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Abstract

This paper develops a general approximation scheme, henceforth called a hybrid asymptotic expansion
scheme for valuation of multi-factor European path-independent derivatives. Specifically, we apply it
to pricing long-term currency options under a market model of interest rates and a general diffusion
stochastic volatility model with jumps of spot exchange rates.

Our scheme is very effective for a type of models in which there exist correlations among all the factors
whose dynamics are not necessarily affine nor even Markovian so long as the randomness is generated
by Brownian motions. It can also handle models that include jump components under an assumption of
their independence of the other random variables when the characteristic functions for the jump parts
can be analytically obtained.

An asymptotic expansion approach provides a closed-form approximation formula for their values,
which can be calculated in a moment and thus can be used for calibration or for an explicit approximation
of Greeks of options. Moreover, this scheme develops Fourier transform method with an asymptotic
expansion as well as with closed-form characteristic functions obtainable in parts of a model, extending
the method proposed by Takehara and Takahashi[2008] to be applicable to a general class of models.

It also introduces a characteristic-function-based Monte Carlo simulation method with the asymptotic
expansion as a control variable in order to make full use of analytical approximations by the asymptotic
expansion and of the closed-form characteristic functions.

Finally, a series of numerical examples shows the effectiveness of our scheme.

Keywords: Currency option, libor market model, stochastic volatility, asymptotic expansion, Monte
Carlo simulation

1 Introduction

This paper develops a hybrid asymptotic expansion scheme, a general approximation scheme for valuation
of multi-factor European path-independent derivatives. As its application, we evaluate long-term currency
options under a market model of interest rates and a general diffusion stochastic volatility model with jumps
of spot exchange rates. This scheme provides a closed-form approximation formula for option values, which
can be calculated in a moment.

Our scheme is effective even for a type of models where there exist correlations among all the factors whose
dynamics are not necessarily affine nor even Markovian so long as the source of the uncertainty is generated
by Brownian motions. It can also handle models that include jump processes when their characteristic
functions are analytically available under an assumption that the jump parts are independent of the other

∗This research is partially supported by the global COE program “The research and training center for new development in
mathematics” and Grant-in-Aid for JSPS Research Fellow.

†E-mail: fin.tk.house@gmail.com. Research Fellow of the Japan Society for the Promotion of Science(JSPS).
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random variables. It is well-known that analytical approximations of the option values under those models
are very hard to be obtained although it is important in practice. It is stressed that the proposed hybrid
asymptotic expansion scheme can be applied to these types of models and hence is very useful for practical
purposes such as pricing, hedging and calibration because the analytically-derived formula needs few seconds
for calculation and because an effective Monte Carlo scheme with an asymptotic expansion attains further
accuracy.

We first note that the limiting distribution of the asymptotic expansion in our scheme differs from a
normal distribution as in an asymptotic expansion method previously developed by Yoshida[1992b], Taka-
hashi[1995,1999] and Kunitomo and Takahashi[2001,2003]. In particular, the scheme transforms a target
random variable to a martingale with a certain measure change as well as with a transformation of variable.
Consequently, an approximation of the drift term in the target stochastic process is not necessary, and the
asymptotic expansion for the transformed variable provides more precise approximations of the option prices
at the same order of expansions compared with the results by Takahashi and Takehara[2007] that relies on
the previous method.

Moreover, our hybrid scheme develops Fourier transform method with an asymptotic expansion as well
as with closed-form characteristic functions obtainable in parts of a model. Under an assumption that
random variables whose characteristic functions are analytically available are independent of the other ran-
dom components, we can concentrate on asymptotic expansions for random variables of which characteristic
functions are unknown in closed form. For instance, the analytical results such as in Heston[1993] ord Carr
and Wu[2005] can be combined with libor market models of interest rates to evaluate European long-term
options. This can be considered as an extension of Takahashi and Takehara[2008] to general models; The
preceding paper assumed that stochastic interest rates are independent of the spot foreign exchange rate and
its stochastic volatility, and that the stochastic volatility model is Heston[1993]’s model or more generally the
models in which the characteristic function of the spot exchange rate at the option’s maturity is available,
such as the affine model. These assumptions sometimes prevent us from stable and reasonable calibration
to the markets with an extreme skew as seen in recent JPY-USD market. In this paper we can apply our
hybrid scheme to general classes of models without such strong assumptions.

In addition, our scheme also introduces a characteristic-functions-based Monte Carlo simulation and a
variance reduction method with the asymptotic expansion as a control variable in order to make full use
of both analytical approximations by the asymptotic expansion and closed-form characteristic functions
assumed available. The scheme is regarded as an extension of Takahashi and Yoshida[2005] that developed
a variance reduction method with an asymptotic expansion. We also note that our method may be used
together with other acceleration methods such as antithetic variables technique and an extrapolation method
of Talay and Tubaro[1990] to pursue further variance reduction of Monte Carlo simulation.

Finally, a series of numerical examples confirms the effectiveness of our scheme. In particular, our method
is very effective for complicated but practically important cases in a sense that it can provide closed-form
approximation formulas for models where there exist correlations among all the diffusion factors in addition
to jump components: For these models, few alternatives for an analytical evaluation, which is required for
fast pricing, hedging or calibration of model parameters, are available. Specifically, we test our scheme
for models including the one that does not belong to the affine class in terms of pricing and calibration.
Moreover, it is also shown that a combination of our characteristic-function-based Monte Carlo simulations
with an asymptotic expansion is quite effective to achieve further accuracy; in particular, under the model
such as an affine one whose characteristic function is known in closed form, the simulation is dramatically
accelerated.

The asymptotic expansion approach related with this paper originated from Yoshida[1992b] and Ku-
nitomo and Takahashi[1992] that applied it to pricing average options. Then, Takahashi[1995,1999] and
Kunitomo and Takahashi[2001] presented the second or third order schemes for pricing various types of
options in a general Markovian setting and interest rates options in term structure models of Heath, Jarrow
and Morton[1992] which is not necessarily Markovian. Moreover, Takahashi and Yoshida[2004] extended the
method to dynamic portfolio problems.

For mathematical justification of the method based on Watanabe[1987] in the Malliavin calculus, see
Chapter 7 of Malliavin and Thalmaier[2006], Yoshida[1992a], Kunitomo and Takahashi[2003] and Takahashi
and Yoshida[2004,2005].
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Other applications and extensions of asymptotic expansions to numerical problems in finance are found
as follows: Kawai[2003], Kobayashi, Takahashi and Tokioka[2003], Takahashi and Saito[2003], Kunitomo
and Takahashi[2004], Muroi[2005], Takahashi[2005], Matsuoka, Takahshi and Uchida[2006], Takahashi and
Uchida[2006], Osajima[2006,2007], Kunitomo and Kim[2007], Kusuoka and Osajima[2007] and Takahashi
and Takehara[2007,2008].

Many other papers have considered related topics to our concerns: For analytical approximations in op-
tion pricing, see for instance, Duffie, Pan and Singleton[1999], Fouque, Papanicolaou and Sircar[1999, 2000],
Siopacha and Teichmann[2007], Faulhaber[2002], Henry-Labordere[2005a,b,2006], Piterbarg[2003,2005a,b,2006],
Antonov, Misirpashaev and Piterbarg[2007], Davydov and Linetsky[2003], Gorovoi and Linetsky[2004] and
Linetsky[2004a,b,c,d].

For variance reduction in Monte Carlo simulations by using control variate technique (refer to chapter 3
of Robert and Casella[2000] or section 4.1 of Glasserman[2003] on basics of control variate technique), see
Kemna and Vorst[1990], Newton[1994], Fournié, Lasry and Touzi[1997], Milshtein and Schoenmakers[2002],
for instance. For a general survey of researches on Monte Carlo methods in finance, refer to Glasserman[2003].

The organization of the paper is as follows: After the next section describes a basic structure of our
model and a certain transformation of a target random variable, Section 3 derives an approximation formula
based on an asymptotic expansion of the target variable. Section 4 introduces a characteristic-function-based
Monte Carlo simulation and also proposes a variance reduction method with the asymptotic expansion. Both
of Section 3 and 4 present numerical examples. The final section states concluding remarks. Some details
omitted in the main body of this paper are explained in Appendices.

2 European Currency Options under a Market Model of Interest
Rates and a General Diffusion Stochastic Volatility Model with
Jump of Spot Exchange Rates

2.1 The underlying model for European currency options

Let (Ω,F , P̃ , {Ft}0≤t≤T∗<∞) be a complete probability space with a filtration satisfying the usual conditions.
First we briefly state basics of European currency options. The payoffs of call and put options with maturity
T ∈ (0, T ∗] and strike rate K > 0 are expressed as (S(T ) − K)+ and (K − S(T ))+ respectively where S(t)
denotes the spot exchange rate at time t ≥ 0 and x+ denotes max(x, 0). In this paper we will concentrate
on valuation of a call option since a value of a put option can be obtained through the put-call parity or
similar method. We note that the spot exchange rate S(T ) can be expressed in terms of a foreign exchange
forward(forex forward) rate with maturity T . That is, S(T ) = FT (T ) where FT (t), t ∈ [0, T ] denotes the
time t value of the forex forward rate with maturity T . It is well known that the arbitrage-free relation
between the forex spot rate and the forex forward rate are given by FT (t) = S(t)Pf (t,T )

Pd(t,T ) where Pd(t, T ) and
Pf (t, T ) denote the time t values of domestic and foreign zero coupon bonds with maturity T respectively.

Hence, our objective is to obtain the present value of the payoff (FT (T ) − K)+. In particular, we need
to evaluate:

V (0;T, K) = Pd(0, T ) × EP
[
(FT (T ) − K)+

]
(1)

where V (0;T,K) denotes the value of an European call option at time 0 with maturity T and strike rate
K, and EP [·] denotes an expectation operator under EMM(Equivalent Martingale Measure) P with its
associated numeraire of the domestic zero coupon bond maturing at T (we use a term of the domestic
terminal measure in what follows).

Next, with a log-price of the forex forward fT (t) := ln( FT (t)
FT (0) ), (1) can be rewritten as:

V (0; T,K) = Pd(0, T ) × FT (0) EP
[
(efT (T ) − ek)+

]
where k := ln( K

FT (0) ) denotes a log-strike rate. Here we note that efT (T ) = FT (T ) is a martingale under the
domestic terminal measure.
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The following proposition is well known (e.g. Heston[1993]).

Proposition 1 Let ΦP
T (u) denote a characteristic function of fT (T ) under P . Then, V (0;T, K) is given

by:

V (0;T, K) = Pd(0, T ) ×
[
FT (0)

{
1
2

+
1
π

∫ ∞

0

Re{e−iukΦP
T (u − i)
iu

}du

}
−K

{
1
2

+
1
π

∫ ∞

0

Re{e−iukΦP
T (u)

iu
}du

}]
(2)

where i :=
√
−1 and Re(x) denotes a real part of x.

Then, we need to know the characteristic function of fT (T ) under the domestic terminal measure P for
pricing the option. For this objective, a market model and a stochastic volatility model with a jump are
applied to modeling interest rates’ and the spot exchange rate’s dynamics respectively.

We first define domestic and foreign forward interest rates as fdj(t) =
(

Pd(t,Tj)
Pd(t,Tj+1)

− 1
)

1
τj

and ffj(t) =(
Pf (t,Tj)

Pf (t,Tj+1)
− 1
)

1
τj

respectively, where j = n(t), n(t) + 1, · · · , N , τj = Tj+1 − Tj , and Pd(t, Tj) and Pf (t, Tj)
denote the prices of domestic/foreign zero coupon bonds with maturity Tj at time t(≤ Tj) respectively;
n(t) = min{i : t ≤ Ti}. We also define spot interest rates to the nearest fixing date denoted by fd,n(t)−1(t) and

ff,n(t)−1(t) as fd,n(t)−1(t) =
(

1
Pd(t,Tn(t))

− 1
)

1
(Tn(t)−t) and ff,n(t)−1(t) =

(
1

Pf (t,Tn(t))
− 1
)

1
(Tn(t)−t) . Finally,

we set T = TN+1 and will abbreviate FTN+1(t) to FN+1(t) in what follows.

Under the standard settings of the cross-currency libor market model, we have to consider the following
system of stochastic differential equations(henceforth called S.D.E.s) under the domestic terminal measure
P to price options. Detailed arguments on the framework of these S.D.E.s are given in A.

As for the domestic and foreign interest rates we assume forward market models; for j = n(t) −
1, n(t), n(t) + 1, · · · , N ,

fdj(t) = fdj(0) +
∫ t

0

−fdj(s)γ̃
′

dj(s)
N∑

i=j+1

τifdi(s)γ̃di(s)
1 + τifdi(s)

 ds +
∫ t

0

fdj(s)γ̃
′

dj(s)dWs (3)

ffj(t) = ffj(0) +
∫ t

0

ffj(s)γ̃
′

fj(s)

−
∑

i∈Ĵj+1

−τiffi(s)γ̃fi(s)
1 + τiffi(s)

+
∑

i∈ĴN+1

−τifdi(s)γ̃di(s)
1 + τifdi(s)

 ds

−
∫ t

0

ffj(s)γ̃
′

fj(s)σ̃(s)σ̄ds +
∫ t

0

ffj(s)γ̃
′

fj(s)dWs (4)

where x
′
denotes the transpose of x, Ĵj+1 := {0, 1, · · · , j}, and W is a D dimensional Brownian motion under

the domestic terminal measure; γ̃dj(s), γ̃fj(s) are D dimensional vector-valued functions of time-parameter
s; σ̄ denotes a D dimensional constant vector satisfying ||σ̄|| = 1 and σ̃(t), the volatility of the spot exchange
rate, is specified to follow a R++-valued general time-inhomogeneous Markovian process as follows:

σ̃(t) = σ̃(0) +
∫ t

0

µ({fdj(s)}, σ̃(s), s)ds +
∫ t

0

ω̃
′
(σ̃(s), s)dWs (5)

where µ( · · · , s) is concretely defined in A and ω̃(x, s) is a function of x and s. We stress that our scheme
introduced in this paper can be applied not only in this setting but also in the model where all of interest
rates and the spot exchange rate have (not necessarily Markovian)stochastic volatilities as long as they are
driven by Brownian motions.

Finally, we consider the process of the forex forward FN+1(t). Since FN+1(t) ≡ FTN+1(t) can be expressed
as FN+1(t) = S(t)Pf (t,TN+1)

Pd(t,TN+1)
, it is a martingale under the domestic terminal measure as we mentioned. Then,
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we assume that the log-price fN+1(t) = ln( FN+1(t)
FN+1(0)

) follows

fN+1(t) = ln(
FN+1(t)
FN+1(0)

) = Z(t) + A(t) (6)

where Z(t) is an exponential-martingale continuous process given by

Z(t) = −1
2

∫ t

0

||σ̃Z(s)||2 ds +
∫ t

0

σ̃
′

Z(s)dWs (7)

where

σ̃Z(t) :=
∑

j∈ĴN+1

(
−τjffj(t)γ̃fj(t)

1 + τjffj(t)
− −τjfdj(t)γ̃dj(t)

1 + τifdj(t)

)
+ σ̃(t)σ̄

and A(t) denotes a continuous or jump process that is an exponential-martingale independent from Z(t).
Further, we assume that the characteristic function of A(t) is known in closed-form. e.g. A(t) is a compound
Poisson process, a variance gamma process, an inverse Gaussian process, a CGMY model or the Stochastic
Skew Model(Carr and Wu[2005]).

We here emphasize the generality of our framework investigated in this paper. For the stochastic volatility,
a general time-inhomogeneous Markovian process is assumed, which is not necessarily classified in the affine
model such as in Heston[1993]: In addition, we can incorporate a jump process in our model. These settings
are flexible enough to capture the complexity of movements of the underlying asset and to calibrate our
model to the market with ease even in the severely skewed environment as in a recent JPY-USD market.

2.2 A transformation of the underlying stochastic differential equations

Let ΦP
N+1(t, u) denote the characteristic function of fN+1(t) under P . Then, ΦP

N+1(t, u) can be decomposed
as;

ΦP
N+1(t, u) = ΦP

Z (t, u)ΦP
A(t, u) (8)

where ΦP
Z (t, u) and ΦP

A(t, u) denote the characteristic functions of Z(t) and A(t) under P , respectively.
For evaluation of European currency options, an explicit expression of ΦP

N+1(TN+1, u) is necessary. How-
ever, the process Z(t) is too complicated to obtain the analytical expression of ΦP

Z (TN+1, u) (see Section
6.3.2 in Brigo and Mercurio[2006] or Section 25.5 in Björk[2004] ) while that of ΦP

A(TN+1, u) is assumed
to be known. Then, later we will suggest to utilize the asymptotic expansion for the approximation of
ΦP

Z (TN+1, u).

In (7), Z(t), the key process for evaluation of options, has a nonzero drift. Thus, unless we provide the
approximation which has not any error in the drift term, even the first moment(i.e. the expectation value)
of that approximation will not match the target’s. Contrarily, if we can eliminate its drift term by some
means, that is the objective process will be a martingale, its first moment can be much easily kept by using
a martingale process as an approximation. In this light, here we consider a certain change of measures so
that the main objective process of our expansion will be martingale.

For a fixed u(an argument of ΦP
Z (TN+1, u)) we define a new probability measure Qu on (Ω,FTN+1) with

a Radon-Nikodym derivative of

dQu

dP
= exp

(
−1

2

∫ TN+1

0

||λu(s)||2 ds −
∫ TN+1

0

λ
′

u(s)dWs

)
(9)

where

λu(t) :=
(
(−iu) + i

√
u2 + iu

)
σ̃Z(t) = h̃(u)σ̃Z(t)

5



and h̃(u) := (−iu) + i
√

u2 + iu.
Then ΦP

Z (TN+1, u), the characteristic function of Z(TN+1) under the measure P , is expressed as that of
another random variable Ẑ(TN+1) under Qu with a transformation of variable h(·):

ΦP
Z (TN+1, u) = EP [exp (iuZ(TN+1))]

= EQu

[
exp

(
ih(u)

∫ TN+1

0

σ̃
′

Z(s)dWQu
s

)]
=: ΦQu

Ẑ
(TN+1, h(u)) (10)

where EQu [·] is an expectation operator under Qu; WQu

t := Wt +
∫ t

0
λ

′

u(s)ds is now a Brownian motion under
that measure; ΦQu

Ẑ
(t, v) denotes the characteristic function of Ẑ(t) :=

∫ t

0
σ̃

′

Z(s)dWQu
s and h(u) :=

√
u2 + iu.

Now, we have the martingale objective process for the approximation. Then, in the following section, we
will apply the asymptotic expansion method to the underlying system of S.D.E.s under Qu.

3 An Approximation Scheme based on the Asymptotic Expansion
Approach

3.1 The asymptotic expansion approach

The asymptotic expansion approach describes the processes of forward rates as f
(ϵ)
dj (t) and f

(ϵ)
fj (t), and of

the volatility of the spot forex as σ(ϵ)(t), which explicitly depend upon a parameter ϵ ∈ (0, 1], and expands
the processes around ϵ = 0, that is asymptotic expansions are made around deterministic processes.

First, to fit the framework of the asymptotic expansion, the processes of f
(ϵ)
dj (t), f

(ϵ)
fj (t) and σ(ϵ)(t) in (3),

(4) and (5) are redefined under the measure Qu with a parameter ϵ as follows; for j = n(t) − 1, n(t), n(t) +
1, · · · , N ,

f
(ϵ)
dj (t) = fdj(0) + ϵ2

∫ t

0

−f
(ϵ)
dj (s)γ

′

dj(s)
N∑

i=j+1

τif
(ϵ)
di (s)γdi(s)

1 + τif
(ϵ)
di (s)

 ds

−ϵ2h̃(u)
∫ t

0

f
(ϵ)
dj (s)γ

′

dj(s)σ
(ϵ)
Z (s)ds + ϵ

∫ t

0

f
(ϵ)
dj (s)γ

′

dj(s)dWQu
s (11)

f
(ϵ)
fj (t) = f

(ϵ)
fj (0) + ϵ2

∫ t

0

f
(ϵ)
fj (s)γ

′

fj(s)

 ∑
i∈Ĵj+1

τif
(ϵ)
fi (s)γfi(s)

1 + τif
(ϵ)
fi (s)

−
∑

i∈ĴN+1

τif
(ϵ)
di (s)γdi(s)

1 + τif
(ϵ)
di (s)

 ds

−ϵ2
∫ t

0

f
(ϵ)
fj (s)γ

′

fj(s)σ
(ϵ)(s)σ̄ds − ϵ2h̃(u)

∫ t

0

f
(ϵ)
fj (s)γ

′

fj(s)σ
(ϵ)
Z (s)ds

+ϵ

∫ t

0

f
(ϵ)
fj (s)γ

′

fj(s)dWQu
s (12)

and

σ(ϵ)(t) = σ(0) +
∫ t

0

µ(ϵ)(s)ds − ϵ2h̃(u)
∫ t

0

ω
′
(σ(ϵ)(s), s)σ(ϵ)

Z (s)ds + ϵ

∫ t

0

ω
′
(σ(ϵ)(s), s)dWQu

s . (13)

Note that they are redefined with replacement of γ̃dj(t), γ̃fj(t), σ̃(t) and ω̃(x, t) in the previous section by
ϵγdj(t), ϵγfj(t), ϵσ(ϵ)(t) and ϵω(x, t) respectively, and with applying the change of measure.

Then Ẑ(ϵ)(t), the analogy of Ẑ(t), is given by

Ẑ(ϵ)(t) = ϵ

∫ t

0

σ
(ϵ)′

Z (s)dWQu
s (14)

where

σ
(ϵ)
Z (t) :=

∑
j∈ĴN+1

−τjf
(ϵ)
fj (t)γfj(t)

1 + τjf
(ϵ)
fj (t)

−
∑

j∈ĴN+1

−τjf
(ϵ)
dj (t)γdj(t)

1 + τif
(ϵ)
dj (t)

+ σ(ϵ)(t)σ̄.

6



Of course, in this framework, variables and functions such as F
(ϵ)
N+1(t), f

(ϵ)
N+1(t), ΦP,(ϵ)

N+1(t, u), ΦP,(ϵ)
Z (t, u) or

ΦQu,(ϵ)

Ẑ
(t, v) explicitly depend on ϵ.

Next, we expand the processes of forward interest rates and of the volatility of the spot forex up to the second
order of ϵ(ϵ2-order) around ϵ = 0 to obtain the third order asymptotic expansion of Ẑ(ϵ)(t). These expansions
can be obtained by differentiating the right hand side of the equations (11), (12), (13) and (14) with respect
to ϵ and setting ϵ = 0. Here only the results are stated as the following proposition. Justification of these
and the consequent results is mainly found in Kunitomo and Takahashi[2003](see also our Appendix).

Proposition 2 The asymptotic expansion of Ẑ(ϵ)(t) up to the third order is expressed as follows:

Ẑ(ϵ)(t) = ϵĜ
Qu,(1)
t + ϵ2Ĝ

Qu,(2)
t + ϵ3Ĝ

Qu,(3)
t + o(ϵ3) (15)

where Ĝ
Qu,(1)
t :=

∫ t

0
σ

(0)′

Z (s)dWQu
s and each of Ĝ

Qu,(2)
t and Ĝ

Qu,(3)
t is expressed as a sum of (iterated) Itô

integrals which is given in B concretely.

Remark 1 Since (iterated) Itô integrals always have zero means, the martingale property of Ẑ(ϵ)(t) is kept
at any order of this expansion.

3.2 A pricing formula

Next, we define a random variable X(ϵ) := Ẑ(ϵ)(T )
ϵ with T ≡ TN+1. First, we note that ΦP,(ϵ)(u) :=

ΦP,(ϵ)
N+1(T, u) which is necessary for pricing options is now expressed as;

ΦP,(ϵ)(u) = ΦP,(ϵ)
Z (u)ΦP

A(u)

= ΦQu,(ϵ)

Ẑ
(h(u))ΦP

A(u) = ΦQu,(ϵ)
X (ϵh(u))ΦP

A(u) (16)

where ΦQu,(ϵ)

Ẑ
(v) := ΦQu,(ϵ)

Ẑ
(T, v), which is an analogy of ΦQu

Ẑ
(v); ΦP

A(u) := ΦP
A(T, u); ΦQu,(ϵ)

X (v) denotes the
characteristic function of X(ϵ) under Qu.

Second, we also note that X(ϵ) is expanded up to the second order as follows:

X(ϵ) = g1 + ϵg2 + ϵ2g3 + o(ϵ2), (17)

where g1 := Ĝ
Qu,(1)
T , g2 := Ĝ

Qu,(2)
T and g3 := Ĝ

Qu,(3)
T .

Finally, note that the first order term g1 follows a normal distribution with mean 0 and variance Σ:

Σ :=
∫ T

0

||σ(0)
Z (s)||2ds. (18)

Using the following theorem, we will obtain an approximation of ΦP,(ϵ)(u), the characteristic function of the
terminal log-price f

(ϵ)
N+1(T ).

Theorem 1 With the assumption of Σ > 0, an asymptotic expansion of ΦQu,(ϵ)
X (v), the characteristic func-

tion of X(ϵ) under Qu, is given by

ΦQu,(ϵ)
X (v) =

[
1 + D

Qu,(ϵ)
2 (iv)2 + D

Qu,(ϵ)
3 (iv)3 + D

Qu,(ϵ)
4 (iv)4 + D

Qu,(ϵ)
5 (iv)5 + D

Qu,(ϵ)
6 (iv)6

]
Φ0,Σ(v) + o(ϵ2)

(19)

where Φµ,Σ(v) := eiµv−Σ
2 v2

.

D
Qu,(ϵ)
2 , D

Qu,(ϵ)
3 , D

Qu,(ϵ)
4 , D

Qu,(ϵ)
5 and D

Qu,(ϵ)
6 are constants for pre-specified ϵ and u, whose derivations

are explained in C. Each subscript corresponds to the order of (iv) in the equation (19).
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Finally, we provide an approximation formula for valuation of European call options written on F
(ϵ)
N+1(T ) by

direct application of Theorem 1 to Proposition 1.

Theorem 2 Assume Σ > 0. Let V̂ (0; TN+1, K) be an approximated value of V (0;TN+1,K) which denotes
the exact value of the option with maturity TN+1 and strike rate K. Then, V̂ (0;TN+1,K) is given by:

V̂ (0; TN+1,K) := Pd(0, TN+1)

[
FN+1(0)

{
1
2

+
1
π

∫ ∞

0

Re{e−iukΦ̂(ϵ)(u − i)
iu

}du

}

−K

{
1
2

+
1
π

∫ ∞

0

Re{e−iukΦ̂(ϵ)(u)
iu

}du

}]
.

(20)

Here, k := ln( K
FN+1(0)

), Φ̂(ϵ)(u) := Φ̂Qu,(ϵ)
X (ϵh(u)) × ΦP

A(u), and Φ̂Qu,(ϵ)
X (v) is defined as;

Φ̂Qu,(ϵ)
X (v) =

[
1 + D

Qu,(ϵ)
2 (iv)2 + D

Qu,(ϵ)
3 (iv)3 + D

Qu,(ϵ)
4 (iv)4 + D

Qu,(ϵ)
5 (iv)5 + D

Qu,(ϵ)
6 (iv)6

]
× Φ0,Σ(v).

Remark 2 Note that since h(−i) = 0 and A is assumed to be an exponential martingale, EP [ef
(ϵ)
N+1(T )] =

ΦP,(ϵ)(u) is approximated by Φ̂(ϵ)(−i) = Φ̂Q−i,(ϵ)
X (ϵh(−i)) × ΦP

A(−i) = 1, which means that in our approxi-
mation the exponential-martingale property of f

(ϵ)
N+1 is kept.

Especially, when A ≡ 0 the first-order approximation of the option price coincides BS(Σ
1
2 ; FN+1(0),K, TN+1)

which is the Black-Scholes price under the case where the stochastic interest rates and the stochastic volatility
would be replaced by (their limiting-)deterministic processes:

BS(σ; F, K, T ) := Pd(0, T ) [FN(d+) − KN(d−)] (21)

where

d± :=
ln(F/K) ± 1

2σ2T

σ
√

T
, N(x) :=

∫ x

−∞

1√
2π

e−
1
2 z2

dz.

Remark 3 Using this approximation formula, we can also provide analytical approximations of Greeks of
the option, sensitivities of the option price to the factors. Note that our approximation for the underlying
characteristic function does not depend upon the initial value of the spot forex. Thus in particular, ∆ and
Γ, the first and second derivatives of the option value with respect to S(0) respectively, can be explicitly
approximated with ease. For example ∆̂, the approximation of ∆, is given by

∆̂ :=
∂V̂ (0;TN+1,K)

∂S(0)

=
Pd(0, TN+1)

S(0)

[
FN+1(0)

{
1
2

+
1
π

∫ ∞

0

Re{e−iukΦ̂(ϵ)(u − i)
iu

}du

}

+FN+1(0)
{

1
π

∫ ∞

0

Re
(
e−iukΦ̂(ϵ)(u − i)

)
du

}
− K

{
1
π

∫ ∞

0

Re
(
e−iukΦ̂(ϵ)(u)

)
du

}]
.

For other risk parameters such as Θ or Vega, sensitivities of the option price with respect to t and σ(0)
respectively, their approximations are given in the easy way with our formula such as the difference quotient
method, which needs few seconds for calculation and has satisfactory accuracies.

Remark 4 In practice, we are often interested in the accuracy of our formulas for the option prices whose
underlying variables follow the SDEs (3), (4), (5) and (7) with a particular set of parameters such as γ̃dj(t),
γ̃fj(t), σ̃(0) and ω̃(x, t). From this point of view, given some particular value of ϵ, γdj(t), γfj(t), σ(0) and
ω(x, t) in (11), (12), (13) and (14) should be scaled so that ϵγdj(t) = γ̃dj(t), ϵγfj(t) = γ̃fj(t), ϵσ(0) = σ̃(0)
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and ϵω(x, t) = ω̃(x, t) for an arbitrary t ∈ [0, T ]. For instance, γ(t) is scaled to be γ(t) := γ̃(t)
ϵ where ϵ is

fixed at a pre-specified constant through our procedure of expansions.
Moreover, it can be shown that the approximated prices are unchanged whatever ϵ ∈ (0, 1] is taken in

evaluation, as long as above conditions are met. We will see this briefly in D.

3.3 Numerical examples(1)

In this subsection, we examine the effectiveness of our method through a series of numerical examples under
the model of the spot forex not classified in the affine one. First, the approximate option prices by our
closed-form formula are compared with their estimates by Monte Carlo simulations. Second, the formula is
also utilized for calibration of the model parameters to the recent JPY-USD market with extreme skews.

3.3.1 Model specification

First of all, the processes of the domestic and foreign forward interest rates and of the volatility of the spot
exchange rate are specified. We suppose D = 4, that is the dimension of a Brownian motion is set to be
four; it represents the uncertainty in the domestic and foreign interest rates, the spot exchange rate, and its
volatility. Note that in our framework correlations among all factors are allowed.

Next, we specify a volatility process, not a variance process as in affine-type models, of the spot exchange
rate under the domestic risk-neutral measure as follows;

σ(ϵ)(t) = σ(0) + κ

∫ t

0

(θ − σ(ϵ)(s))ds + ϵω
′
∫ t

0

√
σ(ϵ)(s)dŴs (22)

where θ and κ represent the level and speed of its mean-reversion respectively, and ω denotes a volatility
vector on the volatility. In this section the parameters are set as follows; ϵ = 1, σ(0) = θ = 0.1, and κ = 0.1;
ω = ω∗v̄ where ω∗ = 0.1 and v̄ denotes a four dimensional constant vector given below.

We further suppose that initial term structures of the domestic and foreign forward interest rates are
flat, and their volatilities also have flat structures and are constant over time: that is, for all j, fdj(0) = fd,
ffj(0) = ff , γdj(t) = γ∗

d γ̄d1{t<Tj}(t) and γfj(t) = γ∗
f γ̄f1{t<Tj}(t). Here, γ∗

d and γ∗
f are constant scalars, and

γ̄d and γ̄f denote four dimensional constant vectors. Moreover, given a correlation matrix C among all four
factors, the constant vectors γ̄d, γ̄f , σ̄ and v̄ can be determined to satisfy ||γ̄d|| = ||γ̄f || = ||σ̄|| = ||v̄|| = 1
and V ′V = C where V := (γ̄d, γ̄f , σ̄, v̄).

In the following subsection, we consider three different cases for fd, γ∗
d , ff and γ∗

f as in Table 1. For
correlations, four sets of parameters are considered: In the case “Corr.1”, all the factors are independent:
In “Corr.2”, there exists only the correlation of -0.5 between the spot exchange rate and its volatility (i.e.
σ̄

′
v̄ = −0.5) while there are no correlations among the others: In “Corr.3”, the correlation between the

interest rates and the spot exchange rate are allowed while there are no correlations among the others: the
correlation between the domestic ones and the spot forex is 0.5(γ̄

′

dσ̄ = 0.5) and the correlation between the
foreign ones and the spot forex is -0.5(γ̄

′

f σ̄ = −0.5). In these three cases, A(t) ≡ 0 for simplicity, that is
there is assumed no component such as a jump whose characteristic function is available in closed form.

Finally in “Corr.4”, correlations among most factors are considered; γ̄
′

dγ̄f = 0.3 between the domestic and
foreign interest rates; γ̄

′

dσ̄ = 0.5, γ̄
′

f σ̄ = −0.5 between the interest rates and the spot forex; and σ̄
′
v̄ = −0.5

between the spot forex and its volatility. In this case also A(t), a jump component, will be taken into account:
A(t) is assumed to be a compound Poisson process with its intensity λ and with random jumps following
N(m, s2); λ = 1, m = −0.05 and s = 0.05. In this case, the characteristic function of A(t) is given by

ΦP
A(t, u) = exp

(
λt
(
eimu− 1

2 s2u2
− 1
)
− iuλt

(
em+ 1

2 s2
− 1
))

.

It is well known that (both of exact and approximate)evaluation of the long-term options is a hard task
in the case with a complex structure of correlations and/or with a jump component, such as “Corr.3” or
“Corr.4”. Because the method with an asymptotic expansion introduced in Takahashi and Takehara[2007](TT[2007])
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Table 1: Initial domestic/foreign forward interest rates and their volatilities

fd γ∗
d ff γ∗

f

case (i) 0.05 0.2 0.05 0.2

case (ii) 0.02 0.5 0.05 0.2

case (iii) 0.05 0.2 0.02 0.5

can deal with that evaluation in all these cases but for “Corr.4”, their estimator will be compared to our
estimator in the following examinations.

Lastly, we make another assumption that γdn(t)−1(t) and γfn(t)−1(t), volatilities of the domestic and
foreign interest rates applied to the period from t to the next fixing date Tn(t), are equal to be zero for
arbitrary t ∈ [t, Tn(t)].

3.3.2 Examinations of our closed-form approximation formula

In this subsection the accuracy of our pricing formula is examined. We show numerical examples for evalua-
tion of call options calculated by Monte Carlo (henceforth called M.C.) simulations and by our approximation
formula of the third order with maturities of five or ten years and with different parameters for the interest
rates and correlations set in the previous subsection.

Each estimator based on the M.C. simulations is obtained by 1,000,000 trials with antithetic variables
method. The estimators by the pricing formula via the third-order asymptotic expansion given in TT[2007]
are added for comparison, except for the case “Corr.4” where the approximated prices cannot be directly
given by their method.

We set K ∼ FN+1(0) ±
√

Σ for OTM and ITM where Σ was defined in (18), and then moneyness for
those strikes, K

FN+1(0)
are approximately given by 1±

√
Σ

FN+1(0)
respectively. Thus, in the longer maturity the

prices of deeper OTM/ITM options are given in the figures, and also deeper OTM and ITM options are
considered for the cases “Corr.3” and “Corr.4” because the underlying forex forward is more volatile in those
cases than in the other two cases.

Figures 1.-4. show results in our numerical investigations. Figure 1. reports differences of the estimators
by formulas in a five-year maturity and Figure 3. does in a ten-year maturity. In Figure 2. and Figure 4.,
they are shown in terms of implied volatilities respectively. The differences shown in those figures between
the approximations by the formula given in this paper or in TT[2007] and those by M.C. simulations are
defined as (the approximate value by asymptotic expansions)-(the estimate by M.C. simulations).

Absolute levels of the differences of our approximation are on average 0.025/0.06% in prices/in implied
volatilities for a five-year maturity and 0.100/0.18% for a ten-year maturity. Most of the differences in our
approximations are less than 0.1/0.2% for five years and 0.25/0.4% for ten years. Moreover, in “Corr.4” in
which most of existing methods for analytical evaluation including TT[2007] are difficult to be applied, our
formula also works well. This stability of performances of our method, even in the complicated settings with
many correlated processes and/or with a jump process in addition, can be advantageous in practice.

3.3.3 Calibration to the market

In this subsection, our model parameters are calibrated with the third order asymptotic expansion formula to
observed volatilities with maturities of five and ten years in the JPY/USD currency option market. Market
makers in OTC currency option markets usually provide quotes on Black-Scholes implied volatilities and
moneyness of an option is expressed in terms of Black-Scholes delta, rather than its strike price. We use
the data of volatility surfaces on Sep 27, Oct 30 and Dec 07, 2007, after the beginning of the subprime-loan
crash, which consist of 25 delta put, 10 delta put, at-the-money, 10 delta call, and 25 delta call with their
maturities of seven and ten years (These data are provided by Forex Division of Mizuho Corporate Bank,
Ltd.). We also construct domestic/foreign forward interest rates’ term structures and volatilities using the
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data downloaded from Bloomberg on swap rates and cap volatilities in each market.

Tables 3.-4. and Figures 5.-10. show the data on volatility surfaces and our calibrated parameters. In
Table 3. and Figures 5.-7., calibration results to the observed volatility smile for five or ten year, separately.
Additionally, Table 4. and Figures 8.-10 show results in joint calibration to the volatilities for five and ten
years.

Most of absolute errors in separate calibration are less than 0.01%, in joint calibration less than 0.3%.,
which seems small enough for a practical purpose.
Consequently, we conclude that our formula is flexible enough for calibration of the observed surfaces, which
is a hard task with other time-consuming methods such as numerical ones. We may use the calibrated
parameters for valuation of illiquid options and more complicated currency derivatives.

4 A Characteristic-function-based Monte Carlo Simulation with
an Asymptotic Expansion

In this section, we will introduce a Monte Carlo simulation scheme which incorporates the analytically
obtained characteristic function. Further, with the asymptotic expansion as a control variable, variance of
this characteristic-function-based(ch.f.-based) M.C. is reduced.

4.1 A characteristic-function-based Monte Carlo simulation

In a usual M.C. procedure, we discretize the S.D.E.s (3), (4), (5) and (6), and generate {f j}M
j=1, M samples of

f
(ϵ)
N+1(T ). Then the approximation for the option value, a discounted average of terminal payoffs, is obtained

by;

V̂ payoff
MC (0, M ; T, K) := Pd(0, T )

1
M

M∑
j=1

(efj

− K)+. (23)

On the other hand, by the pricing formula (2) in Proposition 1, the option price can be expressed as a
certain functional of the characteristic function of the underlying log-process.

V (0;T,K) = Ψ(ΦP,(ϵ); T,K)

where

Ψ(Φ; T, K) := Pd(0, T ) ×
[
FT (0)

{
1
2

+
1
π

∫ ∞

0

Re{e−iukΦ(u − i)
iu

}du

}
−K

{
1
2

+
1
π

∫ ∞

0

Re{e−iukΦ(u)
iu

}du

}]
. (24)

Since ΦP,(ϵ)(u) is defined by EP
[
eiuf

(ϵ)
N+1(T )

]
= EP

[
eiuZ(ϵ)(T )

]
×EP

[
eiuA(T )

]
, an alternative approximation

with M.C. can be constructed;

V̂ chf
MC (0, M ; T, K) := Ψ(Φ̂P

MC( · ; M);T, K) (25)

Φ̂P
MC(u;M) = Φ̂P

Z,MC(u; M) × ΦP
A(u) :=

 1
M

M∑
j=1

eiuZj

ΦP
A(u) (26)

where {Zj}M
j=1 are samples of Z(ϵ)(T ). Here it is stressed that in this approximation there does not exist

any error caused by M.C. for the (jump or continuous) part A.
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4.2 The asymptotic expansion as a control variable

Further, this ch.f.-based scheme can be much refined through a better estimation for ΦP,(ϵ)
Z (u) by M.C.,

achieved with our asymptotic expansion of the first order. Since ΦP,(ϵ)
Z (u) is expressed as ΦQu,(ϵ)

X (ϵh(u)), it
is done by the approximation of ΦQu,(ϵ)

X (ϵh(u)) with M.C.. In what follows in this section, we abbreviate
ϵ(or set ϵ = 1) for simplicity.

Here, in order to avoid the influence appearing in this variance reduction procedure caused by the variable
transformation h(·), we use the following relationship

EQu

[
eih(u)g1

]
= exp

(
−1

2
iuΣ

)
EQu

[
eiug1

]
, (27)

i.e. ΦQu
g1

(h(u)) = exp
(
− 1

2 iuΣ
)
× ΦQu

g1
(u). ΦQu

g1
(v) is the characteristic function of g1, which is equivalent

to Φ̂Qu,(ϵ)
X (v) in Theorem 1 if the expansion is made only up to the first order. This equation can be easily

checked with recalling ΦQu
g1

(v) = Φ0,Σ(v) = exp(−Σ
2 v2).

Thus on the one hand, the closed-form characteristic function of g1 evaluated at v = h(u) is given by

ΦQu
g1

(h(u)) = exp
(
−1

2
iuΣ

)
Φ0,Σ(u). (28)

But on the other hand, generating samples of g1 following N(0, Σ), {gj}M
j=1, we can further approximate the

right hand side of (27) by

Φ̂Qu

g1,MC(u; M) := exp
(
−1

2
iuΣ

)
1
M

M∑
j=1

(
eiugj

)
. (29)

Note that because only the distribution of g1 matters here, we can simulate samples of g̃1 :=
∫ T

0
σ

(0)′

Z (s)dWs

following N(0,Σ)instead of those of g1, not under the measure Qu but under P as well as other random
variables simulated for (26).

Using two functions in (28) and (29), which both are the first-order approximations for ΦQu,(ϵ)
Z (h(u)),

define two following estimators for the option price.

V̂ AE
ana (0;T, K) := Ψ

(
ΦQu

g1
(h(·)) × ΦP

A; T,K
)

(30)

V̂ AE
MC(0, M ; T, K) := Ψ

(
Φ̂Qu

g1,MC( · ; M) × ΦP
A;T, K

)
(31)

Finally, using ΦQu
g1

(h(u)) as a control variable, we can construct the more sophisticated estimator V̂ CV (0,M ; T,K)
for the option price V (0;T, K) as

V̂ CV (0,M ; T,K) := V̂ chf
MC (0,M ; T,K) +

(
V̂ AE

ana (0;T, K) − V̂ AE
MC(0,M ; T,K)

)
(32)

= Ψ
({

Φ̂P
Z,MC( · ; M) +

(
ΦQu

g1
(h(·)) − Φ̂Qu

g1,MC( · ; M)
)}

× ΦP
A; T, K

)
where T = TN+1 and

Φ̂P
Z,MC(u; M) =

1
M

M∑
j=1

eiuZj

ΦQu
g1

(h(u)) = exp
(
−1

2
iuΣ

)
× Φ0,Σ(u)

Φ̂Qu

g1,MC(u; M) = exp
(
−1

2
iuΣ

)
× 1

M

M∑
j=1

(
eiugj

)
.
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Remark 5 Here we note the following fact.

V (0;T, K) − V̂ CV (0,M ; TK)

=
(
V (0;T, K) − V̂ chf

MC (0,M ; T, K)
)
−
(
V̂ AE

ana (0;T, K) − V̂ AE
MC(0,M ; T, K)

)
= Ψ

({(
ΦP,(ϵ)

Z − Φ̂P
Z,MC( · ; M)

)
−
(
ΦQu

g1
(h(·)) − Φ̂Qu

g1,MC(h(·); M)
)}

× ΦP
A; T, K

)
where ΦP,(ϵ)

Z is the exact characteristic function of Z(ϵ)(T ). The former in the first parentheses is the exact
characteristic function of Z(ϵ)(t) and the latter is its approximation by Monte Carlo simulations. Similarly,
the former in the second parentheses is the exact one of g1, the first-order expansion for Z(ϵ)(t), and the
latter is its approximation. Thus, in the case where the first and second term in the braces cancel each other
out, an error of our hybrid estimator is expected to be small.

Remark 6 We here also summarize procedures introduced in this section.

1. Discretize the processes of f
(ϵ)
dj (t), f

(ϵ)
fj (t), σ(ϵ)(t) and of Z(ϵ)(t) under P and generate {Zj}M

j=1, M

samples of Z(ϵ)(T ).

2. Also generate {g̃j}M
j=1, samples of g̃1 =

∫ T

0
σ

(0)′

Z (s)dWs instead of g1, under P with the same sequence
of random numbers used in 1.

3. Calculate Φ̂P
Z,MC(u;M) with {Zj} for each u, which is the characteristic function of Z(ϵ)(T ) approxi-

mated by M.C..

4. Similarly calculate Φ̂Qu

g1,MC(u; M) with {g̃j} for each u, the approximation for ΦQu
g1

(h(u))by M.C..

5. Using the estimators calculated in 3. and 4., approximate ΦP,(ϵ)
Z (u) by

Φ̂P
Z,MC(u;M) +

(
ΦQu

g1
(h(u)) − Φ̂Qu

g1,MC(u; M)
)

where ΦQu
g1

(u) is the exact characteristic function of g1 given in closed-form.

6. Inverting the estimated characteristic function in 5. via the pricing functional Ψ( · ;T, K) given in
(24), we finally obtain the estimator for the option price with the first-order asymptotic expansion as
a control variable.

4.3 Numerical examples(2)

Here the convergence of our hybrid estimator with the asymptotic expansion as a control variable is compared
to that of a ”crude M.C.”(only with the antithetic variables method). In this subsection, the following
three estimators are examined; V̂ payoff

MC (0,M ; T, K) in (23) is a standard M.C. estimator which averages the
discounted terminal payoffs; V̂ chf

MC (0,M ; T, K) in (25) is obtained via the Fourier inversion of the characteristic
function approximated by M.C.; and V̂ CV (0,M ;T, K) in (32) is the estimator with a use of the first-order
asymptotic expansion as a control variable. We apply the antithetic variables method to all estimators.

First, in Table 2., comparisons of their convergences in the same model(indicated by “CIR-type vol.”)
and the same parameters of “Corr.2” assumed in examples in the previous section are shown. It lists up
ratios of variances of V̂ chf

MC (0,M ;T, K) and V̂ CV (0,M ; T,K) to that of V̂ payoff
MC (0,M ;T, K) with the same

1,000,000 trials: Strictly speaking, we show the variances of a series of these estimators calculated with each
1,000 paths.

The ch.f.-based M.C. seems to have almost the same variance with a crude M.C. in this setting. Contrarily
to this, usage of our asymptotic expansion as a control variable for the ch.f.-based M.C. reduces its variances;
reducing more for OTM than for ATM in these investigations. They are reduced around to 15% in five years
and to 20% in ten years of a crude M.C.’s.
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Table 2: Comparisons of variances of our estimators, given in terms of ratios to that of a crude M.C.

Moneyness 5y
Variance ratio

CIR-type vol. SSM

1
Chf/Crude 1.013 0.045
CV/Crude 0.161 0.007

1.3
Chf/Crude 0.980 0.060
CV/Crude 0.112 0.011

Moneyness 10y
Variance ratio

CIR-type vol. SSM

1
Chf/Crude 1.014 0.191
CV/Crude 0.207 0.035

1.4
Chf/Crude 1.009 0.171
CV/Crude 0.158 0.029

Second, we investigate the convergence of our hybrid estimators in the case where the analytically-
obtained component A(t) exists. In such cases, their convergences are expected to be faster than those in
the previous settings are, since we need not approximate a whole part of the characteristic function of the
underlying asset but do by M.C. only parts without known analytical expressions of their characteristic
functions.

In particular, for A(t) we assume the following Stochastic Skew Model(SSM) in Carr and Wu[2005], which
well captures a time-varying behavior of smiles or skews observed in currency option markets:

A(t) = ξL(t) + ξR(t)

:=
(
−1

2

∫ t

0

VL(s)ds +
∫ t

0

√
VL(s)ξ̄

′

LdŴs

)
+
(
−1

2

∫ t

0

VR(s)ds +
∫ t

0

√
VR(s)ξ̄

′

RdŴs

)
Vk(t) = Vk(0) + κk

∫ t

0

(θk − Vk(s)) ds + ωk

∫ t

0

√
Vk(s)v̄

′

kdŴs, for k = L, R

under the domestic risk-neutral measure, where ξL and ξR are assumed to be independent (hence ξ̄
′

Lξ̄R = 0).
Further, for the correlations among those components we assume ξ̄

′

Lv̄L < 0, ξ̄
′

Rv̄R > 0; ξ̄
′

Lv̄R = ξ̄
′

Rv̄L =
v̄

′

Lv̄R = 0. These conditions mean that VL(VR) correlates to the spot forex negatively(positively) and is
independent of the other processes.

This can be regarded as a double Heston-type model which consists of two independent stochastic variance
processes correlating to the spot forex in opposite directions. For simplicity, the jump components appearing
in the original paper of SSM are omitted here with little loss of generality.

Then the characteristic function of A(t) is given by

ΦP
A(t; u) = ΦP

ξL
(t, u) × ΦP

ξR
(t, u),

ΦP
ξk

(t, u) =
(

cosh
ηkt

2
+

κk − iρkωku

ηk
sinh

ηkt

2

)− 2κkθk
ω2

k

× exp

(
κkθk(κk − iρkωku)t

ω2
k

− (u2 + iu)Vk(0)
ηk coth ηkt

2 + κk − iρkωku

)
,

where ηk :=
√

ω2
k(u2 + iu) + (κk − iρkωku)2 and ρk := ξ̄

′

kv̄k (See Daffie, Pan and Singleton[1999] or Carr
and Wu[2005] for details).

In the investigations made here, the parameters are set as follows. For interest rates, the parameters of
case (ii) in Table 1. are used except for γ̄

′

dγ̄f = 0.5; for the stochastic volatility in Z(t), σ(0) = θ = ω∗ = 0
are assumed so as to ensure σ(ϵ)(t) ≡ 0, that is the objective Ẑ(t) of our asymptotic expansion consists
only of the domestic and foreign interest rates. Finally, for SSM, Vk(0) = θk = 0.0075, κk = 0.5, ωk = 0.1
for k = L, R; the correlation ρL(ρR) between VL(VR) and the spot forex is assumed to -0.5(0.5). Other
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correlation parameters among factors are all assumed to be zero. These settings can be interpreted as SSM
under a market model of interest rates.

In Table 2., as well as in the examination with the CIR-type volatility model, comparisons of the variances
in this setting(indicated by “SSM”) are made. Contrary to results in the previous case, in this case the ch.f-
based M.C. estimator has the variances of around 5% in five years and 20% in ten years of a crude M.C’s,
reduced by usage of the analytically solved characteristic function as we expected. The scheme proposed in
Section 4.2 further cuts down those variances to around 1% in five years and 3% in ten years of the originals.
Thus it can be said that, in such cases where the closed characteristic function of a part of the underlying
is available, incorporation of this knowledge and our analytical approximation for another part’s via the
ch.f-based M.C. scheme dramatically accelerates the convergence of M.C. simulations.

In Figures 11-12.,we present these variance-reduction effects. It is stressed that at most 5,000 paths for
five years and 50,000 paths for ten years are enough to obtain the accuracy within 0.01.

5 Concluding Remarks

This paper presented the hybrid asymptotic expansion scheme that provides extensions, refinement and
integration of the methods previously developed by Yoshida[1992b], Takahashi[1995,1999], Kunitomo and
Takahashi[2001,2003], and Takahashi and Yoshida[2005]. It provided the accurate closed-form approximation
formula for option pricing which needs few seconds for calculation and enables us to obtain an analytical
approximation for Greeks. It also developed the new variance reduction technique in the characteristic-
function-based Monte Carlo simulations with the asymptotic expansion we had derived as the control variable.

The proposed scheme is valid for models even in which analytical approximations of the option values
are very difficult to be obtained although it is important in practice: Specifically, our scheme is applied
to models that allow correlations among all the factors whose dynamics are not necessarily affine nor even
Markovian as long as a source of uncertainty is generated by Brownian motions. It is also applied to models
that include jump processes under the assumption that they are independent of the other random variables
when the characteristic functions of the jump components can be analytically obtained. Moreover, the
numerical examples in the cross-currency settings confirmed the effectiveness of our method especially for
the practically important cases.

Our next research plans are as follows: We will develop a general but computationally feasible scheme in
practice for higher order expansions in order to achieve more precise approximations. We will also pursue
an efficient method for the evaluation of multi-factor path-dependent or/and American derivatives. In fact,
our proposed scheme can be applied to average options under a general setting of the underlying factors as
in this paper.

A Details for the Underlying Model

In this section we will consider in detail our underlying framework, which is assumed to consist of a market
model of interest rates, of a general stochastic volatility model of the spot forex, and of a possibly jumping
component with its analytically available characteristic function.

We first model dynamics of underlying forward interest rates’ processes under the terminal measure of the
each market. R++-valued processes of domestic forward interest rates under the domestic terminal measure
can be specified as; for j = n(t) − 1, n(t), n(t) + 1, · · · , N ,

fdj(t) = fdj(0) +
∫ t

0

−fdj(s)γ̃
′

dj(s)
N∑

i=j+1

τifdi(s)γ̃di(s)
1 + τifdi(s)

 ds +
∫ t

0

fdj(s)γ̃
′

dj(s)dWs
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Similarly, R++-valued processes of foreign ones under the foreign terminal measure are specified as;

ffj(t) = ffj(0) +
∫ t

0

−ffj(s)γ̃
′

fj(s)
N∑

i=j+1

τiffi(s)γ̃fi(s)
1 + τiffi(s)

 ds +
∫ t

0

ffj(s)γ̃
′

fj(s)dW f
s

where W f is a D dimensional Brownian motion under this measure.
Finally, we assume that a spot exchange rate S(t) and its volatility σ̃(t) follow R++-valued stochastic

processes under the domestic risk-neutral measure (not under the domestic terminal measure) :

S(t) = S(0) +
∫ t

0

S(s)(rd(s) − rf (s))ds +
∫ t

0

S(s)σ̃(s)σ̄
′
dŴs +

∫ t

0

S(s)dÃ(s)

σ̃(t) = σ̃(0) +
∫ t

0

µ̃(σ̃(s), s)ds +
∫ t

0

ω̃
′
(σ̃(s), s)dŴs

where Ŵ is a D dimensional Brownian motion under the domestic risk-neutral measure and Ã is some
(possibly jump) martingale independent of Ŵ ; rd(t) and rf (t) denote domestic and foreign instantaneous
spot interest rates respectively.

We next note the following well known relations among Brownian motions under different measures;

Wt = Ŵt −
∫ t

0

σ̃dN+1(s)ds

= W f
t +

∫ t

0

{σ̃fN+1(s) − σ̃dN+1(s) + σ̃(s)σ̄}ds

where σ̃dN+1(t) and σ̃fN+1(t) are volatilities of domestic and foreign zero coupon bonds with the maturity
TN+1, that is,

σ̃dN+1(t) :=
∑

i∈JN+1(t)

−τifdi(t)γ̃di(t)
1 + τifdi(t)

, σ̃fN+1(t) :=
∑

i∈JN+1(t)

−τiffi(t)γ̃fi(t)
1 + τiffi(t)

and Jj+1(t) = {n(t) − 1, n(t), n(t) + 1, · · · , j}. Since γfi(t) = 0 and γdi(t) = 0 for all i such that Ti ≤ t, the
set of indices Jj+1(t) can be changed into Ĵj+1 := {0, 1, · · · , j}, which does not depend on t.

By the above equations, expressions of those processes under different measures are unified into those
under the same measure, the domestic terminal one:

ffj(t) = ffj(0) +
∫ t

0

ffj(s)γ̃
′

fj(s)

−
∑

i∈Ĵj+1

−τiffi(s)γ̃fi(s)
1 + τiffi(s)

+
∑

i∈ĴN+1

−τifdi(s)γ̃di(s)
1 + τifdi(s)

 ds

−
∫ t

0

ffj(s)γ̃
′

fj(s)σ̃(s)σ̄ds +
∫ t

0

ffj(s)γ̃
′

fj(s)dWs

σ̃(t) = σ̃(0) +
∫ t

0

µ(s)ds +
∫ t

0

ω̃
′
(σ̃(s), s)dWs,

where

µ(t) = µ({fdj(t)}, σ̃(t), t)

:= µ̃(σ̃(t), t) + ω̃
′
(σ̃(t), t)

∑
i∈ĴN+1

−τifdi(t)γ̃di(t)
1 + τifdi(t)

.

Finally, we consider the process of the forex forward FN+1(t). Since it can be expressed as FN+1(t) :=
S(t)Pf (t,TN+1)

Pd(t,TN+1)
, we easily notice that it is a martingale under the domestic terminal measure, and obtain its

log-process, fN+1(t) under that measure by Itô’s formula:

fN+1(t) = ln(
FN+1(t)
FN+1(0)

) = Z(t) + A(t)
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where

Z(t) = −1
2

∫ t

0

||σ̃Z(s)||2 ds +
∫ t

0

σ̃
′

Z(s)dWs

σ̃Z(t) := σ̃fN+1(t) − σ̃dN+1(t) + σ̃(t)σ̄

=
∑

j∈ĴN+1

(
−τjffj(t)γ̃fj(t)

1 + τjffj(t)
− −τjfdj(t)γ̃dj(t)

1 + τifdj(t)

)
+ σ̃(t)σ̄

and A(t) denotes an exponential-martingale process, which may be a jump process or a affine-structured one,
obtained through Itô’s formula. Because of the independence of Ã, A is again independent of other factors
driven by Brownian motions. Additionally, we assume that the characteristic function of A(t) is available in
closed form.

B Concrete Expansions in Proposition 2

First we state the following lemma. While its derivation is straightforward done by formal Taylor expansions
of the underlying S.D.E.s with respect to ϵ, expression of each term in the lemma is somewhat complicated,
and hence omitted.

Lemma 1 The asymptotic expansions of the domestic, foreign forward rates and the volatility of the spot
forex are given as follows:

f
(ϵ)
dj (t) = fdj(0) + ϵG

Qu,(1)
dj (t) + ϵ2G

Qu,(2)
dj (t) + o(ϵ2) (33)

f
(ϵ)
fj (t) = ffj(0) + ϵG

Qu,(1)
fj (t) + ϵ2G

Qu,(2)
fj (t) + o(ϵ2) (34)

σ(ϵ)(t) = σ(0)(t) + ϵGQu,(1)
σ (t) + ϵ2GQu,(2)

σ (t) + o(ϵ2). (35)

Here σ(0)(t) satisfies the equation σ(0)(t) = σ(0) +
∫ t

0
µ(0)(s)ds.

Then, the asymptotic expansion of Ẑ(ϵ)(t) up to the third order of ϵ(ϵ3-order) can be derived again by formal
Taylor expansions. Proposition 2 is below restated in details.

Proposition 3 The asymptotic expansion of Ẑ(ϵ)(t) up to the third order is expressed as follows:

Ẑ(ϵ)(t) = ϵĜ
Qu,(1)
t + ϵ2Ĝ

Qu,(2)
t + ϵ3Ĝ

Qu,(3)
t + o(ϵ3) (36)

where

Ĝ
Qu,(1)
t :=

∫ t

0

σ
(0)
Z (s)

′
dWQu

s , (37)

Ĝ
Qu,(2)
t :=

∫ t

0

 ∑
i∈ĴN+1

(
g
(1)
fi (ffi(0), s)GQu,(1)

fi (s) − g
(1)
di (fdi(0), s)GQu,(1)

di (s)
)

+ GQu,(1)
σ (s)σ̄


′

dWQu
s ,

(38)

Ĝ
Qu,(3)
t :=

∑
i∈ĴN+1

∫ t

0

G
Qu,(2)
fi (s)(g(1)

fi (ffi(0), s))
′
dWQu

s +
1
2

∑
i∈ĴN+1

∫ t

0

(GQu,(1)
fi (s))2(g(2)

fi (ffi(0), s))
′
dWQu

s

−
∑

i∈ĴN+1

∫ t

0

G
Qu,(2)
di (s)(g(1)

di (fdi(0), s))
′
dWQu

s − 1
2

∑
i∈ĴN+1

∫ t

0

(GQu,(1)
di (s))2(g(2)

di (fdi(0), s))
′
dWQu

s

+
∫ t

0

GQu,(2)
σ (s)σ̄

′
dWQu

s (39)
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and 
g
(1)
di (x, t) :=

(
−τi

(1+τix)2

)
γdi(t), g

(1)
fi (x, t) :=

(
−τi

(1+τix)2

)
γfi(t),

g
(2)
di (x, t) :=

(
2τ2

i

(1+τix)3

)
γdi(t), g

(2)
fi (x, t) :=

(
2τ2

i

(1+τix)3

)
γfi(t).

(proof) Recall that

Ẑ(ϵ)(t) = ϵ

∫ t

0

σ
(ϵ)′

Z (s)dWQu
s (40)

where

σ
(ϵ)
Z (t) =

∑
j∈ĴN+1

(
g
(0)
fj (f (ϵ)

fj (t), t) − g
(0)
dj (f (ϵ)

dj (t), t)
)

+ σ(ϵ)(t)σ̄,

g
(0)
dj (x, t) :=

−τjx

1 + τjx
γdj(t), g

(0)
fj (x, t) :=

−τjx

1 + τjx
γfj(t)

and note that

∂kg
(0)
dj (x, t)
∂xk

= g
(k)
dj (x, t),

∂kg
(0)
fj (x, t)
∂xk

= g
(k)
fj (x, t), k = 1, 2.

With formal Taylor expansion of (40) around ϵ = 0, we have

Ẑ(ϵ)(t) = ϵ
∂Ẑ(ϵ)(t)

∂ϵ
|ϵ=0 +

ϵ2

2
∂2Ẑ(ϵ)(t)

∂ϵ2
|ϵ=0 +

ϵ3

6
∂3Ẑ(ϵ)(t)

∂ϵ3
|ϵ=0 + o(ϵ3),

and set Ĝ
Qu,(1)
t := ∂Ẑ(ϵ)(t)

∂ϵ |ϵ=0, Ĝ
Qu,(2)
t := 1

2
∂2Ẑ(ϵ)(t)

∂ϵ2 |ϵ=0 and Ĝ
Qu,(3)
t := 1

6
∂3Ẑ(ϵ)(t)

∂ϵ3 |ϵ=0. As for Ĝ
Qu,(1)
t ,

differentiating the equation (40) with respect to ϵ once, we have

∂Ẑ(ϵ)(t)
∂ϵ

=
∫ t

0

σ
(ϵ)′

Z (s)dWQu
s + ϵ

∫ t

0

∂

∂ϵ

(
σ

(ϵ)′

Z (s)
)

dWQu
s .

Then, setting ϵ = 0, we obtain the expression of Ĝ
Qu,(1)
t , that is (37).

Similarly, differentiating the equation (40) with respect to ϵ twice and three times, we have

1
2

∂2Ẑ(ϵ)(t)
∂ϵ2

=
1
2

(
2
∫ t

0

∂

∂ϵ

(
σ

(ϵ)′

Z (s)
)

dWQu
s + ϵ

∫ t

0

∂2

∂ϵ2

(
σ

(ϵ)′

Z (s)
)

dWQu
s

)

=
∫ t

0

 ∑
i∈ĴN+1

(
g
(1)
fi (f (ϵ)

fi (s), s)
∂f

(ϵ)
fi (s)
∂ϵ

− g
(1)
di (f (ϵ)

di (s), s)
∂f

(ϵ)
di (s)
∂ϵ

)
+

∂σ(ϵ)(s)
∂ϵ

σ̄


′

dWQu
s

+
ϵ

2

∫ t

0

∂2

∂ϵ2

(
σ

(ϵ)′

Z (s)
)

dWQu
s ,

1
6

∂3Ẑ(ϵ)(t)
∂ϵ3

=
1
6

(
3
∫ t

0

∂2

∂ϵ2

(
σ

(ϵ)′

Z (s)
)

dWQu
s + ϵ

∫ t

0

∂3

∂ϵ3

(
σ

(ϵ)′

Z (s)
)

dWQu
s

)

=
1
2

∫ t

0

∑
i∈ĴN+1

(
g
(1)
fi (f (ϵ)

fi (s), s)
∂2f

(ϵ)
fi (s)
∂ϵ2

− g
(1)
di (f (ϵ)

di (s), s)
∂2f

(ϵ)
di (s)
∂ϵ2

)′

dWQu
s

+
∫ t

0

∑
i∈ĴN+1

g
(2)
fi (f (ϵ)

fi (s), s)

(
∂f

(ϵ)
fi (s)
∂ϵ

)2

− g
(2)
di (f (ϵ)

di (s), s)

(
∂f

(ϵ)
di (s)
∂ϵ

)2


′

dWQu
s

+
∂2σ(ϵ)(s)

∂ϵ2
σ̄

′
dWQu

s

]
+

ϵ

6

∫ t

0

∂3

∂ϵ3

(
σ

(ϵ)′

Z (s)
)

dWQu
s .
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Letting ϵ = 0 and substituting

f
(ϵ)
dj (t)|ϵ=0 = fdj(0), f

(ϵ)
fj (t)|ϵ=0 = ffj(0),

∂kf
(ϵ)
dj

(t)

∂ϵk |ϵ=0 = k!GQu,(k)
dj (t),

∂kf
(ϵ)
fj

(t)

∂ϵk |ϵ=0 = k!GQu,(k)
fj (t),

∂kσ(ϵ)(t)
∂ϵk |ϵ=0 = k!GQu,(k)

σ (t); k = 1, 2

into these, (38) and (39) are obtained. 2

The formal calculation used in this section is justified by Theorem 3.1 of Kunitomo and Takahashi[2003].

C Coefficients in Theorem 1

In this section, the derivations of Theorem 1 and of its coefficients are briefly explained. Differentiating the
distribution function of X(ϵ) obtained by substituting d = 1, ϕ(ϵ)(x) ≡ 1 and B = (−∞, x] in Theorem 3.4
of Kunitomo and Takahashi[2003], we get the asymptotic expansion of the density function of X(ϵ) as

ϕ
Qu,(ϵ)
X (x) = ϕ0,Σ(x) − ϵ

∂

∂x

{
EQu [g2|g1 = x]ϕ0,Σ(x)

}
−ϵ2

∂

∂x

{
EQu [g3|g1 = x]ϕ0,Σ(x)

}
+

1
2
ϵ2

∂2

∂x2

{
EQu [g2

2 |g1 = x]ϕ0,Σ(x)
}

+ o(ϵ2),

where ϕµ,Σ(x) is the density function of N(µ,Σ). Then, by Fourier transformation of this density function,
the characteristic function of X(ϵ) is obtained in the form with conditional expectations.

Since the above expectations conditional on g1 = x are given as polynomials of x by

EQu [g2|g1 = x] = CQu

2,1

x

Σ
+ CQu

2,2 (
x2

Σ2
− 1

Σ
)

EQu [g3|g1 = x] = CQu

3,1

x

Σ
+ CQu

3,2 (
x2

Σ2
− 1

Σ
) + CQu

3,3 (
x3

Σ3
− 3x

Σ2
)

EQu [g2
2 |g1 = x] = CQu

4,0 + CQu

4,1

x

Σ
+ CQu

4,2 (
x2

Σ2
− 1

Σ
)

+CQu

4,3 (
x3

Σ3
− 3x

Σ2
) + CQu

4,4 (
x4

Σ4
− 6x2

Σ3
+

3
Σ2

),

with certain constants {CQu

i,j }, the coefficients D
Qu,(ϵ)
2 , D

Qu,(ϵ)
3 , D

Qu,(ϵ)
4 , D

Qu,(ϵ)
5 and D

Qu,(ϵ)
6 in Theorem 1

are reduced to sums of {CQu

i,j } as

D
Qu,(ϵ)
2 := ϵCQu

2,1 + ϵ2CQu

3,1 + 1
2ϵ2CQu

4,0

D
Qu,(ϵ)
3 := ϵCQu

2,2 + ϵ2CQu

3,2 + 1
2ϵ2CQu

4,1

D
Qu,(ϵ)
4 := ϵ2CQu

3,3 + 1
2ϵ2CQu

4,2

D
Qu,(ϵ)
5 := 1

2ϵ2CQu

4,3

D
Qu,(ϵ)
6 := 1

2ϵ2CQu

4,4 .

Here the derivation only of CQu

2,1 and CQu

2,2 are shown while the others done in a similar manner are omitted due
to limitation of spaces. Formulas necessary for those calculations are found in Takahashi and Takehara[2007].

For evaluation of EQu [g2|g1 = x], we note that g1 and g2 are expressed as

g1 = Ĝ
Qu,(1)
T =

∫ T

0

σ
(0)
Z (s)

′
dWQu

s

g2 = Ĝ
Qu,(2)
T =

∫ T

0

[
∑

i∈ĴN+1

g
(1)
fi (ffi(0), s)GQu,(1)

fi (s) −
∑

i∈ĴN+1

g
(1)
di (fdi(0), s)GQu,(1)

di (s) + GQu,(1)
σ (s)σ̄]

′
dWQu

s
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where T ≡ TN+1. Then,

EQu [g2|g1 = x] = EQu

∫ T

0

∑
i∈ĴN+1

G
Qu,(1)
fi (s)(g(1)

fi (ffi(0), s))
′
dWQu

s |g1 = x


− EQu

∫ T

0

∑
i∈ĴN+1

G
Qu(1)
di (s)(g(1)

di (fdi(0), s))
′
dWQu

s |g1 = x


+ EQu

[∫ T

0

GQu,(1)
σ (s)σ̄

′
dWQu

s |g1 = x

]
.

Each term in the right hand side of this equation is evaluated as

1.

EQu

[∫ T

0

G
Qu,(1)
di (s)(g(1)

di (fdi(0), s))
′
dWQu

s |g1 = x

]

=

{
fdi(0)

∫ T

0

(∫ s

0

γ
′

di(r)σ
(0)
Z (r)dr

)
(g(1)

di (fdi(0), s))
′
σ

(0)
Z (s)ds

}(
x2

Σ2
− 1

Σ

)
=: aQu,d

2i

(
x2

Σ2
− 1

Σ

)
2.

EQu

[∫ T

0

G
Qu,(1)
fi (s)(g(1)

fi (ffi(0), s))
′
dWQu

s |g1 = x

]

=

{
ffi(0)

∫ T

0

(∫ s

0

γ
′

fi(r)σ
(0)
Z (r)dr

)
(g(1)

fi (ffi(0), s))
′
σ

(0)
Z (s)ds

}(
x2

Σ2
− 1

Σ

)
=: aQu,f

2i

(
x2

Σ2
− 1

Σ

)
3.

EQu

[∫ T

0

GQu,(1)
σ (s)σ̄

′
dWQu

s |g1 = x

]

=

{∫ T

0

(∫ s

0

Y −1
r ∂ϵµ(r)dr

)
Ysσ̄

′
σ

(0)
Z (s)ds

}
x

Σ

+

{∫ T

0

(∫ s

0

Y −1
r ω

′
(r)σ(0)

Z (r)dr

)
Ysσ̄

′
σ

(0)
Z (s)ds

}(
x2

Σ2
− 1

Σ

)
=: bQu

2

x

Σ
+ cQu

2

(
x2

Σ2
− 1

Σ

)
where Ys := e

∫ s

0
∂σµ(r)dr, ∂ϵµ(s) := ∂ϵµ

(ϵ)(s)|ϵ=0, ∂σµ(s) := ∂σµ(ϵ)(s)|ϵ=0 and ω(s) := ω(σ(0)(s), s).

Then, CQu

2,1 and CQu

2,2 are defined by

CQu

2,1 := bQu

2

CQu

2,2 :=
∑

i∈ĴN+1

(aQu,f
2i − aQu,d

2i ) + cQu

2 .

In fact, the coefficients CQu

2,1 and CQu

2,2 do not depend on u. However, those which correspond to the expansion
up to the higher order than the second order sometimes do.
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D Supplement for Remark 4

In remark 4, it was mentioned that as long as some conditions are met, which are natural for practical
purposes, how you choose a value of the parameter ϵ does not matter to option prices by our approximation.
More precisely, we can obtain the same approximated prices regardless of a value of ϵ under the constraints
ϵγdj(t) = γ̃dj(t), ϵγfj(t) = γ̃fj(t), ϵσ(0) = σ̃(0) and ϵω(x, t) = ω̃(x, t) for an arbitrary t ∈ [0, T ] in (11), (12),
(13) and (14). We here see this briefly.

Suppose we rewrite the system of SDEs (11), (12), (13) and (14) not with ϵ but with another constant
parameter δ ∈ (0, 1] and define c = δ/ϵ. In order to guarantee that the above conditions are satisfied, γdj(t),
γfj(t), σ(0) and ω(x, t) must be replaced by γdj(t)

c , γfj(t)
c , σ(0)

c and ω(x,t)
c , respectively in the underlying

SDEs.
In (20) in Theorem 2, all that depends on ϵ is only Φ̂(ϵ)(·) or equivalently Φ̂Qu,(ϵ)

X (ϵh(·)). Thus, it is
sufficient to show

Φ̂Qu,(δ)
X (δv

′
) = Φ̂Qu,(ϵ)

X (ϵv
′
). (41)

Moreover, due to definition of Φ̂Qu,(ϵ)
X (·) in (19), it is equivalent to see

Φ0,Σ(δ)(cv) = Φ0,Σ(ϵ)(v), (42)

and D
Qu,(δ)
l =

1
cl

D
Qu,(ϵ)
l ; for l = 2, · · · , 6 (43)

where Σ(δ) and Σ(ϵ) are defined in the same way as Σ in (18) under the SDEs with the re-scaled parameters;

(18) Σ :=
∫ T

0

||σ(0)
Z (s)||2ds.

Since under our re-specification of (11), (12), (13) and (14) with δ = cϵ we have Σ(δ) = 1
c2 Σ(ϵ), the former

part can be shown as

Φ0,Σ(δ)(cv) = exp
{
−Σ(δ)

2
(cv)2

}
= exp

{
−Σ(ϵ)

2
v2

}
= Φ0,Σ(ϵ)(v).

Also, the latter can be shown with easy calculations while they are omitted due to their length.
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Table 3: A separate calibration to the observed implied volatilities for a five-year and ten-year maturity.
Date 07/09/27 Type Separate

5y 10put 25put ATM 25call 10call
Market I.V. 16.66% 10.92% 7.90% 6.07% 6.96%
Model I.V. 16.66% 10.92% 7.90% 6.07% 6.95%
differences 0.00% -0.01% 0.00% 0.00% -0.01%

10y 10put 25put ATM 25call 10call
Market I.V. 20.00% 13.59% 10.50% 8.34% 9.50%
Model I.V. 20.01% 13.59% 10.50% 8.35% 9.49%
differences 0.01% -0.00% 0.00% 0.01% -0.02%

Date 07/10/30 Type Separate

5y 10put 25put ATM 25call 10call
Market I.V. 15.58% 11.20% 8.10% 6.60% 6.38%
Model I.V. 15.59% 11.20% 8.10% 6.60% 6.38%
differences 0.01% 0.00% 0.00% -0.00% 0.00%

10y 10put 25put ATM 25call 10call
Market I.V. 19.29% 13.49% 10.35% 8.19% 8.69%
Model I.V. 19.29% 13.48% 10.34% 8.19% 8.69%
differences -0.00% -0.01% -0.01% 0.00% 0.00%

Date 07/12/07 Type Separate

5y 10put 25put ATM 25call 10call
Market I.V. 17.20% 11.72% 8.45% 6.62% 7.00%
Model I.V. 17.19% 11.71% 8.45% 6.62% 7.00%
differences -0.01% -0.01% 0.00% 0.00% 0.00%

10y 10put 25put ATM 25call 10call
Market I.V. 20.46% 13.98% 10.65% 8.38% 9.26%
Model I.V. 20.46% 13.98% 10.65% 8.38% 9.26%
differences -0.00% 0.00% 0.00% -0.00% 0.00%
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Figure 1: A comparison of the accuracy of each estimator in prices for a five-year maturity.
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Figure 2: A comparison of the accuracy of each estimator in implied volatilities for a five-year maturity.
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Figure 3: A comparison of the accuracy of each estimator in prices for a ten-year maturity.
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Figure 4: A comparison of the accuracy of each estimator in implied volatilities for a ten-year maturity.

29



Table 4: A joint calibration to the observed implied volatilities for a five-year and ten-year maturity.
Date 07/09/27 Type Joint

5y 10put 25put ATM 25call 10call
Market I.V. 16.66% 10.92% 7.90% 6.07% 6.96%
Model I.V. 16.88% 11.14% 7.88% 6.07% 6.87%
differences 0.22% 0.22% -0.02% 0.00% -0.09%

10y 10put 25put ATM 25call 10call
Market I.V. 20.00% 13.59% 10.50% 8.34% 9.50%
Model I.V. 19.76% 13.63% 10.51% 8.37% 9.13%
differences -0.24% 0.04% 0.01% 0.03% -0.37%

Date 07/10/30 Type Joint

5y 10put 25put ATM 25call 10call
Market I.V. 15.58% 11.20% 8.10% 6.60% 6.38%
Model I.V. 15.90% 11.11% 8.09% 6.58% 6.50%
differences 0.32% -0.09% -0.01% -0.01% 0.12%

10y 10put 25put ATM 25call 10call
Market I.V. 19.29% 13.49% 10.35% 8.19% 8.69%
Model I.V. 18.99% 13.57% 10.35% 8.19% 8.69%
differences -0.30% 0.08% 0.00% 0.01% -0.11%

Date 07/12/07 Type Joint

5y 10put 25put ATM 25call 10call
Market I.V. 17.20% 11.72% 8.45% 6.62% 7.00%
Model I.V. 17.40% 11.77% 8.45% 6.68% 6.94%
differences 0.20% 0.05% -0.03% 0.06% -0.05%

10y 10put 25put ATM 25call 10call
Market I.V. 20.46% 13.98% 10.65% 8.38% 8.87%
Model I.V. 20.25% 13.87% 10.68% 8.38% 8.87%
differences -0.21% -0.11% 0.03% 0.00% -0.39%
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Figure 5: A separate calibration to the observed implied volatilities for a five-year or ten-year maturity on
Sep 27, 2007.
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Figure 6: A separate calibration to the observed implied volatilities for a five-year or ten-year maturity on
Oct 30, 2007.
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Figure 7: A separate calibration to the observed implied volatilities for a five-year or ten-year maturity on
Dec 07, 2007.
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Figure 8: A joint calibration to the observed implied volatilities for a five-year and ten-year maturity on Sep
27, 2007.
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Figure 9: A joint calibration to the observed implied volatilities for a five-year and ten-year maturity on Oct
30, 2007.
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Figure 10: A joint calibration to the observed implied volatilities for a five-year and ten-year maturity on
Dec 07, 2007.
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Figure 11: Convergences of the estimators for a five-year maturity in SSM.
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Figure 12: Convergences of the estimators for a ten-year maturity in SSM.
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