibility of multiple option prices under a specific measure arises due to the pos-

sibility of so-called option bubbles, which are related to the probability of the volatility

process exploding during the option lifespan (see Lewis (2000), Cox & Hobson (2005),

Heston et al. (2007)). Thus any admissible option price CE(S, v, t) will satisfy

CE(S, v, t) ≥ C̄E(S, v, t). (10)

We need (4) in Assumption 2.1 since this will ensure that the volatility neither goes

to zero nor explodes under the original market measure P as well as under any other

equivalent measure Q. In the pure diffusion case, that is the Heston (1993) model, it is

already well-known from Cox & Ross (1976) that condition (4) is sufficient to ensure that

vt is strictly positive. Also for the pure diffusion case, conditions similar to (4) and (5)

are given that are sufficient for the existence of an equivalent (risk-neutral) martingale

measure Q in the Heston (1993) model (see Wong & Heyde (2004), Andersen & Piterbarg

(2007)). In Appendix 1, we provide details as to why conditions (4) and (5) are also

sufficient to ensure the existence of appropriate Radon-Nikodým derivatives of the form

Lt = LD
t × LJ

t , (11)

where

LD
t = e−

R t
0 (Σ−1ζu)⊤dZu−

1
2

R t
0 ζ⊤

u Σ−1ζudu, (12)

and

LJ
t = e

PNt
i=1(γJi+ν)−λκ′t, (13)

with

κ′ = eνMP,Y (γ) − 1,
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γ ∈ R, ν ∈ R and ζu ∈ R2. In our application, the parameters ζu are adapted to

the filtration and will be chosen so that they are always independent of LJ
t . Radon-

Nikodým derivatives of the form (11) facilitate the measure transformation from the

original measure to suitable equivalent martingale measures.

We also require the second assumption.

Assumption 2.2. The option prices CE(S, v, t), CA(S, v, t) are at least twice differen-

tiable in the first two variables with continuous second order partial derivatives, and at

least once in the time variable with continuous first order partial derivatives with respect

to time.

This assumption allows us to apply the Itô formula or the Feynman-Kac theorem for

jump-diffusion processes (see Protter (2004)). In this respect, we are dealing with a

European style option on the underlying that does not have path-dependent final payoff

and the final payoff function is Lipshitz, for instance, a European or American style call

option.

The following theorem is standard.

Theorem 2.1. Consider the probability measure space (Ω,F , {Ft},P) such that {Ft}

is the natural filtration generated by correlated Wiener components (Z1, Z2) and a com-

pound Poisson process
∑Nt

n=0 Yn. Suppose Lt given by (11) is a strict martingale under

P and that EP[Lt] = 1. Then Lt is a Radon-Nikodým derivative of some equivalent

measure Q with respect to P, that is

Lt =
dQ

dP

∣∣∣∣
t

= e−
R t

0
(Σ−1ζu)⊤dZu−

1
2

R t

0
ζ⊤

u Σ−1ζudue
PNt

i=1(γYi+ν)−λκ′t. (14)

Then the Wiener components Zi have drift ζi,t under the measure Q and the compound

Poisson process
∑Nt

n=0 Yn has a new intensity rate λ̃ = λ(1 + κ′) and a new distribution

for the jump sizes given by the moment generating function

MQ,Y (u) =
MP,Y (u+ γ)

MP,J(γ)
, (15)

Proof. Since the Wiener part and the jump part of the Radon-Nikodým derivative (14)

are independent, following Wong & Heyde (2004) or Andersen & Piterbarg (2007), the
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conditions in Assumption 2.1 ensures that LD
t is a positive martingale under P. By con-

struction, the jump part LJ
t is already a positive martingale. Once we have established

that Lt is a strictly positive martingale under P, then we are able to determine the

distribution of the Wiener components and the jump components (see Cont & Tankov

(2004b) (Chapter 9) or Runggaldier (2003)).

�

The jump part of the Radon-Nikodým derivative (13) can be written in a more general

form. In the notation of Runggaldier (2003), the jump part of the Radon-Nikodým

derivative (14) takes the form

dQ

dP

∣∣∣∣
({Yi}

Nt
i=1,Nt)

= exp

[∫ t

0

∫

R

(1 − ψuhu(y))λmP(dy)du

] Nt∏

i=1

ψTi
hTi

(Yi). (16)

A comparison between (13) and (16) allows us to make the equivalence ht(y) = eγy/MP,Y (γ)

and ψt = eνMP,Y (γ) = 1 + κ′. Following Runggaldier (2003), the market price of jump-

risk in our model is [ψtht − 1]mP(dy) = [eγy+ν − 1]mP(dy) per jump-size of magnitude

dy. Under Q, the return jump-size distribution is

mQ(dy) = ht(y)mP(dy) =
eγy

MP,Y (γ)
mP(dy). (17)

We denote the associated counting measure of N(dy, dt) under Q as q(dy, dt) and its

compensator is λ̃mQ(dy)dt, since the arrival intensity of Nt is now λ̃ and the jump-sizes

have density mQ(dy). The choice of constant parameters γ and ν in the Radon-Nikodým

derivative (14) ensures that the Poisson process Nt remains a homogeneous Poisson

process and that the return jump-size distribution of the jumps arriving at different

times are identically distributed under the measure transformation.

Some specific choices of the new measure Q can be determined by specific values of γ and

ν in the Radon-Nikodým derivative (11). The choice of γ = ν = 0 is analogous to the

case in Merton’s (1976) jump-diffusion model where the jump-risk is unpriced. If γ = 0

but ν 6= 0, then there is a change to the jump-arrival intensity but not to the jump-

size distribution under the measure transformation. Lastly, if ν = − lnMP,Y (γ), then
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the jump-arrival intensity does not change although the distribution of the jump-sizes

changes under the transformation of measure.

We note the equivalent martingale measure Q is chosen so that the value of the stock

position measured in units of the money market account, namely the discounted stock

yield process,
{

Steqt

ert

}
is martingale under Q once ν, γ and ζ2,t in the Radon-Nikodým

derivative (14) in Theorem 2.1 are chosen. Having assured ourselves that the volatility

process does not make an excursion to zero nor explodes to infinity, and the existence

of an equivalent martingale measure Q, we can conclude that there is a European call

option price

CE(S, v, t) = C̄E(S, v, t), (18)

which is the risk-neutral valuation price of the discounted final payoff, under a risk-

neutral measure Q that corresponds to a selected pair of parameters γ and ν in the

Radon-Nikodým derivative (14). Here we see that the jump components also contribute

to the incompleteness of the model since now the choices of γ and ν will determine the

price.

For convenience, define Ct− = CE(S, v, t−) as the pre-jump option value evaluated at the

pre-jump stock price St−(= S). Standard application of Itô’s Lemma for jump-diffusion

processes (see Protter (2004)) yields the option price dynamics

dCt =

[
∂Ct−

∂t
+ (µ− λκ)St−

∂Ct−

∂s
+ κv(θ − vt)

∂Ct−

∂v
+
vtS

2
t−

2

∂2Ct−

∂s2

+ ρσvtSt−
∂2Ct−

∂s∂v
+
σ2vt

2

∂2Ct−

∂v2

]
dt+

√
vtSt−

∂Ct−

∂s
dZ1,t

+ σ
√
vt
∂Ct−

∂v
dZ2,t +

∫

R

[
C(St−e

y, v, t) − Ct−

]
p(dy, dt). (19)

If ζ2,t is specified then, by Girsanov’s theorem for Wiener processes, there exists

dZ̃2,t = ζ2,tdt + dZ2,t

such that Z̃2,t is a standard Wiener process under Q. Therefore, the dynamics for the

variance process (2) become

dvt = κv(θ − vt)dt− ζ2,t
√
vtσdt + σ

√
vtdZ̃2,t. (20)



AMERICAN OPTIONS - STOCHASTIC VOLATILITY AND JUMP-DIFFUSION 11

If we choose

ζ2,t =
λv

√
vt

σ

to coincide with Heston’s choice of the market price of volatility risk, then (21) becomes

dvt = [κvθ − (κv + λv)vt] dt+ σ
√
vtdZ̃2,t. (21)

Here we assume λv ≥ 0 in line with standard financial arguments that investors require

positive premiums for bearing volatility risk. This choice of ζ2,t ensures that both the

historical measure P and Q will be equivalent since the condition (4) results in positive

values of vt and together with condition (5), prevents vt exploding in a finite time-horizon

under P and also under Q since

2(κv + λv)
κvθ

(κv + λv)
= 2κvθ ≥ σ2.

This will be demonstrated using the usual Feller tests in Appendix 1.

From Proposition 2.1, the Poisson arrival process Nt has intensity λ̃ = λ(1+κ′) and the

jump-size J has moment generating function given by (15), so that expected relative

jump-size increment under the Q-measure is

κ̃ =

∫

R

(ey − 1)mQ(dy).

Next we note that the dynamics of Ste
qt, measured in units of the money market account,

are given by

d

(
Ste

qt

ert

)
=

(
St−e

qt

ert

)[
(µ+ q − r − λκ+ λ̃κ̃)dt +

√
vtdZ1,t − λ̃κ̃dt+

∫

R

[ey − 1]q(dy, dt)
]
.

(22)

Thus if we set the market price of Z1 risk as

ζ1,t =
(µ+ q − r − λκ+ λ̃κ̃)√

vt
,
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which is the risk premium µ + q − r of the stock less jump risk (λκ − λ̃κ̃) per unit of

stock volatility
√
vt, then (22) becomes

d

(
Ste

qt

ert

)
=

(
St−e

qt

ert

)[√
vtdZ̃1,t − λ̃κ̃dt +

∫

R

[ey − 1]q(dy, dt)
]
, (23)

where

dZ̃1,t = ζ1,tdt+ dZ1,t,

with Z̃1,t being a standard Wiener process under the Q-measure by Girsanov’s theorem.

We know that the discounted European option price process
{

CE(S,v,t)
ert

}
should be

driftless under the equivalent martingale measure Q. The following steps will enable

us to express this fact as an IPDE for the option price.

We note that (23) implies that

dSt

St−
= (r − q − λ̃κ̃)dt +

√
vtdZ̃1,t +

∫

R

(ey − 1)q(dy, dt), (24)

and again we will show in Appendix 1 that condition (4) and (5) ensures that (24) has

a solution

S(t) = S(0) exp

(
(r − q − λ̃κ̃)t− 1

2

∫ t

0
vudu+

∫ t

0

√
vudZ̃1,u +

Nt∑

i=1

Yi

)
, (25)

where

exp

(
−1

2

∫ t

0
vudu+

∫ t

0

√
vudZ̃1,u − λ̃κ̃t+

Nt∑

i=1

Yi

)
(26)

is a positive martingale under Q. A consequence of (26) being a Q-martingale is that

the stock price St itself can be used as numéraire and (4) prevents the value of vt from

hitting zero or exploding in a finite time-horizon under the measure associated with St

as the numéraire (see Appendix 1).



AMERICAN OPTIONS - STOCHASTIC VOLATILITY AND JUMP-DIFFUSION 13

From Itô’s lemma for jump diffusion processes, the stochastic differential equation for

the option price is given by

dCt =

[
∂Ct−

∂t
+ (r − q − λ̃κ̃)St−

∂Ct−

∂s
+
(
κv(θ − vt) − λvvt

)∂Ct−

∂v

+
vtS

2
t−

2

∂2Ct−

∂s2
+ ρσvtSt−

∂2Xt−

∂s∂v
+
σ2vt

2

∂2Ct−

∂v2

+ λ̃EY
Q

[
Ct(St−e

Y , vt) −Ct−

]]
dt+

√
vtSt−

∂Ct−

∂s
dZ̃1,t

+ σ
√
vt
∂Ct−

∂v
dZ̃2,t

+

∫

R

[
Ct(St−e

y, vt) − Ct−

]
(q(dy, dt) − λ̃mQ(dy)dt), (27)

where we use the notation

EY
Q

[
C(St−e

Y , v, t) − Ct−

]
=

∫

R

[
C(St−e

y, v, t) − Ct−

]
mQ(dy). (28)

In order for
{

CE(S,v,t)
ert

}
to be driftless, the coefficient of dt in (27) in the square brackets

must be zero. Hence we find that the option price must satisfy the integro-partial

differential equation (IPDE)

∂Ct−

∂t
+ (r − q − λ̃κ̃)St−

∂Ct−

∂s
+
(
κvθ − (κv + λv)v

)∂Ct−

∂v

+
vtS

2
t−

2

∂2Ct−

∂s2
+ ρσvtSt−

∂2Ct−

∂s∂v
+ σ2 vt

2

∂2Ct−

∂v2

+ λ̃EY
Q

[
C(St−e

Y , v, t) − Ct−

]
= rCt−. (29)

The final time conditions of the above IPDE is determined by the nature of the option

of interest, for instance for a European style call option with final payoff we would have

CE(S, v, T ) = (ST −K)+, (30)

and as discussed earlier, the European option price CE(S, v, t) is given by the risk-neutral

valuation of the final payoff

CE(S, v, t) = EQ[(ST −K)+e−r(T−t)|Ft], (31)
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in the absence of option bubbles. An application of the Feynman-Kac formula for jump-

diffusion processes re-expresses (31) as (29) with final time condition (30). It will be

shown in Appendix 1 that (31) can be expressed as

CE(S, v, t) = Ste
−q(T−t)Q̂(A|St = S, vt = v) −Ke−r(T−t)Q(A|St = S, vt = v) (32)

where Q̂ is the measure corresponding to St as the numéraire, Q is the risk-neutral mea-

sure corresponding to the parameters γ and ν, and A is the event that the call option

is in the money at maturity. This representation (32) is analogous to the representation

obtained by Geman, El-Karoui & Rochet (1995). In later sections we see that by inver-

sion of the Fourier and Laplace transforms of the solution to IPDE (29), the solution

for the European call price is exactly (32).

Of course we are interested here in American option pricing to which we turn in the

next section.

3. Representation of The American Option Price

In the case of an American style call option, the option price is

CA(S, v, t) = ess sup
u∈[t,T ]

EQ[(Su −K)+e−r(u−t)|Ft], (33)

where u is a stopping time.

A quantity of interest in American option pricing is the early exercise boundary which

in the current context will depend on both stochastic variance v and time t. Hence we

use S = b(v, t) to denote the early exercise surface at time t and variance v, though for

ease of notation we shall occasionally simply write bt.

For any option, whether American or European, let the discounted option prices be

C̃E
t =

CE(S, v, t)

ert
, and C̃A

t =
CA(S, v, t)

ert
.

For the discounted option prices evaluated at the pre-jump stock prices St−(= S), we

write

C̃E
t− =

CE(S, v, t−)

ert
, and C̃A

t− =
CA(S, v, t−)

ert
.
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Applying Ito’s Lemma for jump-diffusions to C̃A
t , we obtain

dC̃A
t =

[
∂C̃A

t−

∂t
+ (r − q − λ̃κ̃)St−

∂C̃A
t−

∂s
+ (κv(θ − vt) − λvvt)

∂C̃A
t−

∂v

+
1

2
vtS

2
t−

∂2C̃A
t−

∂s2
+ ρσvtSt−

∂2C̃A
t−

∂s∂v
+

1

2
σ2vt

∂2C̃A
t−

∂v2

]
dt

+
√
vtSt−

∂C̃A
t−

∂S
dZ̃1,t + σ

√
vt
∂C̃A

t−

∂v
dZ̃2,t

+

∫

R

[C̃A(St−e
y, v, t) − C̃A(St−, v, t)]q(dy, dt). (34)

Integrating (34) from t to T , and then multiplying (34) by the integrating factor ert

yields

CA
T

er(T−t)
=CA

t +

∫ T

t
e−r(u−t)L̂CA

u−du+

∫ T

t
e−r(u−t) ∂C

A
u−

∂s

√
vuSu−dZ̃1,u

+

∫ T

t
e−r(u−t) ∂C

A
u−

∂v
σ
√
vudZ̃2,u

+

∫ T

t
e−r(u−t)

∫

R

[CA(Su−e
y, v, u) − CA(Su−, v, u)][q(dy, du) − λ̃mQ(dy)du],

(35)

where

L̂CA
u− =

∂CA
u−

∂u
− rCA

u− + (r − q − λ̃κ̃)Su−
∂CA

u

∂s
+ (κv(θ − vt) − λvvt)

∂CA
u−

∂v

+
vtS

2
u−

2

∂2CA
u−

∂s2
+ ρσvtSt−

∂2CA
u−

∂s∂v
+
σ2vt

2

∂2CA
u−

∂v2

+ λ̃

∫

R

[CA(Su−e
y, v, u) − CA(Su−, v, u)]mQ(dy). (36)

Note that in (35) it must be the case that the integro-partial differential operator satisfies

L̂CA
u− < 0 (37)

in the early exercise region Su− ≥ bu since the American option is a strict supermartin-

gale in that region. In the continuation region Su− < bu, it is not optimal to exercise

the American option and hence it behaves like a European option there, thus

L̂CA
u− = 0. (38)
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Thus the American option price is the solution to the integro-partial differential equation

(29) subject to the early exercise boundary condition

CA(Su, v, u) = Su −K where Su ≥ bu, (39)

together with the smooth pasting condition

lim
s→bu

∂CA(S, v, u)

∂s
= 1. (40)

In addition, the conditions

∂CA(S, v, u)

∂u
= 0, where S > bu (41)

and
∂CA(S, v, u)

∂v
= 0 where S > bu, (42)

must also be satisfied.

Figure 1 shows the relation between the payoff, price profile and early exercise boundary

for the American call under consideration.

C(S, v, u)

K b(v, u) S

Continuation region Stopping region

Figure 1. The continuation region, the stopping region and the early
exercise point for the American call option, for a given value of v and
time.

The following proposition gives a decomposition of the American option price in terms

of its European counterpart and an early exercise premium.
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Proposition 3.1. The American call option value decomposes as

CA(S, v, t) = CE(S, v, t) + CP (S, v, t), (43)

where the first term on the right hand side is the European call option price and the

second term is the early exercise premium. The early exercise premium term can be

written as

CP (S, v, t) = CD
P (S, v, t) − λ̃CJ

P (S, v, t), (44)

where

CD
P (S, v, t) =

∫ T

t
e−r(u−t)EQ

[
(qSu − rK)1{Su≥bu}|Ft

]
du, (45)

and

CJ
P (S, v, t) =

∫ T

t
e−r(u−t)EQ

[
EY

Q

[
CA(Su−e

Y , v, u) − (Su−e
Y −K)

]1B(u)

∣∣∣Ft

]
du, (46)

where the event B(u) is defined by

B(u) = {bu ≤ Su− < bue
−Y }

with bu being the early exercise boundary at time u and the notation EY
Q denotes taking

expectations over the return jump-sizes only.

Remark 3.1. Each component of the early exercise premium in (44) has a distinct

financial interpretation. The first part, CD
P given by (45), denotes the component of the

early exercise premium arising from the diffusion part of the dynamics for the stock.

Specifically, CD
P is the expected present value of the portfolio qS − rK held whenever

S is in the stopping region. The second term, λ̃CJ
P as given in (46), arises from the

presence of jumps1, and is the expected present value of the cost incurred by the option

holder whenever S jumps from the stopping region back into the continuation region.

The explanation of this rebalancing cost was first given by Gukhal (2001) and a more

detailed discussion is given by Chiarella & Ziogas (2008).

1Note that when there are no jumps in the model, eλ = 0 and CJ
P no longer contributes towards the

early exercise premium.
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Proof. Taking the conditional expectation of (35) under the martingale measure Q

and conditioning on Ft, the discounted conditional expectation of the final payoff of the

American option is

EQ

[
CA

T

er(T−t)

∣∣∣∣Ft

]
= CA

t + EQ

[∫ T

t
e−r(u−t)L̂CA

u−du

∣∣∣∣Ft

]
. (47)

Note that the conditional expectation of the other remaining terms in (35) are zero since

they are all (local) martingales with zero drift.

At maturity time T , the final payoffs of the American and European calls are the same,

that is, CA(S, v, T ) = CE(S, v, T ) = (ST −K)+. Hence (47) simplifies to

CA
t = CE

t −
∫ T

t
e−r(u−t)EQ[L̂CA

u− | Ft]du. (48)

Decomposing the integral in the second term of (48) as integrals over the early exercise

region and over the continuation region, the American option price satisfies

CA
t = CE

t −
∫ T

t
e−r(u−t)EQ[L̂CA

u−1{Su−≥bu} + L̂CA
u−1{Su−<bu} | Ft]du

= CE
t −

∫ T

t
e−r(u−t)EQ[L̂CA

u−1{Su−≥bu} | Ft]du, (49)

where we have made use of (37) and (38).

Using the boundary and smooth pasting conditions (40) to (42) in the early exercise

region, the last line (49) becomes

CA
t = CE

t −
∫ T

t
e−r(u−t)EQ[(−r(Su− −K) + (r − q − λ̃κ̃)Su−)1{Su−≥bu} | Ft]du

− λ̃

∫ T

t
e−r(u−t)EQ[EY

Q(CA(Su−e
Y , v, u) − (Su− −K))1{Su−≥bu} | Ft]du

= CE
t +

∫ T

t
e−r(u−t)EQ[(qSu− − rK)1{Su−≥bu} | Ft]du

− λ̃

∫ T

t
e−r(u−t)EQ[EY

Q [CA(Su−e
Y , v, u) − (Su−e

Y −K)]1{Su−≥bu} | Ft]du. (50)

Note that in (50), the post-jump option price less the post-jump intrinsic value if

Su−e
Y ≥ bu satisfies

CA(Su−e
Y , v, u) − (Su−e

Y −K) = 0,
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and if Su−e
Y < bu satisfies

CA(Su−e
Y , v, u) − (Su−e

Y −K) > 0.

Hence (50) can be written as

CA
t =CE

t +

∫ T

t
e−r(u−t)EQ[(qSu− − rK)1{Su−≥bu} | Ft]du

− λ̃

∫ T

t
e−r(u−t)EQ[EY

Q [CA(Su−e
Y , v, u) − (Su−e

Y −K)]1{bu<Su−<bue−Y } | Ft]du.

The last equation is the result of the proposition and we define CP (S, v, t) according to

(44).

�

In order to evaluate the option price from equation (43) we need an expression for the

early exercise boundary b(v, t). Using the fact that at the early exercise boundary we

have

CA(bt, v, t) = bt −K (51)

we can obtain the integral equation that determines the early exercise boundary.

Proposition 3.2. The early exercise boundary b(v, t) is determined by the integral equa-

tion

b(v, t) −K = CE(bt, v, t) + CP (bt, v, t) (52)

Proof. A simple matter of setting S = bt in (43) and making use of (51).

�

It should be kept in mind that the term CP (bt, v, t) in (52) involves the unknown option

price though its second term (the one arising due to the presence of jumps). Hence (43)

and (52) need to be solved as a linked system, this is in contrast to the corresponding

system of equations in the no jump case which can be solved sequentially, that is first

the integral equation for the free boundary is solved and then that is used to evaluate

the option price.
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4. Calculation of the Transition Density Function

In order to compute the terms on the right hand side of (44) we need to be able to

calculate the expectations EQ and EY
Q . To calculate the expectation restricted to the

jump-sizes EY
Q we need to specify a jump-size distribution, below we shall assume that

the Y are normally distributed. The calculation of EQ requires knowledge of the joint

transition density of S and v given that their dynamics under the risk-neutral measure

Q are driven by equations (24) and (21). As is well known the joint transition density

satisfies the Kolmogorov backward equation associated with (24) and (21), which here

will be an IPDE because of the jump term. In terms of the time variable t we use

G(S, v, t;ST , vT , T ) to denote the transition probability density for passage from S, v

at current time t to ST , vT at maturity time T . In order to express the IPDE for G

as an initial value problem (which is standard for the transform techniques we shall

use) it if more convenient in this section to express G in terms of time-to-maturity

τ ≡ T − t. Thus in this section we solve for G(S, v, τ ;S0, v0, 0)
2 which is now interpreted

as the transition probability density for passage from S, v at time-to-maturity τ to

S0, v0 at maturity. Quite frequently we will simply write G(S, v, τ ;S0, v0) and in order

to simplify the notation we shall suppress the dependence on S0, v0 unless it is required.

The Kolmogorov IPDE associated with the system (24) and (21), in terms of time-to-

maturity τ , is

∂G

∂τ
=
vS2

2

∂2G

∂S2
+ ρσvS

∂2G

∂S∂v
+
σ2v

2

∂2G

∂v2

+ (r − q − λ̃κ̃)S
∂G

∂S
+
(
κvθ − (κv + λv)v

)∂G
∂v

+ λ̃

∫ ∞

0
[G(Sey , v, τ) −G(S, v, τ)]Q(y)dy. (53)

In the last term on the RHS we have set mQ(y) = Q(y)dy where Q(y) is the density

function of the jump-size distribution under the risk neutral measure. Equation (53) is

2Of course there is an abuse of notation here, strictly speaking we should introduce a different name
for this function since it is in fact G(S, v, T − τ ;ST , vT , T ). However in order to reduce the notational
burden we shall continue to use G and convert back to the time t notation once we have obtained the
solution.
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to be solved subject to the initial conditions

G(S, v, 0;S0, v0) = δ(S − S0)δ(v − v0), (54)

where δ(·) denotes the Dirac delta function.

Here we shall use the Fourier transform to reduce the two-dimensional IPDE (53) to a

one-dimensional PDE whose solution is already known, thereby allowing us to readily

find the solution to (53). We begin by making a change of variable. Let S = ex and with

a slight abuse of notation we continue to refer to the density function as G(x, v, τ ;x0, v0).

Thus equation (53) becomes

∂G

∂τ
=
v

2

∂2G

∂x2
+ ρσv

∂2G

∂x∂v
+
σ2v

2

∂2G

∂v2
+
(
r − q − λ̃κ̃− v

2

) ∂G
∂x

+ (α− βv)
∂G

∂v

+ λ̃

∫ ∞

0
[G(x + y, v, τ) −G(x, v, τ)]Q(y)dy, (55)

which is to be solved in the region −∞ < x <∞, 0 ≤ v <∞, 0 ≤ τ ≤ T , subject to the

initial condition

G(x, v, 0) = δ(x− x0)δ(v − v0),

with α ≡ κvθ, β ≡ κv + λv and x0 = lnS0. Since x does not appear in the coefficients

of any of the terms in (55), we are now able to take the Fourier transform of the IPDE

with respect to x, which we present in Proposition 4.1 below.

It should be noted that integral transforms require knowledge of the behaviour of the

functions being transformed at the extremities of the domain. In applying the Fourier

transform, we require that G(x, v, τ) and ∂G/∂x tend to zero as x → ±∞. These

conditions will be assumed to be satisfied as they seem reasonable to impose on density

functions under jump-diffusion dynamics with the jump-size distribution we assume

here.

Proposition 4.1. Let Fx{G(x, v, τ)} be the Fourier transform of G(x, v, τ) taken with

respect to x, defined as

Fx{G(x, v, τ)} =

∫ ∞

−∞
eiφxG(x, v, τ)dx = Ĝ(φ, v, τ). (56)
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The Fourier transform of (55) is the solution of the differential equation

∂Ĝ

∂τ
=
σ2v

2

∂2Ĝ

∂v2
+ (α− Θv)

∂Ĝ

∂v
+

(
Λ

2
v − iφΨ

)
Ĝ, (57)

where

Θ = Θ(φ) ≡ β + ρσiφ,

Λ = Λ(φ) ≡ iφ− φ2,

Ψ = Ψ(φ) ≡ r − q − λ̃κ̃− λ̃

iφ
(A(φ) − 1),

and

A(φ) ≡
∫ ∞

0
Q(y)e−iφydy. (58)

We note that the initial condition Ĝ(φ, v, 0) ≡ ĝ(φ, v) = eiφx0δ(v − v0), is obtained by

calculating directly Fx{G(x, v, 0)}.

Proof: Refer to Appendix 2.

�

The general solution of the two-dimensional PDE (57) has already been derived by Feller

(1951) using a Laplace transform approach in the v direction.3 The solution procedure

in the case of stochastic volatility only is given in Adolfsson, Chiarella & Ziogas (2009).

For completeness we will outline the main steps, noting that the main difference here is

the Ψ term in (57) that contains additional terms arising from the jump process.

In applying the Laplace transform in the v direction we must make certain assumptions

about the behaviour of Ĝ(φ, v, τ), specifically that e−svĜ(φ, v, τ) and e−sv∂Ĝ(φ, v, τ)/∂v

tend to zero as v → ∞, where s is the Laplace transform variable4. Proposition 4.5

provides the Laplace transform of (57) with respect to v.

3Feller (1951) in essence obtained the transitional probability density function for the process for v.
Whilst the problem considered here is more general, involving the dynamics of S with jumps, the main
steps in solving for the transitional probability density function by transform methods are essentially
the same
4Again these conditions can be reasonably assumed to be satisfied by the density function under con-
sideration here.
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Proposition 4.2. Let Lv{Ĝ(φ, v, τ)} be the Laplace transform of Ĝ(φ, v, τ) taken with

respect to v, defined as

Lv{Ĝ(φ, v, τ)} =

∫ ∞

0
e−svĜ(φ, v, τ)dv ≡ G̃(φ, s, τ). (59)

Applying the Laplace transform to (57) we find the G̃ satisfies the PDE

∂G̃

∂τ
+

(
σ2

2
− Θs+

Λ

2

)
∂G̃

∂s
=
[
(α− σ2)s+ Θ − iφΨ

]
G̃+ fL(τ), (60)

with initial condition G̃(φ, s, 0) ≡ g̃(φ, v) = e−isv0+iφx0, and where fL(τ) ≡ (σ2/2 −

α)Ĝ(φ, 0, τ) is determined such that

lim
s→∞

G̃(φ, s, τ) = 0. (61)

Proof: Refer to Appendix 3.

�

Equation (60) is now a first order PDE which can be solved using the method of char-

acteristics. The unknown function fL(τ) on the right hand side of (60) is then found by

applying the condition (61). In this way we are able to solve (60) for G̃(φ, s, τ), and the

result is given in Proposition 4.3.

For future reference we recall that Γ(n; z) is a (lower) incomplete gamma function,

defined as

Γ(n; z) =
1

Γ(n)

∫ z

0
e−ξξn−1dξ, (62)

and Γ(n) is the (complete) gamma function given by

Γ(n) =

∫ ∞

0
e−ξξn−1dξ. (63)
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Proposition 4.3. Using the method of characteristics, and subsequently applying con-

dition (61) to determine fL(τ), the solution to the first order PDE (60) is

G̃(φ, s, τ) = exp

{[
(α− σ2)(Θ − Ω)

σ2
+ Θ − iφΨ

]
τ

}
(64)

×
(

2Ω

(σ2s− Θ + Ω)(eΩτ − 1) + 2Ω

)2− 2α

σ2

× e
iφx0−

“

Θ−Ω

σ2

”

v0 exp

{ −2Ωv0(σ
2s− Θ + Ω)eΩτ

σ2[(σ2s− Θ + Ω)(eΩτ − 1) + 2Ω]

}

× Γ

(
2α

σ2
− 1;

2Ωv0e
Ωτ

σ2(eΩτ − 1)
× 2Ω

(σ2s− Θ + Ω)(eΩτ − 1) + 2Ω

)
,

where

Ω = Ω(φ) ≡
√

Θ2(φ) − σ2Λ(φ). (65)

Proof: Refer to Appendix 4.

�

Having determined G̃(φ, s, τ), we now seek to return to the original variables S and v,

and thus obtain the expression for G(S, v, τ). We begin this process by inverting the

Laplace transform in Proposition 4.4, again using the techniques of Feller (1951).

Proposition 4.4. The inverse Laplace transform of G̃(φ, s, τ) in (64) is

Ĝ(φ, v, τ) =eiφx0+
(Θ−Ω)

σ2 (v−v0+ατ)e−iφΨτ (66)

× 2ΩeΩτ

σ2(eΩτ − 1)

(
v0e

Ωτ

v

) α

σ2 −
1
2

exp

{ −2Ω

σ2(eΩτ − 1)
(v0e

Ωτ + v)

}

× I 2α

σ2 −1

(
4Ω

σ2(eΩτ − 1)
(v0ve

Ωτ )
1
2

)
,

where Ik(z) is the modified Bessel function of the first kind, defined as

Ik(z) =

∞∑

n=0

(
z
2

)2n+k

Γ(n+ k + 1)n!
. (67)

Proof: Refer to Appendix 5.

�



AMERICAN OPTIONS - STOCHASTIC VOLATILITY AND JUMP-DIFFUSION 25

Next we take the inverse Fourier transform of (66) and return to the original variables,

to obtain the form of the transition probability density function G(S, v, τ ;So, v0) as

featured in Proposition 4.5.

Proposition 4.5. Given the definition of Fx in (56), the inverse Fourier transform is

F−1
x {Ĝ(φ, v, τ)} =

1

2π

∫ ∞

−∞
e−iφxĜ(φ, v, τ)dφ = G(x, v, τ). (68)

Substitution of (66) into (68) yields (after transforming back to the original S variable)

G(S, v, τ ;S0, v0)

=

∞∑

n=0

(λ̃τ)ne−
eλτ

n!
E

(n)
Q

{
1

2π

∫ ∞

−∞
eiφ lnSe

(Θ−Ω)

σ2 (v0−v+ατ)e−iφ(r−q−eλek)τ

× e−iφ ln S0Xn
2Ω

σ2(eΩτ − 1)

(
veΩτ

v

) α

σ2 −
1
2

× exp

{ −2Ω

σ2(eΩτ − 1)

(
veΩτ + v

)}

× I 2α

σ2 −1

(
4Ω

σ2(eΩτ − 1)

(
vv0e

Ωτ
) 1

2

)
dφ

}
, (69)

with Xn ≡ ey1ey2 . . . eyn , X0 ≡ 1, and

E
(n)
Q [f(Xn)] =

∫ ∞

0
f(Xn)Q(Xn)dXn (70)

=

∫ ∞

0

∫ ∞

0
· · ·
∫ ∞

0
f(ey1ey2 . . . eyn)Q(y1)Q(y2) . . . Q(yn)dy1dy2 . . . dyn.

Note that each yj (j = 0, . . . , n) is an independent jump drawn from the density Q(y),

and it is assumed that the density Q(y) is of a form which facilitates the reduction from

an n-dimensional integral to a one-dimensional integral in (70)5.

Proof: Refer to Appendix 6.

�

5This holds true for certain popular types of distributions, such as the lognormal (Merton, 1976) and
the double exponential (Kou, 2002).
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5. The American Option Value

Having found the transition probability density function G(S, v, τ ;S0, v0) we can now

find both the European call price and the early exercise premium term for the American

call option that occur in the representation given by equation (43). Firstly, we evalu-

ate the European call price defined at equation (31), and express it in a form that is

analogous to the solution of Heston (1993).

Note that in the following discussion it is convenient to denote the initial and final stock

price, volatility and time by S, v, t and ST , vT , T respectively and also to express G in

terms of time t. Thus (31) can be expressed as6

CE(S, v, t) =

∫ ∞

0

∫ ∞

0
(ST −K)+G(S, v, t;ST , vT , T )dST dvT . (71)

Proposition 5.1. The European call price, CE(S, v, t), given in (71) can be expressed

as

CE(S, v, t) =

∞∑

n=0

(λ̃τ)ne−
eλτ

n!
E

(n)
Q

{
SXne

−eλeκτe−qτPH
1 (SXne

−eλeκτ , v, τ ;K)

−Ke−rτPH
2 (SXne

−eλeκτ , v, τ ;K)

}
, (72)

where τ = T − t and

PH
j (S, v, τ ;K) =

1

2
+

1

π

∫ ∞

0
Re

(
fj(S, v, τ ;φ)e−iφ ln K

iφ

)
dφ, (73)

for j = 1, 2, with

fj(S, v, τ ;φ) = exp{Bj(φ, τ) +Dj(φ, τ) + iφ lnS}, (74)

Bj(φ, τ) = iφ(r − q)τ +
α

σ2

{
(Θj + Ωj)τ − 2 ln

(
1 −Qje

Ωjτ

1 −Qj

)}
,

Dj(φ, j) =
(Θj + Ωj)

σ2

(
1 − eΩjτ

1 − ΘieΩjτ

)
,

and Qj = (Θj + Ωj)/(Θj − Ωj), where we define Θ1 = Θ(i − φ), Ω1 = Ω(i − φ), and

Θ2 = Θ(−φ), Ω2 = Ω(−φ). The random variable Xn has been defined in Proposition 4.5.

6Note that we now switch back to the time t notation.
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Proof: Refer to Appendix 7.

�

Next we use (44) to determine the early exercise premium for the American call.

Proposition 5.2. By use of equation (69), the early exercise premium for the American

call, CP (S, v, t) in (44) can be expressed as

CP (S, v, t) = CD
P (S, v, t) − λ̃CJ

P (S, v, t). (75)

The term CD
P (S, v, t) is given by

CD
P (S, v, t) ≡

∞∑

n=0

(λ̃τ)ne−
eλτ

n!
E

(n)
Q

{∫ τ

0

∫ ∞

0
(τ − ξ)ne−

eλ(τ−ξ) (76)

×
[
qSXne

−eλ(τ−ξ)e−q(τ−ξ)PA
1 (SXne

−eλ(τ−ξ), v, τ − ξ; vT , b(vT , ξ))

− rKe−r(τ−ξ)PA
2 (SXne

−eλ(τ−ξ), v, τ − ξ; vT , b(vT , ξ))

]
dvTdξ

}
,

where τ = T − t and

PA
j (S, v, τ − ξ; vT , b(vT , ξ)) =

1

2
+

1

π

∫ ∞

0
Re

(
gj(S, v, τ − ξ;φ, vT )e−iφ ln b(vT ,ξ)

iφ

)
dφ,

(77)

for j = 1, 2, with

gj(S, v, τ − ξ;φ, vT ) = e
(Θj−Ωj)

σ2 (v−vT +α(τ−ξ))eiφ(r−q)(τ−ξ)eiφ ln S (78)

× 2Ωj

σ2(eΩj(τ−ξ) − 1)

(
vT e

Ωj(τ−ξ)

v

) α

σ2 −
1
2

× exp

{ −2Ωj

σ2(eΩj(τ−ξ) − 1)
(vT e

Ωj(τ−ξ) + v)

}

× I 2α

σ2 −1

(
4Ωj

σ2(eΩj(τ−ξ) − 1)
(vT ve

Ωj(τ−ξ))
1
2

)
,

where Ik(z) given by (67), and Θj and Ωj are given in Proposition 5.1.
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The term CJ
P (S, v, τ) is given by

CJ
P (S, v, t) =

∞∑

n=0

(λ̃τ)ne−
eλτ

n!
E

(n)
Q

{∫ τ

0

∫ ∞

0
(τ − ξ)ne−

eλ(τ−ξ)e−r(τ−ξ) (79)

×
∫ 1

0
G(Y )

∫ ln[b(vT ,ξ)/Y ]

ln b(vT ,ξ)
[C(zY, vT , ξ) − (zY −K)]

× Q̄J(z, vT , τ − ξ;SXne
−eλeκ(τ−ξ), v)dzdY dvTdξ

}
,

where

Q̄J(z, vT , τ − ξ;SXne
−eλeκ(τ−ξ), v)

≡ 1

2πz

∫ ∞

−∞
e

(Θ−Ω)

σ2 (v−vT +α(τ−ξ))e−iφ(r−q)(τ−ξ)

× e−iφ ln(SXne−
eλeκ(τ−ξ)/z) 2Ω

σ2(eΩ(τ−ξ) − 1)

(
vT e

Ω(τ−ξ)

v

) α

σ2 −
1
2

× exp

{ −2Ω

σ2(eΩτ − 1)
(vT e

Ω(τ−ξ) + v)

}

× I 2α

σ2 −1

(
4Ω

σ2(eΩ(τ−ξ) − 1)
(vT ve

Ω(τ−ξ))
1
2

)
dφ. (80)

Proof: Refer to Appendix 8.

�

The interpretations of the terms CD
P and CJ

P that occur here have already been given

in the remark after the statement of Proposition 3.1.

We also note that the functions fj(S, v, τ ;φ) in (74) and gj(S, v, τ ;φ,w) in (78) are

related according to

fj(S, v, τ ;φ) =

∫ ∞

0
gj(S, v, τ ;φ,w)dw.

Having derived integral representations for the European call price and early exercise

premium, we now obtain the integral equation for the American call price. We can also

readily derive the corresponding integral equation for the early exercise boundary, and

thus determine the linked system of integral equations for C(S, v, t) and b(v, t).
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Proposition 5.3. The price of an American call, CA(S, v, t), written on S is given by

CA(S, v, t) = CE(S, v, t) + CD
P (S, v, t) − λ̃CJ

P (S, v, t), (81)

where CE(S, v, t) is given by (72), and the terms CD
P (S, v, t) and CJ

P (S, v, t) are given

respectively by (76) and (79). Equation (81) depends upon the early exercise boundary,

b(v, τ), which is the solution to the integral equation

C(b(v, t), v, t) = b(v, t) −K. (82)

Proof: Substituting (72) and (75) into (43) gives (81). Evaluating (81) at S = b(v, τ)

and applying the boundary condition (39) produces (82).

�

We should point out that the decomposition (81) is a representation of (46) where we

have effectively evaluated the various expectation operations by the use of transform

methods. Equations (81)-(82) both contain integrals involving C(S, v, τ) and b(v, τ).

The dependence upon C arises because of the presence of the jump terms. This means

that one cannot solve sequentially for b(v, τ) and C(S, v, τ), as in the corresponding

situation when jumps are not present. While it is possible to develop numerical methods

that reduce this dependence, as demonstrated by Chiarella & Ziogas (2008) for the

case of American options under jump-diffusion dynamics, such approaches involve an

exponentially increasing computational burden as the number of underlying stochastic

factors in the model increases.

Tzavalis & Wang (2003) provide an integration method for pricing American call options

under stochastic volatility. One of the features of this method is that the free boundary is

approximated as an exponential-linear function of v, which in turn provides a reduction

of the dimensions for the integration in CD
P (S, v, τ). This will not hold true once jumps

are introduced, as the term CJ
P (S, v, τ) cannot be simplified in this manner. We note,

however, that depending on the functional form of Q(Y ), we may be able to complete

the integration with respect to Y analytically in CJ
P (S, v, τ), after interchanging the

order of integration for z and Y . This, combined with the need to evaluate the infinite
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sums arising from the Poisson arrival process for the jumps, results in the fact that

the system (81)-(82) would be very cumbersome to solve. In a related paper Chiarella,

Kang, Meyer & Ziogas (2009) discuss the solution of the IPDE (29) subject to the free

boundary value conditions (39) and (40) using the method lines, which they find to be

a relatively efficient method.

6. Conclusion

This paper studies the evaluation of American call options under stochastic volatility and

jump-diffusion dynamics. Using change of measure results we have derived the integro-

partial differential equation that determines the option price. We have also shown how

the American option price may be represented as the sum of the corresponding European

option and an early exercise premium. In order to operationalise the representation it

is necessary to obtain the transition probability density function for the stock price and

variance under the risk neutral jump-diffusion dynamics. This is done by solving the

associated Kolmogorov IPDE using a combination of the Fourier transform (in the log

stock price dimension) and the Laplace transform (in the variance dimension).

The resulting transition probability density function is then used to express the Ameri-

can option price in integral form involving the early exercise surface, for which an inte-

gral equation is obtained. It turns out that the solution for the American call involves a

linked system of integral equations for the option price and early exercise surface. The

difficulties involved in solving this system of integral equations are also discussed.

Here we have focused on the American call option, but knowledge of the transition

probability density function allows similar representations to be found for a range of

other payoffs such as the put, strangles and various other positions. The knowledge

of the transition probably density function may also be used to develop efficient Monte

Carlo schemes for option payoffs for which analytic representations may not be so readily

found, such as barrier type options.
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Appendix 1. Explosion of the Volatility Process

As discussed in Section 2, we want to ensure that the discounted stock yield process is

a martingale, and the existence of a risk-neutral valuation of the option price

C̄E(S, v, t) = e−r(T−t)EQ[(ST −K)+|Ft], (83)

which we want to be the only option price CE(S, v, t) if the market price of jump-risk is

determined a priori by the parameters γ and ν in the Radon-Nikodým derivative (14).

For the option price at time t = 0, this is then

CE(S, v, 0) = e−rT EQ[(S(T ) −K)1A], (84)

where A denotes the event that the option is in the money at maturity.

Following Geman et al. (1995), we need conditions that will enable us to express the

call option price at time t = 0 as

CE(S, v, 0) = Se−qT Q̂(A) −Ke−rT Q(A), (85)

and equivalently at time t as

CE(St, vt, t) = Ste
−q(T−t)Q̂(A|St, vt) −Ke−r(T−t)Q(A|St, vt), (86)

where Q̂ is the measure corresponding to the stock price St as the numéraire. Thus

the conditions that we require should not only allow us to establish the existence of

the Radon-Nikodým derivatives dQ
dP

∣∣∣
t

and dP
dQ

∣∣∣
t

but also dQ̂
dQ

∣∣∣
t
. This is only possible if

the variance process vt neither explodes nor makes excursions to zero in finite time

under the measures P, Q and Q̂ (analogous to similar results for the pure-diffusion

stochastic volatility models in Sin (1998), Andersen & Piterbarg (2007) and Heston et al.

(2007)). In this Appendix, we show that the conditions (4) and (5) in Assumption 2.1

are sufficient.

We first state a result about the explosion and the excursion to zero in the Heston (1993)

stochastic volatility model. Similar results can be found in Andersen & Piterbarg (2007).
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Theorem A.1.1. Consider a filtered probability measure space (Ω,F , {Ft}, P̂). Suppose

dvt = a(b− vt)dt + σ
√
vtdBt, (87)

where Bt is a standard Wiener process under the measure P̂ and adapted to the filtration

that we are considering, and the inequality

2ab ≥ σ2 (88)

holds. Then the process vt neither explodes nor makes an excursion to zero in finite time

under P̂.

Proof. In order to apply the Feller test (see Lewis (2000)) to show that vt neither

explodes nor makes excursions to zero in finite time, we need to examine the scale

measure

S(c, d) =

∫ d

c
e

2ax

σ2 x−
2ab

σ2 dx. (89)

The conditions

lim
c↓0

S(c, d) = ∞ and lim
d↑∞

S(c, d) = ∞ (90)

must be satisfied so that vt neither explodes nor makes excursions to zero in finite time.

It is clear from (89) that (88) is sufficient for (90) to hold since a and b are always

assumed to be positive.

�

In Section 2, under the original market measure P, the variance SDE (87) takes the form

a = κv, b = θ (91)

and Bt = Z2,t. Given Assumption 2.1, the condition (88) in Theorem A.1.1 is satisfied

and the Feller condition indicates that the variance process in (2) neither explodes nor

makes an excursion to zero under P. Under a risk-neutral measure Q, the variance SDE

(87) takes the form

a = κv + λv, b =
κvθ

(κv + λv)
(92)
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and Bt = Z̃2,t. Given Assumption 2.1, the condition (88) in Theorem A.1.1 under this

measure is satisfied since

2(κv + λv)
κvθ

(κv + λv)
= 2κvθ ≥ σ2.

and the Feller condition indicates that the variance process in (21) neither explodes nor

makes an excursion to zero under Q. Thus we are able to conclude that the Radon-

Nikodým derivative dQ
dP

∣∣∣
t
exists and it is a strictly positive martingale under P. Similarly

dP
dQ

∣∣∣
t
also exists and it is a strictly positive martingale under Q.

Now it remains to establish that (7) and (26) are martingales under P and Q respectively.

We will show that condition (5) in Assumption 2.1 is sufficient. Furthermore, if (26)

is strictly positive martingale under Q, then we have established the existence of a

martingale measure Q̂ which corresponds to the stock price St given by (25) as the

numéraire. This facilitates change of numéraire techniques analogous to Geman et al.

(1995).

We now demonstrate that condition (5) is sufficient to ensure that (26) is a martingale

under Q. The steps needed to show that (7) is a martingale under P are similar. By

expansion of the expectation in (84), we can write

CE(S, v, 0) = Se−qT EQ

[
exp

(
−1

2

∫ T

0
vudu+

∫ T

0

√
vudZ̃1,u − λ̃κ̃T +

NT∑

i=1

Yi

)1A]
−Ke−rT EQ[1A]. (93)

In order to interpret the term

exp

(
−1

2

∫ T

0
vudu+

∫ T

0

√
vudZ̃1,u − λ̃κ̃T +

NT∑

i=1

Yi

)
(94)

as a Radon-Nikodým derivative of some risk-adjusted measure Q̂ with respect to Q, we

have to ensure that the variance process vt neither explodes nor makes excursions to

zero under Q̂. Note that if

dQ̂

dQ

∣∣∣∣∣
T

= exp

(
−1

2

∫ T

0
vudu+

∫ T

0

√
vudZ̃1,u − λ̃κ̃T +

NT∑

i=1

Yi

)
, (95)
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then the application of Theorem 2.1 allows us to conclude that

dZ̃1,t = −√
vt + dẐ1,t (96)

and

dZ̃2,t = −ρ√vt + dẐ2,t (97)

where (Ẑ1,t, Ẑ2,t) are standard Wiener process components under Q̂ with instantaneous

correlation ρ. Hence under Q̂, the SDE for the stock price process is

dSt

St−
= (r − q +

√
vt − λ̂κ̂)dt+

√
vtdẐ1,t +

∫

R

(ey − 1)q̂(dy, dt), (98)

where Nt has the associated Poisson counting measure q̂(dy, dt) with intensity

λ̂ = λ̃(1 + κ̃),

return jump-size density

m
Q̂
(dy) =

ey

MQ,Y (1)
mQ(dy),

and the expected jump-size increment is

κ̂ =

∫

R

[ey − 1]m
Q̂
(dy).

The SDE for the variance process is

dvt = (κv + λv − ρσ)

[
κvθ

(κv + λv − ρσ)
− vt

]
dt+ σ

√
vtdẐ2,t. (99)

Analogous to the pure-diffusion situation in Sin (1998) and Wong & Heyde (2004),

there is a solution to the variance process SDE (99) that neither explodes nor makes

an excursion to zero if and only if (94) is a strictly positive martingale. Wong & Heyde

(2006) have a condition that is slightly different to (5) in Assumption 2.1. This difference

is due to the fact that they allow the market price of variance risk to also assume negative

values.

We thus examine an auxiliary variance process vt of the form (87) where

a = κv + λv − ρσ, b =
κvθ

(κv + λv − ρσ)
, (100)
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where ρ is the instantaneous correlation dZ1,tdZ2,t in (1) and (2), σ is the volatility of

the variance process vt, and Bt = Ẑ2,t where Ẑ2,t is a standard Wiener process under

Q̂. The condition (5) in Assumption 2.1 ensures that the parameters (100) are positive.

Furthermore the condition (88) under the measure Q̂ is satisfied since

2(κv + λv − ρσ)
κvθ

(κv + λv − ρσ)
= 2κvθ ≥ σ2.

From the Feller condition, the auxiliary variance process vt neither explodes nor makes

an excursion to zero under Q̂. Hence Q̂ is an equivalent measure to Q and the Radon-

Nikodým derivative dQ̂
dQ

∣∣∣
T

given by (95) is a strictly positive martingale under Q. Condi-

tion (5) in Assumption 2.1 is not surprising since it is well known in some pure-diffusion

stochastic volatility models (for example, the Hull & White (1987) model) that arbitrage-

free models established through the existence of an equivalent martingale measure only

exist when the correlation ρ is strictly negative (see Sin (1998)).

Appendix 2. Proof of Proposition 4.1 –

Fourier Transform of the IPDE(55)

By use of the definition (56), we can readily show that

Fx

{
∂G

∂x

}
= −iφĜ, Fx

{
∂2G

∂x2

}
= −φ2Ĝ, Fx

{
∂2G

∂x∂v

}
= −iφ∂Ĝ

∂v
, Fx

{
∂G

∂τ

}
=
∂Ĝ

∂τ
.

All that remains is to evaluate the transform of the integral term. Applying the definition

of the transform (56), we have

Fx

{∫ ∞

0
G(x+ J, v, τ)Q(J)dJ

}
=

∫ ∞

0

∫ ∞

−∞
eiφxG(x+ J, v, τ)Q(J)dxdJ.

Making the change of integration variable z = x+ J this becomes

Fx

{∫ ∞

0
G(x+ J, v, τ)Q(J)dJ

}
=

∫ ∞

0
Q(J)

∫ ∞

−∞
eiφ(z−J)G(z, v, τ)dzdJ

=

∫ ∞

0
Q(J)e−iφJdJ

∫ ∞

−∞
eiφzG(z, v, τ)dz

= A(φ)Ĝ(φ, v, τ),
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where A(φ) is defined in (58). Simple factorisation then yields the two-dimensional PDE

(57) in Proposition 4.1.

Appendix 3. Proof of Proposition 4.2 – Laplace Transform of the PDE

(57)

Taking the Laplace transform (59) of (57), we require the following results. Firstly,

Lv

{
Λv

2
Ĝ− iφΨĜ

}
=

Λ

2

∫ ∞

0
ve−svĜdv − iφΨG̃

= −Λ

2

∂

∂s

∫ ∞

0
e−svĜdv − iφΨG̃

= −Λ

2

∂G̃

∂s
− iφΨG̃.

For the first order derivative with respect to v we have

Lv

{
(α− Θv)

∂Ĝ

∂v

}
=

∫ ∞

0
(α− Θv)e−sv ∂Ĝ

∂v
dv

= α

{
− Ĝ(φ, 0, τ) + s

∫ ∞

0
e−svĜdv

}
+ Θ

∂

∂s

∫ ∞

0
e−sv ∂Ĝ

∂v
dv

= α(−Ĝ(φ, 0, τ) + sG̃) + Θ
∂

∂s

{
−Ĝ(φ, 0, τ) + sG̃

}

= −αĜ(φ, 0, τ) + αsG̃+ Θ

(
s
∂G̃

∂s
+ G̃

)

= Θs
∂G̃

∂s
+ (αs + Θ)G̃− αĜ(φ, 0, τ).
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Finally, for the second order derivative term we have

Lv

{
σ2v

2

∂2Ĝ

∂v2

}
= −σ

2

2

∂

∂s

∫ ∞

0
e−sv ∂

2Ĝ

∂v2
dv

= −σ
2

2

∂

∂s

{
s

∫ ∞

0
e−sv ∂Ĝ

∂v
dv

}

= −σ
2

2

∂

∂s

{
s[−G̃(φ, 0, τ)] + s2G̃

}

= −σ
2

2

(
− Ĝ(φ, 0, τ) + 2sG̃+ s2

∂G̃

∂s

)

=
−σ2s2

2

∂G̃

∂s
− σ2sG̃+

σ2

2
Ĝ(φ, 0, τ).

Thus the Laplace transform of (57) satisfies the partial differential equation

∂G̃

∂τ
+

(
σ2

2
s2 − Θs+

Λ

2

)
∂G̃

∂s
= [(α− σ2)s+ Θ − iφΨ]G̃+

(
σ2

2
− α

)
Ĝ(φ, 0, τ).

Finally we set fL(τ) = (σ2/2−α)Ĝ(φ, 0, τ), and note that since G̃(φ, s, τ) must be finite

for all s > 0, fL(τ) must be determined such that G̃(φ, s, τ) → 0 as s→ ∞.

Appendix 4. Proof of Proposition 4.3 – Solving the PDE (60)

First we express the solution in terms of the so far unknown function fL(t). Since

(60) is a first order PDE, it may be solved using the method of characteristics. The

characteristic equation for (60) is

dτ =
ds(

σ2

2 s
2 − Θs+ Λ

2

) =
dG̃

[(α − σ2)s+ Θ − iφΨ]G̃+ fL(τ)
. (101)

We break the calculation of G̃(φ, s, τ) from (101) into a number of steps:-

(i) Taking the first equality in (101), we have

∫
dτ =

2

σ2

∫
ds

s2 − 2Θ
σ2 s+ Λ

σ2

,
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so that 7

τ + c1 =
1

Ω

∫ (
1

s− (Θ+Ω
σ2 )

− 1

s− (Θ−Ω
σ2 )

)
ds,

where we use the notation cj to denote an undetermined constant term. Integrating

with respect to s gives a relation between the transform variable s and time-to-maturity

τ , namely

Ωτ + c2 = ln

(
σ2s− Θ − Ω

σ2s− Θ + Ω

)
,

and hence8

c3 =
(σ2s− Θ − Ω)e−Ωτ

σ2s− Θ + Ω
. (102)

We also note that (102) may be re-expressed as

s =
(Θ − Ω)

σ2
− 2Ωe−Ωτ

σ2(c3 − e−Ωτ )
. (103)

(ii) We next consider the second equality in (101), which can be rearranged to give the

first order ODE
dG̃

dτ
+ [(σ2 − α)s− Θ + iφΨ]G̃ = fL(τ). (104)

The integrating factor, R(τ), for this ODE is the solution to

dR

dτ
= [(σ2 − α)s − Θ + iφΨ]R.

Note that in step (i) we have found s as a function of τ in (103). Using this expression

for s and integrating with respect to τ gives

lnR =

[
(σ2 − α)(Θ − Ω)

σ2
− Θ + iφΨ

]
τ − (σ2 − α)

∫
2Ωe−Ωξ

σ2(c3 − e−Ωξ)
dξ,

which can be expressed as9

7Note that x2 − 2Θ
σ2 x + Λ

σ2 = 0 has solution x = Θ±Ω
σ2 where we define Ω = Ω(φ) ≡

√
Θ2 − Λσ2.

8Note that c3 = ec2 = eΩc1 .
9Using the change of integration variable u = c3−e−Ωξ, the integral in the second term on the right-hand

side of the last equation can be evaluated as
R

e−Ωξ

c3−e−Ωξ dξ = 1
Ω

ln |u|.
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R(τ) = exp

{[
(σ2 − α)(Θ − Ω)

σ2
− Θ + iφΨ

]
τ

} ∣∣∣∣
1

c3 − e−Ωτ

∣∣∣∣
2

σ2 (σ2−α)

. (105)

Thus applying the method of variation of parameters to solve the ordinary differential

equation (104) we find that G̃(φ, s, τ) is given by

R(τ)G̃(φ, s, τ) =

∫ τ

0
R(ξ)fL(ξ)dξ + c4,

which on use of the expression (105) for R(τ) becomes

G̃(φ, s, τ) = exp

{[
(α− σ2)(Θ − Ω)

σ2
+ Θ − iφΨ

]
τ

}
|c3 − e−Ωτ |

2
σ2 (σ2−α)

×
{
c4 +

∫ τ

0
fL(ξ) exp

{[
(σ2 − α)(Θ − Ω)

σ2
− Θ + iφΨ

]
ξ

}

×
∣∣∣∣

1

c3 − e−Ωξ

∣∣∣∣
2

σ2 (σ2−α)

dξ

}
. (106)

(iii) Next we determine the constant c4 that appears in (106). We anticipate that we

will find a function A such that c4 = A(c3), where c3 is given by (102). When τ = 0, we

have from (102) and (106) that

G̃(φ, s, 0) =

∣∣∣∣
σ2s− Θ − Ω

σ2s− Θ + Ω
− 1

∣∣∣∣

2
σ2 (σ2−α)

A(c3). (107)

Note from (103) that at τ = 0 we have

s =
Θ − Ω

σ2
− 2Ω

(c3 − 1)σ2
. (108)

Thus substituting this last expression into (107) we find that A(c3) is given by

A(c3) = |c3 − 1|−
2

σ2 (σ2−α)G̃

(
φ,

Θ − Ω

σ2
− 2Ω

(c3 − 1)σ2
, 0

)
.

(iv) Next we substitute out the term c3 appearing in the expression for G̃(φ, s, τ) in

(106). To this end, in (106) consider the term

|c3 − e−Ωτ |
2

σ2 (σ2−α)A(c3).

=

∣∣∣∣
2Ωe−Ωτ

(σ2s− Θ + Ω)(1 − e−Ωτ ) + 2Ωe−Ωτ

∣∣∣∣

2
σ2 (σ2−α)

G̃

(
φ,

Θ − Ω

σ2
− 2Ω

(c3 − 1)σ2
, 0

)
,
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and note from (102) that

2Ω

(c3 − 1)σ2
=

(σ2s− Θ + Ω)2Ω

σ2[(e−Ωτ − 1)(σ2s− Θ + Ω) − 2Ωe−Ωτ ]
.

Also, we note that for 0 ≤ ξ ≤ τ , we have

∣∣∣∣
c3 − e−Ωτ

c3 − e−Ωξ

∣∣∣∣
2

σ2 (σ2−α)

=

∣∣∣∣
(σ2s− Θ − Ω)e−Ωτ − (σ2s− Θ + Ω)e−Ωτ

(σ2s− Θ − Ω)e−Ωτ − (σ2s− Θ + Ω)e−Ωξ

∣∣∣∣
2

σ2 (σ2−α)

=

∣∣∣∣
2Ωe−Ωτ

(σ2s− Θ + Ω)(e−Ωξ − e−Ωτ ) + 2Ωe−Ωτ

∣∣∣∣
2

σ2 (σ2−α)

,

and make the observation that all real arguments in |·| are positive. Thus by substituting

the last equation into (106) we have

G̃(φ, s, τ) = exp

{[
(α− σ2)(Θ − Ω)

σ2
+ Θ − iφΨ

]
τ

}

× G̃

(
φ,

Θ − Ω

σ2
− (σ2s− Θ + Ω)2Ω

σ2[(e−Ωτ − 1)(σ2s− Θ + Ω) − 2Ωe−Ωτ ]
, 0

)

×
(

2Ωe−Ωτ

(σ2s− Θ + Ω)(1 − e−Ωτ ) + 2Ωe−Ωτ

) 2
σ2 (σ2−α)

+

∫ τ

0
fL(ξ) exp

{[
(α− σ2)(Θ − Ω)

σ2
+ Θ − iφΨ

]
(τ − ξ)

}

×
(

2Ωe−Ωτ

(σ2s− Θ + Ω)(e−Ωξ − e−Ωτ ) + 2Ωe−Ωτ

) 2
σ2 (σ2−α)

dξ. (109)

(v) We must now determine the function fL(ξ). We achieve this by applying to (109)

the condition (61) that lims→∞ G̃(φ, s, τ) = 0. Taking the limit of (109) as s → ∞, a

little algebra reveals that we require that

∫ τ

0
fL(ξ) exp

{
−
[
(α− σ2)(Θ − Ω)

σ2
+ Θ − iφΨ

]
ξ

}(
1 − e−Ωτ

e−Ωξ − e−Ωτ

) 2
σ2 (σ2−α)

dξ

= −G̃
(
φ,

Θ − Ω

σ2
− 2Ω

σ2(e−Ωτ − 1)
, 0

)
. (110)

In (110) make the change of variable

ζ−1 = 1 − e−Ωξ, z−1 = 1 − e−Ωτ , (111)
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so that

∫ ∞

z
g(ζ)(ζ − z)

2
σ2 (α−σ2)dζ = −ΩG̃

(
φ,

Θ − Ω

σ2
,+

2Ωz

σ2
, 0

)
, (112)

where

g(ζ) = fL(ξ) exp

{
−
[
(α− σ2)(Θ − Ω)

σ2
+ Θ − iφΨ

]
ξ

}
ζ

2
σ2 (σ2−α)

ζ(ζ − 1)
. (113)

Thus our task is to solve (112) for g(ζ), and hence we will obtain the function fL(ξ).

Firstly, by definition (59) for the Laplace transform,

G̃

(
φ,

Θ − Ω

σ2
+

2Ωz

σ2
, 0

)
=

∫ ∞

0
Ĝ(φ,w, 0) exp

{
−
(

Θ − Ω

σ2
+

2Ωz

σ2

)
w

}
dw.

Introducing a gamma function, as defined by (63), we have10

G̃

(
φ,

Θ − Ω

σ2
+

2Ωz

σ2
, 0

)

=
Γ
(

2α
σ2 − 1

)

Γ
(

2α
σ2 − 1

)
∫ ∞

0
Ĝ(φ,w, 0) exp

{
−
(

Θ − Ω

σ2
+

2Ωz

σ2

)
w

}
dw

=
1

Γ
(

2α
σ2 − 1

)
∫ ∞

0

∫ ∞

0
e−aa

2α

σ2 −2Ĝ(φ,w, 0) exp

{
−
(

Θ − Ω

σ2
+

2Ωz

σ2

)
w

}
dadw.

The change of integration variable a = (2Ωw/σ2)y gives

G̃

(
φ,

Θ − Ω

σ2
+

2Ωz

σ2
, 0

)

=
1

Γ
(

2α
σ2 − 1

)
∫ ∞

0
Ĝ(φ,w, 0) exp

{
−
(

Θ − Ω

σ2

)
w

}

×
[∫ ∞

0
e−

2Ωw

σ2 y

(
2Ωw

σ2
y

) 2α

σ2 −2

e−
2Ωz

σ2 wdy

](
2Ωw

σ2

)
dw

=
1

Γ
(

2α
σ2 − 1

)
∫ ∞

0
Ĝ(φ,w, 0) exp

{
−
(

Θ − Ω

σ2

)
w

}(
2Ωw

σ2

) 2α

σ2 −1

×
(∫ ∞

0
e−

2Ωw

σ2 (y+z)y
2α

σ2 −2dy

)
dw.

10The choice of the term Γ
`

2α

σ2 − 1
´

two lines down may seem arbitrary and it seems we could have
chosen Γ(β) for β arbitrary. However it turns out that to make (114) match with (112) we would need
to take β = 2α

σ2 − 1.
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Making one further change of variable, namely ζ = z + y, we have

G̃

(
φ,

Θ − Ω

σ2
+

2Ωz

σ2
, 0

)

=
1

Γ
(

2α
σ2 − 1

)
∫ ∞

0
Ĝ(φ,w, 0) exp

{
−
(

Θ − Ω

σ2

)
w

}(
2Ωw

σ2

) 2α

σ2 −1

×
∫ ∞

z
e−

2Ωw

σ2 ζ(ζ − z)
2α

σ2 −2dζdw

=

∫ ∞

z
(ζ − z)

2
σ2 (α−σ2)

[∫ ∞

0

Ĝ(φ,w, 0)

Γ
(

2α
σ2 − 1

)
(

2Ωw

σ2

) 2α

σ2 −1

× exp

{
−
(

Θ − Ω

σ2
+

2Ωζ

σ2

)
w

}
dw

]
dζ. (114)

Comparing (114) with (112) and recalling that Ĝ(φ,w, 0) = eiφx0δ(w − v0), we can

conclude that

g(z) =
−Ω

Γ
(

2α
σ2 − 1

)
(

2Ωv0
σ2

) 2α

σ2 −1

exp

{
iφx0 −

(
Θ − Ω

σ2
+

2Ωz

σ2

)
v0

}
, (115)

and hence fL(ξ) can be readily found by expressing fL(ξ) as a function of g(ζ) using

(113).

(vi) Having found fL(ξ), all that remains is to substitute for fL(ξ) in (109), which

requires us to consider the following expressions. First we have

J1 = exp

{[
(α− σ2)(Θ − Ω)

σ2
+ Γ − iφΨ

]
τ

}

× G̃

(
φ,

Θ − Ω

σ2
+

(σ2s− Θ + Ω)2Ω

σ2[(1 − e−Ωτ )(σ2s− Θ + Ω) − 2Ωe−Ωτ ]
, 0

)

×
(

2Ωe−Ωτ

(σ2s− Θ + Ω)(1 − e−Ωτ ) + 2Ωe−Ωτ

) 2
σ2 (σ2−α)

= exp

{[
(α− σ2)(Θ − Ω)

σ2
+ Θ − iφΨ

]
τ

}

× G̃

(
φ,

Θ − Ω

σ2
+

2Ω(σ2s− Θ + Ω)z

σ2[(σ2s− Θ + Ω) + 2Ω(z − 1)]
, 0

)

×
(

2Ω(z − 1)

(σ2s− Θ + Ω) + 2Ω(z − 1)

)2− 2α

σ2

. (116)



AMERICAN OPTIONS - STOCHASTIC VOLATILITY AND JUMP-DIFFUSION 43

Next we consider

J2 =

∫ ∞

z
fL(ξ) exp

{[
(α− σ2)(Θ − Ω)

σ2
+ Θ − iφΨ

]
(τ − ξ)

}
1

Ωζ2e−Ωξ

×
(

2Ω(z − 1)ζ

(σ2s− Θ + Ω)(ζ − 2) + 2Ω(z − 1)ζ

)2− 2α

σ2

dζ. (117)

By use of (113) J2 becomes

J2 =
1

Ω
exp

{[
(α− σ2)(Θ − Ω)

σ2
+ Θ − iΨφ

]
τ

}

×
∫ ∞

z
g(ζ)

(
2Ω(z − 1)

(σ2s− Θ + Ω)(ζ − z) + 2Ω(z − 1)ζ

)2− 2α

σ2

dζ,

and substituting for g(ζ) using (115) we have

J2 =
1

Ω
exp

{[
(α− σ2)(Θ − Ω)

σ2
+ Θ − iφΨ

]
τ

}

×
∫ ∞

z

−Ω

Γ
(

2α
σ2 − 1

)
(

2Ωv0
σ2

) 2α

σ2 −1

exp

{
iφx0 −

(
Θ − Ω

σ2
+

2Ωζ

σ2

)
v0

}

×
(

2Ω(z − 1)

(σ2s− Θ + Ω)(ζ − z) + 2Ω(z − 1)ζ

)2− 2α

σ2

dζ

=
−[2Ω(z − 1)]2−

2α

σ2

Γ
(

2α
σ2 − 1

) exp

{[
(α− σ2)(Θ − Ω)

σ2
+ Θ − iφΨ

]
τ

}
(118)

×
(

2Ωv0
σ2

) 2α

σ2 −1

exp

{
iφx0 −

(
Θ − Ω

σ2

)
v0

}
J3(v0),

where for convenience we set

J3(w) =

∫ ∞

z
e−

2Ωw

σ2 ζ [(σ2s− Θ + Ω)(ζ − z) + 2Ω(z − 1)ζ]
2α

σ2 −2dζ.
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Before proceeding further, we perform some manipulations on J3(w). Firstly, make the

change of integration variable y = (σ2s− ΘΩ)(ζ − z) + 2Ω(z − 1)ζ to give

J3(w) =

∫ ∞

2Ω(z−1)z
exp

{−2Ωw

σ2

(
y + (σ2s− Θ + Ω)z

(σ2s− Θ + Ω) + 2Ω(z − 1)

)}
y

2α

σ2 −2

× dy

(σ2s− Θ + Ω) + 2Ω(z − 1)

=
1

(σ2s− Θ + Ω) + 2Ω(z − 1)
exp

{ −2Ωw(σ2s− Θ + Ω)z

σ2 [(σ2s− Θ + Ω) + 2Ω(z − 1)]

}

×
∫ ∞

2Ω(z−1)z
exp

{ −2Ωwy

σ2 [(σ2s− Θ + Ω) + 2Ω(z − 1)]

}
y

2α

σ2 −2dy.

By making a further change of integration variable, namely

ξ =
2Ωwy

σ2 [(σ2s− Γ + Ω) + 2Ω(z − 1)]
,

we have

J3(w) =
σ2

2Ωw

(
σ2
[
(σ2s− Θ + Ω) + 2Ω(z − 1)

]

2Ωw

) 2α

σ2 −2

× exp

{ −2Ωw(σ2s− Θ + Ω)z

σ2 [(σ2s− Θ + Ω) + 2Ω(z − 1)]

}∫ ∞

4Ω2(z−1)zw

σ2[(σ2s−Θ+Ω)+2Ω(z−1)]

e−ξξ

“

2α

σ2 −1
”

−1
dξ,

which in terms of the gamma functions defined in (62) and (63) may be written

J3(w) = [(σ2s− Θ + Ω) + 2Ω(z − 1)]
2α

σ2 −2 exp

{ −2Ωw(σ2s− Θ + Ω)z

σ2[(σ2s− t+ Ω) + 2Ω(z − 1)]

}
(119)

×
(
σ2

2Ωw

) 2α

σ2 −1

Γ

(
2α

σ2
− 1

)
−
∫ 4Ω2(z−1)zw

σ2[(σ2s−Θ+Ω)+2Ω(z−1)]

0
e−ξξ

“

2α

σ2 −1
”

−1
dξ


 .

Substituting (119) into (118) we find that

J2 =
−1

Γ
(

2α
σ2 − 1

) exp

{[
(α− σ2)(Θ − Ω)

σ2
+ Θ − iφΨ

]
τ

}

×
(

2Ω(z − 1)

(σ2s− Θ + Ω) + 2Ω(z − 1)

)2− 2α

σ2

× e
iφx0−

“

Θ−Ω

σ2

”

v0 exp

{ −2Ωv0(σ
2s− Θ + Ω)z

σ2[(σ2s− Θ + Ω) + 2Ω(z − 1)]

}

× Γ

(
2α

σ2
− 1

) [
1 − Γ

(
2α

σ2
− 1;

4Ω2(z − 1)zv0
σ2[(σ2s− Θ + Ω) + 2Ω(z − 1)]

)]
.
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(vii) Finally by comparing (109), (116) and (117) we note that G̃(φ, s, τ) = J1 + J2,

and hence we have

G̃(φ, s, τ) = exp

{[
(α− σ2)(Θ − Ω)

σ2
+ Θ − iφΨ

]
τ

}

×
(

2Ω(z − 1)

(σ2s− Θ + Ω) + 2Ω(z − 1)

)2− 2α

σ2

× e
iφx0−

“

Θ−Ω

σ2

”

v0 exp

{ −2Ωv0(σ
2s− Θ + Ω)z

σ2[(σ2s− Θ + Ω) + 2Ω(z − 1)]

}

× Γ

(
2α

σ2
− 1;

4Ω2(z − 1)zv0
σ2[(σ2s− Θ + Ω) + 2Ω(z − 1)]

)
,

which, after substituting for z from (111) becomes

G̃(φ, s, τ) = exp

{[
(α− σ2)(Θ − Ω)

σ2
+ Θ − iφΨ

]
τ

}

×
(

2Ω

(σ2s− Θ + Ω)(eΩτ − 1) + 2Ω

)2− 2α

σ2

× e
iφx0−

“

Θ−Ω

σ2

”

v0 exp

{ −2Ωv0(σ
2s− Θ + Ω)eΩτ

σ2[(σ2s− Θ + Ω)(eΩτ − 1) + 2Ω]

}

× Γ

(
2α

σ2
− 1;

2Ωv0e
Ωτ

σ2(eΩτ − 1)
× 2Ω

(σ2s− Θ + Ω)(eΩτ − 1) + 2Ω

)
,

which is the result in Proposition 4.3.

Appendix 5. Proof of Proposition 4.4 – Inverting the Laplace Transform

The inverse Laplace transform of (64) is most easily found by using the new variables

A =
2Ωv0

σ2(1 − e−Ωτ )
, z =

1

2Ω
{(σ2s− Θ + Ω)(eΩτ − 1) + 2Ω}. (120)

If we set

h(φ, v0, τ) = exp

{[
(α− σ2)(Θ − Ω)

σ2
+ Θ − iφΨ

]
τ

}
eiφx0−(Θ−Ω

σ2 )v0 , (121)
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then under the change of variables (120) equation (64) becomes

G̃(φ, s(z), τ) =h (φ, v0, τ) exp

{−(σ2s− Θ + Ω)(eΩτ − 1)A

2Ωz

}

× z
2α

σ2 −2Γ(
2α

σ2
− 1;Az).

Making use of (62), the last equation becomes

G̃(φ, s(z), τ) =h(φ, v0, τ) exp

{
−(σ2s− Θ + Ω)(eΩτ − 1)A

2Ωz

}

× z
2α

σ2 −2

Γ(2α
σ2 − 1)

∫ A/z

0
e−ββ

2α

σ2 −2dβ.

Changing the integration variable according to ξ = 1 − z
Aβ, we have

G̃(φ, s(z), τ) = h (φ, v0, τ) (122)

× e−A A
2α

σ2 −1

Γ
(

2α
σ2 − 1

)
∫ 1

0
(1 − ξ)

2α

σ2 −2 z−1e
Aξ
z dξ,

where we have made use of the fact that

(σ2s− Θ + Ω)(eΩτ − 1)

2Ωz
− A

z
=

(σ2s− Θ + Ω)(eΩτ − 1)A+ 2ΩA

(σ2s− Θ + Ω)(eΩτ − 1) + 2Ω
= A.

The crucial observation is that the Laplace transform variable s, though the change of

variables, is now represented by the variable z. In equation (59), the Laplace transform

is defined with respect to the parameter s. In order to invert (122), we must first

establish the relationship between the Laplace transform with respect to parameter s,

and the inverse Laplace transform with respect to the parameter z which is a function

of s as defined in the second part of (120).

From (120) we see that

s =
2Ω(z − 1)

σ2(eΩτ − 1)
+

Θ − Ω

σ2
.

Substituting this into (59) gives

Lv{Ĝ(φ, v, τ)} =

∫ ∞

0
exp

{
−
[

2Ω(z − 1)

σ2(eΩτ − 1)
+

Θ − Ω

σ2

]
v

}
Ĝ(φ, v, τ)dv.



AMERICAN OPTIONS - STOCHASTIC VOLATILITY AND JUMP-DIFFUSION 47

By letting

y =
2Ωv

σ2(eΩτ − 1)
, (123)

we have

Lv{Ĝ(φ, v(y), τ)} =
σ2(eΩτ − 1)

2Ω

∫ ∞

0
e−zy exp

{
−
(

(Θ − Ω)(eΩτ − 1)

2Ω
− 1

)
y

}

× Ĝ(φ, v(y), τ)dy,

which, by use of (59) can be written as

Lv{Ĝ(φ, v(y), τ)} =
σ2(eΩτ − 1)

2Ω
Ly

{
exp

{
−
(

(Θ − Ω)(eΩτ − 1)

2Ω
− 1

)
y

}
Ĝ(φ, v(y), τ)

}
.

Thus we find that

L−1
v {G̃(φ, s(z), τ)} =

2Ω

σ2(eΩτ − 1)
exp

{[
(Θ − Ω)(eΩτ − 1)

2Ω
− 1

]
y

}
(124)

× L−1
y

{
G̃(φ, s(z), τ)

}
,

where

Ly{f(y)} =

∫ ∞

0
e−zyf(y)dy, (125)

and we recall that y is given by (123), and z is defined by (120).

Applying the inverse transform (124) to (122), we have

Ĝ(φ, v(y), τ) = h (φ, v0, τ)

× e−A A
2α

σ2 −1

Γ
(

2α
σ2 − 1

) 2Ω

σ2(eΩτ − 1)
exp

{[
(Θ − Ω)(eΩτ − 1)

2Ω
− 1

]
y

}

×
∫ 1

0
(1 − ξ)

2α

σ2 −2 L−1
y

{
z−1e

Aξ
z

}
dξ.

Referring to Abramowitz & Stegun (1970) we find that

Ly

{
I0(2

√
Aξy)

}
=

1

z
e

Aξ
z ,
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where Ik(x) is the modified Bessel function defined by (67). Thus the inverse Laplace

transform of G̃(φ, s, τ) becomes

Ĝ(φ, v(y), τ) = h (φ, v0, τ)

× e−A A
2α

σ2 −1

Γ
(

2α
σ2 − 1

) 2Ω

σ2(eΩτ − 1)
exp

{[
(Θ − Ω)(eΩτ − 1)

2Ω
− 1

]
y

}

×
∫ 1

0
(1 − ξ)

2α

σ2 −2 I0(2
√
Aξy)dξ.

We can further simplify this result by noting that11

∫ 1

0
(1 − ξ)

2α

σ2 −2 I0(2
√
Aξy)dξ = Γ

(
2α

σ2
− 1

)
(Ay)

1
2
− α

σ2 I 2α

σ2 −1(2
√
Ay),

and therefore

Ĝ(φ, v, τ) = h (φ, v0, τ)
2Ω

σ2(eΩτ − 1)

× e−A−y

(
A

y

) α

σ2 −
1
2

exp

{
(Θ − Ω)(eΩτ − 1)

2Ω
y

}
I 2α

σ2 −1(2
√
Ay).

Recalling the definitions for A and y, from (120) and (123) respectively, the last equation

becomes

Ĝ(φ, v, τ) = exp

{[
(α− σ2)(Θ − Ω)

σ2
+ Θ − iφΨ

]
τ

}
eiφx0−(Θ−Ω

σ2 )v0

× 2Ω

σ2(eΩτ − 1)
exp

{
− 2Ω

σ2(eΩτ − 1)
(v0e

Ωτ + v)

}

×
(
v0e

Ωτ

v

) α

σ2 −
1
2

exp

{
(Θ − Ω)

σ2
v

}
I 2α

σ2 −1

(
4Ω

σ2(eΩτ − 1)
(v0ve

Ωτ )
1
2

)
.

Further manipulations yield the result in Proposition 4.4.

Appendix 6. Proof of Proposition 4.5 – Inverting The Fourier Transform

Applying the Fourier inversion theorem we have

G(x, v, τ) =
1

2π

∫ ∞

−∞
e−iφxĜ(φ, v, τ)dφ,

11This result is simply obtained by expanding both terms in the integral in power series.
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which upon use of (66) becomes

G(x, v, τ) =
1

2π

∫ ∞

−∞
eiφx0e

(Θ−Ω)

σ2 (v−v0+ατ)e−iφ(r−q−eλeκ)τe
eλ[A(φ)−1]τe−iφx

× 2Ω

σ2(eΩτ − 1)

(
v0e

Ωτ

v

) α

σ2 −
1
2

exp

{ −2Ω

σ2(eΩτ − 1)
(v0e

Ωτ + v)

}

× I 2α

σ2 −1

(
4Ω

σ2(eΩτ − 1)
(v0ve

Ωτ )
1
2

)
dφ.

Next we expand the term e
eλA(φ)τ using a Taylor series expansion, and find that

e
eλA(φ)τ =

∞∑

n=0

(λ̃τ)n

n!
[A(φ)]n

=

∞∑

n=0

(λ̃τ)n

n!

∫ ∞

0

∫ ∞

0
· · ·
∫ ∞

0
e−iφ(y1+y2,...+yn)

×Q(y1)Q(y2) . . . Q(yn)dy1dy2 . . . dyn,

where each yj (j = 0, . . . , n) is an independent jump drawn from the density Q(y).

We define Xn ≡ eJ1+J2+...+Jn , and X0 ≡ 1, and assume that Q(J) is of a form that

allows us to make a simplification of the form

∫ ∞

0

∫ ∞

0
· · ·
∫ ∞

0
f(ey1 + ey2 + . . .+ eyn)Q(y1)Q(y2) . . . Q(yn)dy1dy2 . . . dyn

=

∫ ∞

0
f(Xn)Q(Xn)dXn ≡ E

(n)
Q [f(Xn)],

where f(Xn) is some general function of Xn. Thus we have

e
eλA(φ)τ =

∞∑

n=0

(λ̃τ)n

n!
E

(n)
Q [e−iφ ln Xn ],

and the result of the proposition then follows after some further algebra and converting

back to the stock price variable S.
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Appendix 7. Proof of Proposition 5.1 – Deriving the price for The

European Call

Since the payoff function does not depend on vT it is simplest to first perform the outer

integration in (71) with respect to this variable. Thus

∫ ∞

0
G(ST , vT , T ;S, v, t)dvT

=

∞∑

n=0

(λ̃(T − t))ne−
eλ(T−t)

n!
E

(n)
Q

{
1

2π

∫ ∞

−∞
eiφxe−iφ ln(SXne−

eλeκ(T−t))

×
[ ∫ ∞

0
e

(Θ−Ω)

σ2 (v−vT +α(T−t))e−iφ(r−q)(T−t) 2Ω

σ2(eΩ(T−t) − 1)

(
weΩ(T−t)

v

) α

σ2 −
1
2

× exp

{
− 2Ω

σ2(eΩ(T−t) − 1)

(
vT e

Ω(T−t) + v
)}

× I 2α

σ2 −1

(
4Ω

σ2(eΩ(T−t) − 1)

(
vT ve

Ω(T−t)
) 1

2

)
dvT

]
dφ

}
,

where we have set x = lnST . Carrying out the integration with respect to vT , we have

∫ ∞

0
G(S, v, t;ST , vT , T )dvT =

∞∑

n=0

(λ̃(T − t))ne−
eλ(T−t)

n!

× E
(n)
Q

{
1

2π

∫ ∞

−∞
eiφxe−iφ lnSXne−

eλeκ(T−t)
eB2(−φ,(T−t))+D2(−φ,(T−t))vdφ

}
,

where

B2(φ, (T − t)) = iφ(r − q)(T − t) +
α

σ2

{
(Θ2 + Ω2)(T − t) − 2 ln

(
1 −Q2e

Ω2(T−t)

1 −Q2

)}
,

and

D2(φ, (T − t)) =
(Θ2 + Ω2)

σ2

[
1 − eΩ2(T−t)

1 −Q2eΩ2(T−t)

]
,

where we define Θ2 = Θ2(φ) ≡ Θ(−φ), Ω2 = Ω2(φ) ≡ Ω(−φ), and Q2 = Q2(φ) ≡

(Θ2 + Ω2)/(Θ2 − Ω2).
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Referring to the results given by Adolfsson et al. (2009), it follows that

CE(S, v, t) = e−r(T−t)

∫ ∞

lnK
(ex −K)

[ ∞∑

n=0

(λ̃(T − t))ne−
eλ(T−t)

n!

× E
(n)
Q

{
1

2π

∫ ∞

−∞
eiφxe−iφ ln(SXne−

eλeκ(T−t))eB2(−φ,(T−t))+D2(−φ,(T−t))vdφ

}]
dy

=
e−r(T−t)

2π

∞∑

n=0

(λ̃(T − t))ne−
eλ(T−t)

n!

× E
(n)
Q

{∫ ∞

−∞
f2(SXne

−eλeκ(T−t), v, (T − t);−φ)

∫ ∞

lnK
(ex −K)eiφxdxdφ

}
,

where we set

f2(SXne
−eλeκ(T−t), v, (T − t);φ) ≡ eB2(φ,(T−t))+D2(φ(T−t))v+iφ ln(SXne−

eλeκ(T−t)).

Further use of the results from Adolfsson et al. (2009) allows us to express CE(S, v, (T −

t)) as

CE(S, v, t) =

∞∑

n=0

(λ̃(T − t))ne−
eλ(T−t)

n!
E

(n)
Q {SXne

−eλeκ(T−t)e−q(T−t)PH
1 (SXne

−eλeκ(T−t), v, (T − t);K)

−Ke−r(T−t)PH
2 (SXne

−eλeκ(T−t), v, (T − t);K)},

where PH
j (SXne

−eλeκ(T−t), v, (T − t);K), for j = 1, 2, is as defined in (73).

Appendix 8. Proof of Proposition 5.2 – Deriving the Early Exercise

Premium

Using the notation established earlier, equation (44) may be written in the form

CP (S, v, t) = CD
P (S, v, t) − λ̃CJ

P (S, v, t),

where

CD
P (S, v, t) =

∫ τ

0
e−r(τ−ξ)

∫ ∞

0

∫ ∞

ln b(vT ,ξ)
(qex − rK)G(x, vT , τ − ξ;S, v)dxdvT dξ, (126)
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and

CJ
P (S, v, t) =

∫ τ

0
e−r(τ−ξ)

∫ ∞

0

∫ ∞

ln b(vT ,ξ)

∫ b(vT ,ξ)e−x

0
[C(exY, vT , τ) − (exY −K)]G(Y )]dY

×G(x, vT , τ − ξ;S, v)dxdvT dξ, (127)

and we have set x = lnST and τ = T − t.

Firstly we consider CD
P (S, v, t). Substituting for G we have

CD
P (S, v, t) =

∞∑

n=0

(λ̃τ)ne−
eλτ

n!
E

(n)
Q

{∫ τ

0
(τ − ξ)ne−

eλ(τ−ξ)e−r(τ−ξ)

∫ ∞

0

∫ ∞

ln b(vT ,ξ)
[qex − rK]

× 1

2π

∫ ∞

−∞
eiφxe

(Θ−Ω)

σ2 (v−vT +α(τ−ξ))e−iφ(r−q)(τ−ξ)

× e−iφ ln SXne−
eλeκ(τ−ξ) 2Ω

σ2(eΩ(τ−ξ) − 1)

(
vT e

Ω(τ−ξ)

v

) α

σ2 −
1
2

× exp

{
− 2Ω

σ2(eΩ(τ−ξ) − 1)
(vT e

Ω(τ−ξ) + v)

}

× I 2α

σ2 −1

(
4Ω

σ2(eΩ(τ−ξ) − 1)
(vT ve

Ω(τ−ξ))
1
2

)
dφdxdvT dξ

}
.

Using results from Adolfsson et al. (2009), we can readily show that

CD
P (S, v, t) =

∞∑

n=0

(λ̃τ)ne−
eλτ

n!
E

(n)
Q

{∫ τ

0

∫ ∞

0
(τ − ξ)ne−

eλ(τ−ξ)

× [qSXne
−eλeκ(τ−ξ)e−q(τ−ξ)PA

1 (SXne
−eλeκ(τ−ξ), v, τ − ξ, vT , b(vT , ξ))

− rKe−r(τ−ξ)PA
2 (SXne

−eλeκ(τ−ξ), v, τ − ξ, vT , b(vT , ξ))]dvT dξ

}
,

where PA
j (SXne

−eλeκ(τ−ξ), v, τ − ξ, vT , b(vT , ξ)) is given by (77).

Next we examine the CJ
P (S, v, τ) term. Interchanging the order of integration with

respect to Y and x, we have

CJ
P (S, v, t) =

∫ τ

0
e−r(τ−ξ)

∫ ∞

0

∫ 1

0
Q(Y )

∫ ln
b(vT ,ξ)

Y

ln b(vT ,ξ)
[C(exY, vT , τ) − (exY −K)]

×G(x, vT , τ − ξ;S, v)dxdY dvT dξ.
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Making the change of integration variable z = ex, we have

CJ
P (S, v, t) =

∫ τ

0

∫ ∞

0
e−r(τ−ξ)

∫ 1

0
Q(Y )

∫ b(vT ,ξ)

Y

b(vT ,ξ)

[C(zY, vT , ξ) − (zY −K)]

z

×G(ln z, vT , τ − ξ;S, v)dzdY dvTdξ

=

∞∑

n=0

(λ̃τ)ne−
eλτ

n!
E

(n)
Q

{∫ τ

0

∫ ∞

0
(τ − ξ)ne−

eλeκ(τ−ξ)e−r(τ−ξ)

×
∫ 1

0
G(Y )

∫ b(vT ,ξ)/Y

b(vT ,ξ)
[C(zY, vT , ξ) − (zY −K)]

×QJ(z, vT , τ − ξ;SXne
−eλeκ(τ−ξ), v)dzdY dvT dξ

}
,

where QJ(z, vT , τ − ξ;SXne
−eλeκ(τ−ξ), v) is defined in (80).
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