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Monte Carlo Simulation with Asymptotic Method ∗

Akihiko TAKAHASHI and Nakahiro YOSHIDA

The University of Tokyo,

April, 2005

Abstract

We shall propose a new computational scheme with the asymptotic method
to achieve variance reduction of Monte Carlo simulation for numerical analy-
sis especially in finance. We not only provide general scheme of our method,
but also show its effectiveness through numerical examples such as com-
puting optimal portfolio and pricing an average option. Finally, we show
mathematical validity of our method.

∗Forthcoming in Journal of Japan Statistical Society, We thank referees for helpful and
valuable comments on the previous version.



1 Introduction

We propose a new method to increase efficiency of Monte Carlo simulation.
We utilize the analytic approximation based on the asymptotic method to
achieve variance reduction of Monte Carlo simulation especially for numer-
ical problems in finance. The idea of the method is as follows; Suppose
that F (w) is a Wiener functional and our objective is the evaluation of the
expectation of F (w). That is,

V := E[F (w)].

A typical estimate of V may be obtained by a naive Monte Carlo simulation
based on Euler-Maruyama approximation. That is,

V(n,N) =
1
N

N∑
j=1

[
F (n)

]
j
,

where [Z]j (j = 1, ...,N) denotes independent copies of the random variable
Z, Z(n) represents a random variable obtained by discretization of Z de-
pending on a continuous time parameter and n is the number of time points
in discretization. We introduce a modified estimator V∗(n,N) defined by

V∗(n,N) = E[F̂ ] +
1
N

N∑
j=1

[
F (n) − F̂ (n)

]
j

where E[F̂ ] is assumed to be analytically known. Intuitively, if we are able
to find F̂ such that the errors of

[
F (n)

]
j

and [F̂ (n)]j, that is,
[
F (n)

]
j
−V and

[F̂ (n)]j −E[F̂ ] take close numerical values for each independent copy j, then
V∗(n,N) becomes a better estimate since the error of each j in V∗(n,N)
which is represented by the difference of the errors of

[
F (n)

]
j

and [F̂ (n)]j
becomes small. As seen below, the asymptotic method (or perturbation
method) provides such F̂ . That is, F̂ obtained by the asymptotic method
has a strong correlation with F , and E[F̂ ] is evaluated analytically.

Variance reduction methods in Monte Carlo simulations arising from fi-
nance has been examined by various authors. (See chapter 4 of Glasserman
(2003) for the detail.) Among them, our method may be somewhat simi-
lar to control variate technique. (For instance, see chapter 3 of Robert and
Casella (2000) or section 4.1 of Glasserman (2003) on basics of control vari-
ate technique.) However, the main difficulty in the control variate technique
is that it is generally difficult to find F̂ strongly correlated with F whose
expectation E[F̂ ] can be analytically obtained. A well-known exception is
pricing of an arithmetic average option under a log-normal price process
where a geometric average option can be used as a control variate (Kemna
and Vorst(1990)). However, this does not always work when the price pro-
cess is not log-normal because the price of a geometric average option can
not be analytically obtained in general. Newton(1994) derived theoretically
optimal control variates, but it includes a term which is not easy to evalu-
ate. Then, he gave some approximations and claimed it was useful for some
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cases of numerical examples. Milshtein and Schoenmakers(2002) applied
and extended the Newton’s idea to pricing of derivatives in finance without
numerical examples.

Our method based on the perturbation of the stochastic differential equa-
tions overcomes the difficulty since the asymptotic method allows us to find
such F̂ in the unified way. In the following sections, we will show this
idea more rigorously and concretely. We also note that our method may
be used together with other acceleration methods such as antithetic vari-
ables technique and an extrapolation method of Talay and Tubaro(1990) to
pursue further variance reduction of Monte Carlo simulation. Moreover, an
asymptotic expansion approach may be effectively applied with importance
sampling technique developed by Newton(1994).

Asymptotic methods have been applied successfully to a broad class of
Itô processes appearing in finance. Kunitomo and Takahashi (1992) pro-
posed a normal approximation to evaluate average options in the Black-
Scholes setting. Yoshida (1992b) applied the asymptotic expansion method
to price path-dependent options for nonlinear price processes. This method
was based on the Malliavin calculus and had been developed in statistics for
stochastic processes (Yoshida (1992a,1993)).

Takahashi(1999) presented a third-order pricing formula for plain options
and second-order formulas for more complicated derivatives such as average
options, basket options, and options with stochastic volatility in a general
Markovian setting. Kunitomo and Takahashi(2001) derived expansions for
interest rate models based on Heath-Jarrow-Morton(1992) which is not nec-
essarily Markovian, and provided pricing formulas for bond options(swap
options), average options on interest rates. Takahashi(1995) also presented
a second order scheme for average options on foreign exchange rates with
stochastic interest rates in Heath-Jarrow-Morton framework.

Moreover, Takahashi and Yoshida(2004) extended the method to dy-
namic portfolio problems; starting with a result in Ocone and Karatzas(1991),
they derived formulas for optimal portfolios associated with maximizing util-
ity from terminal wealth in a general Markovian setting. Recently, Taka-
hashi and Saito(2003) successfully applied the method to American options.
For details of mathematical validity based on the Malliavin calculus and of
further applications, see Kunitomo and Takahashi(2003a, 2003b, 2004).

The organization of the paper is as follows: In the next section, we will
show our new scheme and state main theorems. In Section 3, we will give
two examples to illustrate our method in finance; computing the market
price of risk component in the optimal portfolio problem and pricing an
average option. In Section 4, we will examine numerical examples for the
problems discussed in Section 3. In Sections 5 and 6, we will give proofs
of the main theorems. In Section 7, we will provide mathematical validity
of the asymptotic method with square-root process used in the numerical
examples.
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2 Monte Carlo Simulation with the Asymptotic
Method

Let (Ω,F , P ) be probability space and T∈ (0,∞) denotes some fixed time
horizon. Process w = {(w1(t), · · · , wr(t))∗; t ∈ [0, T ]} is an Rr-valued Brow-
nian motion defined on (Ω,F , P ), and {Ft}, 0 ≤ t ≤ T stands for P-
augmentation of the natural filtration Fw

t = σ(w(s); 0 ≤ s ≤ t). Here
we use the notation x∗ as the transpose of x. Suppose that an RD-valued
process Xu(t, x) (0 ≤ t ≤ u ≤ T, x ∈ RD) satisfy the stochastic integral
equation:

Xε
u(t, x) = x+

∫ u

t
V0(Xε

s(t, x), ε)ds+
r∑

α=1

∫ u

t
Vα(Xε

s(t, x), ε)dws, (1)

where ε is a parameter ε ∈ (0, 1] and Vα ∈ C∞
↑ (RD × (0, 1];RD), α =

0, 1, · · · , r; C∞
↑ (RD × (0, 1];E) denotes the set of smooth mappings f : RD ×

(0, 1] → E whose derivatives ∂n
x ∂

k
ε f(x, ε) are of at most polynomial growth

uniformly in ε for n ∈ ZD
+ and k ∈ Z+. That is

sup
ε∈(0,1]

|∂n
x ∂

k
ε f(x, ε)| ≤ Cn,k(1 + |x|)Cn,k for some Cn,k > 0.

∂n
x ∂

k
ε is defined by

∂n
x ∂

k
ε =

(
∂

∂x1

)n1
(
∂

∂x2

)n2

· · ·
(

∂

∂xD

)nD
(
∂

∂ε

)k

where x = (xm)1≤m≤D and n = (nm)1≤m≤D. We also assume that (V0, V1, · · · , Vr)
is graded according to RD = Rd1 × · · · × Rdq in the sense of Definition 1
below.

Definition 1 A grading of RD is a decomposition Rd1 × · · · × Rdq with∑q
i=1 di = D. The coordinates of a point in RD are always arranged in an

increasing order along the subspaces Rdi . We set M0 = 0 and Ml =
∑l

i=1 di

for 1 ≤ l ≤ q. We say that the coefficients (V0, V1, · · · , Vr) are graded accord-
ing to the grading RD = Rd1 × · · · × Rdq if V i

α(x, ε), α = 0, 1, · · · , r depend
on x only through the coordinates (xm)1≤m≤Ml

when Ml−1 < i ≤Ml where
V i

α denotes the i-th element of Vα.

We further suppose that ∂nl

x(l)V
i
α(x, ε), α = 0, 1, · · · , r are bounded for

nl ∈ Zdl
+ such that |nl| ≥ 1 where nl = (nj)1≤j≤dl

and |nl| =
∑dl

j=1 nj ;

x(l) = (x(l)
j )1≤j≤dl

and x(l)
j denotes the (Ml−1 + j)-th coordinate of x ∈ RD;

∂nl

x(l) is defined by

∂nl

x(l) =

(
∂

∂x
(l)
1

)n1
(

∂

∂x
(l)
2

)n2

· · ·
⎛
⎝ ∂

∂x
(l)
dl

⎞
⎠

ndl

.

Due to Chapter II-5 of Bichteler et al.(1987), Xu(t, x) admits a unique
solution and sup0≤u≤T E[|Xu(t, x)|p] <∞ for all p ≥ 1.

We finally note that the Markovian system (15) in Section 3 is an example
of this class.
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2.1 Smooth Case

Suppose that f ∈ C∞
↑ (RD;R), where C∞

↑ (RD;R) denotes the set of smooth
functions f : RD → R whose derivatives are of at most polynomial growth.
For stochastic approximation to V := E[f(Xε

T (0, x))], an estimator by naive
Monte Carlo simulation is given as

V(ε, n,N) =
1
N

N∑
j=1

[
f(X̄ε

T )
]
j . (2)

Here [Z]j (j = 1, ...,N) denote independent copies of the random variable
Z, and the Euler-Maruyama scheme X̄ε is defined by:

X̄ε
u = x+

∫ u

0
V0(X̄ε

η(s), ε)ds+
r∑

α=1

∫ u

0
Vα(X̄ε

η(s), ε)dws (3)

with η(s) = [ns/T ]T/n.
In the sequel, we will consider a modified estimator for V:

V∗(ε, n,N) = E[f(X [0]
T (0, x))] +

1
N

N∑
j=1

[
f(X̄ε

T ) − f(X̄ [0]
T )
]
j
, (4)

where X [0]
T (0, x) and X̄ [0]

T denote Xε
T (0, x) and X̄ε

T when ε = 0 respectively.
Intuitively, we expect that V∗(ε, n,N) is a better estimate if

[
f(X̄ε

T )
]
j −V

and [f(X̄ [0]
T )]j−E[f(X [0]

T (0, x))] take close values for each independent copy j
since they are canceled with each other in each j of our estimator V∗(ε, n,N).
We can easily notice it by observing that the error of V∗(ε, n,N) is given
by the sample average of the difference between deviations of

[
f(X̄ε

T )
]
j and

[f(X̄ [0]
T )]j from their respective true values:

V∗(ε, n,N) − V =
1
N

N∑
j=1

[
{f(X̄ε

T ) − E[f(Xε
T (0, x))]}

−{f(X̄ [0]
T ) − E[f(X [0]

T (0, x))]}
]
j
.

Our main objective is to state this intuition more rigorously. We shall
start with a known error bound of the naive estimator V(ε, n,N):

Theorem 1 Suppose that f ∈ C∞
↑ (RD;R). Then:

(i) For the bias Bias[V(ε, n,N)] of V(ε, n,N),

Bias[V(ε, n,N)] = E[V(ε, n,N)] − V = O(
1
n

).

(ii) For the variance Var[V(ε, n,N)] of V(ε, n,N),

Var[V(ε, n,N)] =
1
N

Var[f(X̄ε
T )] = O(

1
N

).

(iii) For the mean-square-error MSE[V(ε, n,N)] = E[(V(ε, n,N) − V)2],

MSE[V(ε, n,N)] = O(
1
n2

+
1
N

).
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Theorem 1 is not a result we really want to show in this article. Pre-
senting it here is just for comparison with our main results presented below.
Since we will need the same procedure at the beginning of the proof of our
main results, it is convenient to recall the proof of Theorem 1 in Section 5.1.

For our modified estimator V∗(ε, n,N), we obtain a better error bound.

Theorem 2 Suppose that f ∈ C∞
↑ (RD;R). Then:

(i) For the bias of V∗(ε, n,N), it holds that

Bias[V∗(ε, n,N)] = O(
ε

n
).

(ii) For the variance of V∗(ε, n,N),

Var[V∗(ε, n,N)] =
1
N

Var[f(X̄ε
T ) − f(X̄0

T )] = O(
ε2

N
).

(iii) The mean-square-error

MSE[V∗(ε, n,N)] = O(ε2
(

1
n2

+
1
N

)
).

Proof: See Section 5.2. �

Remark 1 We put the condition f ∈ C∞
↑ (RD;R) for simplicity. This can

be relaxed to a certain extent such as f ∈ Ck
↑ (RD;R) for some positive k.

Remark 2 Though it is not so rigorous since V∗(ε, n,N) is random, we
may roughly regard V∗(ε, n,N) approximating V with the same order of
precision as the expansion of V up to the ε-order if n ≥ O

(
ε−1

)
and N ≥

O(ε−2).

Comparing V∗(ε, n,N) with V(ε, n,N) in mean-square-error, we see that

MSE[V(ε, n,N)] − MSE[V∗(ε, n,N)] ≥ 1
N

{
Var[f(X̄ε

T )] − Var[f(X̄ε
T ) − f(X̄0

T )]
}

−θ1(ε, n)

≥ 1
N

Var[f(X̄ε
T )] − θ2(ε, n,N),

where

0 ≤ θ1(ε, n) = O

((
ε

n

)2
)

and

0 ≤ θ2(ε, n,N) = O

(
ε2
(

1
n2

+
1
N

))
.

We then expect that θ2(ε, n,N) is smaller than N−1Var[f(X̄ε
T )], and hence

that MSE of V∗(ε, n,N) is smaller than MSE of V(ε, n,N).
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2.2 Non Smooth Case

If f is not smooth, in particular, if f is a Borel measurable function of at
most polynomial growth, we can still obtain the similar results as in the
smooth case under appropriate additional assumptions.

We will consider a stochastic approximation to V := E[f(Xε
T (0, x))]. An

estimator may be obtained by a naive Monte Carlo simulation. However,
in order to give an error bound, the Malliavin calculus is to be involved
because of non smoothness of f . To apply the Malliavin calculus effectively,
we will take a modified Euler-Maruyama scheme similar to Kohatsu-Higa
(1997). That is, we compute

V(ε, n,N) =
1
N

N∑
j=1

[
f

(
X̄ε

T +
1
n
ŵT

)]
j
, (5)

instead of V(ε, n,N) given in (2), where {ŵt; t ∈ [0, T ]} is a Wiener pro-
cess independent of Xε. Bally and Talay(1995) also applied the Malliavin
calculus to derive an error bound when f is not smooth. We will use the
Malliavin calculus over the product space of two Winer spaces equipped with
the product measure Pw⊗P ŵ.

Similarly, our new estimator (4) is modified as follows:

V∗(ε, n,N) = E[f(X [0]
T (0, x))] +

1
N

N∑
j=1

[
f

(
X̄ε

T +
1
n
ŵT

)
− f

(
X̄

[0]
T +

1
n
ŵT

)]
j
.

(6)

To justify this scheme, we first make the following assumption:

[A1] For every p > 1,

sup
ε

E[|σXε
T (0,x)|−p] <∞,

where σXε
T

(0,x) denotes the Malliavin covariance of Xε
T (0, x).

It is sometimes difficult to check Condition [A1]. Then in stead of [A1],
we may put the following condition [A2] which is practically more conve-
nient.

[A2] For every p > 1,
E[|σ

X
[0]
T (0,x)

|−p] <∞,

where σ
X

[0]
T

(0,x)
denotes the Malliavin covariance of X [0]

T (0, x).
We can obtain similar results in the non smooth case corresponding to

Theorems 1 and 2 in the smooth case. In particular, we have the following
result similar to Theorem 2 under Condition [A1] or Condition [A2].

Theorem 3 Suppose that f is a Borel measurable function of at most poly-
nomial growth. Suppose that for some positive constant ω, ε = o(n−ω) as
n → ∞. Then under the condition [A1] or [A2], the following properties
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hold:

(i) The bias of V∗(ε, n,N) satisfies

Bias[V∗(ε, n,N)] = O(
ε

n
).

(ii) The variance of V∗(ε, n,N) admits

Var[V∗(ε, n,N)] =
1
N

Var[f(X̄ε
T ) − f(X̄0

T )] = O(
ε2

N
).

(iii) The mean-square-error satisfies

MSE[V∗(ε, n,N)] = O(ε2
(

1
n2

+
1
N

)
).

Proof: See Section 6. �

3 Examples

In this section, we take two examples from finance to illustrate our method.

3.1 Example 1:Computation of Optimal Portfolio for Invest-
ment

The first example is computation of the Market Price of Risk component
of an optimal portfolio in multiperiod setting. (Hereafter, we call the com-
ponent MPR-hedge following a convention in finance.) We note that this
example belongs to smooth case in Section 2.1. We start with basic set up
of the financial market.

Let (Ω,F , P ) probability space and T∈ (0,∞) denotes some fixed time
horizon of the economy. w = {(w1(t), · · · , wr(t))∗; t ∈ [0, T ]} is Rr-valued
Brownian motion defined on (Ω,F , P ) and {Ft}, 0 ≤ t ≤ T stands for P-
augmentation of the natural filtration, Fw

t = σ(w(s); 0 ≤ s ≤ t). Here, we
use the notation of x∗ as the transpose of x.

For t ∈ [0, T ], the price processes of risky assets and a locally riskless
asset are described as follows.

dSi = Si(t)[bi(t)dt+
r∑

j=1

σij(t)dwj(t)]; Si(0) = si i = 1, · · · , r (7)

dS0 = γ(t)S0(t)dt; S0(0) = 1

where γ(t),bi(t), and σij(t) are progressively measurable with respect to
{Ft}. bi(t) and σij(t) satisfy the integrability conditions:

∫ T

0
{|b(t)| + |σ(t)|2}dt <∞
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where |b(t)| := (
∑r

i=1 |bi(t)|2)
1
2 and |σ(t)|2 :=

∑r
i,j=1 |σij(t)|2. σ(t) is as-

sumed to be non-singular Lebesgue-almost-every t ∈ [0, T ], a.s. Then, Rr-
valued process θ(t), t ∈ [0, T ], the market price of risk process is well-defined
as θ(t) := σ−1(t)[b(t) − γ(t)	1]. We further assume that γ(t) and θi(t),
i = 1, 2, · · · , r are bounded.

Next, we illustrate the problem of a (small) investor’s optimal portfo-
lio for investment in the multiperiod setting. Given the financial market
described above, an investor’s wealth W (t) at time t ∈ [0, T ] is described as

dW (t) = [γ(t)W (t) − c(t)]dt+ π(t)∗[(b(t) − γ(t)1)dt+ σ(t)dw(t)];

where W (0) = W > 0 is the initial capital(wealth),
c(t) denotes the consumption rate and π(t) = {πi(t)}∗i=1,···,r denotes the
portfolio, which satisfy the integrability condition;∫ T

0
{|π(t)|2 + c(t)}dt <∞ a.s.

Let A(W ) denote the set of stochastic processes (π, c) which generate
W (t) ≥ 0 for all t ∈ [0, T ] given W (0) = W . If (π, c) ∈ A(W ), (π, c) is called
admissible for W . Then, the problem of an investor’s optimal portfolio for
investment is formulated as follows;

sup
(π,c)∈A(W )

E[U(W (T ))] (8)

where E[·] denotes the expectation operator under P , and U represents a
utility function such that

U : (0,∞) → R, (9)
a strictly increasing, strictly concave function of class C2

with U(0+) ≡ lim
c↓0

U(c) ∈ [−∞,∞), U
′
(0+) ≡ lim

c↓0
U

′
(c) = ∞

and U
′
(∞) ≡ lim

c→∞U
′
(c) = 0.

From now on, we will concentrate on a Markovian model. We consider a
Wiener space on [t, T ] for some fixed t ∈ [0, T ] and assume that all random
variables will be defined on it. Let Xε

u be a D-dimensional diffusion process
defined by the stochastic differential equation:

dXε
u = V0(Xε

u, ε)du+ V (Xε
u, ε)dwu, Xε

t = x (10)

for u ∈ [t, T ] where ε ∈ (0, 1], V0 ∈ C∞
b (RD×(0, 1];RD), and V = (Vβ)rβ=1 ∈

C∞
b (RD × (0, 1];RD ⊗ Rr). Here C∞

b (Rd × (0, 1];E) denotes a class of
smooth mappings f : RD × (0, 1] → E whose derivatives ∂n

x ∂
m
ε f(x, ε) are

all bounded for n ∈ Zd
+ such that |n| ≥ 1 and m ∈ Z+. Note that time-

dependent-coefficient diffusion processes are included in the above equation
if we enlarge the process to a higer-dimensional one. Let Y ε

t,u be a unique
solution of the D ×D-matrix valued stochastic differential equation:⎧⎪⎨

⎪⎩
dY ε

t,u =
∑r

α=0 ∂xVα(Xε
u, ε)Y

ε
t,udw

α
u

Y ε
t,t = I

(11)
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We further assume the bounded processes γ(u)(short rate) and θ(u)(the
market price of risk) to be γ(u) = γ(Xε

u) and θ(u) = θ(Xε
u) where γ ∈

C∞
b (RD;R+) and θ ∈ C∞

b (RD;Rr). The case that b(u) = b(Xε
u) and σ(u) =

σ(Xε
u) is an example in this formulation. Next, we suppose that a utility

function is so called a power function;

U(x) =
xδ

δ
, x ∈ (0,∞), δ < 1, δ 	= 0.

Then, due to Takahashi and Yoshida(2004), the optimal proportions of risky
assets in given wealth W at time t, are provided by

(12)

π∗(t)/W =
1

(1 − δ)
θ(x)∗σ−1(x) +

δ

(1 − δ)
1

E
[
(H0,t,T )(

−δ
1−δ

)
] ×

E

[
(H0,t,T )(

−δ
1−δ

)

(∫ T

t
∂γ(Xε

u)Y ε
t,udu+

r∑
α=1

∫ T

t
∂θα(Xε

u)Y ε
t,udw

α(u)

+
r∑

α=1

∫ T

t
θα(Xε

u)∂θα(Xε
u)Y ε

t,udu

)]
V (x, ε)σ−1(x),

where the state density process, H0,t,T is defined by

H0,t,T ≡ exp

(
−
∫ T

t
θ(Xε

u)∗dw(u) − 1
2

∫ T

t
|θ(Xε

u)|2du−
∫ T

t
γ(Xε

u)du

)
.

Next, we define the mean variance, the interest rate hedge(IR-hedge)
and the market price of risk hedge(MPR-hedge) components of the optimal
portfolio for a power utility function:

(13)

mean variance ≡ 1
(1 − δ)

θ(x)∗σ−1(x)

IR-hedge ≡ δ

(1 − δ)
1

E
[
(H0,t,T )(

−δ
1−δ

)
]E

[
(H0,t,T )(

−δ
1−δ

)
∫ T

t
∂γ(Xε

u)Y ε
t,udu

]
×

V (x, ε)σ−1(x)

MPR-hedge ≡ δ

(1 − δ)
1

E
[
(H0,t,T )(

−δ
1−δ

)
]E [(H0,t,T )(

−δ
1−δ

)×

(
r∑

α=1

∫ T

t
∂θα(Xε

u)Y ε
t,udw

α(u)

+
r∑

α=1

∫ T

t
θα(Xε

u)∂θα(Xε
u)Y ε

t,udu

)]
V (x, ε)σ−1(x).

Then, we put a main assumption on the asymptotic method:

[A3] the deterministic limit condition: V (·, 0) ≡ 0.

9



Under the assumption [A3], each component of the optimal portfolio for
a power utility function in the asymptotic method up to ε order is given due
to Takahashi and Yoshida(2004):

(14)

mean variance ≡ 1
(1 − δ)

θ∗(x)σ−1(x)

IR-hedge ≡ ε
δ

(1 − δ)

(∫ T

t
∂γ[0](u)Yt,udu

)
∂εV (x, 0)σ−1(x)

MPR-hedge ≡ ε
δ

(1 − δ)2

(
r∑

α=1

∫ T

t
θ[0]
α (u)∂θ[0]

α (u)Yt,udu

)
∂εV (x, 0)σ−1(x).

From now on, we illustrate our scheme by using MPR-hedge component
(13). Similar method can be applied to IR-hedge component. (Note that
mean variance component is analytically obtained.)

Numerical Computation of MPR-hedge
In computation of MPR-hedge, we first consider a naive estimator by

Monte Carlo. Hereafter we set t = 0. A Markovian system of SDEs used in
Monte Carlo simulation is given as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dXε
u = V0(Xε

u, ε)du + V (Xε
u, ε)dwu, Xε

t = x

dY ε
t,u =

∑r
α=0 ∂xVα(Xε

u, ε)Y ε
t,udw

α
u , Y

ε
t,t = I

dhε
0,t,u = hε

0,t,u[{( δ
1−δ )γ(Xε

u) + δ
2(1−δ)2 |θ(Xε

u)|2}du+ ( δ
1−δ )θ(Xε

u)∗dw(u)],
hε

0,t,t = 1

dηε
u =

∑r
α=1 θα(Xε

u)∂θα(Xε
u)Y ε

t,udu+
∑r

α=1 ∂θα(Xε
u)Y ε

t,udw
α(u), ηε

t = 0

(15)

We note that above system of equations (15) corresponds to the equation (1)
in Section 2. Then, the estimator based on naive Monte Carlo simulation
(2) for the denominator of MPR-hedge (13);

E
[
(H0,t,T )(

−δ
1−δ

)
]

= E
[
hε

0,t,T

]
(16)

may be expressed as
1
N

N∑
j=1

[
h̄ε

0,t,T

]
j
. (17)

Similarly, the estimator for the numerator of MPR-hedge (13);

(18)

E

[
(H0,t,T )(

−δ
1−δ

)

(
r∑

α=1

∫ T

t
∂θα(Xε

u)Y ε
t,udw

α(u) +
r∑

α=1

∫ T

t
θα(Xε

u)∂θα(Xε
u)Y ε

t,udu

)]

may be expressed as
1
N

N∑
j=1

[
h̄ε

0,t,T × η̄ε
T

]
j
. (19)
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Next, we consider modified estimators for (16) and (18) in the following.
First, we note that

(H [0]
0,t,T )(

−δ
1−δ

) = h
[0]
0,t,T = C × ξ

[0]
T

where
ξ
[0]
T = e−

1
2
( δ
1−δ

)2
∫ T

t
|θ[0](u)|2du+( δ

1−δ
)
∫ T

t
θ[0](u)dw(u)

and

C ≡ exp

{(
δ

1 − δ

)∫ T

t
γ[0](u)du+

δ

2(1 − δ)2

∫ T

t
|θ[0](u)|2du

}
.

A modified estimator for the denominator (16) is given by

E[h[0]
0,t,T ] +

1
N

N∑
j=1

{
{[h̄ε

0,t,T − h̄
[0]
0,t,T ]j

}
(20)

where
E[h[0]

0,t,T ] = C,

because clearly
E[ξ[0]T ] = 1.

Further, h̄[0]
0,t,u denotes the Euler-Maruyama scheme of h[0]

0,t,u:
⎧⎨
⎩ dh

[0]
0,t,u = h

[0]
0,t,u[{( δ

1−δ )γ[0]
u + δ

2(1−δ)2 |θ
[0]
u |2}du+ ( δ

1−δ )θ[0],∗
u dw(u)],

h
[0]
0,t,t = 1.

(21)

In the similar way, a modified estimator for the numerator (18) is given
by

E[h[0]
0,t,uη

[0]
T ] +

1
N

N∑
j=1

{[
h̄ε

0,t,T × η̄ε
T − h̄

[0]
T × η̄

[0]
T

]
j

}
(22)

where

E[h[0]
0,t,uη

[0]
T ] = C ×

(
1

1 − δ

)[ r∑
α=1

∫ T

t
θ[0]
α (u)∂θ[0]

α (u)Yt,udu

]
,

and η̄[0]
u denotes the Euler-Maruyama scheme of η[0]

u :

dη[0]
u =

r∑
α=1

θα(X [0]
u )∂θα(X [0]

u )Y [0]
t,udu+

r∑
α=1

∂θα(X [0]
u )Y [0]

t,udw
α(u), η

[0]
t = 0

(23)
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3.2 Example 2:Pricing of an Average Call Option

The second example is pricing an average call option which belongs to
non smooth case in Section 2.2. Given filtered probability space satisfy-
ing usual conditions (Ω,F , P, {Ft}0≤t≤T ) with one-dimensional Brownian
motion {wt; 0 ≤ t ≤ T}, where P represents a so called equivalent Martin-
gale measure in finance. The underlying asset price process St, 0 ≤ t ≤ T is
assumed to follow a one-dimensional diffusion process:

dSε
t = γSε

tdt+ εσ(Sε
t , t)dwt, S

ε
0 = S0(> 0) (24)

where ε ∈ (0, 1], σ ∈ C∞
b (R+ × [0, T ];R+), γ is a positive constant. The

payoff of an average call option with strike price K(> 0) and with the
maturity T is given by

V (T ) =
(

1
T
Zε

T −K

)
+
, (25)

where (x)+ = max(x, 0). Then, to obtain the price of an average call option
at t = 0, we evaluate

V = e−γTE

[(
1
T
Zε

T −K

)
+

]

given that ⎧⎪⎨
⎪⎩
dSε

t = γSε
tdt+ εσ(Sε

t , t)dwt, S
ε
0 = S0(> 0)

dZε
t = Sε

tdt, Z
ε
0 = 0.

(26)

(For details of average options, see Kunitomo and Takahashi(1992) and He
and Takahashi(2000) for instance.) It is re-expressed by

V = e−γT εE

[(
1
T
Xε

2T + y

)
+

]
(27)

where

Xε
1t ≡ Sε

t − S
[0]
t

ε
,

Xε
2t ≡ Zε

t − Z
[0]
t

ε
,

y ≡
1
T Z

[0]
T −K

ε
,

S
[0]
t = eγtS0,

Z
[0]
t =

S0

γ
(eγt − 1).

We also notice that Xε
1t and Xε

2t satisfy SDEs:⎧⎪⎨
⎪⎩
dXε

1t = γXε
1tdt+ σ(εXε

1t + S
[0]
t , t)dwt, X

ε
10 = 0

dXε
2t = Xε

1tdt, X
ε
20 = 0

(28)
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Next, we assume the condition:

Σ ≡
∫ T

0

1
T 2

[
e(T−u) − 1

γ

]2

σ2(S[0]
u , u)du > 0. (29)

Under Condition (29), The asymptotic expansion of V upto ε-order is ob-
tained by

V = e−γT ε

(
yΦ

(
y√
Σ

)
+ Σ

1√
2πΣ

exp

(
−y2

2Σ

))
+ o(ε).

Then, a modified estimator for (27) is given by

e−γT E

[(
1
T
X

[0]
2T + y

)
+

]
+

1
N

N∑
j=1

⎧⎨
⎩
[
e−γT

(
1
T
X̄ε

2T + y +
1
n
ŵT

)
+
− e−γT

(
1
T
X̄

[0]
2T + y +

1
n
ŵT

)
+

]
j

⎫⎬
⎭

(30)
where

e−γTE

[(
1
T
X

[0]
2T + y

)
+

]
= e−γT

{
yΦ

(
y√
Σ

)
+ Σ

1√
2πΣ

exp

(
−y2

2Σ

)}
.

(31)
X̄

[0]
it , i = 1, 2 denote the Euler-Maruyama scheme of X [0]

it , i = 1, 2, which is
given by ⎧⎪⎨

⎪⎩
dX

[0]
1t = γX

[0]
1t dt+ σ(S[0]

t , t)dwt, X
[0]
10 = 0

dX
[0]
2t = X

[0]
1t dt, X

[0]
20 = 0.

(32)

Here, Φ(x) denotes the standard normal distribution evaluated at x.

4 Numerical Examples

4.1 Example 1:MPR-hedge

We take a numerical example in Takahashi and Yoshida(2004) where they
computed MPR-hedge component based on the analytic approximation (14).
We will demonstrate our new scheme is effective to increase efficiency of
Monte Carlo simulations as well as to aciheve further numerical accuracy
for the case when the approximation error is relatively large. We start with
brief explanation of the setup. (See Takahashi and Yoshida(2004) for the
details.)

We suppose that D = 2, that is Xε
u = (Xε(1)

u ,X
ε(2)
u )∗ and that they

satisfy the following stochastic differential equations:
⎧⎪⎨
⎪⎩
dX

ε(1)
u = κ1(X̄ε(1) −X

ε(1)
u )du− ε(Xε(1)

u )
1
2 dwu; X

ε(1)
0 = γ0

dX
ε(2)
u = κ2(X̄ε(2) −X

ε(2)
u )du+ εσ2dwu; X

ε(2)
0 = θ0

(33)

where w denotes one-dimensional Brownian motion.
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Remark 3 The volatility function of Xε(1) is not smooth at the origin and
we need to use a smoothed version of the square root process at the origin
in our framework. However, we can show that the smoothing does not make
significant differences and the effects are negligible in the small disturbance
asymptotic theory. This is also true for Example 2 in the next subsection.
See Section 7 for the rigorous argument on this point.

We also suppose that there exist one risky asset and a locally riskless
asset and assume that θu = X

ε(2)
u and γu is a smooth modification of

min{Xε(1)
u ,M} where M is a positive large number. Then, the dynamics

of both assets are described by⎧⎪⎨
⎪⎩
dSε

u = Sε
u(γ(Xε(1)

u ) + σθ(Xε(2)
u ))du+ Sε

uσdwu, Sε(0) = s

dSε
0u = Sε

0uγ(X
ε(1)
u )du, Sε

0(0) = 1.
(34)

Further, we set the values of the parameters for Xε
u following Detemple et

al.(2003), which were obtained by statistcal estimation; κ1 = 0.0824, γ0 =
X̄ε(1) = 0.06, ε = 0.03637, κ2 = 0.6950, X̄ε(2) = 0.0871, σ2 = 0.21/0.03637,
θ0 = 0.1, σ = 0.2.

The benchmark value of each component in the optimal portfolios is
obtained by naive Monte Carlo simulations based on the Euler-Maruyama
approximation; the number of time steps n is 365 and the number of trials
N is 1,000,000 in each Monte Carlo simulation.

The percentage-shares in total wealth of Mean variance, IR-hedge, MPR-
hedge and the total demand which are sum of those three components are
listed in tables 1-4; the results for the asymptotic method are listed in tables
1 and 3 while the results for the Monte Carlo simulation are listed in tables
2 and 4. In addition, tables 1 and 2 show the results for investment horizons
T = 1, 2, 3, 4, 5 when the Arrow-Pratt measure of relative risk aversion R(≡
1−δ) is fixed at 2, and tables 3 and 4 show the results for R = 0.5,1, 1.5,4, 5
when T = 1. We remark that total demand means the demand for the risky
asset and hence it may not be 100% because the remaining shares(100%-
total demand) are invested into the riskless asset. We also note that it may
exceed 100% since selling(borrowing) riskless asset is admitted. We can
observe that the results of asymptotic method and of Monte carlo simulation
are so close for IR-hedge while there is some difference for MPR-hedge, but
the difference is small relative to the total demand. We also notice that
the second order scheme gives substantial improvement comparing with the
first order scheme which is equivalent to the case that we ignore MPR-hedge
and IR-hedge components. (Note that the first orders of MPR-hedge and
IR-hedge components are zero.)

To show that our new method to increase efficiency of Monte Carlo
simulations is effective, we take the case of MPR-hedge with T = 1, and
R = 0.5, in which the diviation of the value based on the asymptotic method
from the benchmark value is the largest. We follow the method illustrated
in the previous section.

Figure 1 shows the comparison of the convergence between our modified
estimator and naive one for MPR-hedge (13): hybrid denotes the modified
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estimator expressed as the equation (22) divided by (20), that is (22)/(20)
while mc denotes the naive estimator expressed as the equation (19) divided
by (17), that is (19)/(17). In figure 1, the horizontal axis is the number
of trials N which varies from 1000 to 100,000, and the vertical axis is the
errors(%) of mc and hybrid relative to their benchmark values. We observe
that hybrid provides much faster convergence than mc. To examine our
method more closely, we compare the covergence of three estimators for nu-
merator of MPR-hedge; num-hybrid denotes the modified estimator, num0-
mc denotes the estimator for ε = 0 in (22) that is, 1

N

∑N
j=1

[
h̄

[0]
T × η̄

[0]
T

]
j
, and

num-mc denotes the naive estimator (19). Figure 2 clarifies that the errors
of num-mc and num0-mc are canceled with each other, which results in the
faster convergence of the modified estimator num-hybrid.

4.2 Example 2:An Average Call Option

On the second example, we take so called square-root process as the price
process of the underlying asset:⎧⎪⎨

⎪⎩
dSε

t = γSε
tdt+ ε

√
Sε

tdwt, S
ε
0 = S0

dZε
t = Sε

tdt, Z
ε
0 = 0

(35)

Then, the normalized price processes, Xε
it, i = 1, 2 are expressed as⎧⎪⎨

⎪⎩
dXε

1t = γXε
1tdt+

√
εXε

1t + eγtS0dwt, X
ε
10 = 0

dXε
2t = Xε

1tdt, X
ε
20 = 0,

(36)

and Σ is given by

Σ =
S0

γ3T 2
(e2γT − 2γeγT − 1). (37)

Finally, X [0]
it , i = 1, 2 (ε = 0) are obtained by

⎧⎪⎨
⎪⎩
dX

[0]
1t = γX

[0]
1t dt+ e

γt
2
√
S0dwt, X

[0]
10 = 0

dX
[0]
2t = X

[0]
1t dt, X

[0]
20 = 0.

(38)

Table 5 shows parameters’ values and computational result in the nu-
merical example; S0 = 5.00. ε = 0.671 which is determined such that the
coefficient of the diffusion term is equivalent to that of log-normal process
at time 0 where the volatility is 30% that is,

ε
√
S0 = σS0, σ = 0.3.

γ = 0.05(5%), T = 1.0(1 year), and K = 5.65(7.5% OTM). V denotes the
benchmark value obtained by 107 trials of Monte Carlo simulation while V [0]

denotes the value obtained by the asymptotics expansion upto ε-order, that
is the equation (31), and it deviates from the benchmark value by −5.2%.

15



Table 6 shows average(avg), root-mean-square-error(rmse), maximum(max),
and minimum(min) of error(%) of three estimators relative to their bench-
mark values for 100 cases; hybrid denotes the modified estimator given by
the equation (30), mc denotes the estimator by naive Monte Carlo for (27),
that is

e−γT

⎧⎨
⎩ 1
N

N∑
j=1

[(
1
T
X̄ε

2T + y +
1
n
ŵT

)
+

]
j

⎫⎬
⎭ ,

and mc-asymp denotes the estimator by naive Monte Carlo for (31), that is

e−γT

⎧⎨
⎩ 1
N

N∑
j=1

[(
1
T
X̄

[0]
2T + y +

1
n
ŵT

)
+

]
j

⎫⎬
⎭ .

Figure 3 shows the errors of three estimators for each 100 cases; the
horizontal axis is the case number from 1 to 100 while the vertical axis is the
error(%) of those estimators relative to their benchmark values. Clearly, we
observe that our estimator is much better than the naive one for each case,
and the figure clarifies that the errors of the estimators mc and mc-asymp
are canceled with each other, which contributes to the better performance
of our modified estimator hybrid for each case. Finally, figure 4 shows the
comparison of the convergence of three estimators, and the same observation
also holds in this case as in figure 3.

5 Proofs of Theorems 1 and 2

5.1 Proof of Theorem 1

Since we will need the same notations in the proof of our main results in
later sections, we will present a proof of Theorem 1 for completeness. We
only prove (i) because (ii) and (iii) are easy. Let

uε
i(x) = E [f(Xε

T (ti, x))] , (39)

where ti = iT/n, i = 0, 1, 2, · · · , n. Obviously, uε
n(x) = f(x), and

uε
n(X̄ε

tn) = uε
n(X̄ε

T ) = f(X̄ε
T ),

uε
0(X̄

ε
t0) = uε

0(x) = E[f(X̄ε
T (0, x))].

Define ∆ε
i as

∆ε
i := E[uε

i+1(X̄
ε
ti+1

)] − E[uε
i(X̄

ε
ti)]. (40)

Then

E[f(X̄ε
T )] − E[f(Xε

T (0, x))] =
n−1∑
i=0

∆ε
i .

Next, define an operator Lε
y by

Lε
yu

ε
i(x) =

D∑
k=1

V
(k)
0 (y, ε)∂ku

ε
i(x) +

1
2

D∑
k,j=1

r∑
α=1

V (k)
α (y, ε)V (j)

α (y, ε)∂k∂ju
ε
i(x),
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where ∂ku
ε
i(x) = ∂uε

i(x)
∂xk

, and ∂k∂ju
ε
i(x) = ∂2uε

i(x)
∂xk∂xj

. Here, xk(xj) denotes the
k(j)-th element of x = (x1, · · · , xD). Similarly, define Lε by

Lεuε
i(x) = Lε

xu
ε
i(x) =

D∑
k=1

V
(k)
0 (x, ε)∂ku

ε
i(x) +

1
2

D∑
k,j=1

r∑
α=1

V (k)
α (x, ε)V (j)

α (x, ε)∂k∂ju
ε
i(x).

We know the Lp estimates for the derivatives of Xε
T (t, x): for any p ≥ 1 and

l ∈ Z+, there exsits a constant C ∈ R+ such that

sup
t∈[0,T ]
ε∈(0,1]

E
[
|∂l

xX
ε
T (t, x)|p

]
≤ C(1 + |x|)C (x ∈ RD)

because ∂l
xX

ε
T (t, x) satisfies a graded stochastic differential equation; see

Theorems 5-10 and 5-24 of Bichteler et al. (1987). Therefore Lεuε
i(x) and

Lε
yu

ε
i(x) are of at most polynomial growth in x and in (x, y), respectively.

Since X̄ε
t is Lp-bounded uniformly in (t, ε), we have the Lp-boundedness of

Lεuε
i+1(X

ε
t (ti, X̄ε

ti)) and Lε
X̄ε

ti

uε
i+1(X̄

ε
t ).

By the definition of the flow, applying Itô’s formula and by the measur-
ability of X̄ε

ti , we obtain:

∆ε
i = E

[
uε

i+1

(
X̄ε

ti+1

)]
− E

[
uε

i+1

(
Xε

ti+1

(
ti, X̄

ε
ti

))]
= E

[∫ ti+1

ti
Lε

X̄ε
ti

uε
i+1(X̄

ε
t )dt−

∫ ti+1

ti
Lεuε

i+1(X
ε
t (ti, X̄

ε
ti))dt

]

= E
[∫ ti+1

ti

{Lεuε
i+1(X̄

ε
ti) − Lεuε

i+1(X
ε
t (ti, X̄

ε
ti))}dt

]

+E
[∫ ti+1

ti
{Lε

X̄ε
ti

uε
i+1(X̄

ε
t ) − Lε

X̄ε
ti

uε
i+1(X̄

ε
ti)}dt

]

= −
∫ ti+1

ti

E[Lεuε
i+1(X

ε
t (ti, X̄

ε
ti)) − Lεui+1(X̄ε

ti)]dt

+
∫ ti+1

ti
E[Lε

X̄ε
ti

uε
i+1(X̄

ε
t ) − Lε

X̄ε
ti

uε
i+1(X̄

ε
ti)]dt.

Hence

∆ε
i = −

∫ ti+1

ti

∫ t

ti

E[aε
i+1(X

ε
s(ti, X̄

ε
ti))]dsdt (41)

+
∫ ti+1

ti

∫ t

ti

E[bεi+1(X̄ti ; X̄
ε
s)]dsdt,

where

aε
i+1(x) := Lε(Lεuε

i+1(x))

and

bεi+1(y;x) := Lε
y(L

ε
yu

ε
i+1(x))(x).
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The function aε
i+1(x) is expressed as

aε
i+1(x) =

D∑
k
′
=1

V
(k

′
)

0 (x, ε)∂k′ {
D∑

k=1

V
(k)
0 (x, ε)∂ku

ε
i+1(x) (42)

+
1
2

D∑
k,l=1

r∑
α=1

V (k)
α (x, ε)V (l)

α (x, ε)∂k∂lu
ε
i+1(x)}

+
1
2

D∑
k′ ,l′=1

r∑
α=1

V (k
′
)

α (x, ε)V (l
′
)

α (x, ε)∂k
′∂l

′{
D∑

k=1

V
(k)
0 (x)∂ku

ε
i+1(x)

+
1
2

D∑
k,l=1

r∑
α=1

V (k)
α (x, ε)V (l)

α (x, ε)∂k∂lu
ε
i+1(x)}.

Similarly, bεi+1(y;x) is expressed as

bεi+1(y;x) =
D∑

k′=1

V
(k

′
)

0 (y, ε){
D∑

k=1

V
(k)
0 (y, ε)∂k

′∂ku
ε
i+1(x) (43)

+
1
2

D∑
k,l=1

r∑
α=1

V (k)
α (y, ε)V (l)

α (y, ε)∂k′∂k∂lu
ε
i+1(x)}

+
1
2

D∑
k′ ,l′=1

r∑
α=1

V (k
′
)

α (y)V (l
′
)

α (y){
D∑

k=1

V
(k)
0 (y, ε)∂k

′∂l
′∂ku

ε
i+1(x)

+
1
2

D∑
k,l=1

r∑
α=1

V (k)
α (y, ε)V (l)

α (y, ε)∂k′∂l′∂k∂lu
ε
i+1(x)}.

Note that aε
i+1(x) is a ploynomial in

V
(k1)
0 , ∂k2V

(k1)
0 , ∂k2∂l2V

(k1)
0 ,

V (k2)
α , ∂k2V

(k1)
α , ∂k2∂l2V

(k1)
α ,

∂k1u
ε
i+1, ∂k1∂k2u

ε
i+1, ∂k1∂k2∂lu

ε
i+1, and ∂k1∂k2∂l1∂l2u

ε
i+1

for k1, k2, l1, l2 = 1, 2, · · · ,D and α = 1, 2, · · · , r. Note also that Vα(x) ∈
C∞
↑ (RD), α = 0, 1, · · · , r and f ∈ C∞

↑ (RD).
Further, it is well known (see e.g. Chapter II-5 of Bichteler etal.(1987))

that ⎧⎪⎨
⎪⎩

supε supn sup0≤s≤T E[|X̄ε
s |p] <∞

supε supn supti≤s≤ti+1
E[|Xε

s(ti, X̄ε
ti)|p] <∞

(44)

for all p ≥ 1. Then, by using the Hölder inequaility, we have

sup
ε

sup
n

sup
i∈{1,2,···,n}

sup
ti≤s≤ti+1

E[|aε
i+1(X

ε
s(ti, X̄

ε
ti))|] <∞. (45)

Similarly,

sup
ε

sup
n

sup
i∈{1,2,···,n}

sup
ti≤s≤ti+1

E[|bεi+1(X̄ti+1 ; X̄
ε
s)|] <∞. (46)
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Thus, we conclude that

(47)

E[f(X̄ε
T )] − E[f(Xε

T (0, x))] =
n−1∑
i=0

∆ε
i

=
n−1∑
i=0

{−
∫ ti+1

ti

∫ t

ti

E[aε
i+1(X

ε
s(ti, X̄

ε
ti))]dsdt+

∫ ti+1

ti

∫ t

ti

E[bεi+1(X̄ti+1 ; X̄
ε
s)]dsdt}

= O

(
1
n

)
.

5.2 Proof of Theorem 2

We follow a relatively standard argument in the proofs of theorems 2 and 3.
We only prove (i). Others are easy to show and we omit the proof.

First, we claim that

(48)

sup
s,i,n

∣∣∣E [aε
i+1(X

ε
s(ti, X̄

ε
ti))

]
−E

[
a0

i+1(X
0
s (ti, X̄0

ti))
]∣∣∣ = O(ε) (ε ↓ 0)

and that

sup
s,i,n

∣∣∣E [bεi+1(X̄
ε
ti ; X̄

ε
s)
]
− E

[
b0i+1(X̄

0
ti ; X̄

0
s )
]∣∣∣ = O(ε) (ε ↓ 0). (49)

We will show only the first one, and the second one can be obtained in a
similar way.

We need to show that

(50)

limε↓0
1
ε

sup
n

sup
i∈{1,2,···,n}

sup
ti≤s≤ti+1

∣∣∣E [aε
i+1(X

ε
s(ti, X̄

ε
ti))

]
− E

[
a0

i+1(X
0
s (ti, X̄0

ti))
]∣∣∣ <∞.

Notice that

aε
i+1(X

ε
s(ti, X̄

ε
ti)) = a0

i+1(X
0
s (ti, X̄0

ti)) + ε

∫ 1

0
∂ε|ε=uεa

ε
i+1(X

ε
s(ti, X̄

ε
ti))du,

where

∂ε|ε=uεa
ε
i+1(X

ε
s(ti, X̄

ε
ti)) ≡

∂aε
i+1(X

ε
s(ti, X̄ε

ti))
∂ε

∣∣∣∣∣
ε=uε

.

Then

1
ε

sup
s,i,n

∣∣∣E [aε
i+1(X

ε
s(ti, X̄

ε
ti)) − a0

i+1(X
0
s (ti, X̄0

ti))
]∣∣∣ = sup

s,i,n

∣∣∣∣
∫ 1

0
E
[
∂ε|ε=uεa

ε
i+1(X

ε
s(ti, X̄

ε
ti))

]
du

∣∣∣∣
≤ sup

s,i,n

∫ 1

0
E
[∣∣∣∂ε|ε=uεa

ε
i+1(X

ε
s(ti, X̄

ε
ti))

∣∣∣] du
≤ sup

s,i,n
sup

0<ε1<ε

∥∥∥∂ε1a
ε1
i+1(X

ε1
s (ti, X̄ε1

ti ))
∥∥∥
1
,
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where ‖ · ‖1 denotes L1(P )-norm. Note that ∂ε1a
ε1
i+1(X

ε1
s (ti, X̄ε1

ti )), is a poly-
nomial in partial derivatives of each term of (42) with respect to the param-
eter ε at ε = ε1, and

∂Xε1
s (ti, X̄ε1

ti )
∂ε1

,

V
(k1)
0 , ∂k2V

(k1)
0 , ∂k2∂l2V

(k1)
0 , ∂k1∂k2∂l2V

(k1)
0 ,

V (k2)
α , ∂k2V

(k1)
α , ∂k2∂l2V

(k1)
α , ∂k1∂k2∂l2V

(k1)
α ,

∂k1u
ε1
i+1, ∂k1∂k2u

ε1
i+1, ∂k1∂k2∂lu

ε1
i+1, and ∂k1∂k2∂l1∂l2∂mu

ε1
i+1

for k1, k2, l1, l2,m = 1, 2, · · · ,D and α = 1, 2, · · · , r. Those are evaluated at
x = Xε1

s (ti, X̄ε1
ti ), 0 < ε1 < ε.

We apply a similar argument in Chapter II-5 of Bichteler et al.(1987) to
the system of equations:

(51)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X̄ε1
s = x+

∫ s
0 V0(X̄ε1

η(u), ε1)du+
∫ s
0 V (X̄ε1

η(u), ε1)dwu, s ∈ [0, T ],

Xε1
s (ti, X̄ε1

ti ) = X̄ε1
ti +

∫ s
ti
V0(Xε1

u (ti, X̄ε1
ti ), ε1)du+

∫ s
ti
V (Xε1

u (ti, X̄ε1
ti ), ε1)dwu, s ∈ [ti, ti+1),

∂X̄
ε1
s

∂ε1
=
{∫ s

0 ∂ε1V0(X̄ε1
η(u), ε1)du+

∫ s
0 ∂ε1V (X̄ε1

η(u), ε1)dwu

}
+
∫ s
0 ∂V0(X̄η(u), ε1)

{
∂X̄

ε1
η(u)

∂ε1

}
du+

∑r
α=1

∫ s
0 ∂Vα(X̄ε1

η(u), ε1)
{

∂X̄
ε1
η(u)

∂ε1

}
dwα

u ,

∂X
ε1
s (ti,X̄

ε1
ti

)

∂ε1
=

∂X̄
ε1
ti

∂ε1
+
{∫ s

ti
∂ε1V0(Xε1

u (ti, X̄ε1
ti ))du+

∫ s
ti
∂ε1V (Xε1

u (ti, X̄ε1
ti ), ε1)dwu

}
+
∫ s
ti
∂V0(Xε1

u (ti, X̄ε1
ti ))

{
∂X

ε1
u (ti,X̄

ε1
ti

)

∂ε1

}
du

+
∑r

α=1

∫ s
ti
∂Vα(Xε1

u (ti, X̄ε1
ti ), ε1)

{
∂X

ε1
u (ti,X̄

ε1
ti

)

∂ε1

}
dwα

u , s ∈ [ti, ti+1),

where ∂Vα, α = 0, 1, · · · , r denote the partial derivatives with respect to the
first argument. Then, we can also show that
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

supn sup0≤s≤T sup0<ε1<ε E[|X̄ε1
s |p] <∞,

supn supi∈{1,2,···,n} supti≤s≤ti+1
sup0<ε1<ε E[|X̄ε1

s (ti, X̄ε1
ti )|p] <∞

supn sup0≤s≤T sup0<ε1<ε E
[∣∣∣∂X̄

ε1
s

∂ε1

∣∣∣p] <∞

supn supi∈{1,2,···,n} supti≤s≤ti+1
sup0<ε1<ε E

[∣∣∣∣∂X
ε1
s (ti,X̄

ε1
ti

)

∂ε1

∣∣∣∣
p]
<∞

(52)

for all p ≥ 1.
Thus, ∂ε1a

ε1
i+1(X

ε1
s (ti, X̄ε1

ti )) is Lp -bounded for any p ≥ 1 uniformly in
s, i, n and 0 < ε1 < ε.

We return to the proof of (i). We see

Bias[V∗(ε, n,N)] = E[V ∗(ε, n,N)] − V
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= {E[f(X̄ε
T )] − E[f(Xε

T (0, x))]} − {E[f(X̄ [0]
T )] − E[f(X [0]

T (0, x))]}

=
n−1∑
i=0

∫ ti+1

ti

∫ s

ti

{−E[aε
i+1(X

ε
s(ti, X̄

ε
ti))] + E[bεi+1(X̄

ε
ti ; X̄

ε
s)]}dsdt

−
n−1∑
i=0

∫ ti+1

ti

∫ s

ti

{−E[a0
i+1(X

0
s (ti, X̄0

ti))] + E[b0i+1(X̄
0
ti ; X̄

0
s )]}dsdt

=
n−1∑
i=0

∫ ti+1

ti

∫ s

ti

−{E[aε
i+1(X

ε
s(ti, X̄

ε
ti))] − E[a0

i+1(X
0
s (ti, X̄0

ti))]}dsdt

+
n−1∑
i=0

∫ ti+1

ti

∫ s

ti
{E[bεi+1(X̄

ε
ti ; X̄

ε
s)]}] − E[b0i+1(X̄

0
ti ; X̄

0
s )]}dsdt.

Hence, using the estimate already obtained, we conclude that

E[f(X̄ε
T )] − E[f(Xε

T (0, x))] − E[f(X̄0
T )] + E[f(X0

T (0, x))] = O

(
ε

n

)
.

6 Proof of Theorems 3

We only prove (i) again. The others are easy. Let A = 1+|x|2− 1
2∆, and then

A−1 is an integral operator. (See Ikeda and Watanabe(1989) or Sakamoto
and Yoshida(1996) for the detail.) Then, under [A1] for a sufficiently large
integer m depending on f , we obtain

E[f(Xε
T (0, x) +

1
n
ŵT )] − E[f(Xε

T (0, x))] (53)

= E[(A−mf)(Xε
T (0, x) +

1
n
ŵT )Ψ(ε)

1 ] − E[(A−mf)(Xε
T (0, x))Ψ(ε)

2 ]

for some Wiener functionals Ψ(ε)
1 and Ψ(ε)

2 which correspond to the partial
shifts only in the direction of w. Under [A1], the integration-by-parts for-
mulas (53) (for ε and ε = 0) and easy calculus with the Taylor formula
yield

{E[f(Xε
T (0, x) +

1
n
ŵT )] − E[f(Xε

T (0, x)]} (54)

−{E[f(X [0]
T (0, x) +

1
n
ŵT )] − E[f(X [0]

T (0, x)]}

= O

(
ε

n

)
.

On the other hand, obviously,

E[f(Xε
T (0, x) +

1
n
ŵT )] − E[f(Xε

T (0, x))] (55)

=
(
E
[
f(Xε

T (0, x) +
1
n
ŵT )ψ

(
|σ

X
[0]
T

(0,x)
|/|4σXε

T (0,x)|
)]

−E
[
f(Xε

T (0, x))ψ
(
|σ

X
[0]
T (0,x)

|/|4σXε
T

(0,x)|
)])

+
(
E
[
f(Xε

T (0, x) +
1
n
ŵT )

{
1 − ψ

(
|σ

X
[0]
T

(0,x)
|/|4σXε

T (0,x)|
)}]

− E
[
f(Xε

T (0, x))
{

1 − ψ

(
|σ

X
[0]
T (0,x)

|/|4σXε
T (0,x)|

)}])
,
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where ψ : R → [0, 1] is a smooth function such that

ψ(x) =

⎧⎪⎨
⎪⎩

1 if |x| ≤ 1
2

0 if |x| ≥ 1.

For the second parenthesis,

E
[
f(Xε

T (0, x) +
1
n
ŵT )

{
1 − ψ

(
|σ

X
[0]
T

(0,x)
|/|4σXε

T
(0,x)|

)}]
(56)

−E
[
f(Xε

T (0, x))
{

1 − ψ

(
|σ

X
[0]
T (0,x)

|/|4σXε
T (0,x)|

)}]

≤ C

∥∥∥∥1 − ψ

(
|σ

X
[0]
T

(0,x)
|/|4σXε

T
(0,x)|

)∥∥∥∥
q

(by the Hölder inequality)

≤ C × P ({|σ
X

[0]
T

(0,x)
|/|σXε

T
(0,x)| > 2})1

q

≤ C × 2KE

⎡
⎢⎣
⎛
⎝ |σXε

T
(0,x) − σ

X
[0]
T

(0,x)
|

|σ
X

[0]
T (0,x)

|

⎞
⎠

K
⎤
⎥⎦ (by Markov’s inequality)

= O(εK)

for any K > 0. Here C is some positive costant, q > 1, and ‖ · ‖q denotes
the Lq(Pw ⊗ P ŵ)-norm. It is also easy to obtain an estimate similar to
(56) replacing Xε

T (0, x) in f by X0
T (0, x). Hence under [A2], by the same

argument as we obtained (54), we can estimate the gap
(
E
[
f(Xε

T (0, x) +
1
n
ŵT )ψ

(
|σ

X
[0]
T (0,x)

|/|4σXε
T (0,x)|

)]

−E
[
f(Xε

T (0, x))ψ
(
|σ

X
[0]
T

(0,x)
|/|4σXε

T
(0,x)|

)])

−
(
E
[
f(X0

T (0, x) +
1
n
ŵT )ψ

(
|σ

X
[0]
T (0,x)

|/|4σXε
T (0,x)|

)]

−E
[
f(X0

T (0, x))ψ
(
|σ

X
[0]
T

(0,x)
|/|4σXε

T
(0,x)|

)])
,

and obtain

{E[f(Xε
T (0, x) +

1
n
wT )] − E[f(Xε

T (0, x)]} (57)

−{E[f(X [0]
T (0, x) +

1
n
wT )] − E[f(X [0]

T (0, x))]}
= O(

ε

n
) +O(εK)

for every K > 0.
The Bias of V∗(ε, n,N) is expressed as

(58)

Bias[V∗(ε, n,N)] =
[{

E
[
f

(
X̄ε

T +
1
n
ŵT

)]
− E

[
f

(
Xε

T (0, x) +
1
n
ŵT

)]}
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−
{
E
[
f

(
X̄

[0]
T +

1
n
ŵT

)]
− E

[
f

(
X

[0]
T (0, x) +

1
n
ŵT

)]}]

+
[{

E
[
f

(
Xε

T (0, x) +
1
n
ŵT

)]
− E[f(Xε

T (0, x)]
}

−
{
E
[
f

(
X

[0]
T (0, x) +

1
n
ŵT

)]
− E[f(X [0]

T (0, x)]
}]

.

From (54), the second square bracket on the right-hand side is O
(

ε
n

)
under

Condition [A1]. Hence if we show that the first square bracket is O
(

ε
n

)
,

then Bias[V∗(ε, n,N)] turns out to be O
(

ε
n

)
under [A1]. Similarly, because

under Condition [A2] the second square bracket is O
( ε

n

)
+O(εK) for every

K > 0 by (57), if we show that the first square bracket is O
( ε

n

)
, then we

can conclude that Bias[V∗(ε, n,N)] is O
( ε

n

)
+O(εK) for every K > 0 under

[A2]. Because O(εK) is the smaller order than the order of ε
n for large K

by the assumption that ε = o(n−ω) for some positive constant ω as n→ ∞,
Bias[V∗(ε, n,N)] is O

( ε
n

)
under [A2].

Hence, in order to complete the proof, we will evaluate the first square
bracket on the right-hand side of (58). First, define uε

i by

uε
i(x) = E

[
f

(
Xε

T (ti, x) +
1
n
ŵT

)]
. (59)

We can write

E[f(X̄ε
T +

1
n
ŵT )] − E[f(Xε

T (0, x) +
1
n
ŵT )] =

n−1∑
i=0

∆ε
i ,

where
∆ε

i := E[uε
i+1(X̄

ε
ti+1

)] − E[uε
i(X̄

ε
ti)], (60)

and also

E[uε
i(X̄

ε
ti)] = E[f(Xε

T (ti, X̄ε
ti) +

1
n
ŵT )]

= E
[
f

(
Xε

T (ti+1,X
ε
ti+1

(ti, X̄ε
ti)) +

1
n
ŵT

)]
= E[uε

i+1(X
ε
ti+1

(ti, X̄ε
ti))].

The gaps ∆ε
i are expressed in exactly the same form (41) as in the smooth

case (i.e., f ∈ C∞
↑ (RD)). That is, aε

i+1 and bεi+1 are defined as equations
(42) and (43), respectively, and they include partial derivatives of uε

i+1(x)
with respect to x. Even in the irregular case (i.e., f is not necessarily
differentiable nor continuous), these derivatives are justified by the (full)
Malliavin calculus in which the shift operation is done in both directions of
w and ŵ. (However, only for this purpose, the nondegeneracy of ŵ-terms is
essential.)

In order to follow the same procedure as the proof of Theorem 2, we
need to show the uniform boundedness

limn→∞,ε↓0 sup
i,s

∣∣∣E [∂ε

{
aε

i+1(X
ε
s(ti, X̄

ε
ti))

}]∣∣∣ < ∞, (61)
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for example. Here smoves over [ti, ti+1]. If we write out E[∂ε{aε
i+1(X

ε
s(ti, X̄ε

ti))}],
there appear several terms. Among them, we have for example the following
type of terms

I(f ; i, s, ε, n) := E

[{
B(x)∂ε∂

j
xE

[
f(Xε

T (ti+1, x) +
1
n
ŵT )

]} ∣∣∣
x=Xε

s(ti,X̄ε
ti

)

]
,

where B is a smooth function of at most polynomial growth. Roughly speak-
ing, it follows from the IBP-fomula that the functions ∂ε∂

j
xE

[
f(Xε

T (ti+1, x) + 1
n ŵT )

]
are nice functions of x, so that the functionals with Xε

s(ti, X̄ε
ti) substituted

for x are also nice and have uniformly bounded norms. We will show this
fact more rigorously.

Just for notational simplicity, we only consider one-dimensional Xε. Let
S denote the set of Schwartz test functions. For f ∈ S,

(62)

I(f ; i, s, ε, n) = E
[
B(Xε

s(ti, X̄
ε
ti))

j+1∑
k=1

E
[
(∂kf)(Xε

T (ti+1, x) +
1
n
ŵT )

·Pk(∂α
x ∂εX

ε
T (ti+1, x);α = 0, 1, ..., j + 1 − k)

]∣∣∣
x=Xε

s(ti,X̄ε
ti

)

]

= E
[
B(Xε

s(ti, X̄
ε
ti))

j+1∑
k=1

(∂kf)(Xε
T (ti+1,X

ε
s(ti, X̄

ε
ti)) +

1
n
ŵT )

·Pk

(
∂α

x∂εX
ε
T (ti+1, x)

∣∣∣
x=Xε

s(ti,X̄ε
ti

)
;α = 0, 1, ..., j + 1 − k

)]
,

where Pk are polynomials, and we used independency.
Set

X̌(i, s, ε, n) = Xε
T (ti+1,X

ε
s(ti, X̄

ε
ti)) +

1
n
ŵT .

We denote by σX̌(i,s,ε,n) the (full) Malliavin covariance of X̌(i, s, ε, n). We
write the IBP-formula as

E[(∂kf)(X̌(i, s, ε, n))ψ] = E[f(X̌(i, s, ε, n))Φk(ψ; X̌(i, s, ε, n))]

for f ∈ S and smooth functional ψ. The functional Φ1(ψ; X̌(i, s, ε, n)) is
given by

Φ1(ψ; X̌(i, s, ε, n)) = D∗[σ−1
X̌(i,s,ε,n)

ψDX̌(i, s, ε, n)]

with H-derivative D and its adjoint D∗, and Φk(ψ; X̌(i, s, ε, n)) are deter-
mined by repeated use of this expression. A similar formula exists for multi-
dimensional case. Applying this IBP-formula, we obtain

I(f ; i, s, ε, n) =
j+1∑
k=1

E
[
(A−mf)(X̌(i, s, ε, n))Ψ̌k+2m

]
(63)
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for a sufficiently large integerm. Functional Ψ̌k+2m has an expression similar
to that of Φk(ψ; X̌(i, s, ε, n)). The L1-norm of Ψ̌k+2m is dominated by a
polynomial of Lp-norms of σ−1

X̌(i,s,ε,n)
and Dp,s-norms of

(∂α1
x ∂α2

ε Xε
T (ti+1, x))

∣∣∣
x=Xε

s(ti,X̄ε
ti

)
(α1, α2 ∈ Z+) (64)

as well as ŵT . The H-derivative of (64) is decomposed into the derivative
component for (wt)t∈[0,ti+1] and that for (wt)t∈[ti+1,T ]; therefore, estimation
of its Dp,s-norms results in estimation of Lp-norms ofDp,s-norms of solutions
of certain stochastic differential equations. It is just a routine job to show
that those Dp,s-norms are bounded uniformly in i, s, ε, n.

Under Condition [A2] ([A1] in force), by Lemma 1 below, we know that
X̌(i, s, ε, n) is uniformly nondegenerate:

limn→∞,ε↓0 sup
i

sup
s∈[ti,ti+1]

E
[
σ−p

X̌(i,s,ε,n)

]
<∞

for all p > 1 (det should be put in multi-dimensional case). After all, we
obtain

|I(f ; i, s, ε, n)| ≤ C‖f‖−2m (f ∈ S) (65)

for any i, s and sufficiently large n and sufficiently small ε. Here C is a con-
stant independent of i, s, ε, n, and ‖ · ‖−2m is the norm attached to the space
C−2m (see Ikeda and Watanabe (1989), Sakamoto and Yoshida (1996)).

Let φn be the density of the normal distribution N(0, T/n2). From
(62), It is easy to see that I(·; i, s, ε, n) is a signed-measure: for measurable
functions f of at most polynomial growth,

I(f ; i, s, ε, n) =
∫
f(z)p(z)dz (66)

with

p(z) =
j+1∑
k=1

E
[
B(Xε

s(ti, X̄
ε
ti))(−∂)kφn(z − X̌(i, s, ε, n))

·Pk

(
∂α

x ∂εX
ε
T (ti+1, x)

∣∣∣
x=Xε

s(ti,X̄ε
ti

)
;α = 0, 1, ..., j + 1 − k

)]
.

Obviously, p ∈ S. It follows from a slight modification of Lemma 4 of
Sakamoto and Yoshida (1996) that for fixed measurable f , there exists a
sequence fν ∈ S such that for some large L, fν → f in L1((1 + |z|)−Ldz),
and that for some large m, fν → f in C−2m. Therefore I(fν ; i, s, ε, n) →
I(f ; i, s, ε, n) as ν → ∞ due to (66), and hence Inequality (65) holds for that
measurable function f . In this way, we can obtain (61). It is possible to
obtain a similar estimate for terms involving bεi+1. Consequently, following
the same procedure as in the smooth case, the proof is finished. �

D∞(Rd) = ∩p>1∩s>0Dp,s(Rd), and Dp,s(Rd) denotes the Sobolev space
of Rd-valued Wiener functionals. (See Ikeda and Watanabe(1989) for the
details of the Sobolev space Dp,s.) Here is a simple but useful lemma origi-
nated by R. Leandre. (cf. Kohatsu-Higa (1996)).
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Lemma 1 Let F θ
n,ε and F θ be in D∞(Rd) where θ is a parameter and

(n, ε) ∈ N × (0, 1]. Suppose that for some positive constant ω, ε = o(n−ω)
as n→ ∞. Suppose also the followings:
(i) There exists γ > 0 such that

sup
θ

‖F θ
n,ε − F θ‖1,p = O(

1
nγ

+ εγ)

as n→ ∞ and ε ↓ 0 for every p > 1.

(ii) For every p > 1,
sup

θ
‖det σ−1

F θ‖p <∞.

(iii) For every p > 1, there exists cp > 0 such that

sup
ε′∈(0,1],θ

‖det σ−1
F θ

n,ε′
‖p = O(ncp).

Then
limn→∞,ε↓0 sup

θ
‖det σ−1

F θ
n,ε

‖p <∞

for every p > 1.

Proof. Set a = det σF θ and b = det σF θ
n,ε

. Then E[b−p, b < 2−1a] ≤
E[b−p, |a − b| > 2−1a] ≤ 2ME[b−p|a − b|Ma−M ] ≤ const.npc3p( 1

nγ + εγ)M ,
and take a sufficiently large M . �

7 Appendix: On the Validity of Square-root Pro-

cesses in the Asymptotic Method

Let processes {Xε
t ; 0 ≤ t ≤ T} and {X̃ε

t ; 0 ≤ t ≤ T} defined as follows:⎧⎪⎨
⎪⎩
dXε

t = (cXε
t + d)dt+ ε

√
Xε

t dwt, X
ε
0 = x0

dX̃ε
t = (cX̃ε

t + d)dt+ εg(X̃ε
t )dwt, X̃

ε
0 = x0

(67)

where T < ∞, c, d are some constants with d ≥ 0, x0 > 0, and ε ∈ (0, 1].
g(x) is a smooth modification of

√
x such that g(x) =

√
x for x ≥ a

′
where

a
′
< a, and a ≡ 1

2 mint∈[0,T ]X
0
t . The process Xε

t is a so called square-root
process, and the process X̃ε

t is a modified process of Xε
t .

Suppose that for a R-valued functional F , F (Xε) and F (X̃ε) are L2(P )-
finite. Then, we have

E[|F (Xε) − F (X̃ε)|1{Xε �=X̃ε}] ≤ (‖F (Xε)‖2 + ‖F (X̃ε)‖2)P ({Xε 	= X̃ε}) 1
2

where ‖ · ‖2 denotes the L2(P )-norm. It also holds that

P ({Xε 	= X̃ε}) = P ({Xε
t ≤ a

′
for some t ∈ [0, T ]})

≤ P ({ sup
0≤t≤T

|Xε
t −X0

t | > a})

+P ({Xε
t ≤ a

′
for some t ∈ [0, T ]} ∩ { sup

0≤t≤T
|Xε

t −X0
t | ≤ a}).
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We can easily see that the second term after the last inequality is 0. The
first term is smaller than any εn for n = 1, 2, · · · by the following lemma of
a large deviation inequality:

Lemma 2 Suppose that Zε
t , t ∈ [0, T ] follows a SDE:

dZε
t = µ(Zε

t )dt+ εσ(Zε
t )dwt.

where µ(z) satisfies Lipschitz and linear growth conditions, and σ(z) satisfies
the linear growth condition. We assume that the unique strong solution
exists. Then, there exists positive constants a1 and a2 independent of ε such
that

P ({ sup
0≤s≤T

|Zε
s − Z0

s | > a}) ≤ a1 exp(−a2ε
−2) (68)

for all a > 0.

The lemma can be proved by slight modification of lemma 5.3 in Yoshida(1992b),
or lemma 7.1 in Kunitomo and Takahashi(2003). Note also that Xε and X̃ε

satisfy the conditions in lemma 2.
Hence, if ‖F (Xε)‖2 <∞ and ‖F (X̃ε)‖2 <∞, then

E[|F (Xε) − F (X̃ε)|] = o(εn), n = 1, 2, · · · . (69)

Therefore, the difference between F (Xε) and F (X̃ε) is negligible in the small
disturbance asymptotic theory. Finally, we remark that functionals corre-
sponding to F in the examples of Section 4 are L2(P ) bounded, because
F (x) = γ(x) is bounded in example 1, and for F (x) = ( 1

T

∫ T
0 xtdt − K)+

with K > 0 in example 2,

‖F (Xε)‖2 ≤ ‖ 1
T

∫ T

0
Xε

t dt‖2 ≤ 1
T

∫ T

0
‖Xε

t ‖2dt <∞

and

‖F (X̃ε)‖2 ≤ ‖ 1
T

∫ T

0
X̃ε

t dt‖2 ≤ 1
T

∫ T

0
‖X̃ε

t ‖2dt <∞.
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T(Investment horizon) 1 2 3 4 5
Total demand 25.31 26.41 27.80 29.26 30.70
Mean variance 25.00 25.00 25.00 25.00 25.00

IR-hedge 2.14 4.11 5.92 7.59 9.13
MPR-hedge -1.83 -2.70 -3.12 -3.33 -3.43

Table 1: asymptotic expansion(R = 2.0)

T(Investment horizon) 1 2 3 4 5
Total demand 25.37 26.49 27.79 29.10 30.41
Mean variance 25.00 25.00 25.00 25.00 25.00

IR-hedge 2.14 4.12 5.95 7.63 9.19
MPR-hedge -1.77 -2.63 -3.16 -3.53 -3.78

Table 2: Monte Carlo Simulation(R = 2.0)

R(≡ 1 − δ) 0.5 1 1.5 4 5
Total demand 110.37 50 33.13 14.34 12.25
Mean variance 100.00 50.00 33.33 12.50 10.00

IR-hedge -4.28 0 1.43 3.21 3.42
MPR-hedge 14.65 0 -1.63 -1.37 -1.17

Table 3: asymptotic expansion(T = 1.0)

R(≡ 1 − δ) 0.5 1 1.5 4 5
Total demand 113.07 50.00 33.18 14.35 12.22
Mean variance 100.00 50.00 33.33 12.50 10.00

IR-hedge -4.26 0.00 1.43 3.22 3.43
MPR-hedge 17.33 0.00 -1.58 -1.37 -1.22

Table 4: Monte Carlo Simulation(T = 1.0)
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Table 5: Average Call Option (square-root process)
S0 5
ε 0.671 (the volatility is 30%.)
γ 0.05
T 1
K 5.65
V [0] 0.145 (the error is −5.2%.)
V 0.153 (a value obtained by 10,000,000 trials)

Table 6: % Error (1000 trials, 100 cases)
hybrid mc mc asymp

avg -0.1% -0.9% -0.9%
rmse 0.8% 6.7% 6.7%
max 1.6% 16.2% 16.2%
min -1.6% -14.3% -14.3%

31



[Figure 1] MPR-hedge
 Convergence of Monte Carlo Simulation
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[Figure 2] MPR-hedge(-Numerator-)
Convergence of Monte Carlo Simulation
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[Figure 3] Average Call Options(square-root process)
1000 trials(100 cases)
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[Figure 4]Average Call Options(square-root process)
Convergence of Simulation
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Monte Carlo Simulation with Asymptotic Method ∗

Akihiko TAKAHASHI and Nakahiro YOSHIDA
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Abstract

We shall propose a new computational scheme with the asymptotic method
to achieve variance reduction of Monte Carlo simulation for numerical analy-
sis especially in finance. We not only provide general scheme of our method,
but also show its effectiveness through numerical examples such as com-
puting optimal portfolio and pricing an average option. Finally, we show
mathematical validity of our method.

∗Forthcoming in Journal of Japan Statistical Society, We thank referees for helpful and
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1 Introduction

We propose a new method to increase efficiency of Monte Carlo simulation.
We utilize the analytic approximation based on the asymptotic method to
achieve variance reduction of Monte Carlo simulation especially for numer-
ical problems in finance. The idea of the method is as follows; Suppose
that F (w) is a Wiener functional and our objective is the evaluation of the
expectation of F (w). That is,

V := E[F (w)].

A typical estimate of V may be obtained by a naive Monte Carlo simulation
based on Euler-Maruyama approximation. That is,

V(n,N) =
1
N

N∑
j=1

[
F (n)

]
j
,

where [Z]j (j = 1, ...,N) denotes independent copies of the random variable
Z, Z(n) represents a random variable obtained by discretization of Z de-
pending on a continuous time parameter and n is the number of time points
in discretization. We introduce a modified estimator V∗(n,N) defined by

V∗(n,N) = E[F̂ ] +
1
N

N∑
j=1

[
F (n) − F̂ (n)

]
j

where E[F̂ ] is assumed to be analytically known. Intuitively, if we are able
to find F̂ such that the errors of

[
F (n)

]
j

and [F̂ (n)]j, that is,
[
F (n)

]
j
−V and

[F̂ (n)]j −E[F̂ ] take close numerical values for each independent copy j, then
V∗(n,N) becomes a better estimate since the error of each j in V∗(n,N)
which is represented by the difference of the errors of

[
F (n)

]
j

and [F̂ (n)]j
becomes small. As seen below, the asymptotic method (or perturbation
method) provides such F̂ . That is, F̂ obtained by the asymptotic method
has a strong correlation with F , and E[F̂ ] is evaluated analytically.

Variance reduction methods in Monte Carlo simulations arising from fi-
nance has been examined by various authors. (See chapter 4 of Glasserman
(2003) for the detail.) Among them, our method may be somewhat simi-
lar to control variate technique. (For instance, see chapter 3 of Robert and
Casella (2000) or section 4.1 of Glasserman (2003) on basics of control vari-
ate technique.) However, the main difficulty in the control variate technique
is that it is generally difficult to find F̂ strongly correlated with F whose
expectation E[F̂ ] can be analytically obtained. A well-known exception is
pricing of an arithmetic average option under a log-normal price process
where a geometric average option can be used as a control variate (Kemna
and Vorst(1990)). However, this does not always work when the price pro-
cess is not log-normal because the price of a geometric average option can
not be analytically obtained in general. Newton(1994) derived theoretically
optimal, but practically infeasible control variates since it includes a term

1




