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Pricing and Hedging of Long-term Futures and Forward Contracts by a Three-Factor Model 

Kenichiro Shiraya+  Akihiko Takahashi* 

 

Abstract 

This paper shows pricing and hedging efficiency of a three factor stochastic mean reversion Gaussian 

model of commodity prices using oil and copper futures and forward contracts. The model is estimated 

using NYMEX WTI (light sweet crude oil) and LME Copper futures prices and is shown to fit the data 

well. Furthermore, it shows how to hedge based on a three-factor model and confirms that using three 

different futures contracts to hedge long-term contract outperforms the traditional parallel hedge based on 

a single futures position by time series data and simulation. It also finds that the three factor model 

outperforms its two-factor version in replication of actual term structures and that stochastic mean 

reversion models outperform constant mean reversion models in Out of Sample hedges. 

 

1. Introduction 

The term structure of commodities futures undergoes complex shape changes and a number of different 

models have been proposed for its estimation. In this paper, we propose a three-factor model to estimate 

the term structure of commodities futures, and then propose and verify effective hedging techniques for 

long-term futures and forwards estimated with the model, using as hedging instruments the short and 

medium-term futures that are tradable. 

Black (1976) advocated the idea of trading commodities as “equities without dividends” and made use 

of geometric Brownian motion. However, given the complexity of the shapes associated with the term 

structure of commodities futures, the simple geometric Brownian motion model proposed by Black (1976) 

is not a good fit. To resolve this problem, mean reversion has been introduced. Unlike equities, when 

commodities prices rise, there is generally (albeit with a time lag) an increase in supply; conversely, when 

prices decline, supply decreases. The fact that prices are determined by the supply and demand balance 

means that the supply side adjusts supply volumes, which has the effect of constraining the potential for 

commodities prices to move in a single direction. That is why it is generally considered appropriate to 

employ mean reversion in commodities pricing models. Much empirical research has been done on this. 

For example, it is verified in Bessembinder et al (1995). 
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Nonetheless, even if mean reversion is used in a one-factor model, it is difficult to represent the 

complex term structure of commodities futures, leading Gibson - Schwartz (1990) to propose a model that 

supplements the fluctuation of spot prices with a convenience yield stochastic process, and Schwartz 

(1997) to propose a model that explicitly employs convenience yields and interest rates as the stochastic 

process. 

On the other hand, different methods have been proposed that do not attempt to individually model 

commodities spot prices, convenience yields or interest rates but instead attempt direct modeling using 

state variables with a mean reversion of spot prices. Examples of direct modeling of spot prices include 

Schwartz - Smith (2000)’s two-factor mean reversion model, Casassus - Dufresne (2005)’s three-factor 

mean reversion model and Cortazar - Naranjo (2006)’s N-factor mean reversion model. 

We use three-factor Gaussian models with constant mean reversion or without constant mean reversion. 

The models’ parameters are estimated using a Kalman filter and have been confirmed to reproduce actual 

futures prices on the NYMEX WTI (light sweet crude oil) and LME Copper markets. Where our research 

differs from prior research is that we study cases both with and without a constant mean reversion level in 

the commodities price model and provide a detailed analysis not only of the model’s ability to reproduce 

futures prices, but also its utility in hedging. 

Commodities hedging is a long-debated topic. For example, Culp - Miller (1995), Mello - Parsons 

(1995) and many other papers have discussed it in terms of the Metallgesellschaft case. Culp - Miller 

(1995) explains that, like equities, etc., the forward prices for commodities are determined by the 

mechanism of “cost of carry” and argues that long-term forward contracts can be hedged by holding 

short-term futures and rolling over the contract months. On the other hand, Mello - Parsons (1995) 

acknowledges that it is possible to use short-term futures to hedge long-term forward contracts, but 

criticizes the hedging technique employed by Metallgesellschaft, which was to use the same number of 

units of short-term futures to hedge a unit of long-term forward contracts. They use the Gibson - Schwartz 

(1990) model to demonstrate that short-term prices are more sensitive to spot price changes than 

long-term prices and that the actual number of short-term futures required to hedge 1 unit of long-term 

forward contracts is approximately 0.3. Because of this, the trading of Metallgesellschaft, while having 

hedging elements, is deemed to be primarily futures speculation. Schwartz (1997) also comments on this 

point, using 1-3 factor models to calculate hedge positions and explaining that when one factor is used, 

the position is significantly less than 1, approximately 0.2-0.4, and even with two- and three-factors it is 

still, on a net basis, less than 1. Neuberger (1999) uses multiple contracts to hedge long-term exposure and 

shows the benefits of the simultaneous use of different hedging instruments. 

Examples of research analyzing not only hedge positions but also hedging errors include Brenann - 

Crew (1997), Korn (2005) and Buhler - Korn - Schobel (2004). Brenann - Crew (1997) attempts to use a 

number of different expiring futures as hedging instruments for hedges under a two-factor model, but all 

of the futures it uses as hedges expire within 6 months, and the futures to be hedged are also extremely 

short at no more than 2 years. Buhler- Korn - Schobel (2004) uses several different models to compare 
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and analyze performance when hedging 10-year forward contracts. However, the futures used as hedging 

instruments are extremely short, expiring in no more than 2 months, and the data also only goes until 1996, 

so this analysis does not incorporate the rapid rises in commodities prices seen in recent years. Korn 

(2005) showed hedging error with one and two-factor models, but he didn’t show it with a three factor 

model. 

In this paper, we compare hedging error performed by Metallgesellschaft’s parallel hedging and 

performed by multi-factor model based hedging. More specifically, we verify the stability of hedges based 

on two- and three-factor models that do and do not have a constant mean reversion level, and provide 

detailed analysis of the differences in hedge effectiveness due to differences in the way in which state 

variables are calculated and differences in the required futures units, and hedging error rate distribution 

(based on its simulations) due to differences in the contract months of the futures used as hedging 

instruments. We also use time series data to verify hedges for long-term forward contracts, for which 

interest rate factors have been taken into account. We find that the three-factor model without constant 

mean reversion level is possible to effectively hedge long-term futures against the complex changes in 

term structures of recent years.  

In section 2 we propose a three-factor model including a two-factor model as a special case, which does 

not explicitly incorporate interest rates or convenience yields and use that model to derive an analytic 

solution for futures prices. section 3 makes use of Kalman filters to estimate the model’s parameters. 

section 4 goes on to make use of short and medium term futures to create a hedging technique for 

long-term futures and to analyze performance when this hedging strategy is used. section 5 takes a more 

practical approach, analyzing hedges on “Out of Sample” and long-term forward contracts. section 6 uses 

a simulation to analyze how the form of distribution changes for the hedge error rate depending upon the 

selection of futures contract months. In the appendix we provide the expectation and covariance of the 

model expressed in futures prices and notes on the numbers of units of nearer maturity futures required to 

hedge long-term futures. 

2. Model 

We first describe a three-factor Gaussian model used for pricing and hedging futures and forward 

contracts. tS  represents spot prices of commodities at time t . The logarithm of spot prices at this time is 

expressed by the following equation. 

(1) 1log tt xS  . 

1x expresses a state variable corresponding to the spot price of the commodity and follows the 

stochastic differential equation shown below. 

(2)   1
1

1321
ttttt dWdtxxxdx   , 
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2
2

22
ttt dWdtxdx   , 

  3
3

33
ttt dWdtxdx   . 

2x expresses a state variable corresponding to the difference between medium-term and long term 

commodity futures prices; 3x is a state variable corresponding to the long-term portion of the term 

structure. i
tW ( 3,2,1i ) mutually have the following correlations in standard Browning motion under 

equivalent Martingale measures (EMM). 

(3) dtdWdW ij
j

t
i

t  , 3,2,1, ji . 

Parameter   expresses 1x ’s speed of reversion to 32 xx  ;   expresses 2x ’s speed of 

attenuation. If 0 , then 2x  is pulled back towards 0 .   expresses the speed with which 

3x reverts to   when 0 . Therefore, intuitively, if 0  , over the course of time the 

spot price: 

1x  (spot price)  32 xx   (medium-term price) 3x  (long-term price). 

is the trend expressed. 

The stochastic differential equations of individual state variables can be analytically solved and 

expressed as follows: 

(4) 1
tx      3

0
2
0

1
0 xeexeexe ttttt 





  





  

1

0

)(
11 s

t sttt dWeee   












  









 

  2

0

)()(
2 s

t stst dWee  


 


   3

0

)()(
3 s

t stst dWee  


 


 , 

2
tx  2

0

)(
2

2
0 s

t stt dWexe      , 

3
tx    3

0

)(
3

3
0 1 s

t sttt dWeexe     



. 

At this time, the futures price is expressed as shown below. 

Theorem 2.1. 

Using )(tGT  to represent the price at time t  of a future with expiration T , under EMM: 
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(5) )(tGT   Tt SE 






 


2

)(
),,,(exp 11321

11

tT
tTxxx ttt . 

In this equation, tE  expresses the conditional expectation at time t . For a discussion of 11  and 11 , 

see Appendix 1. 

Proof. 

TS  is a log-normal distribution and the result can therefore be found by calculating the moment 

generating function of normal distribution. Q.E.D. 

Next consider the market price of risk.  )(),(),()( 321 tttt    is the market price of risk for state 

variables 1x , 2x and 3x . At this time, the following relationship holds true between observed measure 

P  and equivalent Martingale measure Q . 

(6) 
tP

t
Q

t duuWW
0

)( . 

Therefore, under measure P , the stochastic differential equations that satisfy individual state variables 

are: 

(7)   P
ttttt dWdttdtxxxdx ,1

111
1321 )(   , 

P
ttt dWdttdtxdx ,2

222
22 )(   , 

  P
ttt dWdttdtxdx ,3

333
33 )(   . 

In particular, rewriting )(t  with the state variables and a time function  321 ,,, xxxt : 

(8)    321321
1 ,,, ttt xxxaxxxt  , 

  2321
2 ,,, tbxxxxt  , 

 








)0(

)0(
,,,

3
321

3 



c

dxc
xxxt t . 

The stochastic differential equation described above can therefore be rewritten as: 

(9)   P
ttttt dWdtxxxdx ,1

1
1321 ˆ   , 

P
ttt dWdtxdx ,2

2
22 ˆ   , 

  P
ttt dWdtxdx ,3

3
33 ˆˆ   , 

where 
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̂ a1  , ̂ b2  , ̂ c3  , ̂ d3  . 

Remark 2.1. 

In the discussion above, when 0 , solving for the limit will enable analytic expression. Also, when 

0 , 3x  doesn’t have a constant mean reversion level and the model itself does not have an ultimate 

mean reversion level. Below, this paper refers to cases in which 0  as the “constant mean reversion 

model,” and 0  as the “stochastic mean reversion model.” Both types of models are essentially 

contained by Cortazar - Naranjo (2006) or Casassus - Dufresne (2005). 

Remark 2.2. 

A two-factor constant mean reversion or two-factor stochastic mean reversion model can be obtained by 

setting 02 x . These models are essentially the same as in Korn (2005) that used the two-factor models 

for analysis of hedging. For a two-factor model in the subsequent analysis, we put a restriction, 

02 x in our three-factor models. 

3. Estimation of parameters 

This section estimates the parameters in the model. 

Using nv  and nw  as white noise with mean 0 and variance 1, the model described above can be 

expressed as the following system model and observation model. 

[System model] 

nn
x
nnnn vQCxFx  1 , 


















3

2

1

x

x

x

xn , 

   





















 












t

t

ttttt

n

e

e

eeeee

F












ˆ

ˆ

ˆˆˆˆˆ

00

00

ˆˆ

ˆ

ˆˆ

ˆ

, 

  0nQE ,    )( tQCovG ijnn  , 

 














































t

tt

x
n

e

ee

C













ˆ

ˆˆ

1
ˆ
ˆ

0

ˆˆ

ˆˆ
1

ˆ
ˆ

. 

* )( tij   expresses covariance. For specific formulas, see Appendix 1. 
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[Observation model] 

nn
y
nnnn wRCxHy  , 



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nR  expresses observational errors where ih , ),1( mi   denote those standard deviations. 

In light of the computational burden, the paper assumes that the observational error of futures at 

individual maturities is independent. Parameters are estimated using the Kalman filter of this state-space 

representation. More specifically, the following prediction and filtering are alternatingly repeated and a 

parameter set   is obtained so as to maximize the log-likelihood. 

[Prediction] 

x
nnnnnn CxFx   1|11| , 

n
t

nnnnnn GFVFV   1|11| . 

[Filtering] 

n
t

nnnnnn RHVHd   1|1| , 

1
1|1|


 nn
t

nnnn dHVK , 

 y
nnnnnnnnnn CxHyKxx   1|1|| , 

  1||  nnnnnn VHKIV . 

[Log-likelihood] 

 


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n
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1|detlog)2log(

2

1
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y
nnnnnn CxHyu  1| . 
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Even if optimal values are not set for the initial values of x  and V , as calculation proceeds using the 

Kalman filter both approach optimal values. Therefore, the initial value problem can be avoided by 

discarding several steps of data when estimating parameters without using the likelihood calculation. 

Estimations of two-factor models are obtained similarly. 

3.1 Estimation results 

The constant mean reversion model and stochastic mean reversion model parameters were estimated 

using the procedure described above. The following data was used for the estimations. 

NYMEX WTI (light sweet crude oil) 

Data in 5-business day increments was used for the periods January 1997 - October 2002, January 1997 

- October 2003 and January 1997 - November 2007; futures contract are, from the closest: Front Month, 

1st DEC, 2nd DEC, 3rd DEC, 4th DEC, 5th DEC, 6th DEC and 7th DEC. Here, j-th DEC stands for the j-th 

contract expiring in December. If Front Month = 1st DEC, it was used as front month. Data until 10th DEC 

exists after April 2007. However, data from 8th DEC to 10th DEC are not used in estimation due to lack of 

reliability of the data. 

LME Copper 

Data in 5-business day increments was used for the periods September 2002 - November 2004 and 

September 2002 - December 2007; futures contract are, from the closest: Front Month, 1st DEC, 2nd DEC, 

3rd DEC, 4th DEC, 5th DEC and 6th DEC. If Front Month = 1st DEC, it was used as front month. 

These are liquid and typical assets of oil and metal futures. The choice of time period is the longest 

period for which the data has mid-term (7th DEC in WTI, 6th DEC in Copper) futures. Tables 1-4 show the 

parameters and observational errors nR  obtained using the data described above.  

Table 1: three-factor model (WTI) 

-Nov 07 Std Err -Oct 03 Std Err -Oct 02 Std Err -Nov 07 Std Err -Oct 03 Std Err -Oct 02 Std Err
κ 1.112 0.011 1.007 0.014 1.107 0.020 1.090 0.009 1.159 0.015 1.048 0.017
γ 0.275 0.007 0.159 0.012 0.293 0.018 0.262 0.007 0.284 0.009 0.253 0.011
α 0.006 0.010 0.052 0.023 0.311 0.024 -0.009 0.001 -0.007 0.001 -0.007 0.002
β 0.004 0.001 0.021 0.008 0.110 0.007 - - - - - -
a 0.000 - 0.000 - 0.597 1.787 0.000 - 0.000 - 0.529 1.861
b 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 -
c 0.528 0.341 0.000 - 0.070 0.219 0.482 0.266 0.062 0.318 0.063 0.347
d 0.005 0.019 0.002 0.039 0.017 0.071 - - - - - -

Sigma1 0.362 0.011 0.359 0.014 0.371 0.015 0.360 0.010 0.387 0.015 0.363 0.013
Sigma2 0.144 0.004 0.202 0.028 0.374 0.043 0.142 0.003 0.137 0.004 0.138 0.005
Sigma3 0.170 0.059 0.251 0.067 0.399 0.065 0.190 0.005 0.171 0.006 0.182 0.008
Rho12 0.155 0.047 0.048 0.077 -0.173 0.051 0.153 0.047 0.155 0.065 0.192 0.070
Rho23 -0.601 0.205 -0.851 0.199 -0.983 0.116 -0.539 0.033 -0.599 0.052 -0.619 0.062
Rho31 0.396 0.141 0.237 0.067 0.352 0.065 0.369 0.034 0.282 0.047 0.261 0.051

Front Month 0.041 0.001 0.049 0.002 0.047 0.002 0.041 0.001 0.047 0.002 0.045 0.002
1stDec 0.000 - 0.004 0.002 0.000 - 0.000 - 0.000 - 0.000 -
2ndDec 0.007 0.000 0.013 0.001 0.006 0.000 0.007 0.000 0.008 0.000 0.007 0.000
3rdDec 0.002 0.000 0.008 0.000 0.003 0.000 0.002 0.000 0.002 0.000 0.002 0.000
4thDec 0.004 0.000 0.001 0.000 0.004 0.000 0.004 0.000 0.005 0.000 0.005 0.000
5thDec 0.003 0.000 0.001 0.000 0.002 0.000 0.003 0.000 0.003 0.000 0.003 0.000
6thDec 0.000 - 0.001 0.000 0.002 0.000 0.000 - 0.000 - 0.000 -
7thDec 0.004 0.000 0.003 0.000 0.004 0.000 0.004 0.000 0.004 0.000 0.004 0.000

AIC -16837.37 -14499.01

Constant mean reversion model Stochastic mean reversion model

-27157.30 -27146.66 -14241.34-16701.48  
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Table 2: three-factor model (Copper) 

-Dec 07 Std Err -Nov04 Std Err -Dec 07 Std Err -Nov04 Std Err
κ 0.766 0.046 0.918 0.173 0.740 0.039 0.930 0.180
γ 0.177 0.036 0.143 0.069 0.161 0.024 0.153 0.036
α 0.329 0.114 0.036 0.633 -0.059 0.010 -0.014 0.009
β 0.052 0.015 0.007 0.084 - - - -
a 0.000 - 0.000 - 0.000 - 0.000 -
b 0.000 - 1.720 2.915 0.000 - 2.044 1.890
c 0.092 0.212 0.079 0.567 0.153 0.331 0.096 0.546
d 0.000 - 0.000 0.023 - - - -

Sigma1 0.268 0.013 0.224 0.021 0.268 0.013 0.224 0.021
Sigma2 0.631 0.199 0.317 0.307 0.437 0.043 0.287 0.056
Sigma3 0.658 0.201 0.319 0.350 0.440 0.039 0.287 0.046
Rho12 0.074 0.080 0.368 0.339 0.256 0.069 0.402 0.112
Rho23 -0.929 0.057 -0.840 0.593 -0.845 0.033 -0.801 0.072
Rho31 0.237 0.082 0.130 0.250 0.200 0.070 0.155 0.139

Front Month 0.000 - 0.000 - 0.000 - 0.000 -
1stDec 0.007 0.000 0.006 0.001 0.007 0.000 0.006 0.001
2ndDec 0.003 0.000 0.001 0.001 0.003 0.000 0.001 0.001
3rdDec 0.005 0.000 0.004 0.000 0.005 0.000 0.003 0.000
4thDec 0.000 - 0.003 0.001 0.000 - 0.003 0.001
5thDec 0.010 0.001 0.002 0.002 0.010 0.001 0.002 0.002

6thDec 0.011 0.000 0.008 0.002 0.013 0.001 0.008 0.001
AIC -4264.08-9520.27

Stochastic mean reversion modelConstant mean reversion model

-4259.00-9538.94  

Table 3: two-factor model (WTI) 

-Nov 07 Std Err -Oct 03 Std Err -Oct 02 Std Err -Nov 07 Std Err -Oct 03 Std Err -Oct 02 Std Err
κ 0.218 0.004 0.042 0.003 0.511 0.007 0.334 0.006 0.379 0.008 0.395 0.007
α -0.074 0.017 1.187 0.033 0.234 0.014 -0.009 0.001 -0.003 0.001 -0.005 0.001
β 0.012 0.001 0.390 0.010 0.084 0.002 - - - - - -
a 0.000 - 0.000 - 0.000 - 0.000 - 0.000 - 0.000 -
c 0.072 0.434 2.093 1.300 0.080 0.862 0.218 0.293 0.035 0.389 0.000 -
d 0.001 0.002 1.617 0.698 0.000 0.262 - - - - - -

Sigma1 0.426 0.027 0.171 0.009 0.225 0.012 0.193 0.006 0.175 0.008 0.190 0.010
Sigma3 0.520 0.036 0.865 0.129 0.222 0.076 0.180 0.005 0.160 0.005 0.167 0.006
Rho31 0.941 0.034 -0.748 0.145 0.114 0.061 0.540 0.029 0.419 0.041 0.375 0.047

Front Month 0.145 0.006 0.137 0.007 0.009 0.005 0.145 0.006 0.142 0.008 0.127 0.007
1stDec 0.101 0.009 0.087 0.009 0.002 0.003 0.075 0.005 0.075 0.006 0.066 0.005
2ndDec 0.029 0.002 0.016 0.001 0.000 0.001 0.016 0.001 0.016 0.001 0.015 0.001
3rdDec 0.009 0.000 0.002 0.000 0.000 0.000 0.002 0.000 0.003 0.000 0.002 0.001
4thDec 0.001 0.000 0.003 0.000 0.000 0.000 0.003 0.000 0.005 0.000 0.006 0.000
5thDec 0.002 0.000 0.000 - 0.000 - 0.000 - 0.004 0.000 0.004 0.000
6thDec 0.000 - 0.004 0.000 0.000 0.000 0.005 0.000 0.000 - 0.000 -
7thDec 0.004 0.000 0.007 0.000 0.000 0.001 0.009 0.000 0.005 0.000 0.005 0.000

AIC

Constant mean reversion model Stochastic mean reversion model

-22211.90 -12770.44 -22632.97 -12253.04-14422.80 -14387.29  

Table 4: two-factor model (Copper) 

-Dec 07 Std Err -Nov04 Std Err -Dec 07 Std Err -Nov04 Std Err
κ 0.122 0.006 0.327 0.016 0.137 0.018 0.327 0.015
α 2.960 0.151 0.002 0.124 -0.032 0.014 -0.016 0.003
β 0.407 0.021 0.001 0.017 - - - -
a 0.000 - 0.000 - 0.000 - 0.000 -
c 1.879 5.062 0.000 - 0.484 0.497 0.000 -
d 0.152 0.652 0.034 0.708 - - - -

Sigma1 0.275 0.015 0.223 0.021 0.265 0.013 0.218 0.020
Sigma3 0.927 0.469 0.092 0.212 0.469 0.049 0.194 0.015
Rho31 -0.239 0.138 0.893 2.021 0.014 0.078 0.409 0.079

Front Month 0.026 0.001 0.014 0.003 0.040 0.002 0.014 0.003
1stDec 0.000 - 0.003 0.003 0.003 0.004 0.003 0.003
2ndDec 0.010 0.000 0.006 0.002 0.026 0.003 0.006 0.002
3rdDec 0.000 - 0.005 0.001 0.018 0.003 0.005 0.001
4thDec 0.015 0.002 0.003 0.001 0.000 - 0.003 0.001
5thDec 0.031 0.004 0.005 0.001 0.024 0.002 0.005 0.001
6thDec 0.042 0.004 0.008 0.002 0.061 0.006 0.008 0.002

AIC

Stochastic mean reversion modelConstant mean reversion model

-3922.25-6806.08-3927.20-7662.46  

Here, we note that observational errors in three-factor models are very small and that the model 

replicates the observed futures prices very well. In the two-factor constant mean reversion model, 

estimates of   using the WTI data up to 2003 and Copper data up to 2007 were 4.0 , and hence 

3x  was observed to have a constant mean reversion level, but in all other periods, both WTI and Copper 

had  of virtually 0. Therefore, 3x  does not fluctuate with a constant mean reversion level, but is rather 

more similar to a random walk. The parameters for Copper are significantly different between the data set 
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up to 2004 and the data set up to 2007. When estimations are made using the data up to 2004, there is only 

a little more than 2 years data used, and presumably the calculation results in biased parameters that are 

optimized to these 2 years. The market price of risk is expressed largely in parameter c  and d  for 

either WTI or Copper. We also observe that standard errors of Copper’s parameters are worse than those 

of WTI’s ones in part due to shortage of data used in estimation. Finally, three-factor models show better 

fitting results than two-factor models in terms of AIC (Akaike’s Information’s Criterion). 

3.2 Comparison against actual data 

This section verifies the degree of correlation between the state variables calculated with the Kalman 

filter using data through 2007and settlement future prices for NYMEX WTI and LME Copper. 

As explained in section 2, the state variables correspond to the term structure of futures. In this case, the 

state variables are assumed to have the correspondences noted in Table 5 and the analysis seeks to 

determine the degree of correlation between them. 

Table 5: Correspondence of state variables 

WTI Copper

X1 Front Month Future Price Front Month Future Price

X2 (3rd DEC Future Price) - (6th DEC Future Price)* (2nd DEC Future Price) - (5th DEC Future Price)*

X3 6th DEC Future Price 5th DEC Future Price

X1 2nd DEC Future Price Front Month Future Price

X3 6th DEC Future Price 5th DEC Future Price

* X2 is compared with the spread between 6th Dec and 3rd Dec for WTI, and the spread between 5th Dec and 2nd Dec for Copper.

3factor

2factor

 

Table 6 contains correlations for state variables and logarithmic prices calculated from their 5-business 

day increments. 

Table 6: Correlations 

WTI Copper WTI Copper

X1 0.926 0.923 0.927 0.924
X2 0.944 0.933 0.941 0.939
X3 0.980 0.841 0.977 0.821
X1 0.857 0.885 0.864 0.876
X3 0.959 0.720 0.986 0.784

2factor

3factor

Constant mean reversion model Stochastic mean reversion model

 

Both WTI and Copper have generally high correlations, indicating that the movement of state variables 

roughly corresponds to actual data. Also, the three-factor models provide higher correlations than the 

two-factor models. 

Next, we examine whether models can reproduce the actual term structures of futures prices. Figure 1 

shows the term structures of two-factor and three-factor models against market prices of WTI futures in 

November 3rd, 2003, November 1st, 2004, November 1st, 2005, November 1st, 2006 and November 1st, 

2007, respectively. Also Figure 2 shows results of Copper in December 1st, 2003, December 1st, 2004, 

December 1st, 2005, December 1st, 2006 and December 3rd, 2007. 
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Figure 1: WTI Future term structure 
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Figure 2: Copper Future term structure 
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(3) 1/11/2005
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We can observe in those cases that three-factor models can replicate the actual term structures well 

while two-factor models have some difficulty in capturing the actual term structures. In particular, the 

difference of fitting between the two-factor model and the three-factor model frequently occurs in 2006 

and 2007 to the extent observed in the figures (1) and (2) of Table 1 and Table 2. 

4. Futures hedging techniques 

This section describes a method for building a hedging strategy for 1 unit of a long-term futures 

contract and observes how the three-factor model described in this paper can be applied to this task. 

The equation expressing the futures price uses state variables 1x , 2x  and 3x  so that the shape of the 

futures price changes according to changes in these state variables (assuming no change in the parameters). 

Therefore, it is possible in theory to hedge against long-term futures price fluctuations by calculating the 

deltas of the state variables for the long-term futures price and taking a position  t321 ,,   in the 

nearer maturity future that cancels out those deltas. 

In a three-factor model, there are 3 factors to be hedged and therefore futures with 3 different 

expirations will be required to build the hedge portfolio. )(
1

tGT , )(
2

tGT and )(
3

tGT express nearer 

maturity futures prices of different expirations, and )(
4

tGT  the long-term futures price to be hedged. In 

this case,   is the solution to the following simultaneous equation. 

bA  , 

where 
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This paper refers to hedging using the hedging portfolio   as a “delta hedge”. For a two-factor model, 

it is possible to construct a delta hedge in the similar way by eliminating the second factor 2x  in the 

corresponding three-factor model. We verify the degree of hedging error against this hedging portfolio 

when time series data is applied. For the purposes of this paper, the “hedging error rate” is expressed as 

the final cumulative hedging error divided by the price of the instrument to be hedged at the time the 

hedge commences. 

For comparison, we calculate the hedging error ratio for hedges such as performed by 

Metallgesellschaft in which an equivalent number of nearer maturity futures is held against the future to 

be hedged. This paper refers to this hedging method as the “parallel hedge.” Metallgesellshcaft hedged its 

long-term futures with extremely short-term futures of 1-3 contract months. However, given the increased 

liquidity of current commodities futures markets into the medium-term range, we verify the effectiveness 

of parallel hedges using futures of up to 6 years for WTI and up to 5 years for Copper. 

Unless specifically stated to the contrary, the discussion below refers to hedges against the 10th DEC 

from the front month for the WTI and the 8th DEC for Copper, of which prices are estimated by our 

models. For the hedging period, it is assumed that the position will be closed with an offsetting trade of 

the 6th DEC future for the WTI. In other words, a 4-year hedge is entered into that reduces the time to 

maturity of the instrument to be hedged from 10 years to 6 years. For Copper, it is assumed that the 

position is closed with an offsetting trade of the 5th DEC future, resulting in a 3-year hedge that reduces 

the time to maturity of the instrument to be hedged from 8 years to 5 years. For the parallel hedge, futures 

for listed DECs are used as hedge assets. For the delta hedges of three-factor models, the 1st - 4th - 6th 

DECs, and 1st - 3 rd - 5th DECs are used for WTI and Copper, respectively; For the delta hedges of 

two-factor models, 4th - 6th DECs and 3rd - 5th DECs are used for WTI and Copper, respectively. Positions 

in each futures contract months are adjusted on the 1st business day of the month after reviewing hedging 

ratios each month. For both the parallel hedge and delta hedge, upon the elapse of 1-year, positions are 

rolled to the same contract month in the next year. (For example, if a DEC 6 position is used to initiate a 

hedge on DEC 12, after the elapse of 1-year, the DEC 6 position used in the hedge will be rolled over to 

DEC 7.) Liquidity declines the more distant the future, but DEC futures have comparatively high liquidity, 

and given the infrequency with which hedge ratios are changed and the small degree of change in the 

number of units required for hedging, this is considered a realistic hedge. In selecting futures contract 

months, this analysis uses combinations that provide the relatively small hedging error rates obtained in 

section 6. The similar procedure is taken in selecting futures contract months for two-factor models. 
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4.1 Hedging error rate of the parallel hedge 

The paper first verifies the degree of hedging error rate achieved using the parallel hedge. The price of 

the futures contract month to be hedged is calculated based on the constant mean reversion model and 

data up to 2007 using parameters and state variables estimated with the Kalman filter. 

Figure 3 shows cumulative hedging error rates (the cumulative hedging error divided by the price of the 

instrument to be hedged at the time the hedge commences) using WTI and Copper time series data. In this 

case, for the Front Month the cumulative hedging error rate is expressed for a parallel hedge rolled over to 

the next-expiring contract month each month; for others, the cumulative hedging error rate is expressed 

for a parallel hedge with a one-year roll using DECs for each year. The futures to be hedged are the WTI 

DEC 13 and the Copper DEC 12 and the hedge terminates at the most recently available data (2007). The 

horizontal axis expresses the amount of time elapsed since the commencement of the hedge; the vertical 

axis, the cumulative hedging error rate. The same notation is used for other graphs in this paper. 

Figure 3: Cumulative Hedging error rates of the parallel hedge 

WTI DEC13

-20%

0%

20%

40%

60%

80%

100%

120%

Dec/03 Jun/04 Dec/04 Jun/05 Dec/05 Jun/06 Dec/06 Jun/07

FrontMonth 1st DEC 2nd DEC 3rd DEC

4th DEC 5th DEC 6th DEC

Copper DEC12

0%

40%

80%

120%

160%

200%

Jan/05 Jul/05 Jan/06 Jul/06 Jan/07 Jul/07

FrontMonth 1st DEC 2nd DEC

3rd DEC 4th DEC 5th DEC  

As can be observed from Figure 3, error is lower the more distant the future used to hedge. Copper has 

a larger hedging error rate than WTI, indicating that the components in Copper’s term structure that 

change in parallel are smaller than WTI’s. However, even using the most distant future with the smallest 

hedging error rate, the hedging error rates with a parallel hedge were still approximately 12% for WTI and 

approximately 32% for Copper. 

4.2 Hedging error rate of the delta hedge 

This section observes the hedging error rate for delta hedges for both the constant mean reversion 

model and the stochastic mean reversion model. 

For each model, parameters estimated from data up to 2007 were used, and for verification purposes, 2 

methods were used to estimate state variables in order to estimate long-term futures prices. The first is 

state variables were estimated using the Kalman filter (“Kalman filter state variables” hereinafter); the 

second estimation created simultaneous linear equations for the state variables so that the futures price of 

the model matches the futures price of the futures contract month to be hedged, allowing state variables to 

be calculated by solving these equations (“simultaneous equation-based state variables” hereinafter). To 

compare the relative precision of hedging using the model described in this paper, the verifications below 
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note the results for most distant future, which was the most precise for the parallel hedge. Notations 

follow the practice used for parallel hedges. 

Verifications were performed with different futures to be hedged, and the observed hedging error rates 

are summarized in Table 7. 

Table 7: Hedging error rates 

3factor 2factor 3factor 2factor 3factor 2factor 3factor 2factor
DEC07 1.0% 1.3% 0.7% 1.3% 4.0% 0.7% 0.8% 0.4% 0.4% 3.8%
DEC08 1.0% 0.6% 0.9% 0.6% 8.4% 0.7% 1.5% 0.5% 0.7% 8.3%
DEC09 0.8% 0.8% 1.0% 0.8% 3.4% 0.5% -0.8% 0.8% 0.6% 3.2%
DEC10 -1.5% -2.3% -2.5% -2.5% -3.5% -1.7% -0.5% -2.7% -2.5% -4.0%
DEC11 -3.1% -3.8% -3.2% -3.8% 2.7% -3.1% -2.8% -3.1% -2.6% 2.4%
DEC12 -3.2% -4.2% -3.7% -4.2% 8.0% -3.0% 0.4% -3.6% -0.9% 7.8%
DEC13 -0.8% -1.1% 0.0% -1.1% 12.1% -0.3% 0.5% 0.5% 3.2% 12.3%
DEC10 -0.4% -1.2% -0.5% -2.0% 12.4% -0.1% 0.0% 0.0% -1.8% 12.4%
DEC11 0.0% -5.2% 0.2% -4.8% 30.3% 1.2% 2.5% 1.4% 1.4% 30.3%
DEC12 -3.1% -20.8% -6.7% -20.8% 32.1% 0.9% 4.8% -3.2% 3.7% 32.0%

Constant mean reversion model Stochastic mean reversion model

ParallelParallel
Kalman Fileter Equations BasedEquations BasedKalman Fileter

WTI

Copper

 

Figure 4: Cumulative hedging error rates of the delta hedge (constant mean reversion model) 
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Figure 5: Cumulative hedging error rates of the delta hedge (stochastic mean reversion model) 
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The parallel hedge is able to provide effective hedging when the overall term structure changes in 

parallel, but generates large hedging error when there are changes in the shape of the term structure. By 

contrast, the delta hedge works much better than the parallel hedge (see Table 7). Two- and three-factor 

models provide relatively similar results though three-factor models works better for Copper. However, 

two-factor models have some difficulty in replicating actual term structures as shown in Figures 1and 2. 
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Comparing Kalman filter state variables and simultaneous equation-based state variables when 

performing a delta hedge, for Copper, estimation of Kalman filter state variables produces large hedging 

error during the term of the hedge, as can be seen in Figure 4 and Figure 5. This is presumably due to 

differences in whether the model prices are obtained in a manner consistent with the asset prices used in 

the hedge and the price of the assets to be hedged. When using simultaneous equation-based state 

variables, model prices (excluding rollover timing) match the prices of the assets used in the hedge and of 

the assets to be hedged. On the other hand, when using Kalman filter state variables, the actual prices of 

the assets used in the hedge differs from the model prices, resulting in hedging error when hedging is 

performed. For WTI, the observational error was small for the futures contract month used in the hedge 

and virtually equivalent to the simultaneous equation-based state variables, indicating that there is little 

difference due to the method by which state variables are determined.  

Because of the result in the last paragraph, the discussion below uses only state variables that are 

calculated by solving simultaneous equations for both WTI and copper models. 

5. Stability of the delta hedge 

The verifications so far have estimated parameters based on data that included the entire hedge period. 

However, in actual practice, the parameter estimation period and the hedge period differ. Discussions so 

far have also assumed that the hedges target long-term futures, but general practice is for long-term 

contracts to be forwards rather than futures, which requires that interest-rate factors also be taken into 

account. 

In this section, we confirm the following settings so as to conduct verifications in a state as close as 

possible to actual practice. 

1. No overlap between the parameters’ estimation period and the hedge period  

2. Hedging against forwards 

In this paper, cases in which the entire hedge period is included in the parameter estimation period are 

referred to as “In Sample,” while hedges in which there are separate parameter estimation periods are 

referred to as “Out of Sample.” 

5.1 Out of Sample hedges 

To verify the effectiveness of the Out of Sample hedge, this section uses the parameters estimated in 

section 3 with the data through 2002 or 2003 for WTI and through 2004 for Copper. The future to be 

hedged is DEC 12 (hedge period from 2002 to 2006) or DEC 13 (hedge period from 2003 to 2007) for 

WTI and DEC 12 (hedge period from 2004 to 2007) for Copper. 

Table 8 summarizes results of verifications using time series data for hedging error rates when hedging 

long-term futures prices as estimated with the model using these parameters. For purposes of comparison, 

we have also noted the results for the In Sample estimations in the previous section. 
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Table 8: Hedging error rates of the delta hedge (Out of Sample) 

In sample Out of sample In sample Out of sample
3factor (DEC12) -3.7% -32.1% -3.6% -3.4%
2factor (DEC12) -4.2% -33.5% -0.9% 1.5%
3factor (DEC13) 0.0% -7.6% 0.5% 0.2%
2factor (DEC13) -1.1% -16.5% 3.2% 5.3%
3factor (DEC12) -6.7% -6.9% -3.2% -1.9%
2factor (DEC12) -20.8% 10.0% 3.7% 11.0%

WTI

Copper

Constant mean reversion model Stochastic mean reversion model

 

For comparison between the two-factor models and the three-factor models, it is observed that the 

model producing the smaller absolute error in In Sample also creates the smaller absolute error in Out of 

Sample for all cases of Table 8. 

For the three-factor stochastic mean reversion model, we confirmed that the differences in hedging 

error rates due to differences in the parameter estimation period were not that large for WTI. For Copper, 

there were differences in In Sample and Out of Sample hedging error rates, in part due to the differences 

in the parameters obtained for In Sample and Out of Sample. However, the error is not extreme and even 

though there are differences in the parameters obtained using the maximum likelihood method, hedging 

under the model is considered to be relatively stable. On the other hand, for the two-factor stochastic 

mean reversion model, there are more differences between In sample and Out of sample hedging error 

rates: This tendency seems stronger for Copper than for WTI. 

For the constant mean reversion models, in the Out of Sample WTI, long-term price levels changed due 

to the sharp increases in oil prices beginning in 2003, virtually eliminating mean reversion. Nonetheless, 

the long-term futures prices calculated by the models revert to the mean levels observed in the data 

through 2002 or 2003, increasing the hedging error rates. In light of this, it is likely that the constant mean 

reversion model is more prone to hedging error when there are changes in mean reversion levels, etc., 

indicating that it is better to use the stochastic mean reversion model when prices are based on the hedge.  

Due to the results above, the discussion in the next subsection uses only the three-factor stochastic 

mean reversion model. 

5.2 Hedging long-term forward contracts 

The discussions to this point have assumed that futures would be hedged, but common practice is to 

trade forwards for the long-term portion that is not traded on exchanges. If interest rates are deterministic 

or move independently from underlying assets, prices are the same for futures and forwards, but if interest 

rates are not deterministic, hedges must take account of their movements. 

For purposes of simplicity, this discussion assumes that interest rates and underlying assets are 

independent, describes hedging techniques when the instrument to be hedged is a forward and the assets 

used in the hedge are futures. The utility of this hedging technique is then verified using time series data. 

We consider hedging long-term forwards with short-term futures in the following two steps. 

1 Long-term forwards are hedged using long-term futures with the same expiration. 
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2 Long-term futures are hedged using the delta hedge with the nearer maturity futures as 

described in section 4. 

Because Step 2 is explained in section 4, we explain the hedging technique of Step 1. 

The notations used are defined as: 

)(tFT  : Price at point in time t  of forward with expiration T . 

)(tGT  : Price at point in time t  of future with expiration T . 

)(tPT  : Price at point in time t  of zero-coupon bond with expiration T . 

In addition, Tttt m  100 . The amount of change in the forward profit/loss at point in 

time T  during the period from point in time it through 1it  is: 

PV at point in time 1it  is expressed as   )()0()( 11   iTTiT tPFtF . Therefore, the amount of change in 

PV for the forward during the period from it through 1it  is: 

(10)     )()0()()()0()( 11 iTTiTiTTiT tPFtFtPFtF   . 

In this case, (10) can be reformed as follows: 

(11)     )()0()()()0()( 11 iTTiTiTTiT tPFtFtPFtF    

     )()()0()()()()( 11 tPtPFtFtPtFtF TiTTiTiTiTiT   . 

         iTiTiTiT tPtPtFtF   11  

Thus, mC  that denotes the accumulation evaluated at time T  of the last term on the right side is 

given by: 

         
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, 

where the instantaneous interest rate in each period  1, ii tt  is approximated as a constant ir . Hereafter, 

we ignore mC  because it expresses a negligible amount corresponding to the quadratic variation. 

Assuming that interest rate is independent of underlying asset prices, the forward price and futures price 

are equivalent ( )()( tGtF TT  ) and equation (11) can be expressed as shown below: 

(12)     )()()0()()()()( 11 iTiTTiTiTiTiT tPtPFtFtPtFtF    

     )()()0()()()()( 11 iTiTTiTiTiTiT tPtPGtGtPtGtG   . 
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The first term on the right side expresses the change in the future, according to which a delta hedge is 

made using futures for the 3 nearer maturity contract months under the method described in section 4. As 

a result, 1 unit of forwards can be given a proximate hedge using a portfolio comprising futures and 

zero-coupon bonds, as shown below. 

1 A delta hedge using futures for the 3 nearer maturity contract months to hedge )(tPT  units of 

future )(tGT . 

2 Purchase of )0()( TT GtG   units of zero-coupon bond )(tPT . 

It is noted that this hedging strategy is essentially the same as Schwartz’s hedging strategy (see 

Schwartz (1997), p.963-964). 

We analyzed the hedging error rate when a 10-year WTI forward contract is hedged according to the 

method above using WTI futures and zero-coupon bonds for 4 years. Here, forward prices are assumed to 

be equal to theoretical future prices calculated by our model. Note that the funds for purchase of 

zero-coupon bonds and cash flow generated by marking futures to market are invested/raised in short-term 

interest rates. For purposes of the verification, we used In Sample parameters and to simplify, the 

calculations of the zero-coupon bonds used the 8-year swap rate as spot yield; the calculations of 

short-term interest rates for investments and funding used the 1M LIBOR, and assume that the interest 

rate is independent of asset prices, thus forward price is equal to future price. 

Table 9 contains hedging error rates due to differences in the forwards to be hedged. 

Table 9: Hedging error rates of the delta hedge 

DEC07 DEC08 DEC09 DEC10 DEC11 DEC12 DEC13
using futures and bonds 0.2% 0.3% 0.4% -2.3% -2.6% -3.1% -0.2%

using futures 0.1% -1.3% -2.4% -9.2% -5.8% -10.0% -5.6%  

Figure 6: Cumulative hedging error rates of the delta hedge 

 WTI DEC13
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It will be noted that in this verification, which used time series data for interest rates and futures prices, 

even assuming interest rates and underlying assets to be independent, the use of zero-coupon bonds and 

futures to hedge forwards and was able to hedge virtually all of the interest rate factors generated by the 

difference between forwards and futures. However, if interest rates are not hedged, there are cases in 

which large hedging errors are generated during the hedge period, as can be seen from Figure 6, so the 
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idea that there does not need to be a hedge on the interest-rate portion is not supported. 

6. Measuring the distribution of hedging error rates 

The analysis of hedging error rates based on time series data are limited to the one in a few paths. Thus, 

this section provides a simulation analysis to measure the distribution of hedging error rates resulting from 

fluctuations in underlying assets. Three-factor stochastic mean reversion models are used in simulation, 

where In Sample parameters are used, ,and futures are hedged by futures with shorter maturities. Below 

are the specific procedures for the simulation. 

1 Historical daily futures prices were created based on parameters and state variables estimated 

using the Kalman filter. 

2 The error rate between the futures prices based on the model and created in Step 1 vs. actual 

futures prices quoted on exchanges (for WTI, the front month and the 1st-6th DEC; for Copper, 

the front month and the 1st-5th DEC) was calculated ((Actual data - Model price)/Model price) 

and then the mean and covariance of the error rate were obtained. Here, it was assumed that 

error follows multidimensional normal distribution. 

3 Three-dimensional normal random numbers were created and the state variables were caused to 

fluctuate according to the model so as to create a term structure for futures. 

4 Multidimensional normal random numbers according to the distribution described in Step 2 

were created for the futures term structure developed in Step 3, multiplied as error and added to 

the original term structure. (Step 3 model prices + Step 3 model prices * Random numbers 

following the Step 2 error distribution). 

5 Simultaneous equation-based state variables were calculated on the assumption that the term 

structure created in Step 4 was the term structure actually observed in the market. 

6 The term structure created in Step 5 was used to estimate long-term prices, hedges were taken 

against those prices, and the final hedging error rate measured. 

7 Steps 3-6 were repeated for a constant number of times to find the sample mean and sample 

standard deviation of the hedging error rates obtained. 

6.1 Distribution of hedging error rates 

We performed 5,000 trials for each combination of futures contract used in the hedge according to the 

procedures outlined above and calculated the average and standard deviation of the hedging error rates. 

There was little difference in the hedging error rates due to differences in initial values, so as hedged 

assets we used DEC 17 for WTI for a period of 4 years beginning 2007 and DEC 15 for Copper for a 

period of 3 years beginning 2007. 

Table 10 contains the means and standard deviations for the obtained hedging error rates. The “contract 

months” column in the tables refers to which DEC from the front month is used for the hedge. For 
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example, 1-4-6 refers to the hedge using the 1st, 4th and 6th DECs. Likewise, “6Y Parallel (5Y Parallel)” 

expresses the hedging error rate when a parallel hedge is entered into using the 6th (5th) DEC. The price of 

the hedged assets for the parallel hedge is in the price found using 1-4-6 for WTI and 1-3-5 for Copper. 

Table 10: Averages and standard deviations of hedging errors 

Contract Months Average Standard Deviation Contract Months Average Standard Deviation

1-2-3 -22.6% 20.9% 2-3-5 -0.3% 4.5%

1-2-4 -10.0% 10.3% 2-3-6 0.3% 2.2%

1-2-5 -4.3% 5.0% 2-4-5 -0.1% 4.9%

1-2-6 -1.7% 2.7% 2-4-6 0.4% 2.2%

1-3-4 -4.9% 8.0% 2-5-6 0.4% 1.9%

1-3-5 -1.5% 3.9% 3-4-5 -0.3% 6.0%

1-3-6 -0.3% 2.0% 3-4-6 0.3% 2.5%

1-4-5 -0.5% 4.3% 3-5-6 0.3% 2.0%

1-4-6 0.1% 2.0% 4-5-6 0.3% 2.5%

1-5-6 0.3% 1.8%

2-3-4 -3.0% 9.3% 6Y Parallel -0.5% 6.0%

Contract Months Average Standard Deviation Contract Months Average Standard Deviation

1-2-3 -14.7% 11.5% 2-3-4 0.3% 8.5%

1-2-4 -4.0% 5.9% 2-3-5 0.6% 4.1%

1-2-5 -1.1% 3.7% 2-4-5 -0.2% 3.9%

1-3-4 -0.7% 6.8% 3-4-5 -1.0% 4.7%

1-3-5 0.1% 3.7%

1-4-5 -0.2% 3.7% 5Y Parallel 0.4% 16.3%

Parallel Hedge

Parallel Hedge

WTI

Copper

 

See Appendix 2 for more on the number of future units required due to differences in the selection of 

futures months at the time the hedge is commenced. 

According to the results from the simulation, appropriate selection of the futures contract months for 

the hedge portfolio when entering into a delta hedge has the potential for a more accurate hedge than the 

use of a parallel hedge. In particular, in terms of the required amounts (see Appendix 2) and also the 

relationship between the means and standard deviations of hedging error rates, hedges for the WTI and 

Copper exhibited efficiency using the 1st - 4th - 6th DECs; and the 1st - 3rd - 5th DECs, respectively. As a 

more general result, it was found that the futures used to create a hedge portfolio should, to the extent 

possible, have mutually disparate contract months. This is because when the futures used in the hedge are 

close to each other the 1x , 2x  and 3x  delta structures are similar and a greater number of futures units 

is required to offset the delta of the instrument hedged. The greater the number of futures units used in the 

hedge, the larger the error expressed as differences in the prices of the model and actual futures. 

Conversely, when the futures are farther away from each other, they have disparate delta structures, 

making it more likely that hedging will not require as many units. 

7. Conclusion  

This paper demonstrated that by three-factor Gaussian model with appropriate estimation of parameters, 
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it was possible to reproduce the term structures of listed commodities futures (NYMEX WTI, LME 

Copper) during the time period studied and that long-term futures prices could be obtained that were 

consistent with liquid nearer maturity contracts. It was also found that two-factor Gaussian models have 

some difficulty in capturing actual term structures of futures. 

Furthermore, it went on to propose a hedging technique for long-term futures and forwards contracts, 

comparing the results from this technique to the results from the simple short-term futures-based hedging 

strategy used by Metallgesellschaft (parallel hedge) and verified that our proposed strategy was stable in 

many different circumstances (backwardation, contango, rising prices, declining prices, etc.). 

In addition, it found that a stochastic mean reversion model offered more stable hedging than a model 

with a constant mean reversion level. Also, it observed that the model producing the smaller absolute error 

in In Sample also creates the smaller absolute error in Out of Sample. 

It then used a simulation to measure the hedging error rates obtained due to differences in the contract 

months of the futures used in the hedge. It was found that the futures used to create a hedge portfolio 

should, to the extent possible, have mutually disparate contract months. 

In sum, the three-factor model with stochastic mean reversion seems useful in practice for pricing 

long-term futures/forward contracts and for hedging them with appropriate selected liquid instruments. 

Future issues include evaluation of option values using the model and structuring of relevant hedging 

techniques. Commodities generally have average-based options which makes calculation complex. It 

would be useful to verify hedging techniques and their efficiency. 
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Appendix 1 

Expectation and covariance matrix of state variables 
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Appendix 2 

The number of futures units 

1stDEC 2ndDEC 3rdDEC 4thDEC 5thDEC 6thDEC 1stDEC 2ndDEC 3rdDEC 4thDEC 5thDEC
1-2-3 1.20 -5.65 5.48 0 0 0 2.29 -8.12 6.84 0 0
1-2-4 0.62 -2.28 0 2.69 0 0 1.06 -2.89 0 2.83 0
1-2-5 0.35 -1.19 0 0 1.87 0 0.55 -1.34 0 0 1.80
1-2-6 0.20 -0.67 0 0 0 1.49 - - - - -
1-3-4 0.22 0 -3.70 4.50 0 0 0.39 0 -3.76 4.38 0
1-3-5 0.12 0.00 -1.47 0.00 2.37 0 0.20 0 -1.35 0.00 2.15
1-3-6 0.07 0 -0.74 0 0 1.69 - - - - -
1-4-5 0.06 0 0 -2.96 3.93 0 0.10 0 0 -2.44 3.35
1-4-6 0.03 0 0 -1.12 0 2.11 - - - - -
1-5-6 0.01 0 0 0 -2.38 3.39 - - - - -
2-3-4 0 1.29 -5.79 5.53 0 0 0 1.64 -5.90 5.25 0
2-3-5 0 0.64 -2.25 0 2.64 0 0 0.78 -2.13 0 2.36
2-3-6 0 0.34 -1.11 0 0 1.79 - - - - -
2-4-5 0 0.23 0 -3.52 4.32 0 0 0.29 0 -2.97 3.69
2-4-6 0 0.12 0 -1.31 0 2.21 - - - - -
2-5-6 0 0.05 0 0 -2.57 3.53 - - - - -
3-4-5 0 0 1.23 -5.45 5.24 0 0 0 1.27 -4.74 4.48
3-4-6 0 0 0.58 -1.99 0 2.43 - - - - -
3-5-6 0 0 0.20 0 -3.02 3.84 - - - - -
4-5-6 0 0 0 1.04 -4.59 4.57 - - - - -

WTI Copper

 


