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Abstract

This paper studies the impact of stochastic volatility (SV) on optimal investment de-

cisions. We consider three different SV models: an extended Stein/Stein model, the

Heston Model and an extended Heston Model with a constant elasticity variance (CEV)

process and derive the the long-term optimal investment strategies under each of these

processes. Since volatility is not a directly observable quantity, extended Kalman fil-

ter techniques are adopted to deal with this partial information problem. Optimal

investment strategies based on the CEV volatility model are obtained by adopting the

Backward Markov Chain approximation method since analytical solutions are no longer

available. We find in the empirical investigation that the Heston model is favored as a

more parsimonious model compared with the other two models. All three investment

strategies based on the three SV models contain a positive intertemporal hedging term

in addition to the static mean-variance portfolio. However, in their details the three

investment strategies differ from each other. We also find that the investment strategies

are sensitive to the CEV parameter.

Key words: Asset allocation, stochastic volatility, partial information

problem, extended Kalman filter, the Heston model, CEV

process.

1 Introduction

Stochastic volatility has been recognized recently as an important feature for asset price
modelling because it is seen as an explanation of a number of well-known empirical findings
such as volatility clustering, the thick-tailed nature of return distributions and the “volatility
smile”. This paper studies how stochastic volatility will affect long-term optimal investment
strategies.

In the continuous-time framework, the mainstream approach to modelling stochastic volatil-
ity is to assume the volatility itself follows a stochastic process. Representative papers of
this modelling approach include Stein and Stein (1991) with a Gaussian volatility process,
Heston (1993) with a square-root variance process and Jones (2003) with a constant elastic-
ity variance (CEV) process. Such models explain well some of the empirical features of the

∗Email: carl.chiarella@uts.edu.au. School of Finance and Economics, University of Technology, Sydney,

Australia
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joint time series behavior of stock and option prices.

Volatility of asset returns is not observed directly so we need either to adopt filtering tech-
niques to extract volatility from market data, or use extra data such as option prices or
market volatility indices to infer volatility. This paper implements maximum likelihood es-
timation based on the extended Kalman filter to extract volatility from stock returns. Peng
et al (2005) adopted a similar approach to estimate volatility in foreign exchange rates. Ap-
plication of the Kalman filtering techniques in finance can be found in Harvey (1990). Other
approaches to estimation of stochastic volatility includes use the volatility index VIX as a
proxy in Duan and Yeh (2008), Ait-Sahalia and Kimmel (2007) and Bakshi et al. (2008)?.
Pan (2002) adopted ”implied-state” generalized method of moments (ISGMM) estimation
and Chacko and Viceira (2003) adopted spectral GMM estimation. Ait-Sahalia and Kimmel
(2007) and Bakshi et al (2008) ? employed maximum likelihood estimation based on close-
form approximations.

Our construction of an optimal long-term portfolio is based on the intertemporal framework
of Merton (1971,1973), where long term effects on optimal investment strategies can be
obtained quantitatively. Based on the intertemporal framework Liu (2007) provided some
advances in obtaining analytical solutions to intertemporal optimal investment problems
under a fairly broad class of model specifications including stochastic volatility. However,
analytical solutions for the extended model with a CEV process are not available. This pa-
per adopt a backward Markov chain approximation method proposed in Chiarella and Hsiao
(2006) to provide a computational solution for optimal strategies.

This paper considers three models for modelling stochastic volatility (SV) in stock prices:
an extended Stein-Stein model, the Heston model and an extended Heston model based on
a CEV process. Based on data for the Australian Stock Index S&P/ASX200 from 1996 to
2006, the Heston is strongly supported empirically as a more parsimonious model against
the extended Stein-Stein model as well as the extended Heston model. Optimal long-term
investment strategies are constructed based on the all three SV models.

The structure of the paper is organized as follows. Section 2 sets up the framework for
the paper including the intertemporal asset allocation problem and the three SV models.
In Section 3 we investigate the three SV models based on Australian stock market data
and provide a comparison between them. Section 4 provides concrete optimal investment
strategies based on the estimation results using both analytical solutions and computational
solutions. We will compare the different strategies based on the different models and draw
some conclusions in Section 5.

2 The Framework

The investment model is based on within Merton’s (1971,1973) intertemporal asset allo-
cation framework. There is one security, the stock St, in the investment opportunity set
following the dynamics

dSt

St
= μtdt + σtdBS

t , (1)

where BS
t is a one-dimensional Wiener process.
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2.1 Three models for stochastic volatility

We adopt three models to model stock prices with stochastic volatility (SV).

Model 1: An extended Stein-Stein model
The stock price follows the dynamics

dSt

St
=

(
Rt + λtσt

)
dt + σtdBS

t , (2)

where Rt is the instantaneous risk-less rate, σt is the volatility process and λt is the process
of market price of the risk BS

t . The quantities σt and λt are assumed to follow the processes

dσt = κσ(σ − σt)dt + βσSdBS
t + gσdBσ

t , (3)

dλt = κλ(λ − λt)dt + βλSdBS
t + βλσdBσ

t + gλdBλ
t . (4)

where (BS
t , Bσ

t , B
λ
t ) are orthogonal multidimensional Wiener processes. Not only is the

volatility process σt time-varying, this model extends the Stein and Stein (1991) model by
allowing the market price of risk λt to follow also a stochastic process.

Model 2: The Heston model
The Heston model consider a variance process Vt in the stock price, the dynamics of which
are given by

dSt

St
=

(
Rt + lVt

)
dt +

√
VtdBS

t , (5)

where l is a constant. The variance process Vt follows a square-root process

dVt = κV (V − Vt)dt +
√

Vt

(
bSV dBS

t + hV dBV
t

)
, (6)

with BV
t orthogonal of the price risk BS

t .

The market price of the risk BS is l
√

Vt so that the excess instantaneous return in (5)
is l

√
Vt

√
Vt = lVt . The Heston model can be considered as a special case of the extended

Stein-Stein model with the market price of risk (4) perfectly proportional to the volatility
λt = cσt. We will come back to this point later in the empirical section.

Model 3: An extended Heston Model with a CEV process
We extend the Heston model by considering a constant elasticity variance (CEV) process

dVt = κV (V − Vt)dt + V
1
2−η

V η
t

(
bSV dBS

t + hV dBV
t

)
, (7)

with a CEV parameter η ≥ 0. The re-scaling term V
1
2−η

sets the diffusion coefficient

V
1
2−η

V η
t to the value V

1
2 at V . Setting η = 1

2 the model goes back to the Heston model.
The CEV parameter η characterizes the sensitivity of the diffusion coefficient with respect
to its level. In Figure 1 we see that for a higher η the diffusion coefficient changes more
sensitively with respect to its level Vt. We can also express the η-effect in this way. When
Vt is high (Vt > V ), the variance process with a higher η will have higher volatility. While
when Vt is low (Vt < V ), the process with a higher η now has lower volatility.

2.2 Investment decision

There are identical rational agents who make investment decisions dynamically over the
investment horizon t ∈ [0, T ]. The investment weight at time t relative to agents’ wealth is

3
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Figure 1: Sensitivity of the CEV diffusion coefficient
The figures describes how the diffusion term V

1
2−η

V η
t depends on its

current level Vt for various η’s. The higher the η the more sensitively
changes the diffusion term with respect to the variance level Vt.

denoted by αt which can be re-balanced at every point of time without transaction costs.
Under the investment decision αt the wealth, denoted by Wt, develops according to

dWt

Wt
= αt

(
μtdt + σtdBS

t

)
+ (1 − αt)Rt . (8)

The optimal investment weight αt, t ∈ [0, T ] is constructed in order to achieve the maximal
expected utility of the final wealth WT , that is

max
αt,t∈[0,T ]

E0

[
e−δT U(WT )

]
, (9)

where δ(> 0) is the agents’ subjective discount rate, The utility function U is assumed to
be of CRRA (Constant Relative Risk Aversion) form given by

U(C) =
C1−γ

1 − γ
. (10)

with the risk aversion parameter γ(> 0). The larger is γ the more risk averse are the agents.

At each time t, the optimal intertemporal investment weight can be decomposed into an
optimal static investment weight, the optimal investment weight if the stock volatility were
constant, and an intertemporal hedging term, the adjustment to investment required to hedge
stochastic volatility. This decomposition goes back to Merton (1973) and for more recent re-
sults see Liu (2007). We will present this decomposition in the optimal investment solutions
in Section 4.

3 Estimating the SV models

Estimation is carried out for the three SV models described in Section 2 using the Australian
data. We will see that the empirical results favour the Heston model.
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3.1 Data

The data adopted for the empirical investigation are the S&P ASX 200 Index. The Aus-
tralian Stock Exchange (ASX) was formed in 1987 and trading on the ASX has been fully
automated since 1996. The S&P ASX 200 Index was introduced in April 2000 and has been
maintained by the Standard and Poor’s Australian Index Committee since then. It covers
approximately 78% of the Australian equities market and is considered as an ideal proxy for
the total market. Besides its role as a benchmark index, the S&P ASX 200 also serves as
an index for investment purposes because of its high liquidity.

The data are from the weekly S&P ASX 200 Price Index, from 23 Sep 1996 until 25 Sep 2006
consisting of 523 observations, which are provided by Thomas Financial – DATASTREAM.
Although the S&P ASX 200 Index was introduced in 2000, the data for the index for the
period before the introduction can still be replicated based on the stock prices of the same
200 companies.

The log return of the index is shown in Figure 2. The weekly stock returns have a mean
0.1613% and standard deviation of 1.7336%. The first order autocorrelation is very weak,
equal to −0.0624 which can be accepted as indicative of no autocorrelation.

Figure 2: Weekly Log Return of the S&P/ASX 200

3.2 Estimation with filtering techniques

Based on the data we estimate the hidden volatility/variance processes for the three models
using maximum likelihood estimation based on the extended Kalman filter. We outline the
algorithm in detail for the extended Stein-Stein model.

3.2.1 Estimation of Model 1 (the extended Stein-Stein Model)

We consider the log price st := lnSt, the dynamics of which, by application of Ito’s Formula
to (1) are given by

dst =
(
R + λtσt − σ2

t

2
)
dt + σtdBS

t . (11)

We discretize the equations (11), (3) and (4) using the Euler-Maruyama approximation
scheme to obtain the system dynamics for the state equations,
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⎛
⎝Δst+Δ

Δσt+Δ

Δλt+Δ

⎞
⎠ = At

⎛
⎝st

σt

λt

⎞
⎠ Δ +

⎛
⎝ Rt

κσσ

κλλ

⎞
⎠ Δ + GtΔBt+Δ , (12)

where

At =

⎛
⎝0 − 1

2σt σt

0 −κσ 0
0 0 −κλ

⎞
⎠ , Gt :=

⎛
⎝ σt 0 0

βσS gσ 0
βλS βλσ gλ

⎞
⎠ and ΔBt+Δ :=

⎛
⎝ΔBS

t+Δ

ΔBσ
t+Δ

ΔBλ
t+Δ

⎞
⎠ . (13)

The observation equation is given by

pt = st + εt , (14)

where pt is the logarithm of the observed market stock price and εt is the measurement error
which is assumed to be i.i.d. N (0, σε) distributed and is distributed independently of st and
of all other risk sources (BS

t , Bσ
t , B

λ
t ).

Since the coefficients At and Gt are now time-dependent but not constant, we cannot use
the standard Kalman filter technique. We employ here the extended Kalman filter as freez-
ing the coefficients As and Gs as constant for s ∈ [t, t + Δ). The extended Kalman filter
method1 filters out the unobservable state variables (st, σt, λt) from the observed time series
pt.

The estimation results for the parameters are displayed in Table 1.2 The filtered instanta-
neous volatility σt and the filtered market price of risk λt are plotted in Figure 3 where we
see rapid changes in the trajectories of σt and λt. This coincides with the estimation results
in Table 1 that the processes have fast mean-reversion speed (that is large κσ and κλ) and
large volatility (that is large gσ and βλσ). The estimated process σt remains positive over
the whole period. The standard deviation of the measurement error σε is extremely small
(9.8*10−8). We note there are two risk sources ΔBS

t and εt in the observation equation (14),

pt = st + εt = st−Δ +
(
R + λt−Δσt−Δ − 1

2
σ2

t−Δ

)
Δ + σt−ΔΔBS

t + εt .

Given the small value estimated for σε the risk is then mainly absorbed by the ΔBS
t .

1For reference see Harvey (1990).
2For the estimation we choose Rt in (12) is equal to zero. Subsequent research we should use the returns

for the 90 day bank bill rate.
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Parameter Estimate t-stat.
κσ 11.088004 2.845593
κλ 9.790118 2.749497
σ 0.122406 17.464097
λ 0.629087 2.369271
gσ 18.049795 11.044842
gλ 0.059410 0.522316
βσS 0.023847 1.106185
βλS -1.972936 -1.402033
βλσ 8.406405 5.200823
σε 9.8*10−8 0.001965

Log-Likelihood 1400.2525

Table 1: Estimates for Model 1, the Extended Stein/Stein Model

Year
1997 1999 2001 2003 2005

5%

10%

15%

20%

25%

(a) Filtered σt using the extended Kalman filter

Year
1997 1999 2001 2003 2005

0.0

-100%

100%

200%

(b) Filtered λt using the extended Kalman filter

Figure 3: The Filtered Factors in the Extended Stein-Stein Model

The estimation has been carried out by use of the GAUSS package. The estimated
likelihood of 1400.2525 has been checked against the global maximum obtained by imple-
menting the Genetic Algorithm3.

3 The Genetic Algorithm (GA) is used in Chiarella, Hung and Tô (2005) to estimate a nonlinear model

using filtering methods. For the estimation here the algorithm provided a log-likelihood value of 1400.1908

based on an implementation using 1,000 generations and population size of 1,000.
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Testing time-variation of λt and σt

We test whether the processes σt and λt can be held as constant. Table 2 gives the es-
timation results which are obtained directly by standard maximum likelihood estimation.
The estimated reverting means σ and λ are very similar to the estimation results of the
benchmark model given in Table 2. The result of the Likelihood Ratio (LR) test4 rejects
significantly that the processes σt and λt are held as constants. The p-value is equal to zero
(with accuracy 1.0 ∗ 10−8).

Model
σ 0.1250
λ 0.6084
Log-Likelihood 1376.5187
p-value(LR-test) 0.0

.

Table 2: Estimated Results for the Benchmark Model

3.2.2 Towards the Heston Model

Visual inspection indicates that the trajectories of the filtered σt and λt fluctuate in a very
similar way. Their correlation is in fact Cor[σt|t, λt|t] = 0.99363091, indicating that the two
processes are extremely highly correlated. This suggests that there holds a linear relation

λt = cσt , (16)

and then the two factors collapse into one factor. Define the new factor Vt := σ2
t . The last

two terms in the drift coefficient in equation (11) become

λtσt − 1
2
σ2

t = (c − 1
2
)σ2

t = lσ2
t = lVt , withl := c − 1

2
,

so we rewrite (11) to
dst = (Rt + lVt)dt +

√
VtdBS

t . (17)

The dynamics of Vt is given by (6). This dynamics can be also obtained by calculating dσ2
t

with minor modification5. In this sense, the Heston model can be considered as a restricted
version of the extended Stein-Stein model with the restrictions

4 The statistic LRT of the Likelihood Ratio Test is defined as

LRT := −2N
(
LogLik(θ̂r) − LogLik(θ̂)

)
, (15)

where N is the number of data points, θ̂r denotes the estimate in the restricted model and θ̂ denotes the

estimate in the unrestricted model. According to the theory of the likelihood ratio test, see for exam-

ple, Hamilton (1994), the distribution of LRT is χ(q) where q denotes the number of restrictions on the

parameters. In our case, the parameter restrictions for a constant σt and λt are

κσ = κλ = gσ = gλ = βσS = βλS = βλσ = 0 .

Also, we let σε = 0 so pt = st. Therefore, we have eight parameter restrictions. The likelihood value of the

unrestricted model is given in Table 3 whereas that of the restricted model is given in Table 1.
5 Recall dσt = κ(σ − σt)dt + βdBt . Apply Itô’s Lemma to σ2 we have

dVt = dσ2
t = 2σt

(
κ(σ − σt)dt + βdBt

)
+ β2dt

= 2κ
(
σtσ +

β2

4
− σ2

t

)
dt + 2βσtdBt . (18)

If we modify (18) by setting σtσ + β2

4
:= V as a constant, we obtain the dynamics (6).
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κσ = κλ, , gλ = 0 , λ = cσ, , βλS = cβσS , βλσ = cgσ . (19)

Estimation of the Heston Model (Model 2)
The estimation is also carried out by maximum likelihood estimation based on the extended
Kalman filter technique. The Euler-Maruyama discretization is applied to the dynamics
(17) and (6). The estimation results are given in Table 3. The Vt process still has a large
mean-reversion speed indicated by a large estimated κV and has a reversion mean around
0.0147. The parameter hV is estimated to be zero which means the two risk sources are
perfectly correlated. The LR test is carried out for the the restriction (19) and yields p-value
equal to 49.564686%. So we accept the Heston model as a more parsimonious model for
modelling stochastic volatility.

Parameters estimates t-statistic

κV 9.540729 4.386914
V 0.014735 6.694009
l 5.597853 2.048038

bSV -0.211266 -3.896279
hV 0.000000 0.000000
σε 0.002714 1.146935

Log Likelihood 1398.56017
p-value (against Model 1) 49.56%
p-value (against Model 3) 90.16%

Table 3: Estimates for Model 2, the Heston Model
The first p-value is from the LR-test against the Model 1 and
the second is from the LR-test against the Model 3.

3.2.3 Estimation of the Extended Heston Model (Model 3)

The estimation of Model 3 follows similarly to that Model 2. Table 4 gives the estimation
results for Model 3. All of them are similar with those of Model 2 given in Table 3, especially
the CEV parameter estimate of η = 0.4546, which is close to 0.5.6 We test the restriction
η = 1

2 against a free η using the LR ratio. The test has p-value equal to 90.16% (given in
Table 3), which indicates an acceptance of the Heston model in its restricted version.

6 We should point out that the estimate of the CEV parameter is insignificant with a t-statistic equal to

1.1 in Table 4.
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Parameters estimates t-statistic

κV 9.638299 3.781803
V 0.014753 6.721543
λ 5.573966 2.016290

bSσ -0.209753 -3.838356
hV 0.000000 0.000000
σε 0.002645 0.991274
η 0.454551 1.100192

Log-Likelihood 1398.56782

Table 4: Estimates for Model 3, the Extended Heston Model

Summary
The Heston model passes the LR-test against the extended Heston model with a CEV process
as well as against the extended Stein-Stein model for the data. The empirical investigation
favors the Heston model for the data we used.

4 The Optimal Investment Strategies

This section provides some concrete investment strategies having exposure to stochastic
volatility based on the estimation results in Section 3. Optimal portfolios based on Models
1 and 2 are available in analytical forms while optimal portfolios for Model 3 are obtained
through adopting Backward Markov chain approximation methods as in Chiarella and Hsiao
(2006).

4.1 Computational Solutions

4.1.1 Backward algorithm based on discretization

The optimal investment strategy which maximized the expected utility (9) can be obtained
through the backward Markov chain approximation scheme, which is proposed by Kushner
and Dupius (2000)?. Chiarella and Hsiao (2006) applied the scheme to portfolio asset allo-
cation problem. Here we briefly introduce the scheme.

We approximate the optimization problem given (9) by a discretization scheme. First we
discretize [0, T ] as
{0, Δ, 2Δ, · · · , NΔ(= T )} and agents re-balances their portfolio only at these points. Let
JT (kΔ, VkΔ, WkΔ) be the value function

JT (kΔ, VkΔ, WkΔ) := max
αk′Δ,k′=k,··· ,N

EkΔ

[
e−δT U(WT )

]
, (20)

which is the achieved optimized value over the investment horizon [kΔ, T ] given the initial
values (VkΔ, WkΔ). In the discretized system the value function satisfies Bellman’s principle
of optimality

JT (t, Wt, Vt) = max
αt

Et

[
JT

(
t + Δ, ŴΔ(Wt, Vt, αt), V̂Δ(Vt)

)]
, (21)

10



where ŴΔ and V̂Δ are discrete time evolutions of the wealth and the volatility obtained by
use of the Eular-Maruyama approximation as given by

ŴΔ(Wt, Vt, αt) := Wt+Δ := Wt + RΔ + αt

(
lVtΔ +

√
VtΔBS

t

)
, (22)

and

V̂Δ(Vt) := Vt+Δ := Vt + κV (V − Vt)Δ + V
1
2−η

V η
t

(
bSV ΔBS

t + hV ΔBV
t

)
(23)

for t = kΔ, k = 0, · · · , N − 1. The Brownian motions ΔBS and ΔBV are approximated by
binomial trees. The Eular-Maruyama method works well for small discretization interval Δ
against the other higher order approximations such as the Milstein method or the Runge-
Kutta method.

The terminal condition is given by

JT (T, WT , VT ) = e−δT U(WT ) .

For the utility function of CRRA type (10), we can decompose the value function into the
form as shown in Proposition 5 in Chiarella and Hsiao (2006)

JT (t, Wt, Vt) = e−δtU(Wt)ΦT (t, Vt) , (24)

so that ΦT (Vt) represents the value function when given initial wealth Wt = 1. The value
function iteration (21) can then be rewritten as 7

ΦT (t, Vt) = (1 − γ)e−δΔ max
αt

Et

[
U

(
1 + μΔ(Vt, αt)

)
ΦT

(
t + Δ, V̂ (Vt)

)]
. (25)

The computational codes to implement (25) have been written in the programming language
“GAUSS”8. The main code implementation of the dynamic programming algorithm has
been designed by the authors while the optimization routines have been adopted from the
GAUSS application package “Optimization”.

4.1.2 Performance of the algorithm

This section will choose discretization steps used in the backward Markov chain approxima-
tion method and check its numerical performance. As an example we consider a three-year
investment plan where investors can decide to invest in two assets: one being a money ac-
count with a riskless rate of R = 2%9 and the other one being a stock. The stock price
is generated according to the dynamics given in Eq (5) and (6) with the parameter values
given in Table 3.

Three types of discretization errors will be involved in the approximation method: time
distretization errors, state space discretization errors and state space truncation errors. The

7 Using the decomposition (24), we rewrite the iteration scheme (21) as

e−δtU(Wt)Φ
T (t, Vt) = max

αt

[
e−δ(t+Δ)W 1−γ

t U
(

1 + μΔ(Vt, αt)
)
ΦT

(
t + Δ, V̂ (Vt)

)]
.

8 Provided by Aptech, see www.aptech.com.
9 This level is close to the average interest payment on cash management accounts for amounts of AU$

10000. We also point out that the riskless rate R does not appear in the analytical solutions for the

benchmark model, Models 1 and 2.
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second and last errors arise because we can only calculate ΦT (25) on finite points of Vt
10.

Truncation errors occur as we force the process Vt to remain between an upper and lower
reflecting boundary. They can actually be managed relatively well because the square-root
process Vt given in (6) has a stationary distribution11. In Figure 4 we plot the stationary
distribution of Vt based on the estimated results given in Table 3 where we can see that
most values lie within the range [0.0, 0.04]. In our computational exercise we take a range
[0.0, 0.08] for Vt.

Figure 4: Stationary distribution of the Vt process (given in Eq. (6) with parameters given
in Table 3.

To investigate the discretization errors for both state space and time space we consider
the grid sizes ΔV = 0.0025 and 0.00125 and time discretizations Δt = 0.01 and 0.001.
In order to investigate the computational performance, we compare the solutions for both
the optimal investment proportions and the value function. The solution for the optimal
investment proportion and the value function are given by Properties 3 and 4 respectively.
In Table 5 we summarize the average relative absolute errors which is the average of the
absolute relative error |αcomputational − αanalytical|

αanalytical
.

Investment αt % ΔV = 0.0025 ΔV = 0.00125
Δt = 0.01 0.655% 0.655%
Δt = 0.001 0.061% 0.067%

Table 5: Average relative absolute errors due to Discretizations.

We can see from Table 5 that a reasonable discretixation would be Δt = 0.001 and
ΔV = 0.0025 for the numerical computation to be carried out later since refining ΔV does
not improve the performance very much and Δ = 0.001 provides already relatively small
average absolute errors.

4.2 Optimal Investment Weights

We will provide the optimal investment decisions and investigate the impact of stochastic
volatility via our three models. In order to gauge the impact of stochastic volatility we start

10We linearly interpolate for the other values which are not calculated on grid points. For other sophisti-

cated interpolation methods and the implementation details see Rust (1996).
11 The formula of the stationary distribution is given in equation (49) in the Appendix.
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by providing the optimal investment weight for the constant volatility case. Throughout
this section the risk aversion parameter γ is chosen to be 7. Munk et al. (2004) estimate γ

to be around 4.8 for moderate investors and 7.6 for aggressive investors.

4.2.1 Benchmark Model

As we hold λt = λ, σt = σ constant over time the optimal investment weight is also constant.

Property 1. The optimal portfolio for the reference model is given by

α∗
t =

1
γ

λ

σ
, (26)

See Merton (1973).

Since there is no stochastic volatility in this model the optimal intertemporal investment
weight is equal to the optimal static investment weight. For the parameters given in Table 2
and risk aversion parameter γ = 7 the optimal investment proportion in the stock is 72.12%,
which means 72.12% of the entire wealth.

4.2.2 Model 1 : The extended Stein/Stein Model

Here we calculate the optimal investment weight based on the extended Stein-Stein model.

Property 2. The optimal portfolio for Model 1 is given by

α∗(t) =
1
γ

λt

σt︸︷︷︸
Static

+
βλS

σt

(
dλ(T − t) + Qλλ(T − t)λt

)
︸ ︷︷ ︸

Intertemp. Hedging

, (27)

where12

Qλλ(τ) = − 2
(
exp(ξτ) − 1

)
(K + ξ)

(
exp(ξτ) − 1

)
+ 2ξ

δ , (28)

dλ(τ) � κλλq

Kq

(
1 − e−Kqτ

)
, (29)

with

K = κλ − βλS
1 − γ

γ
,

ξ =
√

K2 + 2
(
β2

λS + γβ2
λσ + γg2

λ

)
δ =

γ − 1
2γ2

,

Kq = K − q
(
β2

λS + γβ2
λσ + γg2

λ

)
,

q =
−2δ

K + ξ
.

�

Proof see Appendix.

Figure 5 illustrates the optimal investment strategy implied by Eq. (27) based on the

12The symbol � represents an approximate relation, which here is almost an equality for τ > 1.
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estimation results for the whole investment horizon (which is equal to our observation hori-
zon). The optimal investment weight evolves over time because the intertemporal hedging
term depends on the λt. We can see that the optimal portfolio strategy is very volatile. We
decompose the optimal strategy into an optimal static portfolio and an intertemporal hedg-
ing term according to Eq. 27) and draw them respectively in Figure 6. The optimal static
investment weight is volatile and dominates (for the given risk aversion parameter γ = 7).
The volatile behavior of the optimal static investment weight (= λt/σt) is due to the volatile
trajectories of λt and σt (although these two processes are highly correlated). Note that
the market price of risk attains negative values at the beginning of the observation period
because of the bad performance of the index. This leads to a negative suggested investment
proportion during this period. The optimal static portfolio proportions fluctuate around
73.42% which is calculated at their means σt = σ, λt = λ.

The optimal investment weight relating to intertemporal hedging term is positive. The
positive intertemporal hedging term mathematically comes from a negative correlation be-
tween the asset return shock BS

t and the shock to the market price of risk Bλ
t (that shows

up as the negative value of βλS in Table 1) and a negative dλ(τ) term. This investment
weight starts around 6.16%, remains at the same level and then decreases shortly before
the end of the investment. As the final time t = T the intertemporal hedging term is zero
according to Eq. (27). We see in Figure 7 the processes dλ(T − t) and Qλλ(T − t) have
similar movements. They stay at the levels equal to dλ(∞) and Qλλ(∞) until time t comes
very close to the final time T . This kind of the movement can be explained by a large mean
reversion parameter κλ. A large κλ leads to a large Kq in Eq. (29) so that dλ(τ) goes to
dλ(∞) very quickly.

4.2.3 Model 2: The Heston Model

Now we provide the optimal investment weight for the Heston model.

Property 3. The optimal portfolio for Model 2 is given by

α∗(t) =
l + 1

2

γ︸ ︷︷ ︸
Static

+ bSV dV (T − t)︸ ︷︷ ︸
Intertemp. Hedging

, (30)

where

dV (τ) = − 2
(
exp(ξV τ) − 1

)
(K̃V + ξV )

(
exp(ξV τ) − 1

)
+ 2ξV

δV , (31)

where

K̃V = κV − 1 − γ

γ
σV (l +

1
2
) , (32)

σV =
√

b2
SV + h2

V , (33)

δV = −1 − γ

2γ2
(l +

1
2
)2 , (34)

ξV =
√

K̃2
V + 2δV σ2

V . (35)

Property 4. The value function for Model 2 is given by

ΦT (Vt) = exp
(

cV (T − t) + dV (T − t)Vt

)
, (36)
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Figure 5: The Optimal Investment Strategy for Model 1

Investment Horizon
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Figure 6: Decomposition for the Optimal Investment Strategy of Model 1

(a) Qλλ(T − t)

(b) dλ(T − t)

Figure 7: Coefficients in the value function for Model 1
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where

cV (τ) (37)

= −2κV V

σ2
V

ln
(

K̃V + ξV
2ξV

exp(ξV τ) +
ξV − K̃V

2ξV

)
+

2τδV κV V

ξV − K̃V

+
R − γR − δ

γ
τ,

with K̃V , σV , δV , ξV defined in equations (32) to (35).

See Liu (2007) Corollary 3 on P.29 with λs = l + 1
2 .

In contrast to Model 1, the optimal investment proportion (30) depends only on the time to
maturity as shown in Figure 8. The optimal static investment (l+ 1

2 )/γ = 79.97% is constant
over time based on the estimation results and the assumption γ = 7. The intertemporal
hedging term starts at its long-term level bSV dV (∞) = 4.75% and then declines to zero as
the investment period ends. This positive hedging position, similar to the result for Model
1, is also due to the negative correlation between the asset return shocks and the shock to
the market price of risk, and the negative dV .

Stock Holding Proportion

2 4 6 8 10

Investment Horizon

90%

80%

(84.72%)

70%

(79.97%)

Figure 8: The Optimal Investment Strategy based on Model 2

Comparing the optimal investment weights of Models 1 and 2, the optimal static invest-
ment weights of Model 2 are at a similar level to the mean optimal static investment weights
of Model 1. The optimal static investment weights of Models 1 and 2 also have a similar
scale with the benchmark model with constant σ and λ in Section 4.2.1. We summarize the
in Table 6. The intertemporal term is also of a similar scale and has similar movement.

Optimal Static Intertemp Hedging
Invest. Weight far from T

The Benchmark Model 72.12% –
Model 1 73.42% 6.16%
Model 2 79.97% 4.57%

Table 6: Comparison of Investment Strategies based on Models 1 and 2

4.2.4 Model 3, the Extended Heston Model

Here we provide computational results for the optimal investment strategies for different
CEV parameters. Since the optimal investment proportion does not change much until the

16



investment approaches maturity as we saw in Fig. 8 we reduce computational burden by
reducing the investment horizon from ten years to three years . The discretization steps are
still given by Δt = 0.001, ΔV = 0.0025.

Figures 9 and 10 summarize the computational results where each graph depicts how the
optimal investment weights change from time t = 1.6 until t = 2.9999 against various levels
of the variance Vt. The risk aversion parameter γ is still set to be 7. The first graph in
Figure 9 shows the optimal investment proportions based for η = 1

2 (the Heston model).
They are not dependent on Vt therefore they are horizontal lines. The optimal investment
proportion in the stock is 84.7% at t = 1.6 and declines to 79.97% at t = 2.9999. These
optimal investment weights coincide exactly with those in Figure 8, which indicates that the
backward Markov chain approximation method performs well. The sharp drop in Figure 8
can be also seen in the first graph in Figure 9. For the case of η < 0.5 shown in the second
and third graphs in Figure 9 we see that the investment weights now depend on the variance
level Vt. The weights decrease with the level of Vt. The intertemporal hedging term also
decreases with the level of Vt. The term can be graphically represented by the difference to
the ”static portfolio” at T = 2.9999. This effect becomes more significant as η moves more
further away from 1

2 . Recall that in Figure 1 that for an η smaller than 0.5, the CEV process
(7) has a higher diffusion coefficient than the square-root process (6) at low Vt levels. This
gives rise to a stronger intertemporal hedging term than that of the Heston model at low
Vt levels. When we now consider the opposite case η > 0.5 given in the second and third
graphics in Figure 10 the situation reverses. The intertemporal term now increases with
the variance level Vt. This effect can again be explained through Figure 1 where the CEV
process has higher volatility at high levels Vt.
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Figure 9: Optimal Portfolio for η ≤ 1
2 .

Each figure plots the optimal investment weights against different variance
levels Vt for different investment times from t = 1.6 until t = 2.9999 for a
given η. The investment matures at T = 3.0. The risk aversion parameter
is set to be γ = 7. For the case η = 0.25 in the third graph the optimal
investment proportion at investment time t = 1.6 is 87.26% (of the whole
wealth) for a low variance level Vt = 0.0025 and declines to 82.98% for a high
volatility level Vt = 0.1.
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Figure 10: Optimal Portfolio for η ≥ 1
2 .

Each figure plots the optimal investment weights against different variance
levels Vt for different investment times from t = 1.6 until t = 2.9999 for a
given η. The investment matures at T = 3.0. The risk aversion parameter
is set to be γ = 7. For the case η = 0.75 in the third graph the optimal
investment proportion at investment time t = 1.6 is 83.06% (of the whole
wealth) for a low variance level Vt = 0.0025 and increases to 88.51% for a high
volatility level Vt = 0.1.
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5 Conclusions

The paper has investigated the effect of stochastic volatility via three models, an extended
Stein-Stein, the Heston model and an extended Heston model with a CEV process. The
backward Markov chain approximation method was adopted in order to obtain optimal in-
vestment strategies based on the extended Heston model. Regarding modelling of stochastic
volatility, our empirical results based on the ASX200 data favors the Heston model as a
more parsimonious model. Results for optimal investment strategies are summarized in the
following four points:

• For all three SV models, stochastic volatility induces a positive intertemporal hedging
term for the all three SV models. The positive intertemporal hedging term is explained
by a negative correlation between the volatility process/variance process and the asset
return process. The intertemporal hedging terms of all three SV models are of a similar
scale.

• Regarding optimal static investment weights, the extended Stein-Stein model suggests
a very volatile process of weights depending on the level of σt and λt. The Heston
model and extended Heston model suggest a constant weights independent of Vt.

• For all three SV models, the longer the time to maturity the stronger the intertemporal
hedging effect. The intertemporal hedging terms remain at the same level for the most
of investment time, then decline only shortly before the end of the investment period,
and then go down to zero at the end of the investment.

• The CEV parameter η has an impact on the intertemporal hedging term. For the case
η = 1

2 the intertemporal hedging term does not depend on the level of the variance
Vt. While for η < 1

2 the term decreases with the level of the variance Vt and increases
with Vt for η > 1

2 .
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6 Appendix

Proof of Property 2

Following Liu (2007), when considering Model 1, see (3) and (4), the value function J(t, T, Wt, σt, λt)
for the optimization problem (9) is defined as

J(t, T, Wt, σt, λt) := max
αs,s∈[t,T ]

Et

[
e−δT U(WT )

]
.

The solution turns out to be of the form

J(t, T, Wt, σt, λt) = e−δT U(Wt)Φ(t, T, σt, λt)

where Φ(t, T, σt, λt) has the form

Φ(t, T, σt, λt) = exp
(

c(t) + dσ(t) σt + dλ(t) λt (38)

+
1
2
Qσσ(t) σ2

t + Qσλ(t) σtλt +
1
2
Qλλ(t) λ2

t

)
.

with the terminal conditions

c(T ) = dσ(T ) = dλ(T ) = Qσσ(T ) = Qσλ(T ) = Qλλ(T ) = 0 . (39)

The task is to determine the coefficients c(t), dσ(t), dλ(t), Qσσ(t), Qσλ(t) and Qλλ(t) such
that J satisfies the HJB equation13.

Inserting the solution form (38) into the HJB equation and comparing coefficients, it turns
out that the coefficients Qσσ(t) and Qσλ(t) are zero14

Qσσ(t) ≡ 0 , Qσλ(t) ≡ 0 , ∀t = [0, T ] (40)

The coefficient Qλλ(t) satisfies the non-linear ODE of Riccati-type

d

dt
Qλλ(t) + Qλλ(t)

(
βλS

1 − γ

γ
− κλ

)
+

Q2
λλ(t)
2

(
β2

λS + γβ2
λσ + γg2

λ

)
+

1 − γ

γ
= 0 , (41)

which has the solution given in (28). For the linear coefficients dσ(t) and dλ(t), one of the
coefficients is solved by

dσ(t) = 0 ∀t = [0, T ], (42)

with the same reasoning as above. The coefficient dλ(t) satisfies the linear ODE

d′λ(t) +
(
βλS

1 − γ

γ
− κλ +

(
β2

λS + γβ2
λσ + γg2

λ

)
Qλλ(t)

)
dλ(t) + κλλQλλ(t) = 0 . (43)

For our case the function Qλλ(τ) approaches its limit very quickly, as shown in Figure 7,
the value of which is given by

lim
τ→∞Qλλ(τ) =

−2δ

K + ξ
=: q . (44)

13 See, for example Liu (2007) or Hsiao (2006)?.
14From the comparison of coefficients, the equation which Qσσ(t) and Qσλ(t) have to satisfy is given by

−κσQσσ(t) +
β2

σS + γg2
σ

2
Qσσ(t)2 +

(
βσSβλS + gσβλσ

)
Qσσ(t)Qσλ(t) +

β2
λS + γg2

λ

2
Qσλ(t)2 = 0 .

We remark that can check easily that the trivial solutions (40) satisfy this PDE.

21



This allows us to consider an approximation where we replace Qλλ(t) in eqn (43) with q and
then obtain the approximate solution

dλ(τ) =
κλλq

Kq

(
1 − e−Kqτ

)
, (45)

where

τ = T − t ,

Kq = K − q
(
β2

λS + γβ2
λσ + γg2

λ

)
.

�

Proof of Property 4
The calculation is based on Liu’s (2005) ? example Sec.3.4 on pp. 22-23.
In order to calculate cV , we use equation (15) in Liu (2007) and obtain

d

dt
cV (t) + κV V d(t) +

R − γR − δ

γ
= 0 . (46)

� Properties of the CIR process
Consider the CIR process

dVt = κV (V − Vt)dt + σV dWt , (47)

where κV > 0, V > 0 and σV > 0.

The following results are adopted from Cox et al. (1985) p.391. The transition density
of the CIR process is given by

p(Vt, t|V0, 0) = φ(t) exp
( − c(t)(v̂0 + Vt)

)(Vt

v̂0

) ν
2 Iν

(
2φ(t)

√
v̂0Vt

)
, (48)

where

v̂0 = e−κV tV0 , φ(t) =
2κV

σ2
V (1 − e−κV t)

, ν =
2V κV

σ2
V

− 1 ,

and Iν is the modified Bessel function of the first type and given by

Iν(z) = (
z

2
)ν

∞∑
j=0

( z
2 )2j

j!Γ(j + ν + 1)
.

We require here V κV >
σ2

V

2 .

The CIR process in this case has a stationary distribution, which is given by

p(x) =
1

Γ(η)
φ

η
xη−1e−φx , (49)

where φ := 2κV /σ2
V = limt→∞ φ(t) and the gamma function Γ(η) =

∫ ∞
0

xη−1e−xdx .
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