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Abstract

This paper examines asymptotic behavior of two types of economic or fi-
nancial models with many interacting heterogeneous agents. They are one-
parameter Poisson-Dirichlet models, also called Ewens models, and its ex-
tension to two-parameter Poisson-Dirichlet models.

The total number of clusters, and the components of partition vectors
(the number of clusters of specified sizes), both suitably normalized by some
powers of model sizes, of these classes of models are shown to be related to
the Mittag-Leffler distributions.

Their behavior as the model sizes tend to infinity (thermodynamic limits)
are qualitatively very different. In the one-parameter models, the number of
clusters, and components of partition vectors are both self-averaging, that
is, their coefficients of variations tend to zero as the model sizes become very
large, while in the two-parameter models they are not self-averaging, that
is, their coefficients of variations do not tend to zero as model sizes becomes
large.

Key Words:Poisson-Dirichlet distributions; Mittag-Leffler distributions;
Thermodynamic limits; Non-self averaging phenomena, Power laws.
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Introduction

In old industrial organization literature, several measures of industrial con-
centration have been used to detect if a given firm or industry is monopolistic
or not.1 One such measure is Herfindahl, or Herfindahl-Hirschman index of
concentration. It is defined by

H =
∑

i

x2
i ,

where x′s are the fractions of ”shares” of markets or sales by sectors or firms.
By definition, the x′s are non-negative and sum to one,

∑
i xi = 1.

As we discuss shortly, this literasture also used a rudimentary version
of the size-biased sampling scheme as a test of oligopoly. This meassure of
concentration is used in both the domestic and foreign trade context. It is
sometimes (mistakenly) called Gini-index.2

In the physics literature, the same measure has been used by Derrida-
Flyvbjerk (1987) in discussing relative sizes of basins of attractions of Kauf-
man random maps and ramdom dynamics in statistics and physics. Sor-
nette (2000, 370) states ”By now, the standard method to detect non self-
averaging (i.e., breaking of ergodicity) is to study the quantity Y =

∑
αW

2
α,”

where
∑

αWα = 1 ” where Wα is the weight, i.e., fraction. Note that Sor-
nette’s Y is the same as H above.

Sornette uses the ratio of sample variance normalized by the square of
the sample mean of an extensive random variable X as the measure of its
sample-to-sample fluctuations, which he denotes by DN(X) where N is the
”size” of the model. Letting the model size N tend to infinity is called
thermodynamic limit in the physics literature, Sornette (2000, 369).

Note that his DN (X) is the same as the square of the coefficient of
variation, that is the sample standard deviation divied by the sample mean in
the statistics and econometric literature. In this paper we use the coefficients
of variations as the measure of sample-to-sample variability. Namely, if the
coefficient of variation of X does not go to zero as model size increases,
X is not self-averaging, and if the coefficient tends to zero, then X is self-
averaging.

If a random variable X is self-averaging, then, its coefficient of variation
approaches zero as the sample size tends to infinity. If not self-averaging,
its coeffcient of variation does not approach zero, no matter how large the
sample size becomes. In such cases, a sample, however large is never a good
representative of the whole ensemble. In other words, the behavior of X is
sample-dependent.

This paper examines two types of models and find one type self-averaging
but the other not self-averaging. More specifically, this paper compares the
thermodynamic limits of two classes of Poisson-Diarichlet models, that is,

1See for example Scherer (1980) which describes many case studies.
2Sometimes it is called Gini-Simpson index of divesity. See Hirschman (1960) about

the origin and mis-attribution of this notion to Herfindahl. In the population genetics
literature H is called homozygosity, see Ewens (1972).
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one-parameter Poisson-Dirichlet model, PD(θ),3 and its extension to the
two-parameter Poisson-Dirichlet model, PD(α, θ), where α is between 0
and 1, and θ is positive.4 In these two classes of models we focus on the
number of clusters and components of the partition vectors as defined in
Aoki (2002), for example.

We find that the number of clusters and the components of partition
vectors of PD(θ) models are self-averaging but those of PD(α, θ) models
are not. In the third type of model which does not belong to PD(θ) or
PD(α, θ), we examine asymptotic properties as time tends to infinity. In
this model, cluster sizes remain bounded. Their coefficients of variations,
however, do not tend to zero.

In the physics literature, Mekjian and Chase (1997) have used two-
parameter models. They refer to the work by Pitman (1996). There are
other works in the physics literature, in particular the papers by Derrida-
Flyvbjerg (1987), which is a one parameter model. Random maps mentioned
in these references are further elaborated in Samuelsson and Trevein (2005).
See also Derrida (1994).5 There are other papers in the physics literature
that deal with random partitions. Higgs (1995) have noted the similarities of
some physical distributions and power laws, and mention population genet-
ics papers by Ewens in particular. There are many papers on stick-breading
version of the residual allocation processes, such as Krapivvsky, Grosse, and
B. Nadin (2002). They do not touch on connections with the two-parameter
Poisson-Dirichlet distributions, however.

In macroeconomics and finance, agents of different characteristics or
strategies are of different types and form separate clusters and affect aggre-
gate behavior. In this paper, we therefore explore more broadly economic
implications of long-run relations, more specifically their thermodynamic
limits in the sense of (econ)physics, that may exist among non-self averag-
ing economic or financial variables. See Sornette (2000,240).

Alternative characterization of one- and two-parameter Ewens distribu-
tion is given by Garibaldi, Costantini, Viarengo, and Donadio, (2004, 2006).

In the first part of this paper and in appendices some basic notions on
random partitions is presented from the literature of combinatorial stochas-
tic processes, J. Pitman (1996, 2002) and Yamato and Sibuya (2000), in-
cluding notions of size-biased permutation, residual allocation models, of
frequency spectrum and structure distribution, Mittag-Leffler probability
density and power-laws.

3A simple application to shares of a market by two types of agents, using one-parameter
Poisson-Dirichlet distribution (also called Ewens distribution, Ewens (1972, 1979, 1990))
has been made by Aoki (2000a, 2000b). See also Aldous (1985).

4See, for example, Kingman (1993), Carlton (1999), Holst (2001), Pitman (1999, 2002),
and Pitman and Yor (1996), among others.

5Derrida (1994) has later added some material on residual allocation models.
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Distributional Stability: Invariance under Size-biased

Permutation

We introduce the notion of invariance under size-biazed sampling or permu-
tation in the statistics literature as a proper concept of the size distribution
of types in statistical equilibrium.

Heuristically this notion may arise in the following way: Suppose that
fractions of ”shares” are arranged in decreasing order, x1 > x2 > · · ·. We
may be interested in the question of how large is the share of the second
type, excluding the presence of the first, that is the largest type. This is the
fraction x2/(1− x1). Analogously, we may be interested in the share of the
i-th largest type excluding or correcting for the effects of the first through
the (i− 1)th shares, given by xi/(1− x1 − · · ·xi−1). Actually, this is one of
the ways industrial organization economists measured the concentration of
industries, see Scherer 1980), even though they did not know of the notion of
the size-biased sampling or permutation. This is precisely what is involved
in size-biased sampling.

More formally, we consider the set of all possible fractions (p1, p2, . . .)
where pi, the fraction of type i agents, is positive, and the fractions sum to
1,

∑
i pi = 1. Suppose that one agent is sampled. The probability that the

first sampled agent is of type j is

Pr(p̂1 = pj |p1, p2, . . . , pn) = pj , : j = 1, 2, . . .n.

This first pick is called the size-biased pick, because types of agents with
larger fraction are more likely to be sampled. This equation says that the
sample is taken in proportion to the sizes of various types. Having picked
p̂1, . . . , p̂k, the next sampled agent is of type n with probability given by

Pr(p̂k+1 = pn|p̂i, i = 1, 2, . . . , k; p1, p2, . . .) =
pn

1 − p̂1 − p̂2 − · · · − p̂k
,

provided that pn 6= p̂i, i = 1, 2, . . . , k. The collection, {p̂j}, is called size-
biased sampling or permutation abbreviated as SBP.

Since distributions of agents by types are more useful when they are in
statistical equilibrium, we define that the set of fractions is invariant under
size biased permutation (abbreviated as ISBP) if

{p̂n} =d {pn},

where =d means equality in distribution.
Pitman (1996) considered {pn}, pn > 0, a.s., for all n,

∑
n pn = 1, such

that {pn} are distributed as RAM (residual allocation model) for indepen-
dent random variables Wi, i = 1, 2, . . ., that is, ps are generated by the
following formula

p1 = W1, p2 = W2(1−W1), · · · , pn = Wn(1 −W1)(1−W2) · · ·(1 −Wn−1).

Note that p1 = W1, p2/(1− p1) = W2, · · · , pn/(1− p1 −· · ·− pn−1) = Wn

are independent.
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Let α and θ be such that 0 ≤ α < 1, and θ > −α > 0. Let Wi be Beta
distributed random variable, Be(1 − α, θ + iα), where random variable X
has density Be(a, b) when the density is given by

fX(x) =
1

B(a, b)
xa−1(1− x)b−1,

for 0 < x < 1, where B(a, b) = Γ(a)Γ(b)/Γ(a+ b).
Then the collection of fractions, {pn}, is said to have a GEM(α, θ)

distribution.6

Then he showed that {pn} is invariant under size-biased permutation if
and only if {pn} is distributed as GEM(α, θ).

Next, arrange samples by order statistics, i.e., we reorder p̂i, i = 1, 2, . . .
as

p(1) > p(2) > · · · .

When {pn} is distributed as GEM(α, θ), then the ranked sequence {p(n)}
is said to have the two-parameter Poisson Dirichlet distribution, PD(α, θ).

To summarize, if fractions of agents of type n are given by {pn}, pn > 0,
a.s., and

∑
n pn = 1, the size-biased permutation of PD(α, θ) is aGEM(α, θ),

and the ranked sequence of a GEM(α, θ) is a PD(α, θ). Furthermore,
GEM(α, θ) is ISBP. See Carlton (1999) for more details.

With α = 0, PD(α, θ) reduces to the Ewens distribution, denoted from
now on by PD(θ). For earlier works see Kingman (1978), Perman, Pitman,
and Yor (1992), and Pitman and Yor (1997) on earlier works.

A short description of structural distribution and frequency spectum is
found in Appendix.

Number of Clusters in two-parameter Poisson-Dirichlet

Distributions

The probabilities of new types entering models in PD(θ), and the num-
ber of clusters have been applied for example in Aoki (2002, p.176, App.
A.5). In the two-parameter Poisson-Dirichlet distribution the conditional
probabilities for the number of clusters in a sample of size n, Kn is given by

Pr(Kn+1 = k + 1|K1, . . . , Kn = k) =
kα+ θ

n + θ
, (1)

and
Pr(Kn+1 = k|K1, . . . , Kn = k) =

n− kα

n+ θ
. (2)

In other words, the random variable Kn is the number of different types
of agents present in a sample of size n. Eq.(1) means that the (n + 1)th
entrant is a new type. Eq.(2) means that it is one of the previously existing
types. Hence the number of clusters does not change.

6The name GEM was given by Ewens to honor the pioneers, Griffiths, Engen, and
McCloskey.
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Let the probability for Kn = k be denoted by q
αθ)(n, k). From (1) and

(2) it can be recursively computed using the two conditional probability
equations above

q(αθ)(n + 1, k) =
(n− kα)
(n+ θ)

q(αθ)(n, k) +
θ + (k − 1)α

n+ θ
q(αθ)(n, k − 1), (3)

for 1 ≤ k ≤ n. The expressions for the boundary Kn = 1 for all n, and that
of Kn = n are given by the expression

q(αθ)(n, 1) =
(1 − α)(2 − α) · · ·(n− 1 − α)
(θ + 1)(θ + 2) · · ·(θ + n− 1)

,

and
q(αθ)(n, n) =

(θ + α)(θ + 2α) · · ·(θ + (n− 1)α)
(θ + 1)(θ + 2)) · · ·(θ + n− 1)

.

These expressions generalize the recurrence relation for the one-parameter
PD(θ). In the one-parameter case, θ/(θ+n) is a probability that the (n+1)th
agent that enters the model is of a new type, and n/(θ+n) is the probability
that the next agent is one of the types already in the model.

In the one-parameter case, qθ(n, k) := P (Kn = k) is governed by the
recurrence relation

qθ(n+ 1, k) =
n

n+ θ
qn,k +

θ

θ + n
qn,k−1.

The solution of this recurrence equation is expressible as

qn,k =
c(n, k)θk

θ[n]
,

where θ[n] := θ(θ + 1) · · ·(θ + n − 1) = Γ(θ+n)
Γ(θ) , and c(n, k) is the unsigned

(signless) Stirling number of the first kind. It satisfies the recursion

c(n+ 1, k) = nc(n, k) + c(n, k− 1).

Since qn,k sums to one with respect to k we have

θ[n] =
n∑

k=1

c(n, k)θk. (4)

See Aoki (2002, p.208) for example on the Stirling numbers, and their com-
binatorial interpretations.

In the two-parameter PD(α, θ) case, the probability of the number of
clusters is given by

Pα,θ(Kn = k) =
θ[k,α]

αkθ[n]
c(n, k;α), (5)

where
θ[k,α] := θ(θ + α)(θ + 2α) · · ·(θ + (k − 1)α),
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and the expression c(n, k;α) generalizes the signless Stirling number of the
first kind of one-parameter situation. This is called generalized Stirling
number of the first kind. See Charalambides (2002).

Let Sα(n, k) := 1
αk c(n, k;α). It satisfies the recursion

Sα(n+ 1, k) = (n− kα)Sα(n, k) + Sα(n, k − 1).

Instead of (4) we have

θ[n] =
n∑

k=1

Sα(n, k)θ[k,α]. (6)

Pitman (1999) obtained its asymptotic expression as

Sα(n, k) ∼ Γ(n)
Γ(k)

n−αα1−kgα(x),

where k ∼ xnα. Here, gα is the Mittag-Leffler (α)function. This function is
discussed in the next section.

Asymptotic Behavior of Cluster Sizes

We collect here some known asymptotoc facts about cluster sizes as n→ ∞.

The number of clusters Kn

EKn =
θ

α
[
(θ + α)[n]

θ[n]
− 1],

where we note that

(θ + α)[n]

θ[n]
=

Γ(θ)
Γ(θ + α)

Γ(θ + α+ n)
Γ(θ + n)

.

Applying the asymptotic expression for the Gamma function for large n

Γ(n + a)
Γ(n)

∼ na,

to the above expression, we have an asymptotic expression,

E(
Kn

nα
) ∼ Γ(θ + 1)

αΓ(θ + α)
. (7)

Yamato and Sibuya (2000) obained the asymptotic value of the variance
of Kn/n

α,

var(Kn/n
α) ∼ Γ(θ + 1)

α2
γα,θ ≥ 0, (8)

where
γα,θ :=

θ + α

Γ(θ + 2α)
− Γ(θ + 1)

[Γ(θ + α)]2
. (9)
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Note that
Fact: γ0,θ = 0.
This fact is important in the long-run behavior of components of the

partition vectors, to be discussed in the next subsection.
Actually they calculate more generally

limE(
Kn

nα
)r = µ′r ,

where µ′r is the r− th moment of the generalized Mittag-Leffler distribution
with density

gα,θ :=
Γ(θ + 1)

Γ(θ/α + 1)
x

θ
α gα(x),

where θ/α > −1, and where gα(x) is the Mittag-Leffler (α) density func-
tion. It is known that this function is uniquely determined by the moment
conditions ∫ ∞

0
xpgα(x)dx =

Γ(p+ 1)
Γ(pα+ 1)

,

for all p > −1. The moments of this density satisfy the sufficient condition
for the density to be uniquely determined by the set of all moments so
that the method of moments applies. Note that the integral of gα,θ over
the interval from zero to infinity is 1, as it should be. See Pollard (1946),
for example, for the expression of the density. See also Blumenfeld and
Mandelbrot (1997) who credit Feller (1949) as the original source.

Mittag-Leffler distributions

As we discuss more fully later, Pitman (2002, Sec. 3) has an even stronger
result:

Kn/n
α → L, a.s.,

where the expression L has the density

d

ds
Pα,θ(L ∈ ds) = gα,θ

where letting η = θ
α we define

gα,θ(s) :=
Γ(θ + 1)
Γ(η + 1)

sηgα(s),

where s > 0, and where gα = gα,0 is the Mittag-Leffler density

gα(s) =
1
π

∞∑

k=1

[
Γ(kα)
Γ(k)

sin(kπα)(−s)k−1].

We note that

µ′1 = Eα,θ(L) = Γ(θ + 1)/αΓ(θ + α),

and
µ′2 = Eα,θ(L2) = Γ(θ + 1)(θ + α)/α2Γ(θ + 2α).
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Hence the variance of L is given as µ′2 − (µ′1)
2.

For the record we have Fact

E(
Kn

nα
=

Γ(θ = 1
αΓ(α + θ)

, varα,θ{
Kn

nα
} = varα,θL =

Γ(θ + 1)
α2

γα,θ. (10)

The partition vector a

Denote the partition vector by a = (a1, a2, . . .), where we recall that ai is
the number of distinct clusters of size i, hence

∑
i ai = Kn, and

∑
i iai = n.

Yamato and Sibuya obtain the limit of the first component, a1

limE[
a1

nα
] =

Γ(θ + 1)
Γ(θ + α)

,

and
lim var(

a1

nα
) = Γ(θ + 1)γα,θ ≥ 0.

In fact aj/n
α are all non-self averaging, as well as jaj/n

α, where jaj is
the total number of agents in the clusters of size j. Note that their variances
are all zero with α = 0, that is the asymptotic variance of aj/n

α are all zero
in PD(θ) models.

Fact Combining the above with (7) we have

Ea1

EKn
→ α.

The expression ai/n
α, i ≥ 1 are all non-self averaging with 0 < α < 1.

Sibuya (2005) used Formula 6.1.41 in Abramovitz and Stegun (1965) to
obtain the asymptotic expression

E(
aj

nα
) ≈ (1− α)[j−1]

j!
Γ(θ + 1)
Γ(θ + α)

+O(n−1).

We state the asymptotic behavior of Kn/n
α and aj/n

α as
Proposition: As in (11)

lim varα,θ(Kn/n
α) = varα,θ(L),

and
lim varα,θ(aj/n

α) = α2varα,θ(L) = Γ(θ + 1)γα,θ.

They also show that covariances of components of the partition vectors
are non-self averaging with positive α values:

Fact:

limCov(
ai

nα
,
aj

nα
) = Γ(θ + 1)γα,θ ×

(1 − α)[i−1]

i!
(1− α)[j−1]

j!
> 0, : α > 0.

It is also known that

j!aj/n
α

α(1 − α)[j−1]
→d L. (11)
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We have

E(
aj

nα
|Kn = k) ∼ (1− α)[j−1]

j!
(1− j/n)−(1+α) × ξ,

where ξ depends on g(α,θ).
The number of clusters, Kn, is spread among the components of the

partition vector, ai, i = 1, 2, . . . , n at the proportion α(1 − α)[j−1]/j!, 0 <
α < 1. Devroye (1993) calls this Sibuya distribution.

We also note that

Lim
E(ai)
E(Kn)

=
α2

Γ(θ + α)γα,θ
.

We note that aj/Kn is self-averaging for all j = 1, . . . , n. Yamato and
Sibuya also examined the clusters of size k or less

K[1, k] := a1 + a2 + · · ·+ ak,

and the number of agents in K[1, k], denoted by N [1, k] and obtained their
limiting expressions as

K[1, k]
nα

→d {1− (1− α)[k]

k!
}L,

and

N [1, k]
nα

→d α
(2 − α)[k−1]

(k − 1)!
L,

Sibuya also notes that

{ a1

nα
,
2a2

nα
· · · .kak

nα
}

converges in distribution to a sequence of random variables depending on L
as

{1, (1 − α)
1!

, · · · , (1− α)[k−1]

(k − 1)!
}.

In PD(α) it is known that

Kn − θln(n)√
θln(n)

→ N(0, 1).

Hence (Kn/ln(n)) is self-averaging.

Almost sure convergence

Denote by aj(n) the number of clusters of size j when there are n agents in
the model. We noted earlier that

∑n
j=1 jaj(n) = n, and Kn :=

∑n
j aj(n) is

the total number of clusters formed by the total of n agents.

10



By Rouault (1976, 1978)

aj(n)
Kn

→ αΓ(j − α)
Γ(1 − α)j!

, a.s.

Recalling that Kn/n
α → L,a.s., we have

aj(n)/nα → αΓ(j − α)
Γ(1 − α)j!

L, a.s.

wbere
aj(n)
Kn

→ α

j!
Pα,j ,

where
Pαj =

Γ(j − α)
Γ(1 − α)

,

for every j = 1, 2, . . . a.s. as n goes to infinity, and that aj(n) ∼ Pα,jLnα

in a two-parameter Poisson-Dirichlet case.

Local Limit Theorem

Suppose N independent positive random variables Xi, i = 1, 2, . . .N are
normalized by their sum SN = X1 + · · ·+XN

xi = Xi/SN , i = 1, . . .N,

so that
Y1 :=

∑

i

xi = 1.

Suppose that the probability density ofXi is such that it has a power-law
tail,

ρ(x) ∼ Ax−1−µ,

with 0 < µ < 1. Then, SN/N
1/µ has a stable distribution (called Lévy

distribution).
Pitman’s formula for the probability of Kn = k, with k ∼ snα indicates

that the power law nα which is 2α < 2 or 2α = 1 + µ with 0 < µ < 1, the
case in Derrida.

With the 2-parameter PD distribution satisfying the power law condi-
tion, Derrida’s conclusion that the Hs are non-self averaging applies to this
case as well.

Estimating the Parameters

Carlton (1999) and Sibuya (2005)are the only systematic source on estimat-
ing the parameters of two-parameter Poisson-Dirichlet distributions.

With α = 0, Ewens had shown that Kn is the sufficient statistics for θ.
Carlton discusses the case where α is known and θ unknown. He derives
the asymptotic distribution of the maximum likelihood estimate of θ, given
n samples.
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Lemma
Given α in (0,1), the maximum-likelihood estimate of θ, θ̂n is given by

ψ(1 + θ̂n/α) − αψ(1 + θ̂n) → logS, as.

Here ψ is the digamma function.
With θ known, and α unknown, Carlton proves
Lemma
Let {A1, . . . , An} be distributed according to the two-parameter Ewens

distribution of size n. (His Eq. (4.2) on page 55.) Then,

α̂n =
logKn

logn
→ α a.s.

Sibuya uses the conditional probability distribution of the partition vec-
tor components, given that

∑
i ai = k, and expresses the distribution

P (a|
∑

aj = k) =
1

Sα(n, k)
n!∏
aj !

∏

j

{(1− α)[j−1]

j!
}aj

which is proportional to

exp{−
∑ j

2(j − 2)!
aj}α+ O(α2)

and test the hypothesis α = 0, against the alternative hypothesis α < 0.
Sibuya proposes the rejection region

∑ j

2(j − 2)!
− aj > const.k.

When both parameters are unknown, the estimation problem is appar-
ently unsolved.

Some Potential Applications

In physics literature, Derrida (1994, 1997 a, b) sketched a derivation that
the expected values of Yk =

∑
i x

k
i , k = 2, 3, . . . can be calculated for mean

field spin glass models using the Parisi replica approach, and remarkably
the formula is the same as the GEM model described above.

In the rest of this section we focus on economic examples.
Example 1 Instead of treating all possible configurations equi-probably,

we weigh them by Poisson-Dirichlet distributions in this example. Consider
a firm composed of total of n basic units. These units are organized into
divisions or sections. The total number of divisions is Kn. The number of
divisions of size j is denoted by aj(n). We observe that

∑
j aj(n) = Kn, and∑

j jaj(n) = n.
The parameter (θ+(k−1)α)/(n+θ) is the probability that a new division

(new product) is being introduced, as shown in the recursion equation (1).
We note that, using his notation
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{a1(n)
nα

,
a2(n)
nα

, . . . ,
an(n)
nα

} →d L{α, (1− α)[1]/2!, · · · , (1− α)[n−1]/n!}.

Pitman shows that the largest division has fraction P(1) of agents, P(1) ∼
Z, the second largest division has fraction P(2) ∼ Z/2α, and so on. The
random variable Z may be expressed as Z−α = Γ(1 − α)L.

We note that the number of divisions of size j is a decreasing function
of j

Example 2 Markov chains with transition rates of (1) and (2) for the
case with α = 0 have been simulated. The model in Sec. 8.6 of Aoki (2002)
was constructed to examine the effects of demand managements. In this
example, we strip the model of this aspect and merely show the effects of
parameter θ which control the rates by which new sectors are created in
the model. We can alternatively interpret θ as parameter which controls of
sector size or introduction of new goods by a given firm or sector.

In the model, sectors want to respond to excess demand signals they re-
ceive. Sectors interpret positive excess demands as opportunities to expand
their production, and negative excess demands as signals to contract their
production. The model is constructed in such a way each sector is impacted
by the changes in production by any other sector through externality of ex-
cess demands. Thus, production change by any single sector will impact the
excess demand signals they observe. For this reason, only one sector which
acts first realizes its desire to change its production, and the pattern starts
all over again.

In short, only the sector with the shortest holding (sojourn) time acts
according with the sign of excess demand. Parameter θ controls the rate
of entries of new sectors. With larger values of θ, the model is expected to
grow faster. Because of the construction of the model cyclical variations of
output (GDP) is superimposed on the growth path. This is indeed what
simulations show. See Aoki (2002, p.113-117).

Example 3: GDP Growth rate Scaling of GDP growth rates was
considered by Canning, Amaral, Lee, Meyer, and Stanley (1998). They
showed that the standard deviation of the GDP growth rate may scale as
Y −β , with β about 0.15. Here, we heuristically explain how their finding
may be explained using a random partition framework.

We modify the model of Huang and Solomon (2001) and apply the same
procedures to estimate the growth rate of real GDP.7 View the real economy
as composed of K sectors of various sizes. Stochastically one or more of the
sectors experience what we call elementary events, the aggregate of which
yields the real growth of the economy, leading to its random growth rates. To
be simple one may assume that the individual elementary growth of sectors
is random λ = 1+g, where g = ±γ randomly with some positive γ. Further,
we adopt the mechanism of Huang and Solomon that a random number τ
of this type of elementary events are experienced in a unit of calendar time.

7Their focus is on financial sector, not real sector. See Aoki and Yoshikawa (2006 a,
b).

13



The random growth rate is the composite effects of these random elementary
events.

We refer the detail of the mechanism to their paper, and mention only
that the growth rate will be exponential only if the number of changes τ is
less than some critical value τc, and change in GDP has a power law density
with index −(1 + α).

The value of α is defined to be the ratio of minimum and average real
consumption in the model q = cmin/caverage, and is tied to α by

α ≈ 1/(1− q),

when K is sufficiently larger that e1/q, due to inherent normalization condi-
tions of densities involved.

For example, setting q = 0.25 leads to α = 1.33, and K must be such
that K >> e4 > 55. The value of τc is defined by (N/2q)α. With τ less than
τc, the growth rate r can be shown to have the density

p(r) = Cexp(−a|r − rm|),

for r > rm, with a different constant for the case r < rm.
The deviation of r is then related to variability ofK and τ , among others.

From this one can deduce that the average deviation in the growth rates is
basically determined by percentage changes of the size of the largest cluster
which can be related to the GDP when the productivity is assumed not to
vary too much, and the conclusion follows that the standard deviation of
the growth rate is Y −µ with µ less than 1. See Aoki and Yoshikawa (2006a,
b) for detail.

Example 4: Non-ergodic endogenous growth model Interpret
the branching model of Feng and Hoppe (1998) as a model of an economy
composed of several sectors. In this model innovations arrive either to one
of the existing secots or an innovation creates a new sector. There are two
parameters θ and α as in the tow-parameter PD model. Existing sector of
size ni grows at rate proportional to (ni − α)/(n+ θ), while a new sector is
created at the rate proportional to (θ+ kα)/(n+ θ) where n =

∑
i ni, when

there are k sectors in the economy.
Note that the larger sectors tend to have larger growth rates, and the

rate of growth of the whole economy tends to accelerate. These could be
interpreted as endogenous innovation activities by larger sectors and larger
economy.

Example 5: Disequilibrium theory of long run profits. Iwai’s
model has more than two sectors with different productivity coefficients.
His paper is too long and involved to give a thumb-nail sketch here. Instead
we offer three quotes from his paper to explain what he does.

...while both the differential growth rates among different efficiency
firms and the diffusion of better technologies through imitations push
the state of technology towards uniformity, the punctuated appearance
of technological innovations disrupts this equilibrating tendency.

... over a long passsage of time these conflicting microscopic forces
will balance each other in a statistical sense and give rise to a long-run
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distribution of relative efficiencies across firms. This long-run distribu-
tion will in turn allow us to deduce an upward-sloping long-run supply
curves...

This paper has challenged this long-held tradition in economics. It
has introduced a simple evolutionary model which is capable of analyz-
ing the development of the industry’s state of technology as a dynamic
interplay among many a firm’s growth, imitation and innovation activ-
ities. And it has demonstrated that what the industry will approach
over a long passage of time is not a classical or neoclassical equilib-
rium of uniform technology but a statistical equilibrium of technolog-
ical disequilibria which maintains a relative dispersion of efficiencies
in a statistically balanced form. Positive profits willl never disappear
from the economy nomatter how long it is run. ’Disequilibrium’ theory
of ’long-run profits’ is by no means a condtradition in terms.

We see that our random partiton framework along the line of Aoki,
Nakano, and Yoshida (2004) and Aoki, Nakano and Ono (2006) can be
applied to at least three types of firms, and their tail distribution may satisfy
power laws to substantiate Iwai’s claim by using long-run in time rather than
the thermodynamic limits.

Concluding Remarks

In physics non-self-averaging phenomena abound. In traditional microe-
conomic foundations of economics, one deals almost exclusively with well-
posed optimization problems for the representative agents with well defined
peaks and valleys of the cost functions. It is also taken for granted that
as the number of agents goes to infinity, any unpleasant fluctuations vanish
and well defined deterministic macroeconomic relations prevail. In other
words, non-self-averaging phenomena are not in the mental pictures of av-
erage macro- or microeconomists.

However, we know that as we go to problems which require agents to
solve some combinatorial optimization problems, this nice picture may dis-
appear. In the limit of the number of agents going to infinity some results
are sample-dependent and deterministic results will not follow. Some of this
type of phenomena have been reported in Aoki (1996, Sec. 7.1.7) and also in
Aoki (1996, p. 225) where Derrida’s random energy model was introduced
to the economic audience. Unfortunately it did not catch the attention of
the economic audiences. See Mertens (2000). This paper is another attempt
at exposing non-self-averaging phenomena in economics. We also mention
a possibility of extending the phrase to cover existence of non-degenerate
distributions with time going to infinity. What are the implications if some
economic models have non-self averaging property? For one thing, it means
that history matters. We cannot blindly try for larger size samples in the
hope that we obtain better estimates.

The examples in this paper are just an indication of the potential of this
approach of using exchangeable random partition methods. It is the opinion
of this author that subjects such as in the papers by Fabritiis, Pammolli,
and Riccaboni (2003), or by Amaral et al (1998) could be re-examined from
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the random combinatorial partition approach with profit. Another example
is Sutton (2002). He modeled independent business in which the business
sizes vary by partitions of integers to discuss the dependence of variances
of firm growth rates. He assumed each partition is equally likely, however.
Use of random partitions discussed in this paper may provide more realistic
or flexible framework for the question he examined.

Finally, the key question in applications to macroeconomic or financial
modelings of the random partition approach is ”What are the most likely
combinations of the values of Kn = k and aj ?” This question appears too
complicated to answer analytically at this time. Some simulations would
help.
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Appendix: Structural distribution and frequency

spectrum

The structural distribution, F , of {pn}, is defined by Engen to be the dis-
tribution on (0, 1] of the first size-biased pick, that is the first term of a
size-biased permutation of the distribution of agents by type, {pn}, that is
p̂1. The importance of this first pick is demonstrated by the lemma below
of Pitman and Yor (1997).

When {pn} is distributed as a two parameter Poisson-Dirichlet distribu-
tion PD(α, θ), let W1 be distributed as Be(1−α, θ+α) (Beta distribution).
We drop subscript 1 from W1 from now on. The first size-biased pick is
p̂1 = W as we have shown above. The structural distribution is important
because it shows that p̂1 summarizes the distribution of {pn} as shown next.

Lemma: For any positive measureable function g(t) ∼ O(t) as t goes to
zero,

E[g(W )/W ] = E[g(p̂1)/p̂1]

= E{E
∑

i

g(pn)
pn

Pr(p̂1 = pn|p1, p2, . . .)}

= E(
∑ g(pn)

pn
pn) = E[

∑
g(pn)].

By the above lemma, the expected value of any positive measurable function
g is expressible in terms of the structural distribution as

E(
∑

n

g(pn)) =
∫ 1

0

g(v)
v
F (dv).

Pitman (1996) pointed out that v−1F (dv) is the frequency spectrum. If
one takes g to be I(a < v < b), this expression gives the average number
of n such that a < pn < b, hence v−1F (dv) is the same as the frequency
spectrum in population genetics literature which is a measure of cluster
size distribution. See Ewens (1979). Aoki (2002, p.173, 2002a) has some
elementary economic applications of this notion. In words, the frequency
spectrum is the expected number of types with fraction in the interval (x, x+
dx).

Given order statistics of cluster sizes governed by PD(θ), x1 > x2 > · · ·,
the largest size x1 has the density

f(x1) = θx−1
1 (1 − x1)θ−1,

for x1 in the range 1/2 < x1 < 1, that is when the largest cluster is more
than 1/2 of the whole.8 This density behaves like x−1

1 for small x1. This
indicates that there are many types with small fractions and f(x) is not
normalizable. However, g(x) = xf(x) = θ(1 − x)θ−1 is normalizable. This
function is interpreted as the probability that a randomly selected sample
is of the type with fraction in (x, x+ dx).

8The expression is more complicated when x1 is less than 1/2. See Watterson and
Guess (1977).
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The two largest fractions, x1 and x2 have the joint density

f(x1, x2) = θ2(x1x2)−1(1− x1 − x2)θ−1,

when the two sizes are such that 0 < x1 + x2 < 1, and more importantly
when

x2

1 − x1
>

1
2
.

Note that similar inequalities arise in size-biased permutation. See Aoki
(2002, Sec. 10.6) for heuristic derivations based on Watterson and Guess
(1977). 9

In economic applications we are more interested in a few types with large
shares, such as the ones discussed in Aoki (2000a).

For the one-parameter Poisson-Dirichlet process, the expected sizes of
the three largest clusters are shown in the next table (see Griffiths (2005))

θ largest second third

0.1 0.935 .059 .005

0.5 .758 .171 .049

1.0 .624 .210 .088

For example, with θ = 0.1, the expected size of the largest and the second
largest clusters sum to 99 per cent of the whole agents. With θ = 1/2, the
sum is about 93 per cent.

9Karlin (1967) focussed on the situation with many types of small probabilities such
that β(x) = x−γL(x), with 0 < γ < 1, and where β(x) =

∑∞
i

I(pn ≥ x), and where L(.)
is some slowly varying function.
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