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Abstract 
 
 This paper introduces a new concept of market mechanism design into general 
economic environments with finite but many traders, where multiple objects are traded and 
any combination of complements and substitutes is permitted. The auctioneer randomly 
divides traders into multiple groups. Within each group, trades occur at the market-clearing 
price vector of another group. With private values, any undominated strategy profile 
mimics price-taking behavior, enforcing perfect competition. With interdependent values, 
any twice iteratively undominated strategy profile mimics the rational expectations 
equilibrium, enforcing ex post efficiency. Our mechanisms are detail-free, i.e., they do not 
depend on the details of model specification. 
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1. Introduction 
 

The hypothesis of perfect competition assumes that traders are non-strategic and adopt 
price-taking behavior. In order to provide a strategic foundation to the hypothesis, several 
studies after Wilson (1977) investigated standard models with private values and a single 
object. These include double auctions where there exist finite but many traders who 
announce supplies and demands; the auctioneer calculates the price at which the announced 
supplies and demands are balanced, and trades occur at this market-clearing price. Clearly, 
in the case of a continuum of traders, every trader’s dominant strategy is to behave as a 
price taker because her announcement does not influence her trading price. However, when 
the number of traders is finite, each trader may be able to manipulate the market-clearing 
price for her benefit. In fact, in this case, none of the traders adopts a dominant strategy of 
behaving as a price taker. Hence, several studies such as Rustichini, Satterthwaite, and 
Williams (1994), Fudenberg, Mobius, and Szeidl (2003), and Jackson and Swinkels (2004) 
replaced the dominant strategy with the Bayesian Nash equilibrium,1 thereby clarifying 
that traders are involved in a complicated strategic interaction that relies heavily on a strong 
knowledge assumption of their rational behavior. 
 Instead of using the standard models, this paper introduces a new concept for 
designing a market mechanism with finite but many traders. The first part of this paper 
demonstrates that in the private value case, even if the number of traders is finite, the 
dominant strategy mimics price-taking behavior, and the auctioneer almost certainly 
achieves the approximate competitive equilibrium allocation. The basic idea of our 
mechanism design is as follows. In contrast to the standard models, the auctioneer makes 
stochastic decisions and sets multiple prices. The auctioneer randomly divides the traders 
into two groups and deals with each group as a separate group. The auctioneer calculates 
the price at which the demands and supplies announced by the traders in each group are 
balanced, i.e., the market-clearing price within each group. It should be noted that in order 
to enforce trades within a group, the auctioneer does not use the market-clearing price of 
the same group but that of the other group. Hence, a trader’s announcement does not 
influence her trading price, which is the force that derives the price-taking behavior to be 
dominant. From the law of large numbers, it is clear that when the number of traders is 
sufficiently large, the market-clearing price in each group almost certainly mimics the 
unified market-clearing price, at which all the demands and supplies by all the traders are 
balanced; in other words, the market-clearing price in each group mimics the competitive 
equilibrium price. 
 The basic concept of random grouping proposed here has very high potential to 
achieve approximate efficiency in general economic environments. For instance, it enables 
                                                 
1  Rustichini, Satterthwaite, and Williams (1994) investigated the symmetric Bayesian Nash 
equilibrium in the case of independent private signals with single-unit supplies and demands. 
Fudenberg, Mobius, and Szeidl (2003) investigated the symmetric Bayesian Nash equilibrium in the 
case of correlated private signals with single-unit supplies and demands. Jackson and Swinkels 
(2004) investigated the mixed strategy Bayesian Nash equilibrium in a variety of multi-unit double 
auctions with private values. 
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us to consider the trading of multiple commodities, where each trader demands multiple 
units for each commodity. Through a careful design of rationing rules, we can also allow 
each trader any combination of substitutes and complements. 

The second part of this paper deals with the interdependent value case, where a 
trader’s payoff depends not only on her private signal but also on the private signals of 
other traders. The standard analysis of perfectly competitive markets assumes that each 
trader utilizes not only her private signal but also any other available information, such as 
the market price, and examines the rational expectation equilibrium.2 Each trader updates 
her belief based on the market price and a forecast function that maps private signal profiles 
to trading prices, and then maximizes the updated expected utility as a non-strategic price 
taker. The rational expectation equilibrium depends critically on the assumption that traders 
have knowledge of this forecast function, which is supported as a rule through the 
assumption that trading behavior is common knowledge among traders. This makes it 
impossible to regard price-taking behavior as a dominant strategy. In fact, irrespective of 
whether or not a continuum of traders exists, price-taking behavior is no more than a 
Bayesian Nash equilibrium where traders are involved in a more complicated strategic 
interaction with interdependent values rather than private values.3 
 Instead of using the forecast function as a tool for information transmission, the 
second part of this paper will propose the design of a new trading procedure. In this 
procedure, each trader announces her demand or supply three times; she first observes a 
part of the other traders’ first announcements and updates her belief before finally 
announcing her second and third announcements. The concept of random grouping also 
plays a very significant role in the interdependent value case, where the auctioneer 
randomly divides traders into multiple groups. In this case, it is assumed that not only the 
number of the traders belonging to each group but also the number of groups is sufficiently 
large. The auctioneer calculates the market-clearing price of each group, at which the 
supplies and demands of the traders in the group based on their second announcements are 
balanced. In order to enforce trades within each group, the auctioneer uses the third 
announcements of the traders in the group together with the market-clearing price of the 
precedent group. 

The solution concept we use is a twice iteratively undominated strategy, which is 
defined by eliminating the dominated strategies for each trader only twice. In this case, we 
require only a very weak knowledge assumption regarding the rationale that each trader 
expects other traders not to employ strategies that are dominated, i.e., are deleted just by the 
first round of iterative removals. The traders’ rationale is not required to be common 
knowledge. This paper demonstrates that the designed procedure succeeds in information 
transmission. Any twice iteratively undominated strategy profile mimics price-taking 
behavior and almost certainly enforces approximate rational expectation equilibrium 

                                                 
2 See Allen (1986), and Mas-Colell, Whinston, and Green (1992, Chapter 19.H)). 
3 In order to provide a strategic foundation for the rational expectation equilibrium with finite 
traders, Reny and Perry (2003) investigated Bayesian Nash equilibria in standard double auction 
models with single-object and single-unit, where traders’ private signals are assumed to be strictly 
affiliated. 
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allocations, i.e., enforces approximate ex post efficiency. This permissive result holds in a 
wide class of economic environments that requires only minor restrictions on the private 
signal structure, where trading in multiple objects is permitted, and every trader is allowed 
any combination of complements and substitutes. 
 It is of particular importance that our designed mechanisms are detail-free, i.e., they 
do not depend on the details of model specification such as the utility functions of traders, 
their private signal spaces, and the prior distribution. This is in contrast with previous 
studies on mechanism design such as d’Aspremont and Gererd-Varet (1979), Myerson 
(1981), Myerson and Satterthwaite (1983), and Cremer and McLean (1988). These studies 
on mechanism design assumed that the auctioneer or the central planner possessed 
complete knowledge of the fine details of model specification upon which the designed 
mechanisms crucially depended. As a criticism of the study of mechanism design, Hurwicz 
(1972), Wilson (1985, 1987), and Dasgupta and Maskin (2000) have indicated that this 
assumption makes the mechanisms difficult to put into practice. Hence, the first step toward 
a practically useful theory is to formulate a method to design mechanisms that are 
detail-free but well-behaved. 
 From the experimental viewpoint, it is well-known that the concept of twice iterative 
dominance, which is utilized in the latter part of this paper, is significantly much effective 
in predicting real human behavior as compared to any concept based on three or more 
rounds of the iterative removal of dominated strategies. For instance, refer to the 
experimental research by Cost-Comes, Crawford, and Broseta (2001). 
 This paper is organized as follows. Section 2 describes the basic model. Section 3 
investigates the private value case, and Section 4 investigates the interdependent value case. 
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2. The Model 
 
 There exist infinitely many agents ,...}2,1{∈i  and k  distinct commodities to be 
traded. Each agent ,...}2,1{∈i  has an initial endowment vector denoted by 

kk
hii lhee }1,...,0{))(( 1 −∈= = , 

where 2≥l , and for each },...,1{ kh∈ , agent i  possesses an amount )(hei  of 
commodity h . The first nr  agents participate in the trading procedure as traders, where 

2≥n  and 2≥r  are positive integers, and nr  is sufficiently large so that it satisfies 
    lnr ≥ . 
We assume that nr

iiee 1)( ==  is known to the auctioneer and is verifiable to the court. We 
also assume that 

(1)    lhe
nr

i
i ≥∑

=1
)(  for all },...,1{ kh∈ . 

Let k

T
P }1,...,1,0{=  denote the finite set of price vectors, where T  is a positive 

integer. Here, the existence of positive price grid 01
>

T
 is irrelevant to our argument. In 

fact, we can choose T  as large as possible. An allocation is defined as the combination 
nrknr Plqxa ×∈= },...,0{),( , where 

nr
iixx 1)( == , k

hii hxx 1))(( == , },...,0{)( lhxi ∈ , 
nr
iiqq 1)( == , Phqq k

hii ∈= =1))(( , }1,...,1,0{)(
T

hqi ∈ , 

(2)    0)}()({
1

=−∑
=

nr

i
ii hxhe  for all },...,1{ kh∈ , 

and 

(3)    0)}()(){(
1 1

=−∑∑
= =

nr

i

k

h
iii hehxhq . 

Trader i  sells and buys each commodity },...,1{ kh∈  at a price )(hqi  and receives an 
amount )(hxi  of each commodity h . The total monetary amount received is given by 

∑
=

−
k

h
iii hxhehq

1
)}()(){( . 

The inequalities (2) imply market-clearing in the sense that for each commodity, the total 
amount allocated to traders and the total supply are equalized.4 Inequality (3) implies 
budget-balancing. Each trader possesses an initial endowment of each commodity that is 
less than or equal to 1−l , whereas she can consume up to amount l , i.e., 

1)( −≤ lhei  and lhxi ≤)( . 
                                                 
4 Hence, ii xe −  represents the excess demand vector for trader i . 
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Here, the existence of the upper bounds described by l  is irrelevant to our argument. In 

fact, we can choose l  as large as possible. Let knrknr

T
lA }1,...,1,0{},...,0{ ×⊂  denote the 

set of allocations satisfying inequalities (2) and (3), and let )(A∆  denote the set of 
lotteries over allocations. 

A mechanism is defined by ),( gMG = , where ∏
=

=
nr

i
iMM

1

, )(: AMg ∆→ , and 

iM  is the set of messages for trader },...,1{ nri∈ . Let D  denote the set of demand 
functions kk

h lPhdd },...,0{:))(( 1 →= = . Let Φ  denote the set of permutations over traders 

},...,1{},...,1{: nrnr →φ . )
3
1,0(∈ε  is set arbitrarily to a value that is positive but close to 

zero. Set a function PnlDp kn →× },...,0{:ˆ , where kk
h nlhyy },...,0{))(( 1 ∈= =  and 

    ∑∑
= =∈

= −∈
k

h

n

i
i

Pp

n
ii hyphdydp

1 1
1 )())((minarg),)((ˆ , 

which approximates the market-clearing price vector among n  traders when their demand 
functions and the total supply vector are given by n

iid 1)( =  and y , respectively. 
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3. Private Values 
 

This section investigates the private value case, where none of the traders possesses 
any private information about the other traders’ preferences. Trader si'  utility function is 
given by RAui →: . Let ∑

∈

=
Aa

ii aauu )()()( αα  for all )(A∆∈α , where the expected 

utility hypothesis is assumed. This section assumes that the first n2  agents participate in 
the trading procedure as traders, i.e., 
    2=r . 
The auctioneer determines an allocation according to the following trading procedure, 
which consists of three stages. 
 
 
Stage 0: The auctioneer randomly selects a combination of a permutation Φ∈φ  and a 

price vector Pp∈  with probability kTn )1()!2(
1
+

. The auctioneer divides the traders into 

two groups, namely group 1 and group 2, where n  traders )1(φ , …, )(nφ  belong to 
group 1, and the remaining n  traders )1( +nφ , …, )2( nφ  belong to group 2. No trader 
observes ),( pφ . 
 
 
Stage 1: Each trader i  announces a demand function Ddi ∈ . 
 
 
Stage 2: For each }2,1{∈β  and Pp ∈′ , let ),( pnn ′= β  denote the maximal integer 

},...,0{ nn ∈′  such that 

    lphdhe
nn

nj
j

n

nj
j ≥′− ∑∑

−′+−

+−=+−=

1)1(

1)1(
)(

1)1(
)( ))(()(

β

β
φ

β

β
φ  for all },...,1{ kh∈ .5 

Let ),( pnn ′= β  denote the minimal integer },...,1{ nn ∈′  such that 

    lnnphdhe
nn

nj
j

n

nj
j )())(()(

1)1(

1)1(
)(

1)1(
)( ′−>′− ∑∑

−′+−

+−=+−=

β

β
φ

β

β
φ  for some },...,1{ kh∈ . 

Let 
(4)    ]1),(),,(min[),(~~ −′′≡′= pnpnpnn βββ . 
After the first n~  traders in group β  receive the same amounts as their announced 
demands, it happens for some commodity that the remaining part of the total supply is less 
than l  or more than lnn )1~( −− . It should be noted that if the remaining part of the total 
supply is more than lnn )1~( −−  and the demand announced by the thn −+ )1~(  trader, 

                                                 
5 We denote 2=β  as 11=+β  and 1=β  as 21=−β . 
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)()1~)1(( pd nn ′++−βφ , is replaced with zero, then the remaining part of the total supply cannot be 
allocated to the remaining 1~ −− nn  traders with no remainder. 

With probability ε−1 , the auctioneer determines ),( qxa =  according to Rationing 
Rule 1 described below. 
 

Rationing Rule 1: }2,1{∈β  is set arbitrarily. The auctioneer buys all initial 
endowments possessed by the traders in group β  at the price vector 

),(ˆ 11 −− ββ groupgroup ydp , where 1−βgroupd  is the profile of demand functions 
announced in group β , and 1−βgroupy  is the total supply vector in group β , i.e., 

nn
niigroup Ddd ∈≡ −
+−=−

)1(
1)2()(1 )( β

βφβ  and k
n

ni
igroup nley },...,0{

)1(

1)2(
)(1 ∈= ∑

−

+−=
−

β

β
φβ . 

Denote )),(ˆ,(~~
11 −−= βββ groupgroup ydpnn . The auctioneer sells 
)),(ˆ( 11 −−= ββ groupgroupii ydpdx  

to the first n~  traders )( ji φ=  in group β , where 
nnjn ~)1(1)1( +−≤≤+− ββ . 

  Recursively, for every },...,1~)1{( nnnj ββ ++−∈ , the auctioneer sells amount 

])()(,min[)(
1

1)1(
)(

1)1(
)( ∑∑

−

+−=′
′

+−=′
′ −=

j

nj
j

n

nj
ji hxhelhx

β
φ

β

β
φ  

of each commodity h  to trader )( ji φ= . Here, the auctioneer sets the price 
vector iq  equal to ),(ˆ 11 −− ββ groupgroup ydp  for each trader i  in group β . The 
allocation determined according to Rationing Rule 1 is denoted by 

)1,)(,,( 2
1

n
iidpaa == φ . 

 
With probability ε , the auctioneer determines ),( qxa =  according to Rationing 

Rule 2 described below. The auctioneer sets the trading price vector equal to p  in 
common with all traders. Only the first among the traders receives the same amounts as her 
announced demands. The rest of the total supply is allocated to the remaining 12 −n  
traders with no remainder. 

 
Rationing Rule 2: The auctioneer buys all the initial endowments possessed by 
the traders at the price vector p . The auctioneer sells 

)()1()1( pdx φφ =  
to the first among the traders, i.e., trader )1(φ . Recursively, for every 

}2,..,2{ nj∈ , the auctioneer sells amount 

])()(,min[)(
1

1)1(
)(

1)1(
)( ∑∑

−

+−=′
′

+−=′
′ −=

j

nj
j

n

nj
ji hxhelhx

β
φ

β

β
φ  

of each commodity h  to trader )( ji φ= . In this case, the auctioneer sets the 
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price vector iq  equal to p  for all the traders. The allocation determined 
according to Rationing Rule 2 is denoted by 

)2,)(,,( 2
1

n
iidpaa == φ . 

From inequality (1), ln ≥2 , 1)( −≤ lhei , and lhxi ≤)( , it is clear that 
)2,)(,,( 2

1
n

iidpa =φ  is well-defined. 
 
 
Example: Let 4=n , 1=k , and 3=l . Consider group 1, which includes four traders, i.e., 
traders )4(),...,1( φφ . Suppose that the initial endowments of the traders in group 1 are 
given by 

2)4()3()2()1( ==== φφφφ eeee . 
Then, the total supply in group 1 is 8. Suppose 

1)),(ˆ( 22)1( =groupgroup edpdφ , 
2)),(ˆ()),(ˆ( 22)3(22)2( == groupgroupgroupgroup edpdedpd φφ  

3)),(ˆ( 22)4( =groupgroup edpdφ  
and therefore, the total demand in group 1 is 8, which equals the total supply. Hence, we 
have 4=n . However, in accordance with Rationing Rule 1, only traders )1(φ  and )2(φ  
receive the same amounts as their announced demands, i.e., 2~ =n . If the demand 
announced by trader )3(φ , which is 2, is replaced with zero, then the remaining part of the 
total supply 5218 =−−  is greater than 3=l , i.e., the upper bound of trader s)'4(φ  
demand. This implies 3=n , and therefore, we have 2~ =n . Hence, according to Rationing 
Rule 1, the auctioneer decides 

1)1( =φx , 2)2( =φx , 3)3( =φx , and 2)4( =φx . 
 
 
 The role of the requirement that the remaining part of the total supply be allocated to 
the remaining traders with no remainder, i.e., 1~ −≤ nn , is important for inducing traders to 
play price-taking behavior as being dominant. This example shows that this requirement 
suffers efficiency losses. Fortunately, when the number of traders is sufficiently large and 
the trading price approximately equalizes the total demand and supply, this requirement 

hardly makes a severe distortion. In fact, it is almost certain that both the proportions 
n
n  

and 
n
n  are close to unity, i.e., most traders can receive the same amount as their 

announced demands. 
Based on the above procedure, we specify a mechanism ),(* gMG =  by 

DM i =  for all }2,...,1{ ni∈ , 
and 
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kk TnTn
amg

)1()!2()1()!2(
1))(( 21 +

+
+

−
=

ερερ  for all Mm∈  and 

Aa∈ , 
where, for each }2,1{=γ , γρ  is the number of ),( pφ  such that 

),,,( γφ mpaa = . 
Since 0>ε  is close to zero, it can be stated that the auctioneer almost certainly selects an 
allocation according to Rationing Rule 1; in other words, the auctioneer almost certainly 
selects )1,,,( mpa φ . 

It is particularly noteworthy that the designed mechanism *G  is detail-free in the 
sense that it does not depend on the details of model specification such as the utility 
functions of the traders (However, it depends on the profile of the initial endowment 
vectors of traders, i.e., n

iie 2
1)( = .). 

From the specification of *G , it is clear that the following properties hold. 
 
(i) The message im  of every trader i  does not influence the determination of her 

trading price iq . 
(ii) Each trader i  receives either the same amount vector as her announced demand 

vector, i.e., )( ii qm , or an amount vector that is determined independent of her 
message im . 

(iii) The probability of each trader i  receiving )( ii qm  is independent of her message 

im . These properties are the driving force for price-taking behaviors being the 
dominant strategy. 

 
We define ii MM ⊂*  as the set of undominated strategies im  for trader i  where 

there exists no ii Mm ∈′  such that 
)),(())(( iiii mmgumgu −′<  for all ii Mm −− ∈ . 

We assume that there exists a function RRlv k
i →×},...,0{:  such that 

}))()(){(,()(
1
∑
=

−=
k

h
iiiiii hxhehqxvau , 

which implies that all commodities are private goods. Here, we do not need any restriction 
on the shape of the function iv . For instance, we can allow any mixture of substitutes and 
complements for each trader. We define DDi ⊂

*  as the set of demand functions d  such 
that for every Pp∈ , 

    }))()(){(,(maxarg)(
1
∑
=

−∈
k

h
iiii

x
hxhehpxvpd

i

, 

which implies that trader i  behaves as a price taker. The following theorem shows that 
any undominated strategy mimics price-taking behavior, i.e., price-taking behavior is 
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regarded as being dominant. 
 
 
Theorem 1: For every Ni∈ , 
    **

ii DM = . 
 
 
Proof: From properties (i), (ii), and (iii), it follows that irrespective of the messages 
announced by the other traders, trader si'  utility maximization implies the maximization 
of 

})))(()(){(),((
1
∑
=

−
k

h
iiiiiii qhmhehqqmv  

with respect to )( ii qm  for all Pqi ∈ . Hence, we have proved that **
ii DM = . 

Q.E.D. 
 
 

We now demonstrate that when the number of traders, n2 , is sufficiently large, any 
undominated strategy profile almost certainly induces an approximate competitive 
equilibrium allocation. We denote )(nTT = , )(nεε = , )(ˆˆ npp = , )*(* nGG = , and so on. 
We assume that 

)0,(),(lim )()( ∞=
∞→

nn

n
T ε , 

which implies that the price grid and the probability of Rationing Rule 2 being applicable 
converge at zero in the limit as n  increases. We assume that there exists kp ]1,0[ˆ ∈  such 
that for every infinite sequence of demand function profiles ,...)(,)( 6

1
)3(4

1
)2(

== iiii dd , if 
*)(
i

n
i Dd ∈  for all ,...3,2=n  and all }2,...,1{ ni∈ , 

then 
    pedp n

ii
n

i
n

n
ˆ)),((ˆlim 2

1
)()2( ==∞→

. 

This implies that p̂  approximates the competitive equilibrium price vector when the 
number of traders is sufficiently large and the traders behave as price takers. An infinite 
sequence of undominated strategy profiles, ,..., )3()2( mm , is set arbitrarily, where Theorem 
1 implies 

*)(
i

n
i Dm ∈  for all ,...3,2=n  and all }2,...,1{ ni∈ . 

It is clear from the law of large numbers that for every sufficiently large n , the auctioneer 
almost certainly selects φ  such that both ),(ˆ 11

)(
groupgroup

n edp  and ),(ˆ 22
)(

groupgroup
n edp  are 

approximated by the unified market-clearing price vector )),((ˆ 2
1

)()2( n
ii

n
i

n edp =  and therefore 
approximated by p̂ , where )(n

ii md = . The specification of Rationing Rule 1 implies that 
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whenever n  is sufficiently large, 
n

edpn groupgroup
n )),(ˆ,(~

11
)(

−− βββ
 is approximated by 1; 

therefore, each trader almost certainly receives the same amount vector as her announced 
demand vector. Hence, we conclude that when the number of traders is sufficiently large, 
any undominated strategy profile almost certainly induces an approximate competitive 
equilibrium allocation. It is clear from this property that for every sufficiently large n , 
individual rationality typically holds in that 

)0,())(( iii evmgu >  for all i  and all *Mm∈ , 
where )0,( ii ev  denotes trader si'  outside opportunity. 
 
 
Remark 1: As shown in this section, stochastic decisions play a significant role, 
particularly in economic environments with no public goods. In contrast to our permissive 
result, Barberà and Jackson (1995) have shown that in economic environments with no 
public goods, strategy-proof social choice functions are never efficient, even in the limit as 
the number of agents increases. Their negative result relies crucially on the restriction that 
stochastic decisions were excluded. Gibbard (1977) and Benoit (2002) investigated general 
social choice environments, where there are no strategy-proof non-trivial stochastic social 
choice functions. 
 
Remark 2: In general environments with quasi-linear preferences, there is a celebrating 
work by Groves (1973) that designed the so-called the Groves mechanisms, where 
truth-telling is a dominant strategy and achieves efficiency. Groves’ work suffers from the 
drawback that the Groves mechanisms do not satisfy budget-balancing;6 in contrast, our 
mechanism does. 

McAfee (1992) proposed an alternative concept of double auction design, in which 
budgetary deficit does not occur. McAfee’s analysis relies crucially on the assumption that 
each buyer (seller) has only single-unit demand (supply). In contrast, our concept of 
random grouping can be applied to extremely general cases with multiple objects and 
multi-unit demands and supplies, where each trader is allowed any combination of 
complements and substitutes. 
 
Remark 3: In contrast to the uniform price auction, our mechanism *G  fails to conform 
to the law of one price, i.e., the auctioneer may assign vastly different price vectors to 
different groups. As Milgrom (2004, Chapter 7) explains, from a practical viepoint, 
non-conformance to the law of one price is generally regarded as a disadvantage of 
mechanism design. 

However, this problem can be solved by modifying the specification of *G  as 

                                                 
6 See also Vickery (1961) and Clarke (1971). Vickery (1961) studied dominant strategy auctions, 
where only buyers are players, and it is assumed that the seller sells a commodity irrespective of the 
trading price determined. This assumption contradicts individual rationality. 



 13

follows. Instead of two groups, the auctioneer divides the traders into a sufficiently large 
number of groups. Trades occur within each group at a price vector that practically 
equalizes the total demands and supplies announced by the traders outside the group. It 
should be noted that this trading price vector always approximates the unified 
market-clearing price vector because the total demands and supplies within any single 
group are trivial when compared to the total demands and supplies of the traders outside the 
group. This implies that it is certain that the trading price vector is practically identical 
across all traders. 
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4. Interdependent Values 
 

This section investigates the interdependent value case, where each trader observes a 
private signal iω  and her utility depends not only on her private signal but also on the 
private signals of the other traders. Let iΩ  denote the finite set of trader si'  possible 
private signals. We assume that 

1Ω=Ω i  for all },...,2{ nri∈ . 
The probability of the occurrence of a private signal profile nr

ii 1)( == ωω  is given by 
0)( >ωf . There exists a macro shock 0ω  that is unobservable to all traders and is 

randomly determined according to the probability function ]1,0(: 00 →Ωf , where 0Ω  is 
the finite set of macro shocks. The traders’ private signals are correlated through the macro 
shock, i.e., there exist ]1,0(:)|( 10 →Ω⋅ ωf  for all 00 Ω∈ω  such that 

∑ ∏
=

=
0 1

000 )|()()(
ω

ωωωω
nr

i
ifff . 

Each trader si'  utility function is given by RAu ii →Ω×Ω× 0: , where her utility 
depends on the macro shock as well as her private signal. Since the private signals of 
traders are correlated through this macro shock, ]|),,([),( 0 ωωωω iii auEau ≡  depends on 

),...,,,...,( 111 nriii ωωωωω +−− = , which implies interdependent values. 
This section assumes that the number of groups is three or more, i.e., 

    3≥r . 
The auctioneer will determine an allocation according to the following procedure, which 
consists of five stages. 
 
 

Stage 0: The auctioneer randomly selects ),( pφ  with probability kTnr )1()!(
1
+

. She 

divides the traders into r  groups, r,...,1 , where for each },...,1{ r∈β , n  traders, 
)1)1(( +− nβφ , …, )( nβφ , belong to group β . No trader observes ),( pφ . 

 
 
Stage 1: Each trader i  announces a demand function Ddi ∈

1  as her first announcement. 
For each },...,1{ r∈β , every trader in group β  observes the first announcements by the 
traders in the precedent group 1−β , i.e., she observes 

nn
niigroup Ddd ∈≡ −
+−=−

)1(
1)2(

1
)(

1
1 )( β

βφβ .7 
 
 
                                                 
7 We denote 11=+β  for r=β , and r=−1β  for 1=β . 
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Stage 2: Each trader i  announces a demand function Ddi ∈
2  as her second 

announcement. After the second announcements are made, every trader in each group 
},...,1{ r∈β  observes the first announcements by the traders who do not belong to group 

β , i.e., she observes 
nr

grouprgroupgroupgroupgroup Dddddd )1(11
1

1
1

1
1

1 ),...,,,...,( −
+−− ∈≡ βββ .8 

 
 
Stage 3: Each trader i  announces a demand function Ddi ∈

3  as her third announcement. 
 
 
Stage 4: For each },...,1{ r∈β  and Pp ∈′ , let ),( pnn ′= β  denote the maximal integer 

},...,0{ nn ∈′  such that 

lphdhel
nn

nj
j

n

nj
j ≥′−≤ ∑∑

−′+−

+−=+−=

1)1(

1)1(

3
)(

1)1(
)( ))(()(

β

β
φ

β

β
φ  for all },...,1{ kh∈ . 

Let ),( pnn ′= β  denote the minimal integer },...,1{ nn ∈′  such that 

lnnphdhe
nn

nj
j

n

nj
j )())(()(

1)1(

1)1(

3
)(

1)1(
)( ′−>′− ∑∑

−′+−

+−=+−=

β

β
φ

β

β
φ  for some },...,1{ kh∈ . 

Let 
]1),(),,(min[),(~~ −′′≡′= pnpnpnn βββ . 

This definition corresponds to (4) in the private value case, where we replace )( jdφ  with 
3

)( jdφ . 
With probability ε31− , the auctioneer determines ),( qxa =  according to Rationing 

Rule 3 given below, which corresponds to Rationing Rule 1 in the private value case. To 
calculate the market-clearing price vector in each group, the auctioneer uses the second 
announcements. To determine the allocation within each group β , the auctioneer uses the 
third announcements in each group together with the calculated market-clearing price 
vector in the precedent group, 1−β . 
 

Rationing Rule 3: },...,1{ r∈β  is set arbitrarily. The auctioneer buys all initial 
endowments possessed by the traders in group β  at the price vector 

),(ˆ 1
2

1 −− ββ groupgroup ydp . We denote )),(ˆ,(~~
1

2
1 −−

= ββ
β groupydpnn

group
. The auctioneer 

sells 
)),(ˆ( 1

2
1

3
−−= ββ groupgroupii ydpdx  

to the first n~  traders )( ji φ=  in group β , where 

                                                 
8 It should be noted that any trader can not observe the announcements by the traders in the same 
group. This is the force that simplifies the strategic relationship among the traders. 
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nnjn ~)1(1)1( +−≤≤+− ββ . 
Recursively, for every },...,1~)1{( nnnj ββ ++−∈ , the auctioneer sells amount 

])()(,min[)(
1

1)1(
)(

1)1(
)( ∑∑

−

+−=′
′

+−=′
′ −=

j

nj
j

n

nj
ji hxhelhx

β
φ

β

β
φ  

of each commodity h  to trader )( ji φ= . In this case, the auctioneer sets the 
price vector iq  equal to ),(ˆ 1

2
1 −− ββ groupgroup ydp  for each trader i  in group β . 

The allocation determined according to Rationing Rule 3 is denoted by 
)3,),,(,,( 1

321 nr
iiii dddpaa == φ . 

 
With probability ε , the auctioneer determines ),( qxa =  according to Rationing 

Rule 4 given below, which corresponds to Rationing Rule 2 in the private value case, where 
the auctioneer uses the first announcements to determine the allocation. 

 
Rationing Rule 4: The auctioneer buys all initial endowments possessed by the 
traders at the price vector p . The auctioneer sells 

)(1
)1()1( pdx φφ =  

to trader )1(φ . Recursively, for every },..,2{ nrj∈ , the auctioneer sells amount 

])()(,min[)(
1

1)1(
)(

1)1(
)( ∑∑

−

+−=′
′

+−=′
′ −=

j

nj
j

n

nj
ji hxhelhx

β
φ

β

β
φ  

of each commodity h  to trader )( ji φ= . In this case, the auctioneer sets the 
price vector iq  equal to p  for all traders. The allocation determined according 
to Rationing Rule 4 is denoted by 

)4,),,(,,( 1
321 nr

iiii dddpaa == φ . 
From inequality (1), lnr ≥ , 1)( −≤ lhei , and lhxi ≤)( , it is clear that 

)4,),,(,,( 1
321 nr

iiii dddpa =φ  is well-defined. 
 

With probability ε , the auctioneer determines ),( qxa =  according to Rationing 
Rule 5 given below, which corresponds to Rationing Rule 2 in the private value case, where 
the auctioneer uses the second announcements to determine the allocation. 

 
Rationing Rule 5: The auctioneer buys all initial endowments possessed by the 
traders at the price vector p . The auctioneer sells 

)(2
)1()1( pdx φφ =  

to trader )1(φ . Recursively, for every },..,2{ nrj∈ , the auctioneer sells amount 

])()(,min[)(
1

1)1(
)(

1)1(
)( ∑∑

−

+−=′
′

+−=′
′ −=

j

nj
j

n

nj
ji hxhelhx

β
φ

β

β
φ  

of each commodity h  to trader )( ji φ= . In this case, the auctioneer sets the 
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price vector iq  equal to p  for all traders. The allocation determined according 
to Rationing Rule 5 is denoted by 

)5,),,(,,( 1
321 nr

iiii dddpaa == φ . 
From inequality (1), lnr ≥ , 1)( −≤ lhei , and lhxi ≤)( , it is clear that 

)5,),,(,,( 1
321 nr

iiii dddpa =φ  is well-defined. 
 

With probability ε , the auctioneer determines ),( qxa =  according to Rationing 
Rule 6 given below, which corresponds to Rationing Rule 2 in the private value case, where 
the auctioneer uses the third announcements to determine the allocation. 
 

Rationing Rule 6: The auctioneer buys all initial endowments possessed by the 
traders at the price vector p . The auctioneer sells 

)(3
)1()1( pdx φφ =  

to trader )1(φ . Recursively, for every },..,2{ nrj∈ , the auctioneer sells amount 

])()(),(min[)(
1

1)1(
)(

1)1(
)( ∑∑

−

+−=′
′

+−=′
′ −=

j

nj
j

n

nj
jii hxhehehx

β
φ

β

β
φ  

of each commodity h  to trader )( ji φ= . In this case, the auctioneer sets the 
price vector iq  equal to p  for all traders. The allocation determined according 
to Rationing Rule 6 is denoted by 

)6,),,(,,( 1
321 nr

iiii dddpaa == φ . 
From inequality (1), lnr ≥ , 1)( −≤ lhei , and lhxi ≤)( , it is clear that 

)6,),,(,,( 1
321 nr

iiii dddpa =φ  is well-defined. 
 
 

Based on the above procedure, a mechanism ),(** gMG =  is specified by 
321
iiii MMMM ××= , 

DM i =
1 , 
2
iM  is the set of functions DDm n

i →:2 , 
and 

3
iM  is the set of functions DDm nr

i →− )1(3 : . 
For each Mm∈  and Aa∈ , we specify 

    kk TnrTnr
amg

)1()!(
)(

)1()!(
31))(( 6543 +

+++
+

−
=

ερρρερ . 

Here, for each }6,5,4,3{∈γ , γρ  is the number of ),( pφ  such that 

),),,(,,( 1
321 γφ nr

iiii dddpaa == , 
where for every },...,1{ r∈β  and },...,1)1{( nnj ββ +−∈ , 
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1
)(

1
)( jj md φφ = , )( 1

1
2

)(
2

)( −= βφφ groupjj dmd , and )( 133
)( βφ groupij dmd −= . 

Here, 1
im , )( 1

1
2

−βgroupj dm , and )( 13
βgroupi dm −  denote the first, second, and third 

announcements of a trader i  belonging to group β . The first announcement plays the 
role of information transmission and the second announcement, the role of trading price 
vector calculations. It should be noted that the value of 0>ε  is close to zero; therefore, 
the auctioneer generally applies Rationing Rule 3. Hence, it follows that the third 
announcement of a trader plays the role of her demand vector that the auctioneer generally 
accepts for trading. 

A strategy for trader i  is defined by iii Ms →Ω: . Let iS  denote the set of 

strategies for trader i  and ∏
=

=∈=
nr

i
ii SSss

1
)( . Trader si'  interim expected utility is 

defined as ]|),)),((([),( 0 iiiii sguEsu ωωωωω = . We define ii SS ⊂1  as the set of 
undominated strategies for trader i , i.e., the set of strategies ii Ss ∈  satisfying the 
condition that for each ii Ω∈ω , there exists no ii Ss ∈′  such that 

),,(),( iiiiii ssusu ωω −′<  for all ii Ss −− ∈ . 
We define ii SS ⊂2  as the set of twice iteratively undominated strategies for trader i , i.e., 
the set of undominated strategies 1

ii Ss ∈  satisfying the condition that for each ii Ω∈ω , 
there exists no 1

ii Ss ∈′  such that 
),,(),( iiiiii ssusu ωω −′<  for all 1

ii Ss −− ∈ . 
 In particular, the mechanism **G  is detail-free in the sense that it does not depend on 
the details of model specification such as the utility functions of traders, the probability 
structure of private signals, and macro shocks (However, it depends on the profile of 
traders’ initial endowment vectors.). 
 Since the number of groups r  is three or more, the following properties hold. 
 
(iv) Irrespective of the strategies employed by the other traders, each trader si'  

message im  does not influence the determination of her trading price iq . 
(v) When the auctioneer conforms to Rationing Rules 4 (Rationing Rule 5), each trader 

i  in each group β  receives either her first- (second-) announced demand vector 
)(1

ii qm  ( ))(( 1
1

2
igroupi qdm −β ) or an amount vector that is determined independent of 

her message im . The probability of each trader i  receiving )(1
ii qm  

( ))(( 1
1

2
igroupi qdm −β ) is independent of her message im , and the determination of iq  

does not include any information about the private signals possessed by other 
traders (other traders who do not belong to group 1−β ). 

(vi) Similar to property (v), when the auctioneer conforms to either Rationing Rules 3 or 
6, each trader i  in each group β  receives either her third-announced demand 
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vector ))(( 13
igroupi qdm β−  or an amount vector that is determined independent of her 

message im . The probability of each trader i  receiving ))(( 13
igroupi qdm β−  is 

independent of her message im , and the determination of iq  does not include any 
information about the private signals possessed by other traders in group β . 

(vii) When the auctioneer conforms to Rationing Rules 4 (Rationing Rules 5 or 6), the 
probability of each trader i  receiving )(1

ii qm  ( ))(( 1
1

2
igroupi qdm −β ) is independent 

of the strategies of other traders. 
(viii) In contrast to property (vii), when the auctioneer conforms to Rationing Rule 3, the 

probability of each trader i  receiving ))(( 13
igroupi qdm β−  may depend on the 

strategies employed by the other traders in group β . 
 

Properties (iv), (v), and (vii) are the driving force for price-taking behaviors since the 
first announcement represents undominated and price-taking behaviors and the second 
represents a twice iteratively undominated strategy. Property (viii) is slightly problematic 
because a trader’s best third announcement may depend on her expectation of the behavior 
of other traders. However, we demonstrate that the twice iteratively undominated strategies 
of the traders mimic price-taking behavior in their third announcements. We assume 
symmetry and quasi-linearity in that there exists a function Rlv k →Ω×Ω× 10},...,0{:  
such that for every },...,1{ nri∈ , 

),,( 0 ii au ωω ∑
=

−+=
k

h
iiiii hxhehqxv

1
0 )}()(){(),,( ωω . 

This assumption implies that the sets of undominated strategies and twice iteratively 
undominated strategies are identical across traders, i.e., 
(5)    1

1
1 SSi =  and 2

1
2 SSi =  for all },...,1{ nri∈ . 

We define DD ⊂)( 1
1 ω  as the set of demand functions Dd ∈  such that 

    })()(]|),,([{maxarg)(
1

11011
1

∑
=

−∈
k

hx
hxhpxvEpd ωωω  for all Pp∈ , 

which implies that trader 1 behaves as a price taker when she has knowledge of only her 
private signal. The following assumption implies that the price-taking behaviors mentioned 
above are different for distinct private signals. 
 
 
Assumption 1: For every 11 Ω∈ω  and }{\ 111 ωω Ω∈′ , 
    φωω =′)()( 1

1
1

1 DD I . 
 
 

It follows from Assumption 1 that whenever traders behave as price takers in terms of 
their first announcements, each trader’s first announcement fully reveals her private signal. 
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We define DD n ⊂+ ),...,( 11
2 ωω  as the set of demand functions Dd ∈  such that 

    })()(],...,|),,([{maxarg)(
1

111011
1

∑
=

+ −∈
k

h
n

x
hxhpxvEpd ωωωω  for all 

Pp∈ , 
which implies that trader 1 behaves as a price taker when she has knowledge of not only 
her private signal but also the private signals of n  other traders. Moreover, 

DD nr ⊂+− ),...,( 1)1(1
3 ωω  is defined as the set of demand functions Dd ∈  satisfying the 

condition that for every Pp∈  and klx },...,0{1 ∈ , there exists ),...,( 2)1( nrnr ωω +−  such that 

    ∑
=

−
k

h
hpdhppdvE

1
01 ))(()(]|),),(([ ωωω  

∑
=

−≥
k

h
hxhpxvE

1
1011 )()(]|),,([ ωωω , 

which implies that whenever trader 1 has knowledge of not only her private signal but also 
the private signals of nr )1( −  other traders, she does not announce any demand function 
that is dominated, irrespective of the private signals the remaining 1−n  traders receive. It 
should be noted that when the number of groups r  is sufficiently large, the information 
included in the private signals ),...,( 2)1( nrnr ωω +−  of the 1−n  traders 2)1( +− nr ,…, nr  
is trivial in comparison to the private signals ),...,( 1)1(1 +− nrωω  of other 1)1( +− nr  traders. 

This implies that ),...,( 1)1(1
3

+− nrD ωω  is practically the same as the set of demand functions 
Dd ∈  such that 

    })()(],...,|),,([{maxarg)(
1

11011
1

∑
=

−∈
k

h
nr

x
hxhpxvEpd ωωωω  for all 

Pp∈ , 
which implies that trader 1 behaves as a price taker when she has knowledge of the private 
signals of all traders. The following theorem, together with equalities (5), shows that for 
every trader, any undominated strategy mimics price-taking behavior in terms of the first 
announcement and any twice iteratively undominated strategy mimics price-taking 
behavior in terms of the second and third announcements. 
 
 
Theorem 2: For every 1

11 Ss ∈  and 11 Ω∈ω , 
    )()( 1

1
1

1
1 ωω Ds ∈ . 

For every 2
11 Ss ∈ , n

n 111 ),...,( Ω∈+ωω , and ∏
+

=
+ ∈

1

2

1
12 )(),...,(

n

i
in Ddd ω , 

),...,(),...,)(( 11
2

121
2
1 ++ ∈ nn Ddds ωωω . 

Moreover, for every 2
11 Ss ∈ , nr

nr
)1(

11)1(1 ),...,( −
+− Ω∈ωω , and ∏

+−

=
+− ∈

1)1(

2

1
1)1(2 )(),...,(

nr

i
inr Ddd ω , 
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),...,(),...,)(( 1)1(1
3

1)1(21
3
1 +−+− ∈ nrnr Ddds ωωω . 

 
 
Proof: From properties (iv), (v), and (vii), it follows that, if 1ω  is given, then irrespective 
of the strategies employed by the other traders, trader 1’s utility maximization with respect 
to the first announcement implies the maximization of 

∑
=

−
k

h
hxhqxvE

1
111011 )()(]|),,([ ωωω  

with respect to 1x  for all Pq ∈1 . Hence, we have proved that for every 1
11 Ss ∈  and 

11 Ω∈ω , 
    )()( 1

1
1

1
1 ωω Ds ∈ . 

From equalities (5), the above holds for every trader. Henceforth, we assume that every 
trader },...,1{ nri∈  employs a strategy is  such that for every ii Ω∈ω , 
    )()( 11

iii Ds ωω ∈ . 
Assumption 1 implies that prior to making her second announcement, trader 1 has 

knowledge of all the private signals possessed by the traders belonging to the precedent 
group 1−β , under the assumption that trader 1 belongs to group β . From properties (iv), 
(v), and (vii), it follows that, if 1ω  is given, trader 1’s utility maximization with respect to 
the second announcement implies the maximization of 

∑
=

− −
k

h
group hxhqxvE

1
1111011 )()(],|),,([ βωωωω  

with respect to 1x  for all Pq ∈1  and n
group 11 Ω∈−βω . Hence, we have proved that for 

every 2
11 Ss ∈ , n

n 111 ),...,( Ω∈+ωω , and ∏
+

=
+ ∈

1

2

1
12 )(),...,(

n

i
in Ddd ω , 

),...,(),...,)(( 11
2

121
2
1 ++ ∈ nn Ddds ωωω . 

Assumption 1 also implies that prior to making her third announcement, trader 1 has 
knowledge of all the private signals possessed by the traders outside group β . From 
properties (iv), (vi), and (viii), it follows that a necessary condition for trader 1’s utility 
maximization with respect to the third announcement is that, given ),( 1 βωω group− ,9 she 

does not request 1x  that is dominated by some an 1x′ ; i.e., for every nr
nr 11 ),...,( Ω∈ωω  

that is consistent with ),( 1 βωω group− , 

∑
=

′−′
k

h
nr hxhqxvE

1
111011 )()(],...,|),,([ ωωωω  

                                                 
9 Here, we denote ),...,,,...,( )()())1(()1( nrnngroup φβφβφφβ ωωωωω −− = . 
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∑
=

−>
k

h
nr hxhqxvE

1
111011 )()(],...,|),,([ ωωωω . 

Hence, we have proved that for every 2
11 Ss ∈ , nr

nr
)1(

11)1(1 ),...,( −
+− Ω∈ωω , and 

∏
+−

=
+− ∈

1)1(

2

1
1)1(2 )(),...,(

nr

i
inr Ddd ω , 

),...,(),...,)(( 1)1(1
3

1)1(21
3
1 +−+− ∈ nrnr Ddds ωωω . 

Q.E.D. 
 
 

We will now demonstrate that when the number of traders in each group n  and the 
number of groups r  are sufficiently large, any twice iteratively undominated strategy 
profile almost certainly induces an approximate rational expectations equilibrium 
allocation and therefore induces approximate ex post efficiency. We denote )(nTT = , 

)(nεε = , )(nrr = , )(ˆˆ npp = , )(**** nGG = , and so on. It is assumed that 
),0,(),,(lim )()()( ∞∞=

∞→

nnn

n
rT ε , 

which implies that as n  increases in the limit, the price grid converges at zero, the 
probability of Rationing Rule 3 being applicable converges at unity, and the number of 
groups diverges into infinity. It is assumed that the probability distribution over private 
signals is different across macro shocks, i.e., the following assumption is made. 
 
 
Assumption 2: For every 00 Ω∈ω  and }{\ 000 ωω Ω∈′ , 

)|()|( 00 ωω ′⋅≠⋅ ff . 
 
 
 Suppose that n  is sufficiently large and 0ω  and 1ω  are the realizations of the 
macro shock and the private signal for trader 1 respectively, where it is assumed that trader 
1 belong to a group β . In this case, it is almost certain that for each 1Ω∈θ , the 
proportion of the traders i  in group β  possessing θω =i  is approximated by 

)|( 0ωθf . Together with Assumption 2 and Theorem 2, this implies that from the 
observation of the first announcements in group 1−β , trader 1 can almost certainly infer 
with reasonable accuracy the macro shock that actually occurred. This holds true for every 
trader due to the symmetry across traders. Hence, the price vector determined according to 
Rationing Rule 3 almost certainly approximates the market-clearing price vector that 
corresponds to the case where the realization of the macro shock is known to all traders. 
Since the value of 0)( >= nεε  is close to zero, the auctioneer almost certainly conforms to 
Rationing Rule 3. 
 Since the number of groups )(nrr =  is sufficiently large, it follows that the 
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information that the private signals of any 1−n  traders include is trivial in comparison to 
the private signals for the remaining 1)1( +− nr  traders. This implies that any third 
announcement included in ),...,( 1)1(1

3
+− nrD ωω  mimics the price-taking behavior associated 

with full knowledge about the macro shock that actually occurred. Based on the above 
observations, and along with the same argument as that presented subsequent to the proof 
of Theorem 1 in Section 3, we conclude that when the number of traders is sufficiently 
large, the mechanism )(**** nGG =  will succeed in information transmission and any twice 
iteratively undominated strategy profile induces the rational expectations equilibrium 
allocation, i.e., induces ex post efficiency. From this property, it is clear that for every 
sufficiently large n , interim individual rationality typically holds in that for every 

},...,1{ nri∈  and every ii Ω∈ω , 

]|),,([),( 0 iiiii evEsu ωωωω >  for all ∏
=

∈
nr

j
jSs

1

2 , 

where ]|),,([ 0 iiievE ωωω  represents trader si'  outside opportunity when she possesses 

iω . 
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