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Abstract 
 

This paper investigates the conditional correlations and volatility spillovers between crude oil 

returns and stock index returns. Daily returns from 2 January 1998 to 4 November 2009 of 

the crude oil spot, forward and futures prices from the WTI and Brent markets, and the 

FTSE100, NYSE, Dow Jones and S&P500 index returns, are analysed using the CCC model 

of Bollerslev (1990), VARMA-GARCH model of Ling and McAleer (2003), VARMA-

AGARCH model of McAleer, Hoti and Chan (2008), and DCC model of Engle (2002). 

Based on the CCC model, the estimates of conditional correlations for returns across markets 

are very low, and some are not statistically significant, which means the conditional shocks 

are correlated only in the same market and not across markets. However, the DCC estimates 

of the conditional correlations are always significant. This result makes it clear that the 

assumption of constant conditional correlations is not supported empirically. Surprisingly, the 

empirical results from the VARMA-GARCH and VARMA-AGARCH models provide little 

evidence of volatility spillovers between the crude oil and financial markets. The evidence of 

asymmetric effects of negative and positive shocks of equal magnitude on the conditional 

variances suggests that VARMA-AGARCH is superior to VARMA-GARCH and CCC. 

 

Keywards: Multivariate GARCH, volatility spillovers, conditional correlations, crude oil 
prices, spot, forward and futures prices , stock indices.  
 

JEL Classifications: C22, C32, G17, G32. 
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1. Introduction 

 

Stock market and crude oil markets have developed a mutual relationship over the past few 

years, with virtually every production sector in the international economy relying heavily on 

this source of energy. As a result of such dependence, fluctuations in crude oil prices are 

likely to have significant and unavoidable affects on the production sector. The direct effect 

of an oil price shock may be considered as an input-cost effect, with higher energy costs 

leading to lower oil usage and decreases in productivity of capital and labour. Further to the 

direct impacts on productivity, fluctuations in oil prices also cause income effects in the 

household sector, with higher costs of imported oil reducing the disposable income of the 

household. Hamilton (1983) mentions that a sharp rise in oil prices increases uncertainly in 

the operating costs of certain durable goods, thereby reducing demand for durables and 

investment.  

 

The impact of oil prices on macroeconomic variables, such as inflation, real GDP growth 

rate, unemployment rate and exchange rates, is a matter of great concern for all economies. 

Due to the role of crude oil on demand and input substitution, more expensive fuel translates 

into higher costs of transportation, production and heating, which affect inflation and 

household discretionary spending. It is well documented that increases in major energy prices 

are often followed by economic recession, which may reveal a causal link from higher energy 

prices to economic recessions, higher unemployment, and possibly higher inflation (see, for 

example, Hamilton (1983), Mork, Olsen and Mysen (1994), Mork (1994), Lee et al. (1995), 

Sadorsky (1999),  Lee et al. (2001), Hooker (2002), Hamilton and Herrera (2004), Cunado 

and Perez de Garcia (2005), Jimenez-Rodriguez and Senchez (2005), Kilian (2008), Cologni 

and Manera (2008), and Park and Ratti (2008)). Moreover, higher prices may also reflect a 

stronger business performance and increased demand for fuel.  

 

For financial markets, Chang et al.. (2009) analysed the effect of oil price shocks on stock 

prices through expected cost flows, the discount rate and the equity pricing model. However, 

the direction of the stock price effect depends on whether a stock is a producer or a consumer 

of oil or oil-related products. As most companies in the world market are oil consumers, the 

performance of the stock market may be negatively correlated. Figure 1 presents the plots of 

the Brent futures price and FTSE100 index from early 1998. Before 2003, the Brent futures 
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price and FTSE100 index moved in opposite directions, but they moved together thereafter. 

However, the correlation between daily Brent futures prices and the FTSE100 index is 

relatively weak at 0.162 over the past decade. 

 

[Insert Figure 1 here] 

 

Returns, risks and correlation of assets in portfolios of assets are key elements in empirical 

finance, so accurate modelling and forecasting of the correlations between crude oil and stock 

markets are crucial. A volatility spillover occurs when changes in price or returns volatility in 

one market have a lagged impact on volatility in one or more other markets. Therefore, 

volatility spillover patterns are widespread in financial, energy and stock markets (see, for 

example, Sadorsky (2004), Hammoudeh and Aleisa (2002), Hammoudeh et al. (2004), Ågren 

(2006), and Malik and Hammoudeh (2007)). Surprisingly, there do not seem to be any 

analysis of the conditional correlations or volatility spillovers between shock in crude oil 

returns and shocks in set index returns, despite these issues being very important for 

practitioners and investors alike.  

 

One of the major aims of the paper is to gauge whether stock markets evaluate rationally the 

impact of oil shocks on the economy. The reaction of stock markets to oil price and returns 

shocks will determine whether stock prices rationally reflect the impact of news on current 

and future real cash flows. The paper models the conditional correlations and examines the 

volatility spillovers between two major crude oil return, namely Brent and WTI (West Texas 

Intermediate) and four stock index returns, namely FTSE100 (London Stock Exchange, 

FTSE), NYSE composite (New York Stock Exchange, NYSE), S&P500 composite index, 

and Dow Jones Industrials (DJ). Some of these issues have been examined empirically using 

several recent models of multivariate conditional volatility, namely the CCC model of 

Bollerslev (1990), VARMA-GARCH model of Ling and McAleer (2003), VARMA-

AGARCH model of McAleer, Hoti and Chan (2008), and DCC model of Engle (2002). 

 

The remainder of the paper is organized as follows. Section 2 reviews the relationship 

between the crude oil market and stock market. Section 3 discusses various popular 

multivariate conditional volatility models that enable an analysis of volatility spillovers. 

Section 4 gives details of the data to be in the empirical analysis, descriptive statistics and 
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unit root tests. The empirical results are analyzed in Section 5, and some concluding remarks 

are given in Section 6 

 

2. Crude Oil and Stock Markets 

 

There is a scant literature on the empirical relationship between the crude oil and stock 

markets. Jones and Kaul (1996) show the negative reaction of US, Canadian, UK and Japan 

stock prices to oil price shocks via the impact of oil price shocks on real cash flows. Ciner 

(2001) uses linear and nonlinear causality tests to examine the dynamic relationship between 

oil prices and stock markets, and concludes that a significant relationship between real stock 

returns and oil futures price is non-linear.  

 

Hammoudeh and Aleisa (2002) find spillovers from oil markets to the stock indices of oil-

exporting countries, including Bahrain, Indonesia, Mexico and Venezuela. Kilian and Park 

(2007) report that only oil price increases, driven by precautionary demand for oil over 

concern about future oil supplies, affect stock prices negatively. Bjørnland (2008) suggests 

that, following a 10% increase in oil prices, stock returns in Norway increased by 2.5%, after 

which the effect eventually died out. Miller and Ratti (2009) analyze the long-run relationship 

between the world price of crude oil and international stock markets, and find that stock 

markets respond negatively to increases in the price of oil. 

 

A number of previous papers apply vector autoregressive (VAR) models to investigate the 

relationship between the oil and stock markets.  Kaneko and Lee (1995) find that changes in 

oil prices are significant in explaining Japanese stock market returns. Huang et al. (1996) 

show significant causality from oil futures prices to stock returns of individual firms, but not 

to aggregate market returns. In addition, they find that oil futures returns lead the petroleum 

industry stock index, and three oil company stock returns. Sadorsky (1999) indicates that 

positive shocks to oil prices depress real stock returns, using monthly data, and the results 

from impulse response functions suggest that oil price movements are important in explaining 

movements in stock returns. 

 

For data on Greece, Papapetrou (2001) reveals that the oil price is an important factor in 

explaining stock price movements, and that a positive oil price shock depresses real stock 
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returns by using impulse response functions. Lee and Ni (2002) indicate that, as a large cost 

share of oil industries, such as petroleum refinery and industrial chemicals; oil price shocks 

tend to reduce supply. In contrast, for many other industries, such as the automobile industry, 

oil price shocks tend to reduce demand. Park and Ratti (2008) estimate the effects of oil price 

shocks and oil price volatility on the real stock returns of the USA and 13 European 

countries, and find that oil price shocks have a statistically significant impact on real stock 

returns in the same month, and real oil price shocks also have an impact on real stock returns 

across all countries. In addition, they provide evidence of asymmetric effects on real stock 

returns for the U.S. and Norway, but little evidence of asymmetric effects for the oil 

importing European countries. For emerging stock markets, Maghyereh (2004) finds that oil 

shocks have no significant impact on stock index returns in 22 emerging economies. 

However, Basher and Sadorsky (2006) show strong evidence that oil price risk has a 

significant impact on stock price returns in emerging markets. 

 

Regarding the relationship between oil prices and stock markets, Faff and Brailsford (1999) 

find a positive impact on the oil and gas, and diversified resources, industries, whereas there 

is a negative impact on the paper and packing, banks and transport industries. Sadorsky 

(2001) shows that stock returns of Canadian oil and gas companies are positive and sensitive 

to oil price increases using a multifactor market model. In particular, an increase in the oil 

price factor increases the returns to Canadian oil and gas stocks. Boyer and Filion (2004) find 

a positive association between energy stock returns and an appreciation in oil and gas prices. 

Hammoudeh and Li (2005) show that oil price growth leads the stock returns of oil-exporting 

countries and oil-sensitive industries in the USA.  

 

Nandha and Faff (2007) examine the adverse effects of oil price shocks on stock market 

returns using global industry indices. The empirical results indicate that oil price changes 

have a negative impact on equity returns in all industries, with the exception of mining, and 

oil and gas. Cong et al. (2008) argue that oil price shocks do not have a statistically 

significant impact on the real stock returns of most Chinese stock market indices, except for 

the manufacturing index and some oil companies. An increase in oil volatility does not affect 

most stock returns, but may increase speculation in the mining and petrochemical indexes, 

thereby increasing the associated stock returns. Sadorsky (2008) finds that the stock prices of 

small and large firms respond fairly symmetrically to changes in oil prices, but for medium-
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sized firms the response is asymmetric to changes in oil prices. From simulations using a 

VAR model, Henriques and Sadorsky (2008) show that shocks to oil prices have little impact 

on the stock prices of alternative energy companies.  

 

Oberndorfer (2008) shows that oil market volatility negatively affects oil and gas stocks of 

European energy corporations. However, energy stock volatility is not related to volatility in 

the energy market, but is driven only by its own dynamics. Gogineni (2009) indicates that, as 

their main customers are impacted by oil price changes, the stock returns of industries are 

sensitive to oil price changes. The magnitude of the correlations between industry returns and 

oil price changes depends on both the cost-side and demand-side dependence on oil, and that 

the effects of these factors vary across industries. 

 

In small emerging markets, especially in the Gulf Cooperating Council (GCC) countries, 

Hammoudeh and Aleisa (2004) show that the Saudi market is the leader among GCC stock 

markets, and can be predicted by oil futures prices. Zarour (2006) shows that, for the sub-

period 27 May 2003 to 24 May 2005, oil prices can predict all GCC stock markets, except for 

Abu Dhabi. From the impulse response functions, and for the sub-period 25 May 2001 to 23 

May 2003, the responses of GCC markets to oil returns shocks  are small, in general, and 

decrease very slowly whereas, during a later regime, the GCC market responses seem to be 

large and decrease quickly, especially for the Saudi, Kuwaiti and Abu Dhabi stock markets.  

 

Maghyereh and Al-Kandari (2007) apply nonlinear cointegration analysis to examine the 

linkage between oil prices and stock markets in GCC countries. The empirical results indicate 

that oil prices have a nonlinear impact on stock price indices in GCC countries. Onour (2007) 

argues that, in the short run, GCC stock market returns are dominated by the influence of 

non-observable psychological factors. In the long run, the effects of oil price changes are 

transmitted to fundamental macroeconomic indicators which, in turn, affect the long run 

equilibrium linkages across markets. Arouri and Fouquau (2009) find a significant positive 

relation between oil prices and the stock index of Qatar, Oman and UAE. For Bahrain, 

Kuwait and Saudi Arabia, there no evidence of a relationship between oil price changes and 

stock market returns.  

 

Recent research has used multivariate GARCH specifications, especially BEKK, to model 
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volatility spillovers between the crude oil and stock markets. Hammoudeh et al. (2004) find 

that there are two-way interactions between the S&P Oil Composite index, and oil spot and 

futures prices. Ågren (2006) presents strong evidence of volatility spillovers from oil prices 

to stock markets using the asymmetric BEKK model for Japan, Norway, UK and US stock 

markets, but quite weak evidence for Sweden. Malik and Hammoudeh (2007) find that Gulf 

equity markets receive volatility from the oil markets, but only in the case of Saudi Arabia is 

the volatility spillover from the Saudi market to the oil market significant, underlining the 

major role that Saudi Arabia plays in the global oil market. Finally, using a two-regime 

Markov-switching EGARCH model, Aloui and Jammazi (2009) examine the relationship 

between crude oil shocks and stock markets from December 1987 to January 2007. This 

study focuses on two major crude oil markets, namely WTI and Brent, and three developed 

stock markets, namely France, UK and Japan. The results show that the net oil price increase 

variable play a significant role in determining both the volatility of real returns and the 

probability of transition across regimes. 

 

3. Econometric Models 

   

In order to investigate the conditional correlations and volatility spillovers between crude oil 

returns and stock index returns, a variety of multivariate conditional volatility models is 

applied. This section presents the CCC model of Bollerslev (1990), VARMA-GARCH model 

of Ling and McAleer (2003), and VARMA-AGARCH model of McAleer, Hoti and Chan 

(2009). These models assume constant conditional correlations, and do not suffer from the 

curse of dimensionality, as compared with the VECH and BEKK models (see McAleer et al. 

(2008) and Caporin and McAleer (2009) for further details). In order to to make the 

conditional correlations time dependent, Engle (2002) proposed the DCC model.  

 

The typical CCC specification underlying the multivariate conditional mean and conditional 

variance in returns is given as follows: 

 

( )1t t t ty E y F ε−= +  

t t tDε η=  

( )1|t t t t tVar F D Dε − = Ω = Γ                                                  (1)  
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where ( )1 ,...,t t mty y y ′= , ( )1 ,...,t t mtη η η ′=  is a sequence of independently and identically 

distributed (iid) random vectors, tF  is the past information available to time t, 

( )1 2 1 2
1 ,...,t t mtD diag h h= , m is the number of returns, 1,...,t n=  (see Li, Ling and McAleer 

(2002), and Bauwens et al. (2006)), and  
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which ij jiρ ρ=  for , 1,...,i j m= . As ( ) ( )1t t t t tE F Eηη ηη−′ ′Γ = = , the constant conditional 

correlation matrix of the unconditional shocks, tε , for all t is, by definition, equal to the 

conditional covariance matrix of the standardized shocks, tη .  

 

The conditional correlations are assumed to be constant for all the models above. From (1), 

t t t t tD Dε ε ηη′ ′= , and ( )1t t t t t tE F D Dε ε −′ = Ω = Γ , where tΩ  is the conditional covariance 

matrix. The conditional correlation matrix is defined as 1 1
t t tD D− −Γ = Ω , which is assumed to 

be constant over time, and each conditional correlation coefficient is estimated from the 

standardized residuals in (1) and (2). The constant conditional correlation (CCC) model of 

Bollerslev (1990) assumes that the conditional variance for each return, ith , 1,..,i m= , 

follows a univariate GARCH process, that is 

 

2
, ,

1 1

r s

it i il i t l il i t l
l j

h hω α ε β− −
= =

= + +∑ ∑                                           (2) 

 

where 
1

r
ill

α
=∑  denotes the short run persistence, or ARCH effect, of shock to return i, 

1

s
ill

β
=∑  represents the GARCH effect, and 

1 1

r s
ij ijj j

α β
= =

+∑ ∑  denotes the long run 

persistence of shocks to returns.  
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Although the conditional correlation is modelled, and hence can be estimated in practice, it 

does not allow any interdependencies of volatilities across different assets and/or markets, 

and does not accommodate asymmetric behaviour. In order to incorporate interdependencies 

of volatilities across different assets and/or markets, Ling and McAleer (2003) proposed a 

vector autoregressive moving average (VARMA) specification of the conditional mean in 

(2.4), and the following GARCH specification for the conditional variance: 

 

( )( ) ( )t tL Y Lμ εΦ − = Ψ                                                    (3) 

t t tDε η=  

1 1

r s

t l t l l t l
l l

H W A B Hε − −
= =

= + +∑ ∑r                                               (4) 

 

where ( )1 2
,t i tD diag h= , ( )1 ,...,t t mtH h h ′= , ( ) 1

p
m pL I L LΦ = −Φ − −ΦL  and ( ) mL IΨ = −  

1
q

qL LΨ − −ΨL  are polynomials in L, ( )2 2
1 ,...t mtε ε ε ′=

r , and W, lA  for 1,..,l r=  and lB  for 

1,..,l s=  are m m×  matrices and represent the ARCH and GARCH effects, respectively. 

Spillover effects, or the dependence of the conditional variance between crude oil returns and 

stock index returns, are given in the conditional variance for each returns in the portfolio. It is 

clear that when lA  and lB   are diagonal matrices, (4) reduces to (2), so the VARMA-GARCH 

model has CCC as a special case. 

 

As in the univariate GARCH model, VARMA-GARCH assumes that negative and positive 

shocks of equal magnitude have identical impacts on the conditional variance. In order to 

separate the asymmetric impacts of the positive and negative shocks, McAleer, Hoti and 

Chan (2009) proposed the VARMA-AGARCH specification for the conditional variance, 

namely 

 

( )
1 1 1

r r s

t l t l i t l t l l t l
l l l

H W A C I B Hε η ε− − − −
= = =

= + + +∑ ∑ ∑r r                                 (5) 

 

where lC  are m m×  matrices for 1,..,l r= , and ( )1diag ,...,t t mtI I I=  is an indicator function, 

and is given as  
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( )
0, 0
1, 0

it
it

it

I
ε

η
ε

>⎧
= ⎨ ≤⎩

                                                     (6). 

 

If 1m = , (6) collapses to the asymmetric GARCH, or GJR, model of Glosten, Jagannathan 

and Runkle (1992). Moreover, VARMA-AGARCH reduces to VARMA-GARCH when 

0iC =  for all i. If 0iC =  and iA  and jB  are diagonal matrices for all i and j, then VARMA-

AGARCH reduces to the CCC model. The parameters of model (1)-(5) are obtained by 

maximum likelihood estimation (MLE) using a joint normal density. When tη  does not 

follow a joint multivariate normal distribution, the appropriate estimator is the Quasi-MLE 

(QMLE).  

 

Unless tη  is a sequence of iid random vectors, or alternatively a martingale difference 

process, the assumption that the conditional correlations are constant may seen unrealistic. In 

order to make the conditional correlation matrix time dependent, Engle (2002) proposed a 

dynamic conditional correlation (DCC) model, which is defined as 

 

     1| (0, )t t ty Q−ℑ      ,     1,2,...,=t n                            (7) 

,= Γt t t tQ D D                                                            (8) 

 

where ( ) 1 2
diagt tD h= ⎡ ⎤⎣ ⎦  is a diagonal matrix of conditional variances, and tℑ  is the 

information set available to time t. The conditional variance, ith , can be defined as a 

univariate GARCH model, as follows: 

 

, ,
1 1

p q

it i ik i t k il i t l
k l

h hω α ε β− −
= =

= + +∑ ∑  .                                            (9) 

 

If tη  is a vector of i.i.d. random variables, with zero mean and unit variance, tQ  in (8) is the 

conditional covariance matrix (after standardization, it it ity hη = ). The itη  are used to 

estimate the dynamic conditional correlations, as follows: 
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{ } { }1/2 1/2( ( ) ( ( )t t t tdiag Q Q diag Q− −Γ =
  

                                         (10) 

 

where the k k×  symmetric positive definite matrix tQ  is given by 

 

1 2 1 1 1 2 1(1 )t t t tQ Q Qθ θ θ η η θ− − −′= − − + +                                        (11) 

 

in which 1θ  and 2θ  are non-negative scalar parameters to capture the effects of previous 

shocks and previous dynamic conditional correlations on the current dynamic conditional 

correlation. As tQ  is a conditional on the vector of standardized residuals, (11) is a 

conditional covariance matrix, and Q  is the k k×  unconditional variance matrix of tη . For 

further details, and a critique of the DCC and BEKK models, see Caporin and McAleer 

(2009). 

 

4.  Data 

 

We used daily time series data (five working days per week) for the four set index,  namely 

FTSE100 (London Stock Exchange: FTSE), NYSE composite (New York Stock Exchange: 

NYSE), S&P500 composite (Standard and Poor’s: S&P), and Dow Jones Industrials (Dow 

Jones: DJ), and three crude oil closing prices (spot, forward and futures) of two reference 

markets, namely Brent and WTI (West Texas Intermediate). Thus, there are six price indexes, 

namely Brent spot prices FOB (BRSP), Brent one-month forward prices (BRFOR), Brent 

one-month futures prices (BRFU), WTI spot Cushing prices (WTISP), WTI one-month 

forward price (WTIFOR), and NYMEX one month futures price (WTIFU). All 3,090 prices 

and price index observations are from January 2, 1998 to November 4, 2009. The data are 

obtained from DataStream database services, and crude oil prices are expressed in USD per 

barrel.  

 

The returns of the daily price index and crude oil prices are calculated by a continuous 

compound basis, defined as ( ), , , 1lnij t ij t ij tr P P −= , where ,ij tP  and , 1ij tP −  are the closing price or 

crude oil price i of market j for days t and t –1, respectively. The daily prices and daily 

returns of each crude oil prices, and for the four set index, are given in Figures 1 and 2, 
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respectively. The plots of the prices and returns in their respective markets clearly move in a 

similar manner. The descriptive statistics for the crude oil returns and set index returns are 

reported in Tables 1 and 2, respectively. The average returns of the set index are low, except 

for Dow Jones, but the corresponding standard deviation of returns is much higher. On the 

contrary, the average returns of crude oil are the same within their markets, and are higher 

than the average return of the set index. Based on the standard deviation, crude oil returns has 

a higher historical volatility than stock index returns. 

 

Prior to estimating the condition mean or conditional variance, it is sensible to test for unit 

roots in the series. Standard unit root testing procedures based on the Augmented Dickey-

Fuller (ADF) and Phillips and Perron (PP) tests are obtained from the EView 6.0 econometric 

software package. Results of the tests for the null hypothesis that daily stock index returns 

and crude oil returns have a unit root are given in Table 2, and they all reject the null 

hypothesis of a unit root at the 1% level of significance in all cases, with a constant and with 

or without a deterministic time trend. 

 

5. Empirical Results 

 

This section presents the multivariate conditional volatility models for six crude oil returns, 

namely spot, forward and futures for the Brent and WTI markets, and four stock index 

returns, namely FTSE100, NYSE, Dow Jones and S&P, leading to 24 bivariate models. In 

order to check whether the conditional variances of the assets follow an ARCH process, 

univariate ARMA-GARCH and ARMA-GJR models are estimated. The ARCH and GARCH 

effects of all ARMA(1,1)-GARCH (1,1) models are statistically significant, as are the 

asymmetric effects of the ARMA-GJR(1,1) models. The empirical results of these univariate 

conditional volatility models are available from the authors on request. 

 

Constant conditional correlations between the volatilities of crude oil returns and stock index 

returns, and the Bollerslev and Wooldridge (1992) robust t-ratios using the CCC model based 

on ARMA(1,1)-CCC(1,1), are presented in Table 3. All estimates are obtained using the 

RATS 6.2 econometric software package. The conditional correlation matrices for the 24 

pairs of returns can be divided into three groups, name within the crude oil market, financial 

or stock markets, and across markets. The CCC estimates for pairs of crude oil returns within 
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the crude oil market are high and statistically significant, as well as the CCC estimates for 

pairs of stock index returns in financial markets. However, the CCC estimates for returns 

across markets are very low, and some are not statistically significant, except for FTSE100 

and NYSE. Consequently, the conditional shocks are correlated only in the same market, and 

not across markets.   

 

[Insert Table 3 here]  

 

The DCC estimates of the conditional correlations between the volatilities of crude oil returns 

and stock index returns, and the Bollerslev-Wooldridge robust t-ratios based on the 

ARMA(1,1)-DCC(1,1) models, are presented in Table 4. As the estimates of both 1̂θ , the 

impact of past shocks on current conditional correlations, and  2̂θ , the impact of previous 

dynamic conditional correlations, are statistically significant, this clearly indicates that the 

conditional correlations are not constant. The estimates 1̂θ  are generally low and close to 

zero, increasing to 0.021, whereas the estimates 2̂θ  are extremely high and close to unity, 

ranging from 0.973 to 0.991. Therefore, from (11), tQ  seems very close to 1tQ − , such as for 

the pair WTIFOR and FTSE. 

 

[Insert Table 4 here] 

 

The short run persistence of shocks on the dynamic conditional correlations is the greatest 

between BRFOR_FTSE, while the largest long run persistence of shocks on the conditional 

correlations is 0.998 for the pairs WTIFOR_FTSE and WTIFU_S&P. Consequently, the 

conditional correlations between crude oil returns and stock index returns are dynamic. These 

findings are consistent with the plots of the dynamic conditional correlations between the 

standardized shocks for each pair of returns in Figure 4, which change over time and range 

from negative to positive. The greatest range of conditional correlations is between Brent 

forward returns and FTSE100. These results indicate that the assumption of constant 

conditional correlations for all shocks to returns is not supported empirically. However, the 

average conditional correlations for each pair are nevertheless rather low and close to zero.  

 

[Insert Table 5 here] 
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[Insert Figure 4 here] 

 

Tables 6 and 7 present the estimates for VARMA-GARCH and VARMA-AGARCH, 

respectively.  The two entries corresponding to each of the parameters are the estimates and 

the Bollerslev-Wooldridge robust t-ratios. Both models are estimated with the EViews6 

econometric software package and the Berndt-Hall-Hall-Hausman (BHHH) algorithm. Table 

6 presents the estimates of the conditional variances of VARMA-GARCH (the estimates of 

the conditional means are available from the authors on request). In Panels 5a-5w, it is clear 

that the ARCH and GARCH effects of crude oil returns and stock index returns in the 

conditional covariances are statistically significant. Interestingly, Table 6 suggests there is no 

evidence of volatility spillovers in either one or two directions (namely, interdependence), 

except for two cases, namely the ARCH and GARCH effects for WTIFOR_FTSE100 and 

WTIFU_FTSE100, with the past conditional volatility of FTSE100 spillovers for WTIFOR, 

and the past conditional volatility of WTIFU spillovers for FTSE100.  

 

[Insert Table 6 here] 

 

Table 7 presents the estimates of conditional variances of VARMA-AGARCH (the estimates 

of the conditional mean are available from the authors on request). It is clear that the GARCH 

effect of each pair of crude oil returns and stock index returns in the conditional covariances 

are statistically significant. Surprisingly, Table 7 shows that there are only three of 24 cases 

for volatility spillovers from the past conditional volatility of the crude oil market on the 

stock market, namely WTIFOR-NYSE, WTIFOR-S&P and WTIFU-S&P. Although the 

estimated parameters are positive, they are rather low, and the asymmetric effects of each pair 

are statistically insignificant. Therefore, VARMA-GARCH is generally preferred to 

VARMA-AGARCH.  

 

[Insert Table 7 here] 

 

In conclusion, from the VARMA-GARCH and VARMA-AGARCH models, there is little 

evidence of volatility spillovers between crude oil returns and stock index returns. These 

finding are consistent with the very low conditional correlations between the volatility of 

crude oil returns and stock index returns using the CCC model. These phenomena can be 
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explained as follows. First, by definition, the stock market index is calculated from the given 

company stock prices, which can be classified as producers and consumers of oil and oil-

related companies. Therefore, the impact of crude oil shocks on each stock index sector may 

balance out (see also the discussion in Section 2). For example, the energy sector, namely oil 

and gas drilling and exploration, refining and by-products, and petrochemicals, is typically 

positively affected by variations in oil prices, whereas the other sectors, such as 

manufacturing, transportation and financial sectors, are negatively affected by variations in 

oil prices. 

 

Second, each common stock price in the stock index is not affected equally or 

contemporaneously by fluctuations in oil prices. The service sectors, namely media, 

entertainment, support services, hotel and transportation, are most negatively affected by 

fluctuations in oil prices, followed by the consumer goods sector, namely household goods 

and beverages, housewares and accessories, automobile and parts, and textiles. The next most 

negatively influenced sector is the financial sector, namely banks, life, assurance, insurance, 

real estate, and other finance. Consequently, the impacts of crude oil changes on stock index 

returns may not be immediate or explicit. Third, through advances in financial instruments, 

some firms may have found ways to pass on oil prices changes or risks to customers, or 

determined effective hedging strategies. Therefore, the effects of crude oil price fluctuations 

on stock prices may not be as large and clear as might be expected. 

 

6.  Concluding Remarks 

 

This paper investigated conditional correlations and examined the volatility spillovers 

between crude oil returns, namely spot, forward and futures returns for the WTI and Brent 

markets, and stock index returns, namely FTSE100, NYSE, Dow Jones and S&P index, using 

four multivariate GARCH models, namely the CCC model of Bollerslev (1990), VARMA-

GARCH model of Ling and McAleer (2003), VARMA-AGARCH model of McAleer, Hoti 

and Chan (2008), and DCC model of Engle (2002), with a sample size of 3089 returns 

observations from 2 January 1998 to 4 November 2009. The estimation and analysis of the 

volatility and conditional correlations between crude oil returns and stock index returns can 

provide useful information for investors, oil traders and government agencies that are 

concerned with the crude oil and stock markets. This paper will be able to assist in evaluating 
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the impact of crude oil price fluctuations on various stock markets. 

 

Based on the CCC model, the estimated conditional correlations for returns across markets 

were very low, and some were not statistically significant, which means that the conditional 

shocks were correlated only in the same market, and not across markets. However, for the 

DCC model, the estimates of the conditional correlations were always significant, which 

makes it clear that the assumption of constant conditional correlations was not supported 

empirically. This was highlighted by the dynamic conditional correlations between Brent 

forward returns and FTSE100, which varied dramatically over time.  

 

The empirical results from the VARMA-GARCH and VARMA-AGARCH models provided 

little evidence of dependence between the crude oil and financial markets. VARMA-GARCH 

model yielded only 2 of 24 cases, namely WTIFU_FTSE100 and WTIFU_FTSE100, whereas 

VARMA-AGARCH gave 3 of 24 cases, namely the past conditional volatility of FTSE100 

spillovers to WTIFOR, and the past conditional volatility of WTIFU spillovers to FTSE100. 

The evidence of asymmetric effects of negative and positive shocks of equal magnitude on 

the conditional variance suggested that VARMA-AGARCH was superior to the VARMA-

GARCH and CCC models. 

 



 

 

18 

 

References 
 

Ågren, M. (2006), Does oil price uncertainty transmit to stock markets?, Department of 

Economics, Uppsala University, Working Paper 2006:23.  

Aloui, C. and R. Jammazi (2009), The effects of crude oil shocks on stock market shifts 

behavior: A regime switching approach, Energy Economics, 31, 789-799. 

Arouri, M. and J. Fouquau (2009), On the short-term influence of oil price changes on stock 

markets in GCC countries: linear and nonlinear analyses. Available at  

  http://arxiv.org/abs/0905.3870.  

Basher, S.A. and P. Sardosky (2006), Oil price risk and emerging stock markets, Global 

Finance Journal, 17, 224-251. 

Bauwens, L., S. Laurent and J. Rombouts (2006), Multivariate GARCH models: A survey, 

Journal of Applied Econometrics, 21, 79-109. 

Bjørnland, H. (2008), Oil price shocks and stock market booms in an oil exporting country, 

NORGES Bank, Working paper 2008/16. 

Bollerslev, T. (1990), Modelling the coherence in short-run nominal exchange rate: A 

multivariate generalized ARCH approach, Review of Economics and Statistics 72, 

498-505.  

Bollerslev, T. and J. Wooldridge (1992), Quasi-maximum likelihood estimation and inference 

in dynamic models with time-varying covariances, Econometric Reviews, 11, 143-

172. 

Boyer, M. and D. Filion (2004), Common and fundamental factors in stock returns of 

Canadian oil and gas companies, Energy Economics, 29, 428-453. 

Caporin, M. and M. McAleer (2009), Do we really need both BEKK and DCC? A tale of two 

covariance models. Available at SSRN: http://ssrn.com/abstract=1338190.  

Chang, C.-L., M. McAleer and R. Tansuchat (2009), Volatility spillovers between returns on 

crude oil futures and oil company stocks. Available at 

   http://ssrn.com/abstract=1406983 

Ciner, C. (2001), Energy shocks and financial markets: nonlinear linkages, Studies in 

Nonlinear Dynamics & Econometrics, 5(3), 203-212. 

Cologni, A. and M. Manera (2008), Oil prices, inflation and interest rates in a structural 

cointegrated VAR model for the G-7 countries, Energy Economics, 38, 856–888.  

http://arxiv.org/abs/0905.3870�


 

 

19 

Cong, R.-G., Y.-M. Wei, J.-L. Jiao and Y. Fan (2008), Relationships between oil price shocks 

and stock market: An empirical analysis from China, Energy Policy, 36, 3544-3553. 

Cunado, J. and F. Perez de Garcia (2005), Oil prices, economic activity and inflation: 

Evidence for some Asian countries, Quarterly Review of Economics and Finance, 

45(1), 65–83.  

Engle, R. (2002), Dynamic conditional correlation: A simple class of multivariate generalized 

autoregressive conditional heteroskedasticity models, Journal of Business and 

Economic Statistics, 20, 339-350. 

Faff, R.W. and T. Brailsford (1999), Oil price risk and the Australian stock market, Journal 

of Energy Finance and Development, 4, 69-87. 

Glosten, L., R. Jagannathan and D. Runkle (1992), On the relation between the expected 

value and volatility of nominal excess return on stocks, Journal of Finance, 46, 1779-

1801. 

Gogineni, S. (2009), Oil and the stock market: An industry level analysis, Working paper, 

University of Oklahoma. 

Hamilton, J.D. (1983), Oil and the macroeconomy since World War II, Journal of Political 

Economy, 88, 829-853. 

Hamilton, J.D. and A.M. Herrera (2004), Oil shocks and aggregate macroeconomic behavior: 

the role of monetary policy, Journal of Money, Credit and Banking, 36 (2), 265-286. 

Hammoudeh, S. and E. Aleisa (2002), Relationship between spot/futures price of crude oil 

and equity indices for oil-producing economies and oil-related industries, Arab 

Economic Journal, 11, 37-62. 

Hammoudeh, S. and E. Aleisa (2004), Dynamic relationships among GCC stock markets and 

NYMEX oil futures, Contemporary Economics Policy, 22, 250-269. 

Hammoudeh, S., S. Dibooglu and E. Aleisa (2004), Relationships among US oil prices and 

oil industry equity indices, International Review of Economics and Finance, 13(3), 

427-453. 

Hammoudeh, S. and H. Li (2005), Oil sensitivity and systematic risk in oil-sensitive stock 

indices, Journal of Economics and Business, 57, 1-21. 

Henriques, I. and P. Sadorsky (2008), Oil prices and the stock prices of alternative energy 

companies, Energy Economics, 30, 998-1010. 

Hooker, M. (2002), Are oil shocks inflationary? Asymmetric and nonlinear specification 

versus changes in regime, Journal of Money, Credit and Banking, 34(2), 540-561. 



 

 

20 

Huang, R.D., R.W. Masulis and H.R. Stoll (1996), Energy shocks and financial markets, 

Journal of Futures Markets, 16(1), 1-27. 

Jiménez-Roidríguez, R. and M. Sánchez (2005), Oil price shocks and real GDP growth: 

Empirical evidence for some OECD countries, Applied Economics, 37(2), 201-228. 

Jones, C.M. and G. Kaul (1996), Oil and the stock markets, Journal of Finance, 51(2), 463-

491. 

Kaneko, T. and B.-S. Lee (1995), Relative importance of economic factors in the U.S. and 

Japanese stock markets, Journal of the Japanese and International Economics, 9, 

290-307. 

Kilian, L. (2008), A comparison of the effects of exogenous oil supply shocks on output and 

inflation in the G7 countries, Journal of the European Economic Association, 6(1), 

78–121.  

Kilian, L. and C. Park (2007), The impact of oil price shocks on the U.S. stock market, 

Department of Economic, University of Michigan. 

Lee, K., S. Ni and R.A. Ratti (1995), Oil shocks and the macroeconomy: The role of price 

variability, Energy Journal, 16, 39-56. 

Lee, B.R., K. Lee and R.A. Ratti (2001) Monetary policy, oil price shocks, and the Japanese 

economy, Japan and the World Economy, 13, 321–349.  

Lee, K. and S. Ni (2002), On the dynamic effects of oil price shocks: a study using industry 

level data, Journal of Monetary Economics, 49, 823-852. 

Li, W.-K., S. Ling and M. McAleer (2002), Recent theoretical results for time series models 

with GARCH errors, Journal of Economic Surveys, 16, 245-269. Reprinted in M. 

McAleer and L. Oxley (eds.), Contributions to Financial Econometrics: Theoretical 

and Practical Issues, Blackwell, Oxford, 2002, pp. 9-33. 

Ling, S. and M. McAleer (2003), Asymptotic theory for a vector ARMA-GARCH model, 

Econometric Theory, 19, 278-308. 

Maghyereh, A. (2004), Oil price shocks and emerging stock markets: A generalized VAR 

approach, International Journal of Applied Econometrics and Quantitative Studies, 

1(2), 27-40. 

Maghyereh, A. and A. Al-Kandari (2007), Oil prices and stock markets in GCC countries: 

New evidence from nonlinear cointegration analysis, Managerial Finance, 33(7), 

449-460. 

Malik, F. and S. Hammoudeh (2007), Shock and volatility transmission in the oil, US and 



 

 

21 

Gulf equity markets, International Review of Economics and Finance, 16, 357-368. 

McAleer, M., F. Chan, S. Hoti and O. Lieberman (2008), Generalized autoregressive 

conditional correlation, Econometric Theory, 24, 1554-1583.  

McAleer, M., S. Hoti and F. Chan (2009), Structure and asymptotic theory for multivariate 

asymmetric conditional volatility, Econometric Reviews 28, 422-440. 

Miller, J.I. and R.A. Ratti (2009), Crude oil and stock markets: Stability, instability, and 

bubbles, Working Paper, University of Missouri. 

Mork, K. (1994), Business cycles and the oil market, Energy Journal, 15, 15-38.  

Mork, K.A., O. Olsen and H.T. Mysen (1994), Macroeconomic responses to oil price 

increases and decreases in seven OECD countries, Energy Journal, 15: 19–35. 

Nandha, M. and R. Faff (2007), Does oil move equity prices? A global view, Energy 

Economics, 30, 986-997. 

Oberndorfer, U. (2008), Returns and volatility of Euro zone energy stocks, Centre for 

European Economic Research, Discussion Paper No. 07-030. 

Onour, I. (2007), Impact of oil price volatility on Gulf Cooperation Council stock markets’ 

return, Organization of the Petroleum Exporting Countries, 31, 171-189. 

Papapetrou, E. (2001), Oil price shocks, stock markets, economic activity and employment in 

Greece, Energy Economics, 23, 511-532. 

Park, J. and R.A. Ratti (2008), Oil price shocks and stock markets in the U.S. and 13 

European countries, Energy Economics, 30, 2587-2608.  

Sadorsky, P. (1999), Oil price shocks and stock market activity, Energy Economics, 21, 449-

469. 

Sadorsky, P. (2001), Risk factors in stock returns of Canadian oil and gas companies, Energy 

Economics, 23, 17-28. 

Sadorsky, P. (2004), Stock markets and energy prices, Encyclopedia of Energy, Vol. 5, 

Elsevier, New York, 707−717.  

Sadorsky, P. (2008), Assessing the impact of oil prices on firms of different sizes: Its tough 

being in the middle, Energy Policy, 36, 3854–3861. 

Zarour, B.A. (2006), Wild oil prices, but brave stock markets! The case of GCC stock 

market, International Journal Operation Research, 6(2), 145-162. 

 

 



 

 

22 

 

Table 1. Descriptive Statistics 

Returns Mean Max Min SD Skewness Kurtosis Jarque-Bera
FTSE -1.75e-06 0.093 -0.093 0.013 -0.125 8.741 4250.157 

NYSE 7.58e-05 0.115 -0.102 0.013 -0.299 12.960 12812.11 

S&P 2.44e-05 0.110 -0.095 0.014 -0.137 10.590 7423.755 

DJ -0.0001 0.132 -0.121 0.016 -0.244 9.227 5020.704 

BRSP 0.0005 0.152 -0.170 0.023 -0.047 6.103 1240.415 

BRFOR 0.0005 0.126 -0.133 0.023 -0.073 5.398 743.048 

BRFU 0.0005 0.129 -0.144 0.024 -0.145 5.553 849.874 

WTISP 0.0005 0.213 -0.172 0.027 -0.006 7.877 3062.127 

WTIFOR 0.0005 0.229 -0.142 0.026 0.099 7.967 3179.933 

WTIFU 0.0005 0.164 -0.165 0.026 -0.124 7.127 2199.531 
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Table 2. Unit Root Tests 

 ADF PP 

Returns None Constant Constant 
and Trend None Constant Constant 

and Trend
FTSE -27.327 -27.322 -27.318 -57.871 -57.862 -57.853 

NYSE -42.944 -42.940 -42.939 -59.142 -59.135 -59.134 

S&P -43.558 -43.552 -43.557 -60.770 -60.760 -60.772 

DJ -56.785 -56.780 -56.772 -57.002 -57.000 -56.992 

BRSP -54.904 -54.918 -54.909 -54.909 -54.922 -54.914 

BRFOR -57.211 -57.230 -57.222 -57.208 -57.229 -57.219 

BRFU -58.850 -58.869 -58.869 -58.821 -58.847 -58.838 

WTISP -56.288 -56.299 -56.290 -56.506 -56.539 -56.529 

WTIFOR -58.000 -58.013 -58.004 -58.181 -58.214 -58.204 

WTIFU -41.915 -41.934 -41.927 -56.787 -56.804 -56.794 

Note: Entries in bold are significant at the 5% level. 
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Table 3. Constant Conditional Correlations 
Country FTSE100 NYSE DJ S&P BRSP BRFOR BRFU WTISP WTIFOR WTIFU 

FTSE100 1          

NYSE 0.547 

(39.563) 

1         

DJ 0.334 

(30.191) 

0.425 

(26.993) 

1        

S&P 0.509 

(39.058) 

0.973 

(815.94) 

0.436 

(29.869) 

1       

BRSP 0.095 

(5.507) 

0.047 

(2.417) 

0.012 

(0.650) 

0.012 

(0.675) 

1      

BRFOR 0.098 

(6.194) 

0.043 

(2.588) 

0.029 

(1.774) 

7.55e-03 

(0.487) 

0.945 

(231.77) 

1     

BRFU 0.088 

(0.088) 

0.0741 

(4.575) 

1.901 

(2.135) 

0.029 

(1.839) 

0.790 

(93.230) 

0.805 

(91.956) 

1    

WTISP 0.085 

(6.070) 

0.066 

(4.232) 

0.012 

(0.871) 

0.020 

(1.315) 

0.706 

(73.413) 

0.732 

(82.840) 

0.828 

(95.009) 

1   

WTIFOR 0.103 

(6.644) 

0.095 

(7.974) 

0.043 

(3.361) 

0.047 

(3.118) 

0.755 

(85.119) 

0.782 

(89.690) 

0.838 

(121.33) 

0.888 

(99.858) 

1  

WTIFU 0.099 

(6.075) 

0.082 

(5.098) 

0.035 

(2.383) 

0.035 

(2.055) 

0.724 

(69.035) 

0.750 

(78.528) 

0.846 

(110.43) 

0.923 

(143.43) 

0.915 

(168.71) 

1 

Notes: (1) The two entries for each parameter are their respective parameter estimates and Bollerslev and Wooldridge (1992) robust t- ratios.  
           (2) Entries in bold are significant at the 5% level. 
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Table 4. Dynamic Conditional Correlations 

Returns 1̂θ  2̂θ  1 2
? +θ θ  

BRSP_NYSE 0.016 

(27.798) 

0.977 

(228.17) 

0.993 

BRSP_FTSE 0.015 

(1.971) 

0.981 

(87.34) 

0.996 

BRSP_S&P 0.014 

(2.350) 

0.982 

(104.21) 

0.996 

BRSP_DJ 0.012 

(2.182) 

0.982 

(91.63) 

0.994 

BRFOR_NYSE 0.017 

(2.143) 

0.977 

(77.63) 

0.994 

BRFOR_FTSE 0.021 

(68.712) 

0.973 

(294.77) 

0.994 

BRFOR_S&P 0.016 

(2.178) 

0.979 

(80.85) 

0.995 

BRFOR_ DJ 0.012 

(2.740) 

0.981 

(106.38) 

0.993 

BRFU_NYSE 0.020 

(7.161) 

0.976 

(267.55) 

0.996 

BRFU_FTSE 0.020 

(2.914) 

0.973 

(94.16) 

0.993 

BRFU_S&P 0.018 

(2.226) 

0.978 

(87.66) 

0.996 

BRFU_ DJ 0.012 

(3.112) 

0.985 

(186.65) 

0.997 

WTISP_NYSE 0.018 

(2.388) 

0.977 

(91.03) 

0.995 

WTISP _FTSE 0.014 

(13.232) 

0.982 

(497.96) 

0.996 

WTISP _S&P 0.015 

(2.256) 

0.982 

(109.66) 

0.997 

WTISP _ DJ 0.011 

(2.625) 

0.985 

(150.44) 

0.996 

WTIFOR_NYSE 0.017 

(3.727) 

0.979 

(121.97) 

0.996 

WTIFOR_FTSE 0.007 

(1.991) 

0.991 

(197.10) 

0.998 
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WTIFOR_S&P 0.014 

(3.063) 

0.9832 

(151.20) 

0.997 

WTIFOR_ DJ 0.013 

(32.651) 

0.981 

(302.59) 

0.994 

WTIFU_NYSE 0.013 

(20.736) 

0.984 

(596.13) 

0.997 

WTIFU_FTSE 0.017 

(218.77) 

0.976 

(215.27) 

0.993 

WTIFU_S&P 0.009 

(5.710) 

0.989 

(474.21) 

0.998 

WTIFU_ DJ 0.001 

(3.076) 

0.988 

(224.67) 

0.989 

Notes: (1) The two entries for each parameter are their respective parameter estimates and 
Bollerslev and Wooldridge (1992) robust t- ratios.  
            (2) Entries in bold are significant at the 5% level. 
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Table 5. Descriptive Statistics for DCC 
Returns Mean Max Min SD Skewness Kurtosis 

BRSP_FTSE100 0.106 0.652 -0.314 0.158 0.956 4.694 

BRSP_NYSE 0.057 0.422 -0.276 0.107 0.492 4.498 

BRSP_S&P 0.019 0.354 -0.257 0.107 0.482 3.884 

BRSP_ DJ 0.031 0.372 -0.174 0.092 0.822 4.028 

BRFOR_FTSE100 0.114 0.684 -0.380 0.162 0.786 4.759 

BRFOR_NYSE 0.059 0.457 -0.312 0.121 0.438 4.460 

BRFOR_S&P 0.023 0.400 -0.305 0.121 0.433 3.931 

BRFOR_ DJ 0.039 0.397 -0.190 0.100 0.804 4.008 

BRFU_FTSE100 0.115 0.683 -0.380 0.159 0.663 4.862 

BRFU_NYSE 0.100 0.566 -0.383 0.167 0.662 4.321 

BRFU_S&P 0.050 0.525 -0.367 0.164 0.827 4.410 

BRFU_ DJ 0.027 0.361 -0.278 0.120 0.378 3.292 

WTISP_FTSE100 0.102 0.583 -0.237 0.134 1.027 4.513 

WTISP_NYSE 0.085 0.504 -0.294 0.138 0.577 4.391 

WTISP_S&P 0.036 0.436 -0.270 0.137 0.747 4.077 

WTISP_ DJ 0.019 0.296 -0.222 0.097 0.521 3.553 

WTIFOR_FTSE100 0.110 0.537 -0.140 0.124 1.261 4.809 

WTIFOR_NYSE 0.111 0.619 -0.268 0.149 0.839 4.519 

WTIRFOR_S&P 0.062 0.572 -0.250 0.148 1.014 4.435 

WTIFOR_ DJ 0.049 0.381 -0.218 0.102 0.630 3.988 

WTIFU_FTSE100 0.121 0.632 -0.319 0.136 0.790 5.148 

WTIFU_NYSE 0.095 0.534 -0.249 0.141 0.757 4.225 

WTIFU_S&P 0.039 0.436 -0.270 0.137 0.747 4.077 

WTIFU_ DJ 0.019 0.296 -0.222 0.097 0.521 3.553 
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Table 6. VARMA-GARCH 
Panel 6a BRSP_FTSE100 

Returns ω  BRSPα  FTSEα  BRSPβ  FTSEβ  

BRSP 6.35E-06 

(2.730) 

0.035 

(4.280) 

0.043 

(1.268) 

0.951 

(89.245) 

-0.032 

(-0.978) 

FTSE100 1.09E-06 

(2.700) 

0.092 

(-0.844) 

-0.001 

(7.526) 

0.903 

(0.516) 

0.001 

(82.771) 

Panel 6b BRSP_ NYSE     

 ω  BRSPα  NYSEα  BRSPβ  NYSEβ  

BRSP 9.75E-06 

(2.715) 

0.043 

(3.743) 

0.045 

(1.251) 

0.939 

(61.06) 

-0.036 

(-0.953) 

NYSE 1.34E-06 

(1.534) 

-0.0002 

(-0.292) 

0.078 

(6.845) 

0.0003 

(0.209) 

0.912 

(82.582) 

Panel 6c BRSP_ S&P     

 ω  BRSPα  S&Pα  BRSPβ  S&Pβ  

BRSP 9.69E-06 

(2.721) 

0.043 

(3.721) 

0.040 

(1.225) 

0.937 

(59.357) 

-0.027 

(-0.845) 

S&P 6.85E-07 

(1.404) 

-0.0006 

(-0.816) 

0.068 

(6.330) 

0.001 

(1.013) 

0.926 

(92.731) 

Panel 6d BRSP_ DJ     

 ω  BRSPα  DJα  BRSPβ  DJβ  

BRSP 6.42E-06 

(2.629) 

0.038 

(3.938) 

0.031 

(1.472) 

0.947 

(74.786) 

-0.018 

(-0.787) 

DJ 4.01E-06 

(3.570) 

0.003 

(1.518) 

0.082 

(6.016) 

-0.005 

(-1.918) 

0.907 

(67.082) 

Panel 6e BRFOR_FTSE100     

 ω  BRFORα  FTSEα  BRFORβ  FTSEβ  

BRFOR 5.97E-06 

(2.629) 

0.035 

(4.218) 

0.038 

(1.486) 

0.950 

(83.824) 

-0.027 

(-1.070) 

FTSE100 8.57E-07 

(1.942) 

-0.002 

(-2.164) 

0.097 

(7.432) 

0.002 

(1.426) 

0.899 

(79.314) 

Panel 6f BRFOR_ NYSE     

 ω  BRFORα  NYSEα  BRFORβ  NYSEβ  
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BRFOR 8.19E-06 

(2.686) 

0.040 

(3.876) 

0.029 

(1.067) 

0.941 

(65.093) 

-0.019 

(-0.614) 

NYSE 1.25E-06 

(1.292) 

-0.001 

(-0.783) 

0.079 

(6.917) 

0.001 

(0.419) 

0.912 

(82.814) 

Panel 6g BRFOR_ S&P     

 ω  BRFORα  S&Pα  BRFORβ  S&Pβ  

BRFOR 1.15E-05 

(2.491) 

0.046 

(3.685) 

0.028 

(1.056) 

0.925 

(44.560) 

-0.010 

(-0.359) 

S&P 6.73E-07 

(1.235) 

-0.001 

(-0.773) 

0.069 

(6.378) 

0.002 

(0.852) 

0.925 

(91.513) 

Panel 6h BRFOR_ DJ     

 ω  BRFORα  DJα  BRFORβ  DJβ  

BRFOR 7.48E-06 

(2.552) 

0.040 

(3.911) 

0.023 

(1.372) 

0.938 

(59.906) 

-0.008 

(-0.405) 

DJ 3.39E-06 

(2.624) 

0.005 

(1.275) 

0.081 

(5.900) 

-0.004 

(-1.0642) 

0.905 

(61.338) 

Panel 6i BRFU_FTSE100     

 ω  BRFUα  FTSEα  BRFUβ  FTSEβ  

BRFU 9.22E-06 

(2.781) 

0.045 

(4.337) 

0.050 

(1.931) 

0.936 

(62.816) 

-0.041 

(-1.666) 

FTSE100 7.36E-07 

(1.717) 

-0.002 

(-1.930) 

0.099 

(7.490) 

0.003 

(1.579) 

0.897 

(77.307) 

Panel 6j BRFU_ NYSE     

 ω  BRFUα  NYSEα  BRFUβ  NYSEβ  

BRFU 1.09E-05 

(2.845) 

0.048 

(3.982) 

0.046 

(1.535) 

0.930 

(52.592) 

-0.035 

(-1.087) 

NYSE 9.81E-07 

(1.451) 

-0.001 

(-0.562) 

0.079 

(6.931) 

0.002 

(0.787) 

0.911 

(79.700) 

Panel 6k BRFU_ S&P     

 ω  BRFUα  S&Pα  BRFUβ  S&Pβ  

BRFU 1.07E-05 

(2.818) 

0.048 

(3.973) 

0.040 

(1.487) 

0.928 

(51.084) 

-0.024 

(-0.851) 

S&P 2.11E-07 

(1.514) 

-0.002 

(-1.048) 

0.070 

(6.597) 

0.003 

(1.296) 

0.924 

(85.800) 

Panel 6l BRFU_ DJ     

 ω  BRFUα  DJα  BRFUβ  DJβ  
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BRFU 7.62E-06 

(2.756) 

0.044 

(4.121) 

0.027 

(1.560) 

0.935 

(63.100) 

-0.010 

(-0.512) 

DJ 3.20E-06 

(2.764) 

0.006 

(1.848) 

0.080 

(5.845) 

-0.005 

(-1.393) 

0.904 

(58.532) 

     

Panel 6m WTISP _FTSE100     

 ω  WTISPα  FTSEα  WTISPβ  FTSEβ  

WTISP 4.29E-07 

(0.862) 

0.098 

(7.392) 

-0.001 

(-0.721) 

0.896 

(77.035) 

0.002 

(1.267) 

FTSE100 1.30E-05 

(2.724) 

0.054 

(1.253) 

0.049 

(3.905) 

-0.039 

(-0.968) 

0.928 

(52.795) 

Panel 6n WTISP_ NYSE     

 ω  WTISPα  NYSEα  WTISPβ  NYSEβ  

WTISP 7.11E-07 

(1.163) 

0.079 

(6.992) 

-0.001 

(-0.757) 

0.9115 

(80.704) 

0.002 

(1.288) 

NYSE 1.61E-05 

(2.715) 

0.059 

(1.235) 

0.052 

(3.601) 

-0.039 

(-0.753) 

0.9194 

(42.657) 

Panel 6o WTISP_ S&P     

 ω  WTISPα  S&Pα  WTISPβ  S&Pβ  

WTISP 2.57E-08 

(0.099) 

0.068 

(6.554) 

-0.001 

(-0.961) 

0.925 

(89.934) 

0.003 

(1.505) 

S&P 1.63E-05 

(2.689) 

0.0578 

(1.384) 

0.053 

(3.578) 

-0.029 

(-0.661) 

0.916 

(39.664) 

Panel 6p WTISP_DJ     

 ω  WTISPα  DJα  WTISPβ  DJβ  

WTISP 9.58E-06 

(2.276) 

0.048 

(3.673) 

0.018 

(0.768) 

0.926 

(50.138) 

0.017 

(0.596) 

DJ 2.51E-06 

(2.133) 

0.0004 

(0.220) 

0.083 

(5.845) 

0.001 

(0.390) 

0.904 

(58.177) 

Panel 6q WTIFOR_FTSE100     

 ω  WTIFORα  FTSEα  WTIFORβ  FTSEβ  

WTIFOR 4.90E-07 

(1.024) 

0.098 

(7.623) 

-0.002 

(-2.655) 

0.897 

(81.742) 

0.003 

(2.035) 

FTSE100 1.28E-05 

(2.729) 

0.045701 

(1.411) 

0.056 

(4.268) 

-0.023 

(-0.690) 

0.918 

(48.917) 

Panel 6r WTIFOR_ NYSE     

 ω  WTIFORα  NYSEα  WTIFORβ  NYSEβ  
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WTIFOR 7.12E-07 

(1.479) 

0.079 

(6.767) 

-0.002 

(-1.916) 

0.910 

(83.173) 

0.003 

(1.515) 

NYSE 1.56E-05 

(2.825) 

0.058 

(1.022) 

0.036 

(4.047) 

0.910 

(-0.189) 

-0.009 

(41.583) 

     

Panel 6s WTIFOR_S&P     

 ω  WTIFORα  S&Pα  WTIFORβ  S&Pβ  

WTIFOR 8.98E-08 

(0.663) 

0.069 

(6.610) 

-0.002 

(-1.441) 

0.924 

(88.676) 

0.003 

(1.738) 

S&P 1.55E-05 

(2.797) 

0.032 

(1.009) 

0.059 

(4.009) 

0.002 

(0.067) 

0.907 

(39.771) 

Panel 6t WTIFOR_DJ     

 ω  WTIFORα  DJα  WTIFORβ  DJβ  

WTIFOR 1.03E-05 

(2.461) 

0.055 

(4.326) 

0.007 

(0.464) 

0.917 

(49.988) 

0.024 

(1.041) 

DJ 3.05E-06 

(2.565) 

0.003 

(0.987) 

0.082 

(5.827) 

-0.002 

(-0.497) 

0.904 

(58.398) 

Panel 6u WTIFU_FTSE100     

 ω  WTIFUα  FTSEα  WTIFUβ  FTSEβ  

WTIFU 1.48E-05 

(2.980) 

0.056 

(4.009) 

0.072 

(1.618) 

0.915 

(46.339) 

-0.0501 

(-1.240) 

FTSE100 3.91E-07 

(0.828) 

-0.002 

(-2.259) 

0.097 

(7.384) 

0.003 

(2.046) 

0.898 

(78.023) 

Panel 6v WTIFU_FTSE100     

 ω  WTIFUα  NYSEα  WTIFUβ  NYSEβ  

WTIFU 1.91E-05 

(3.063) 

0.061 

(3.740) 

0.065 

(1.231) 

0.902 

(37.690) 

-0.037 

(-0.681) 

NYSE 4.01E-07 

(0.784) 

-0.001 

(-1.357) 

0.079 

(6.740) 

0.003 

(1.343) 

0.910 

(82.999) 

Panel 6w WTIFU_ S&P     

 ω  WTIFUα  S&Pα  WTIFUβ  S&Pβ  

WTIFU 1.87E-05 

(3.031) 

0.062 

(3.711) 

0.054 

(1.174) 

0.899 

(36.014) 

-0.018 

(-0.403) 

S&P -2.35E-07 

(-1.613) 

-0.001 

(-1.115) 

0.068 

(6.513) 

0.004 

(1.857) 

0.925 

(89.724) 

Panel 6x WTIFU_ DJ     

 ω  WTIFUα  DJα  WTIFUβ  DJβ  
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WTIFU 1.27E-05 

(2.731) 

0.060 

(3.754) 

0.012 

(0.612) 

0.907 

(40.670) 

0.022 

(0.856) 

DJ 2.78E-06 

(2.158) 

0.002 

(0.936) 

0.081 

(5.825) 

-0.001 

(-0.225) 

0.904 

(58.051) 

Notes: (1) The two entries for each parameter are their respective parameter estimates and 
Bollerslev and Wooldridge (1992) robust t- ratios.  
            (2) Entries in bold are significant at the 5% level. 
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Table 7. VARMA-AGARCH 
Panel 7a BRSP_FTSE100

 
  

Returns ω  BRSPα  FTSEα  γ  
BRSPβ  FTSEβ  

BRSP 6.93E-06 

(2.983) 

0.009 

(0.808) 

0.039 

(1.264) 

0.048 

(3.308) 

0.954 

(90.985) 

-0.034 

(-1.122) 

FTSE100 9.24E-07 

(2.422) 

-0.0003 

(-0.528) 

0.008 

(0.638) 

0.113 

(5.107) 

0.001 

(0.879) 

0.924 

(104.812) 

Panel 7b BRSP_NYSE
 

  

Returns ω  BRSPα  NYSEα  γ  
BRSPβ  NYSEβ  

BRSP 8.99E-06 

(2.879) 

0.012 

(0.926) 

0.034 

(-0.831) 

0.053 

(3.245) 

0.945 

(69.641) 

-0.028 

(1.081) 

NYSE 1.43E-06 

(8.792) 

0.0002 

(0.296) 

-0.016 

(-1.437) 

0.143 

(9.623) 

4.48E-05 

(0.054) 

0.931 

(95.219) 

Panel 7c BRSP_S&P
 

  

Returns ω  BRSPα  S&Pα  γ  
BRSPβ  S&Pβ  

BRSP 8.25E-06 

(2.827) 

0.010 

(0.827) 

0.024 

(0.876) 

0.051 

(3.155) 

0.948 

(71.001) 

-0.015 

(-0.533) 

S&P 4.71E-07 

(3.267) 

-0.0001 

(-0.306) 

-0.023 

(-2.544) 

0.131 

(8.463) 

0.947 

(1.554) 

0.001 

(128.707) 

Panel 7d BRSP_DJ
 

  

Returns ω  BRSPα  DJα  γ  
BRSPβ  DJβ  

BRSP 6.54E-06 

(2.807) 

0.009 

(0.745) 

0.026 

(1.340) 

0.048 

(3.027) 

0.952 

(81.340) 

-0.016 

(-0.796) 

DJ 4.40E-06 

(3.820) 

0.003 

(1.224) 

0.032 

(2.187) 

0.093 

(4.397) 

-0.003 

(-1.550) 

0.905 

(68.889) 

Panel 7e BRFOR_FTSE100
 

  

Returns ω  BRFORα  FTSEα  γ  
BRFORβ  FTSEβ  

BRFOR 5.82E-06 

(2.727) 

0.012 

(1.180) 

0.030 

(1.283) 

0.038 

(3.129) 

0.954 

(90.658) 

-0.022 

(-0.948) 

FTSE100 7.64E-07 

(1.757) 

-0.001 

(-1.163) 

0.009 

(0.728) 

0.113 

(5.197) 

0.002 

(1.294) 

0.923 

(105.044) 

Panel 7f BRFOR_NYSE
 

  

Returns ω  BRFORα  NYSEα  γ  
BRFORβ  NYSEβ  

BRFOR 7.15E-06 

(2.753) 

0.012 

(1.115) 

0.018 

(0.740) 

0.042 

(3.080) 

0.949 

(77.262) 

-0.010 

(-0.360) 
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NYSE 1.28E-06 

(5.481) 

0.001 

(0.804) 

-0.017 

(-1.653) 

0.145 

(9.719) 

5.54E-05 

(0.042) 

0.930 

(96.441) 

Panel 7g BRFOR_S&P
 

  

Returns ω  BRFORα  S&Pα  γ  
BRFORβ  S&Pβ  

BRFOR 7.08E-06 

(2.733) 

0.012 

(1.087) 

0.014 

(0.659) 

0.043 

(3.116) 

0.9489 

(74.963) 

-0.004 

(-0.185) 

S&P 2.63E-07 

(1.926) 

0.0001 

(0.223) 

-0.025 

(-2.790) 

0.134 

(8.504) 

0.002 

(1.594) 

0.947 

(126.729) 

Panel 7h BRFOR_DJ
 

  

Returns ω  BRFORα  DJα  γ  
BRFORβ  DJβ  

BRFOR 5.75E-06 

(2.581) 

0.012 

(1.027) 

0.014 

(0.939) 

0.041 

(3.009) 

0.951 

(77.268) 

-0.002 

(-0.131) 

DJ 3.13E-06 

(2.384) 

0.003 

(0.797) 

0.029 

(2.053) 

0.096 

(4.546) 

0.0001 

(0.035) 

0.902 

(64.402) 

Panel 7i BRFU_FTSE100
 

  

Returns ω  BRFUα  FTSEα  γ  
BRFUβ  FTSEβ  

BRFU 7.60E-06 

(3.094) 

0.026 

(2.125) 

0.045 

(1.828) 

0.024 

(1.761) 

0.946 

(79.696) 

-0.040 

(-1.686) 

FTSE100 7.55E-07 

(1.861) 

-0.001 

(-0.889) 

0.009 

(0.715) 

0.114 

(5.105) 

0.002 

(1.2720) 

0.922 

(102.996) 

Panel 7j BRFU_NYSE
 

  

Returns ω  BRFUα  NYSEα  γ  
BRFUβ  NYSEβ  

BRFU 1.03E-05 

(2.925) 

0.032 

(2.271) 

0.041 

(1.431) 

0.024 

(1.594) 

0.935 

(56.689) 

-0.034 

(-1.100) 

NYSE 1.04E-06 

(4.003) 

0.0004 

(0.415) 

-0.018 

(-1.763) 

0.145 

(9.760) 

0.001 

(0.555) 

0.930 

(96.629) 

Panel 7k BRFU_S&P
 

  

Returns ω  BRFUα  S&Pα  γ  
BRFUβ  S&Pβ  

BRFU 1.02E-05 

(2.886) 

0.033 

(2.275) 

0.035 

(1.365) 

0.023 

(1.554) 

0.933 

(54.556) 

-0.023 

(-0.848) 

S&P 1.12E-07 

(0.932) 

-4.81E-05 

(-0.048) 

-0.024 

(-2.713) 

0.133 

(8.304) 

0.002 

(1.633) 

0.947 

(126.27) 

Panel 7l BRFU_DJ
 

  

Returns ω  BRFUα  DJα  γ  
BRFUβ  DJβ  

BRFU 7.39E-06 

(2.852) 

0.027 

(1.916) 

0.026 

(1.523) 

0.025 

(1.756) 

0.941 

(64.493) 

-0.011 

(-0.553) 



 

 

35 

Dow Jones 3.26E-06 

(2.730) 

0.005 

(1.462) 

0.028 

(1.906) 

0.097 

(4.516) 

-0.001 

(-0.356) 

0.900 

(60.504) 

   

Panel 7m WTISP_FTSE100
 

  

Returns ω  WTISPα  FTSEα  γ  
WTISPβ  FTSEβ  

WTISP 1.41E-05 

(3.098) 

0.028 

(2.046) 

0.054 

(1.270) 

0.055 

(2.130) 

0.929 

(56.98) 

-0.042 

(-1.043) 

FTSE100 5.65E-07 

(1.265) 

-0.001 

(-0.774) 

0.008 

(0.677) 

0.115 

(5.262) 

0.002 

(1.287) 

0.921 

(103.8) 

Panel 7n WTISP_NYSE
 

  

Returns ω  WTISPα  NYSEα  γ  
WTISPβ  NYSEβ  

WTISP 1.77E-05 

(3.090) 

0.030 

(1.995) 

0.061 

(1.268) 

0.040 

(2.150) 

0.918 

(45.855) 

-0.042 

(-0.822) 

NYSE 9.55E-07 

(2.426) 

-0.0002 

(-0.287) 

-0.016 

(-1.397) 

0.141 

(9.228) 

0.001 

(0.826) 

0.930 

(98.293) 

Panel 7o WTISP_S&P
 

  

Returns ω  WTISPα  S&Pα  γ  
WTISPβ  S&Pβ  

WTISP 1.87E-05 

(3.083) 

0.032 

(2.025) 

0.059 

(1.380) 

0.042 

(2.144) 

0.910 

(41.070) 

-0.028 

(-0.648) 

S&P 2.15E-07 

(1.831) 

-0.0002 

(-0.270) 

-0.022 

(-2.626) 

0.129 

(8.421) 

0.002 

(1.701) 

0.947 

(128.314) 

Panel 7p WTISP_DJ
 

  

Returns ω  WTISPα  DJα  γ  
WTISPβ  DJβ  

WTISP 1.11E-05 

(2.564) 

0.030 

(1.915) 

0.013 

(0.585) 

0.034 

(1.872) 

0.924 

(49.662) 

0.021 

(0.760) 

DJ 2.89E-06 

(2.406) 

-0.001 

(-0.273) 

0.029 

(1.975) 

0.098 

(4.641) 

0.003 

(1.004) 

0.901 

(61.523) 

Panel 7q WTIFOR_FTSE100
 

  

Returns ω  WTIFORα  FTSEα  γ  
WTIFORβ  FTSEβ  

WTIFOR 1.14E-05 

(3.040) 

0.016 

(1.470) 

0.042 

(1.432) 

0.054 

(3.185) 

0.933 

(65.867) 

-0.026 

(-0.879) 

FTSE100 5.90E-07 

(1.411) 

-0.001 

(-1.406) 

0.009 

(0.746) 

0.113 

(5.223) 

0.003 

(1.716) 

0.922 

(105.695) 

Panel 7r WTIFOR_NYSE
 

  

Returns ω  WTIFORα  NYSEα  γ  
WTIFORβ  NYSEβ  

WTIFOR 1.32E-05 

(3.072) 

0.017 

(1.456) 

0.030 

(0.957) 

0.055 

(3.080) 

0.927 

(57.179) 

-0.011 

(-0.295) 
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NYSE 2.16E-06 

(3.641) 

-0.002 

(-1.668) 

-0.001 

(-0.079) 

0.157 

(7.436) 

0.005 

(2.585) 

0.889 

(39.429) 

   

Panel 7s WTIFOR_S&P
 

  

Returns ω  WTIFORα  S&Pα  γ  
WTIFORβ  S&Pβ  

WTIFOR 1.32E-05 

(3.030) 

0.018 

(1.459) 

0.024 

(0.866) 

0.056 

(3.077) 

0.925 

(53.997) 

0.001 

(0.033) 

S&P 6.75E-07 

(2.014) 

-0.002 

(-1.240) 

-0.018 

(-1.460) 

0.152 

(8.205) 

0.005 

(69.422) 

0.924 

(2.679) 

 

Panel 7t WTIFOR_DJ
 

  

Returns ω  WTIFORα  DJα  γ  
WTIFORβ  DJβ  

WTIFOR 9.20E-06 

(2.730) 

0.015260 

(1.377671) 

0.007 

(0.453) 

0.053 

(3.149) 

0.933 

(67.590) 

0.016 

(0.780) 

DJ 3.06E-06 

(2.579) 

0.001 

(0.275) 

0.029 

(1.984) 

0.098 

(4.597) 

0.002 

(0.617) 

0.901 

(60.798) 

Panel 7u WTIFU_FTSE100
 

  

Returns ω  WTIFUα  FTSEα  γ  
WTIFUβ  FTSEβ  

WTIFU 1.40E-05 

(3.360) 

0.023 

(1.599) 

0.073 

(1.674) 

0.050 

(3.017) 

0.925 

(56.133) 

-0.056 

(-1.421) 

FTSE100 5.25E-07 

(1.226) 

-0.001 

(-1.399) 

0.009 

(0.747) 

0.113 

(5.076) 

0.003 

(1.767) 

0.922 

(103.641) 

Panel 7v WTIFU_NYSE
 

  

Returns ω  WTIFUα  NYSEα  γ  
WTIFUβ  NYSEβ  

WTIFU 1.74E-05 

(3.319) 

0.026 

(1.590) 

0.065 

(1.262) 

0.053 

(2.900) 

0.914 

(45.754) 

-0.044 

(-0.847) 

NYSE 5.42E-07 

(3.889) 

-0.0003 

(-0.421) 

-0.017 

(-1.607) 

0.143 

(9.588) 

0.002 

(1.913) 

0.930 

(96.195) 

Panel 7w WTIFU_S&P
 

  

Returns ω  WTIFUα  S&Pα  γ  
WTIFUβ  S&Pβ  

WTIFU 1.73E-05 

(3.265) 

0.028 

(1.612) 

0.053 

(1.177) 

0.053 

(2.842) 

0.909 

(42.314) 

-0.024 

(-0.554) 

S&P -8.61E-08 

(-0.882) 

-0.0001 

(-0.195) 

-0.025 

(-2.874) 

0.131 

(8.4171) 

0.003 

(2.386) 

0.948 

(132.341) 

Panel 7x WTIFU_DJ
 

  

Returns ω  WTIFUα  DJα  γ  
WTIFUβ  DJβ  

WTIFU 1.25E-05 

(2.926) 

0.029 

(1.558) 

0.009 

(0.461) 

0.049 

(2.627) 

0.914 

(43.890) 

0.022 

(0.886) 
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DJ 2.88E-06 

(2.259) 

0.001 

(0.353) 

0.029 

(1.968) 

0.097 

(4.603) 

0.002 

(0.619) 

0.901 

(61.100) 

Notes: (1) The two entries for each parameter are their respective parameter estimates and 
Bollerslev and Wooldridge (1992) robust t- ratios.  
            (2) Entries in bold are significant at the 5% level. 
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Figure 1. WTI Futures Prices and Dow Jones Index 
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Figure 2a. Stock Indexes 
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Figure 2b. Crude Oil Prices 
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Figure 3a. Stock Index Returns 
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Figure 3b. Crude Oil Returns 
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Figure 4. Dynamic Conditional Correlations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-.4

-.2

.0

.2

.4

.6

-.4

-.2

.0

.2

.4

.6

.8

98 99 00 01 02 03 04 05 06 07 08 09

BRSP_FTSE BRSP_NYSE

-.4

-.2

.0

.2

.4

.6

-.4

-.2

.0

.2

.4

.6

.8

98 99 00 01 02 03 04 05 06 07 08 09

BRFOR_FTSE BRFOR_NYSE

-.4

-.2

.0

.2

.4

.6

-.2

.0

.2

.4

.6

98 99 00 01 02 03 04 05 06 07 08 09

BRFOR_DJ BRFOR_S&P

-.4

-.2

.0

.2

.4

.6

-.4

-.2

.0

.2

.4

98 99 00 01 02 03 04 05 06 07 08 09

BRFU_DJ BRFU_S&P

-.4

-.2

.0

.2

.4

.6

-.4

-.2

.0

.2

.4

.6

.8

98 99 00 01 02 03 04 05 06 07 08 09

BRFU_FTSE BRFU_NYSE

-.2

-.1

.0

.1

.2

.3

.4

-.4

-.2

.0

.2

.4

98 99 00 01 02 03 04 05 06 07 08 09

BRSP_DJ BRSP_S&P



 

 

44 

 

Figure 4. Dynamic Conditional Correlations (Cont.) 
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