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1 Introduction

The success of univariate stochastic volatility (SV) models in relation to univariate GARCH

models has spurred an enormous interest in generalizations of SV models to a multivariate

setting. A large number of multivariate SV (MSV) models are now available along with clearly

articulated estimation recipes. Our goal in this paper is to provide the first detailed summary

of the various model formulations, along with connections and differences, and discuss how the

models are estimated. We aim to show that the developments and achievements in this area

represent one of the great success stories of financial econometrics.
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As is to be expected, MSV models are generalizations of the univariate SV model. To fix

notation and set the stage for our discussion, the canonical version of the univariate SV model

is given by (Ghysels, Harvey, and Renault (1996), Broto and Ruiz (2004) and Shephard (2004))

yt = exp(ht/2)εt, t = 1, . . . , n, (1)

ht+1 = µ + φ(ht − µ) + ηt, t = 1, . . . , n− 1, (2)

h1 ∼ N (
µ, σ2

η/(1− φ2)
)
, (3)(

εt

ηt

)
|ht ∼ N2(0,Σ), Σ =

(
1 0
0 σ2

η

)
, (4)

where yt is a univariate outcome, ht is a univariate latent variable and N (µ, σ2) and Nm(µ,Σ)

denote a univariate normal distribution with mean µ and variance σ2, and an m-variate normal

distribution with mean vector µ and variance-covariance matrix Σ. In this model, conditioned

on the parameters (µ, φ, σ2
η), the first generating equation represents the distribution of yt condi-

tioned on ht, and the second generating equation represents the Markov evolution of ht+1 given

ht. The conditional mean of yt is assumed to be zero because that is a reasonable assumption in

the setting of high frequency financial data. The SV model is thus a state-space model, with a

linear evolution of the state variable ht but with a non-linear measurement equation (because ht

enters the outcome model non-linearly). Furthermore, from the measurement equation we see

that Var(yt|ht) = exp(ht), which implies that ht may be understood as the log of the conditional

variance of the outcome. To ensure that the evolution of these log-volatilities is stationarity, one

generally assumes that |φ| < 1. Many other versions of the univariate SV model are possible.

For example, it is possible let the model errors have a non-Gaussian fat-tailed distribution, to

permit jumps, and incorporate the leverage effect (through a non-zero off-diagonal element in

Σ). The estimation of the canonical SV model and its various extensions was at one time consid-

ered difficult since the likelihood function of these models is not easily calculable. This problem

has fully resolved by the creative use of Monte Carlo methods, primarily Bayesian Markov chain

Monte Carlo (MCMC) methods (for example, Jacquier, Polson, and Rossi (1994), Kim, Shep-

hard, and Chib (1998), Chib, Nardari, and Shephard (2002) and Omori, Chib, Shephard, and

Nakajima (2007)).

In the multivariate context, when one is dealing with a collection of financial time series

denoted by yt = (y1t, . . . , ypt)′, the main goal is to model the time-varying conditional covariance

matrix of yt. There are several ways in which this can be done within the SV context (see Asai,

McAleer, and Yu (2006) for a recent survey). A typical starting point is the assumption of series-

specific log-volatilites htj (j ≤ p) whose joint evolution is governed by a first-order stationary
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vector autoregressive process

ht+1 = µ + Φ(ht − µ) + ηt, ηt|ht ∼ Np(0,Σηη), t = 1, . . . , n− 1

h1 ∼ Np (µ,Σ0) ,

where ht = (h1t, . . . , hpt)′. To reduce the computational load, especially when p is large, the log

volatilities can be assumed to be conditionally independent. In that case,

Φ = diag(φ11, ..., φpp) and

Σηη = diag(σ1,ηη, ..., σp,ηη)

are both diagonal matrices. We refer to the former specification as the VAR(1) model and

the latter as the IAR(1) (for independent AR) model. Beyond these differences, the various

models primarily differ in the way in which the outcomes yt are modeled. In one formulation,

the outcomes are assumed to be generated as

yt = V1/2
t εt, V1/2

t = diag (exp(h1t/2), . . . , exp(hpt/2)) , t = 1, . . . , n,

with the additional assumptions that
(

εt

ηt

)
|ht ∼ N2p(0,Σ), Σ =

(
Σεε O
O Σηη

)

and Σεε is a matrix in correlation (with units on the main diagonal). Thus, conditioned on ht,

Var(yt) = V1/2
t ΣεεV

1/2
t is time-varying (as required), but the conditional correlation matrix is

Σεε which is not time-varying. In the sequel we refer to this model as the basic MSV model.

A second approach for modeling the outcome process is via a latent factor approach. In this

case, the outcome model is specified as

yt = Bf t + V1/2
t εt, V1/2

t = diag (exp(h1t/2), . . . , exp(hpt/2))

where B is a p×q matrix (q ≤ p) called the loading matrix, and ft = (f1t, ..., fqt) is a q×1 latent

factor at time t. For identification reasons, the loading matrix is subject to some restrictions

(that we present later in the paper), and Σεε is the identity matrix. The model is closed by

assuming that the latent variables are distributed independently across time as

ft|ht ∼ Nq(0,Dt)

where

Dt = diag (exp(hp+1,t), . . . , exp(hp+q,t))
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is a diagonal matrix that depends on additional latent variables hp+k,t. The full set of log-

volatilities, namely

ht = (h1t, . . . , hpt, hp+1,t, ..., hp+q,t),

are assumed to follow a VAR(1) or IAR(1) process. In this model, the variance of yt conditional

on the parameters and ht is

Var(yt|ht) = Vt + BDtB′

and therefore the conditional correlation matrix is time-varying.

Another way to model time-varying correlations is by direct modeling of the variance matrix

Σt = Var(yt). One such model is the Wishart process model proposed by Philipov and Glickman

(2006b) who assume that

yt|Σt ∼ Np(0,Σt),

Σt|ν,St−1 ∼ IWp(ν,St−1),

where IWp(ν0,Q0) denotes a p-dimensional inverted Wishart distribution with parameters

(ν0,Q0), and St−1 is a function of Σt−1. Several models along these lines have been proposed

as we discuss in Section 4.

The rest of the article is organized as follows. In Section 2, we first discuss the basic MSV

model along with some of its extensions. Section 3 is devoted to the class of factor MSV models

while Section 4 deals with models in which the dynamics of the covariance matrix are modeled

directly.

2 Basic MSV model

2.1 No Leverage model

As in the preceding section, let yt = (y1t, . . . , ypt)′ denote a set of observations at time t on

p financial variables and let ht = (h1t, . . . , hpt)′ be the corresponding vector of log volatilities.

Then the basic MSV model is defined in terms of the generating processes

yt = V1/2
t εt, t = 1, . . . , n, (5)

ht+1 = µ + Φ(ht − µ) + ηt, t = 1, . . . , n− 1, (6)

h1 ∼ Np (µ,Σ0) , (7)

where

V1/2
t = diag (exp(h1t/2), . . . , exp(hpt/2)) , (8)(

εt

ηt

)
|ht ∼ N2p(0,Σ), Σ =

(
Σεε 0
0 Σηη

)
, (9)
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and µ = (µ1, . . . , µp)′. Notice that in this version of the model, Cov(εt, ηt|ht) = 0, which rules

out the leverage effect. This assumption can be relaxed as we discuss shortly. For identification

purposes, the diagonal elements of Σεε in (8) must be one which means that the matrix Σεε is

a correlation matrix.

Analyzes of this model are given by Harvey, Ruiz, and Shephard (1994), Dańıelsson (1998),

Smith and Pitts (2006) and Chan, Kohn, and Kirby (2006). Actually, Harvey, Ruiz, and Shep-

hard (1994) dealt with a special case of this model in which Φ = diag(φ1, . . . , φp). To estimate

the resulting parameters, namely (φ1, . . . , φp), µ and Σ, Harvey, Ruiz, and Shephard (1994)

linearized the measurement equation (5) by squaring both sides of the equation and then taking

its logarithm. Let wit = log y2
it and noting that

E(log ε2
it) = −1.27, Var(log ε2

it) = π2/2, (10)

they obtained a linear state space model in which they assumed a random walk process for ht,

wt = (−1.27)1 + ht + ξt, (11)

ht+1 = ht + ηt, (12)

where wt = (w1t, . . . , wpt)′, ξt = (ξ1t, . . . , ξpt)′, ξit = log ε2
it + 1.27 and 1 = (1, . . . , 1)′. Although

the new state error ξt does not follow a normal distribution, they regarded (11) and (12) as

a linear Gaussian state-space model and obtained the corresponding maximum likelihood esti-

mators using the Kalman filter algorithm. Since the likelihood function is misspecified, their

method delivers the quasi-maximum likelihood (QML) estimates. Implementation also requires

the covariance matrix of ξt. Harvey, Ruiz, and Shephard (1994) showed that the (i, j)-th element

of the covariance matrix of ξt = (ξ1t, . . . , ξpt)′ is given by (π2/2)ρ∗ij where ρ∗ii = 1 and

ρ∗ij =
2
π2

∞∑

n=1

(n− 1)!
{∏n

k=1(x + k − 1)}nρ2n
ij (13)

They applied the model to four daily foreign exchange rates (Pound/Dollar, Deutschemark/Dollar,

Yen/Dollar and Swiss Franc/Dollar), and further considered a factor model and t distributions

for the measurement error to account for heavy-tailed distributions of foreign exchange rates.

As mentioned in Harvey, Ruiz, and Shephard (1994), this method cannot be extended to the

leverage model.

So, Li, and Lam (1997) considered a similar transformation to that of Harvey, Ruiz, and

Shephard (1994) (using w̃it = log |yit − yi| where yi =
∑n

t=1 yit/n), but considered a vector

AR(1) process for the latent volatility vector ht (i.e. the non-diagonal element of Φ are not set
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equal to zero). The model is given by

w̃t = ht + ξ̃t, (14)

ht+1 = µ + Φ(ht − µ) + ηt, (15)

where w̃t = (w̃1t, . . . , w̃pt)′, ξ̃t = (ξ̃1t, . . . , ξ̃pt)′, E(ξ̃t) = (−0.635)1, 1 = (1, . . . , 1)′ and Var(ξ̃t) =

(π2/8)I. They obtained the QML estimates by a computationally efficient and numerically well-

behaved EM algorithm. To describe this method, let θ = (µ′, vech(Σηη)′, vec(Φ)′)′ where vec and

vech are respectively the vectorization operator for a matrix A = {aij} and the half-vectorization

operator for a symmetric matrix B = {bij} such that

vec(A) = (a11, a21, . . . , ap1, a12, . . . , ap2, a13, . . . , app)′,

vech(B) = (b11, b21, . . . , bp1, b22, . . . , bp2, b33, . . . , bpp)′.

Let l(θ) denote the logarithm of the complete data likelihood given by

l(θ) = −1
2

n−1∑

t=1

{ht+1 −Φht − (I−Φ)µ}′Σ−1
ηη {ht+1 −Φht − (I−Φ)µ}

−n− 1
2

log |Σηη|+ c,

where c is a constant which does not depend on θ. Then the conditional expectation of l(θ)

given Wn = (w̃1, . . . , w̃n) is

Q(θ|θ̂(k)
) = E

θ=θ̂
(k)(l(θ)|Wn)

= −1
2

n−1∑

t=1

{
tr

(
Σ−1

ηη Mt+1

)
+ (mt+1 − d)′Σ−1

ηη (mt+1 − d)− log |Σ−1
ηη |

}
+ c

where

d = (I−Φ)µ, mt = a(k)
t −Φa(k)

t−1,

Mt = B(k)
t −C(k)

t Φ′ −ΦC(k)′
t + ΦB(k)

t−1Φ
′ −mtm′

t,

a(k)
t = E(ht|Wn, θ̂

(k)
), B(k)

t = E(hth′t|Wn, θ̂
(k)

), C(k)
t = E(hth′t−1|Wn, θ̂

(k)
).

The EM algorithm now proceeds by the recursive implementation of the following two steps.

1. Maximization step. Given θ̂
(k)

and a(k)
t ,B(k)

t ,C(k)
t , maximize Q(θ|θ̂(k)

) with respect to θ
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and obtain θ̂
(k+1)

= (µ̂(k+1)′, vech(Σ̂(k+1)
ηη )′, vec(Φ̂(k+1))′)′ where

µ̂(k+1) =
1

n− 1

(
I− Φ̂(k+1)

)−1
n−1∑

t=1

(
a(k)

t+1 − Φ̂(k+1)a(k)
t

)
,

Σ̂(k+1)
ηη =

1
n− 1

n−1∑

t=1

{
Mt+1 + (mt+1 − d̂(k+1))(mt+1 − d̂(k+1))′

}
,

Φ̂(k+1) =





(
n−1∑

t=1

a(k)
t+1

)(
n−1∑

t=1

a(k)
t

)′
− (n− 1)

n−1∑

t=1

C(k)
t+1





×




(
n−1∑

t=1

a(k)
t

)(
n−1∑

t=1

a(k)
t

)′
− (n− 1)

n−1∑

t=1

B(k)
t





−1

and Mt+1,mt+1 are evaluated at Φ = Φ̂(k+1).

2. Expectation step. Compute a(k+1)
t ,B(k+1)

t ,C(k+1)
t using the augmented state space model

y∗t = αt + ut, ut = ξ̃t + (0.635)1,

αt+1 = Φ̂(k+1)αt + ηt,

where y∗t = w̃t−µ̂(k+1)+(0.635)1 and αt = ht−µ̂(k+1). By applying the Kalman filter and

smoother algorithm, we obtain the smoothed state αt|n = E(αt|Y ∗
n ), the variance Pt|n =

Var(αt|Y ∗
n ), Pt|t = Var(αt|Y ∗

t ), and Pt+1|t = Var(αt+1|Y ∗
t ) where Y ∗

t = {y∗1, . . . ,y∗t }.

Then So, Li, and Lam (1997) showed that

a(k+1)
t = αt|n + µ̂(k+1),

B(k+1)
t = Pt|n + a(k+1)

t a(k+1)′
t ,

C(k+1)
t = Pt+1|n

(
Pt|tΦ̂(k+1)′P−1

t+1|t
)′

+ a(k+1)
t a(k+1)′

t−1 .

They also derived an asymptotic variance-covariance matrix for the EM estimates based on the

information matrix.

Another related contribution is that of Dańıelsson (1998) where the model

yt = V1/2
t εt, εt ∼ Np(0,Σεε),

ht+1 = µ + diag(φ1, . . . , φp)(ht − µ) + ηt, ηt ∼ Np(0,Σηη),

is analyzed. The parameters of this model are estimated by the simulated maximum likelihood

(SML) method. The SML procedure in this work is a multivariate extension of the accelerated
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importance sampling method proposed by Dańıelsson and Richard (1993). The model and

fitting method is applied in the estimation of a bivariate model for foreign exchange rates

(Deutschemark/Dollar, Yen/Dollar) and stock indices (S&P500 and Tokyo stock exchange).

Based on the log-likelihood values they concluded that the MSV model is superior to alternative

GARCH models such as the vector GARCH, diagonal vector GARCH (Bollerslev, Engle, and

Woodridge (1988)), Baba-Engle-Kraft-Kroner (BEKK) model (Engle and Kroner (1995)) and

the constant conditional correlation (CCC) model (Bollerslev (1990)).

Smith and Pitts (2006) considered a bivariate model without leverage that is similar to the

model of Dańıelsson (1998). The model is given by

yt = V1/2
t εt, V1/2

t = diag(exp(h1t/2), exp(h2t/2)), εt ∼ N2(0,Σεε),

ht+1 = Ztα + diag(φ1, φ2)(ht − Zt−1α) + ηt, ηt ∼ N2(0,Σηη),

h1 ∼ N2(Z1α1,Σ0),

where the (i, j)-th element of Σ0 is the (i, j)-th element of Σηη divided by 1 − φiφj to enforce

the stationarity of ht − Ztα. To measure the effect on daily returns in the Yen/Dollar foreign

exchange of intervention by the Bank of Japan, they included in Zt a variable that represents

central bank intervention which they modeled by a threshold model. The resulting model was

fit by Bayesian Markov chain Monte Carlo (MCMC) methods. To improve the efficiency of

the MCMC algorithm, they sampled ht’s in blocks, as in Shephard and Pitt (1997) (see also

Watanabe and Omori (2004)). For simplicity, we describe their algorithm without the thresh-

old specification and without missing observations. Let Yt = {y1, . . . ,yt} denote the set of

observations until time t. Then the Smith and Pitts (2006) MCMC algorithm is given by:

1. Sample {ht}n
t=1|ρ12, φ1, φ2,α,Σηη, Yn. Divide {ht}n

t=1 in to several blocks, and sample a

block at a time given other blocks. Let ha:b = (h′a, . . . ,h′b)
′ To sample a block ha:b given

other hj ’s, we conduct a M-H algorithm using a proposal density of the type introduced

by Chib and Greenberg (1994) and Chib and Greenberg (1998),

ha:b ∼ N2(b−a+1)

(
ĥa:b,

[
− ∂l(ha:b)

∂ha:b∂h′a:b

]−1

ha:b=ĥa:b

)

where

l(ha:b) = const− 1
2

b∑
t=a

(
1′ht + y′tV

−1/2
t Σ−1

εε V−1/2
t yt

)

−1
2

b+1∑
t=a

{ht − Ztα−Φ(ht−1 − Zt−1α)}′Σ−1
ηη {ht − Ztα−Φ(ht−1 − Zt−1α)} .
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The proposal density is a Gaussian approximation of the conditional posterior density

based on a Taylor expansion of the conditional posterior density around the mode ĥa:b.

The mode is found numerically by the Newton-Raphson method. The analytical derivatives

are given in the Appendix B of Smith and Pitts (2006).

2. Sample ρ12|{ht}n
t=1, φ1, φ2, α,Σηη, Yn using the M-H algorithm.

3. Sample φ1, φ2|{ht}n
t=1, ρ12, α,Σηη, Yn using the M-H algorithm.

4. Sample α|{ht}n
t=1, ρ12, φ1, φ2,Σηη, Yn ∼ N2(δ,Σ) where

δ = Σ
n∑

t=2

(Zt −ΦZt−1)′Σ−1
ηη (ht −Φht−1) + Z′1Σ

−1
0 h1,

Σ−1 =
n∑

t=2

(Zt −ΦZt−1)′Σ−1
ηη (Zt −ΦZt−1) + Z′1Σ

−1
0 Z1,

5. Sample Σηη|{ht}n
t=1, ρ12, φ1, φ2, α, Yn using the M-H algorithm.

Bos and Shephard (2006) considered a similar model but with the mean in the outcome

specification driven by an r × 1 latent process vector αt

yt = Ztαt + Gtut,

αt+1 = Ttαt + Htut,

ut = V1/2
t εt, V1/2

t = diag(exp(h1t/2), . . . , exp(hqt/2)), εt ∼ Nq(0, I),

ht+1 = µ + Φ(ht − µ) + ηt, ηt ∼ Nq(0,Σηη), ht = (h1t, . . . , hqt)′,

where Gtut and Htut are independent and the off-diagonal element of Φ may be non-zero.

Given {ht}n
t=1, this is a linear Gaussian state space model,

yt = Ztαt + u∗t , u∗t ∼ Np(0,GtVtG′
t),

αt+1 = Ttαt + v∗t , v∗t ∼ Nr(0,HtVtH′
t),

where u∗t and v∗t are independent. Bos and Shephard (2006) take a Bayesian approach and

conduct the MCMC simulation in two blocks. Let θ = (ψ, λ) where ψ indexes the unknown

parameters in Tt,Zt,Gt,Ht, and λ denotes the parameter of the stochastic volatility process of

ut.

1. Sample θ, {αt}n
t=1|{ht}n

t=1, Yn.

9



(a) Sample θ|{ht}n
t=1, Yn using a M-H algorithm or a step from the adaptive rejection

Metropolis sampler by Gilks, Best, and Tan (1995) (see Bos and Shephard (2006)).

(b) Sample {αt}n
t=1|θ, {ht}n

t=1, Yn using a simulation smoother for a linear Gaussian state

space model (see e.g.de Jong and Shephard (1995), Durbin and Koopman (2002))).

We first sample disturbances of the linear Gaussian state space model and obtain

samples of αt recursively.

2. Sample {ht}n
t=1|θ, {αt}n

t=1, Yn. For t = 1, . . . , n, we sample ht one at a time by the M-H

algorithm with the proposal distribution

ht|ht−1,ht+1, θ ∼ Nq(µ + QΦ′Σ−1
ηη {(ht+1 − µ) + (ht−1 − µ)} ,Q), t = 2, . . . , n− 1,

hn|hn−1, θ ∼ Nq(µ,Σηη),

where Q−1 = Σ−1
ηη + Φ′−1Φ.

Although the sampling scheme which samples ht at a time is expected to produce highly au-

tocorrelated MCMC samples, the adaptive rejection Metropolis sampling of θ seems to overcome

some of the inefficiencies.

Yu and Meyer (2006) compared several bivariate basic models (without leverage effects)

including those in which ht follows a VAR(1) process with φ12 = 0 to allow Granger causality

from one asset to another. Using the popular software WinBUGS, they estimated the model on

foreign exchange rate data.

So and Kwok (2006) considered a multivariate stochastic volatility model

yt = V1/2
t εt, εt ∼ Np(0,Σεε), (16)

V1/2
t = diag(exp(h1t/2), . . . , exp(hpt/2)), (17)

where the volatility vector ht−µ follows a vector autoregressive fractionally integrated moving

average process, ARFIMA(p,d, q), such that

Φ(B)D(B)(ht+1 − µ) = Θ(B)ηt, ηt ∼ Np(0,Σηη), (18)

D(B) = diag((1−B)d1 , . . . , (1−B)dp), |di| < 1/2, (19)

Φ(B) = I−Φ1B − · · · −ΦpB
p, (20)

Θ(B) = I + Θ1B + · · ·+ ΘqB
q, (21)

where B is a backward operator such that Bjht = ht−j . The εt and ηt are assumed to be

independent. So and Kwok (2006) investigated statistical properties of the model and proposed

10



a QML estimation method as in Harvey, Ruiz, and Shephard (1994). They linearized the

measurement equation by taking the logarithm of the squared returns and considered the linear

state space model

wt = (−1.27)1 + ht + ξt,

Φ(B)D(B)(ht+1 − µ) = Θ(B)ηt,

where wt = (w1t, . . . , wpt)′, ξt = (ξ1t, . . . , ξpt)′, wit = log y2
it, and ξit = log ε2

it for i = 1, . . . , n.

The covariance matrix of ξt can be obtained as in Harvey, Ruiz, and Shephard (1994). To

conduct the QML estimation, So and Kwok (2006) assumed that ξt follows a normal distribution

and obtained estimates based on the linear Gaussian state space model. However, since ht − µ

follows a vector ARFIMA(p,d, q) process, the conventional Kalman filter is not applicable as

the determinant and inverse of large covariance matrix is required to calculate the quasi-log-

likelihood function. To avoid this calculation, So and Kwok (2006) approximated the quasi-log-

likelihood function by using a spectral likelihood function based on a Fourier transform.

2.2 Leverage effects

We now discuss models in which the basic MSV model is defined to include leverage effects

through correlation between εt and ηt (equivalently, Σεη 6= O). In the analysis of stock returns

using univariate stochastic volatility models, there is strong evidence that the leverage effect

is an important feature of the data (e.g. Yu (2005), Omori, Chib, Shephard, and Nakajima

(2007)). Dańıelsson (1998) first mentioned leverage effects in MSV models but the model is not

estimated in his empirical study of foreign exchange rates and stock indices. We now follow

Chan, Kohn, and Kirby (2006) who considered the model

yt = V1/2
t εt,

ht+1 = µ + diag(φ1, . . . , φp)(ht − µ) + Ψ1/2ηt,

h1 ∼ Np(µ,Ψ1/2Σ0Ψ1/2),

where the (i, j) element of Σ0 is the (i, j) element of Σηη divided by 1 − φiφj satisfying a

stationarity condition such that

Σ0 = ΦΣ0Φ + Σηη

11



and

V1/2
t = diag (exp(h1t/2), . . . , exp(hpt/2)) ,

Ψ1/2 = diag
(√

ψ2
1, . . . ,

√
ψ2

p

)
,

(
εt

ηt

)
∼ N2p(0,Σ), Σ =

(
Σεε Σεη

Σηε Σηη

)
.

Actually, the model considered in Chan, Kohn, and Kirby (2006) had correlation between εt

and ηt−1 which is not correctly a model of leverage. Our discussion therefore modifies their

treatment to deal with the model just presented, where εt and ηt are correlated. Note that Σ

is a 2p× 2p correlation matrix with Σεη 6= O. Now, following Wong, Carter, and Kohn (2003)

and Pitt, Chan, and Kohn (2006), reparameterize Σ such that

Σ−1 = TGT, T = diag
(√

G11, . . . ,
√

Gpp
)

,

where G is a correlation matrix and Gii denotes the (i, i)-th element of the inverse matrix of

G. Under this parameterization, we can find the posterior probability that the strict lower

triangle of the transformed correlation matrix G is equal to zero. Let Jij = 1 if Gij 6= 0

and Jij = 0 if Gij = 0 for i = 1, . . . , 2p, j < i and S(J) denote the number of elements in

J = {Jij , i = 1, . . . , 2p, j < i}. Further let G{J=k} = {Gij : Jij = k ∈ J} (k = 0, 1) and

A denote a class of 2p × 2p correlation matrices. Wong, Carter, and Kohn (2003) proposed a

hierarchical prior for G

π(dG|J) = V (J)−1dG{J=1}I(G ∈ A), V (J) =
∫

G∈A
dG{J=1},

π(J|S(J) = l) =
V (J)∑

J∗:S(J∗)=l

V (J∗)
,

π(S(J) = l|ϕ) =
(

p(2p− 1)
l

)
ϕl(1− ϕ)p(2p−1)−l.

If we assume ϕ ∼ U(0, 1), the marginal prior probability π(S(J) = l) = 1/(p(2p − 1) + 1)

(see Wong, Carter, and Kohn (2003) for the evaluation of V (J)). Let φ = (φ1, . . . , φp)′ and

ψ = (ψ1, . . . , ψp)′ (ψj > 0, j = 1, . . . , p).

1. Sample φ|µ, {ht}n
t=1, ψ,Σ, Yn where Yn = {y1, . . . ,yn}. Let Σij denote the 2p×2p (i, j)-th

block matrix of the Σ−1 and d be a vector consists of the diagonal elements

n−1∑

t=1

Ψ−1/2(ht − µ)
(
y′tV

−1/2
t Σ12 + (ht+1 − µ)′Ψ−1/2Σ22

)
.

12



Propose a candidate

φ ∼ T NR(µφ,Σφ), R = {φ : φj ∈ (−1, 1), j = 1, . . . , p},

Σ−1
φ = Σ22 ¯

{
n−1∑

t=1

(ht − µ)′−1(ht − µ)

}
,

µφ = Σφd,

where ¯ is the element-by-element multiplication operator (Hadamard product) and apply

the M-H algorithm.

2. Sample µ|φ, {ht}n
t=1, ψ,Σ, Yn ∼ Np(µ∗,Σ∗) where

Σ−1
∗ = (n− 1)(I−Φ)Ψ−1/2Σ22Ψ−1/2(I−Φ) + Ψ−1/2Σ−1

0 Ψ−1/2,

µ∗ = Σ∗

[
(I−Φ)Ψ−1/2

n−1∑

t=1

{
Σ21V−1/2

t yt + Σ22Ψ−1/2(ht+1 −Φht)
}

+Ψ−1/2Σ−1
0 Ψ−1/2h1

]
.

3. Sample ψ|φ, µ, {ht}n
t=1,Σ, Yn. Let v = (ψ−1

1 , . . . , ψ−1
p ) and l(v) denote the logarithm of

the conditional probability density of v and v̂ denote the mode of l(v). Then conduct

M-H algorithm using a truncated multivariate t-distribution on the region R = {v : vj >

0, j = 1, . . . , p} with 6 degrees of freedom, location parameter v̂ and a covariance matrix

−{∂2l(v)/∂v∂v′}−1
v=v̂.

4. Sample {ht}n
t=1|φ, µ, ψ,Σ, Yn. We divide {ht}n

t=1 in to several blocks, and sample a block

at a time given other blocks as in Smith and Pitts (2006). Let ha:b = (h′a, . . . ,h′b)
′ To

sample a block ha:b given other hj ’s, we conduct a M-H algorithm using a Chib and

Greenberg (1994) proposal,

ha:b ∼ Np(b−a+1)

(
ĥa:b,

[
− ∂l(ha:b)

∂ha:b∂h′a:b

]−1

ha:b=ĥa:b

)

l(ha:b) = const− 1
2

b∑
t=a

1′ht − 1
2

b+1∑
t=a

r′−1
t rt

rt =

(
V−1/2

t yt

Ψ−1/2{ht+1 − µ−Φ(ht − µ)}

)

a Gaussian approximation of the conditional posterior density based on Taylor expansion of

the conditional posterior density around the mode ĥa:b. The mode is found using Newton-

Raphson method numerically. The analytical derivatives can be derived similarly as in the

Appendix of Chan, Kohn, and Kirby (2006).
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5. Sample Σ|φ,µ, ψ, {ht}n
t=1, Yn. Using the parsimonious reparameterization proposed in

Wong, Carter, and Kohn (2003), each element Gij is generated one at a time using the

M-H algorithm.

Chan, Kohn, and Kirby (2006) applied the proposed estimation method to equities at three

levels of aggregation: (i) returns for eight different markets (portfolios of stocks in NYSE,

AMEX, NASDAQ and S&P500 index), (ii) returns for eight different industries (portfolios of

eight well-known and actively traded stocks in petroleum, food products, pharmaceutical, banks,

industrial equipment, aerospace, electric utilities, and department/discount stores) (iii) returns

for individual firms within the same industry. They found strong evidence of correlation between

εt and ηt−1 only for the returns of the eight different markets and suggested that this correlation

is mainly a feature of market-wide rather than firm-specific returns and volatility.

Asai and McAleer (2006) also analyzed a MSV model with leverage effects letting

Φ = diag(φ1, . . . , φp),

Σεη = diag (λ1σ1,ηη, . . . , λpσp,ηη) ,

Σηη = diag(σ2
1,ηη, . . . , σ

2
p,ηη),

The cross asset leverage effects are assumed to be 0 (Corr(εit, ηjt) = 0, for i 6= j). As in Harvey

and Shephard (1996), they linearized the measurement equations and considered the following

state space model conditional on st = (s1t, . . . , spt)′ where sit = 1 if yit is positive and sit = −1

otherwise:

log y2
it = hit + ζit, ζit = log ε2

it, i = 1, . . . , p, t = 1, . . . , n,

ht+1 = µ̃ + µ∗t + diag(φ1, . . . , φp)ht + η∗t ,

µ∗t =

√
2
π
ΣεηΣ−1

εε st, η∗t ∼ Np(0,Ση∗t η∗t ),

where E(ζit) = −1.27, and Cov(ζit, ζjt) = (π2/2)ρ∗ij given in (13). The matrix Ση∗t η∗t and

E(η∗t ζ
′
t) are given in Asai and McAleer (2006). They also considered an alternative MSV model

with leverage effects and size effects given by

ht+1 = µ̃ + Γ1yt + Γ2|yt|+ Φht + ηt,

Γ1 = diag(γ11, . . . , γ1p), Γ2 = diag(γ21, . . . , γ2p),

|yt| = (|y1t|, . . . , |ypt|)′, Φ = diag(φ1, . . . , φp),

Σεη = O, Σηη = diag(σ2
1,ηη, . . . , σ

2
p,ηη)
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This model is a generalization of a univariate model given by Dańıelsson (1994). It incorporates

both leverage effects and the magnitude of the previous returns through their absolute values.

Asai and McAleer (2006) fit these two models to returns of three stock indices - S&P500 Com-

posite Index, the Nikkei 225 Index, and the Hang Seng Index - by an importance sampling Monte

Carlo maximum likelihood estimation method. They find that the MSV model with leverage

and size effects is preferred in terms of the AIC and BIC measures.

2.3 Heavy-tailed measurement error models

It has by now quite well established that the tails of the distribution of asset returns are heavier

than those of the Gaussian. To deal with this situation it has been popular to employ the

Student t distribution as a replacement for the default Gaussian assumption. One reason for

the popularity of the Student t distribution is that it has a simple hierarchical form as a scale

mixture of normals. Specifically, if T is distributed as standard Student t with ν degrees of

freedom then T can be expressed as

T = λ−1/2Z, Z ∼ N (0, 1), λ ∼ G(ν/2, ν/2).

This representation can be exploited in the fitting, especially in the Bayesian context. One early

example of the use of the Student t distribution occurs in Harvey, Ruiz, and Shephard (1994)

who assumed that in connection with the measurement error εit that

εit = λ
−1/2
it εit, εt ∼ i.i.d. Np(0,Σεε), λit ∼ i.i.d. G(νi/2, νi/2),

where the mean is 0 and the elements of the covariance matrix are given by

Cov(εit, εjt) =





νi

νi − 2
, i = j,

E(λ−1/2
it )E(λ−1/2

jt )ρij , i 6= j,

and E(λ−1/2
it ) =

(νi/2)1/2Γ((νi − 1)/2)
Γ(νi/2)

.

Alternatively, the model can now be expressed as

yt = V1/2
t Λ−1/2

t εt, Λ−1/2
t = diag

(
1/

√
λ1t, . . . , 1/

√
λpt

)

Taking the logarithm of squared εit one gets

log ε2it = log ε2
it − log λit.

They derived the QML estimators using the a mean and covariance matrix of (log ε2
it, log ε2

jt)

using

E(log λit) = ψ′(ν/2)− log(ν/2), Var(log λit) = ψ′(ν/2),
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and (10) (13) where ψ and ψ′ are the digamma and trigamma functions. On the other hand,

Yu and Meyer (2006) considered a multivariate Student t distribution for εt in which case the

measurement error has the form

T = λ
−1/2
t εt, εt ∼ Np(0, I), λt ∼ G(ν/2, ν/2).

They mentioned that this formulation was empirically better supported than the formulation in

Harvey, Ruiz, and Shephard (1994). The model was fit by Bayesian Markov chain Monte Carlo

methods.

Another alternative to the Gaussian distribution is the generalized hyperbolic distribution

(GH) introduced by Barndorff-Neilsen (1977). This family is also a member of the scale mixture

of normals family of distributions. In this case, the mixing distribution is a generalized inverse

Gaussian distribution. The generalized hyperbolic distribution is a rich class of distributions that

includes the normal, normal inverse Gaussian, reciprocal normal inverse Gaussian, hyperbolic,

skewed Student’s t, Laplace, normal gamma, and reciprocal normal hyperbolic distributions (e.g.

Barndorff-Neilsen and Shephard (2001)). Aas and Haff (2006) have employed the univariate

GH distributions (normal inverse Gaussian distributions and univariate GH skew Student’s t

distributions) and estimated in the analysis of the total index of Norwegian stocks (TOTX),

the SSBWG hedged bond index for international bonds, the NOK/EUR exchange rate (NOK

is Norwegian kroner), and the EURIBOR 5-year interest rate. They found that the GH skew

Student’s t distribution is superior to the normal inverse Gaussian distribution for heavy-tailed

data, and superior to the skewed t distribution proposed by Azzalini and Capitanio (2003) for

very skewed data.

The random variable x ∼ GH(ν, α,β,m, δ,S) follows a multivariate generalized hyperbolic

distribution with density

f(x) =
(γ/δ)νKν− p

2

(
α
√

δ2 + (x−m)′S−1(x−m)
)

exp{β′(x−m)}

(2π)
p
2 Kν(δγ)

{
α−1

√
δ2 + (x−m)′S−1(x−m)

} p
2
−ν

, (22)

γ ≡
√

α2 − β′Sβ ≥ 0, α2 ≥ β′Sβ,

ν, α ∈ R, β,m ∈ Rn, δ > 0,

where Kν is a modified Bessel function of the third kind, and S is a p × p positive-definite

matrix with determinant |S| = 1 (see e.g. Blæsild (1981), Protassov (2004), Schmidt, Hrycej,

and Stützle (2006)). It can be shown that x can be expressed as

x = m + ztSβ +
√

ztS
1/2εt,
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where S1/2 is a p × p matrix such that S = S1/2S1/2′ and ε ∼ Np(0, I) and zt ∼ GIG(ν, δ, γ)

follows a generalized inverse Gaussian distribution which we denote z ∼ GIG(ν, δ, γ) whose

density is given by

f(z) =
(γ/δ)ν

2Kν(δγ)
zν−1 exp

{
−1

2
(
δ2z−1 + γ2z

)}
, γ, δ ≥ 0, ν ∈ R, z > 0,

where the range of the parameters given by

δ > 0, γ2 ≥ 0, if ν < 0,
δ > 0, γ2 > 0, if ν = 0,
δ ≥ 0, γ2 > 0, if ν > 0,

(for a generation of a random sample from GIG(ν, a, b), see e.g. Dagpunar (1989), Doornik

(2002) and Hörmann, Leydold, and Derflinger (2004)). The estimation of such a multivariate

distribution would be difficult and Protassov (2004) relied on the EM algorithm with λ fixed and

fitted the five dimensional normal inverse Gaussian distribution to a series of returns on foreign

exchange rates (Swiss franc, Deutschemark, British pound, Canadian dollar, and Japanese yen).

Schmidt, Hrycej, and Stützle (2006) proposed an alternative class of distributions, called the

multivariate affine generalized hyperbolic class, and applied it to bivariate models for various

asset returns data (Dax, Cac, Nikkei and Dow returns). Other multivariate skew densities have

also been proposed for example in Arellano-Valle and Azzalini (2006), Bauwens and Laurent

(2005), Dey and Liu (2005) Azzalini (2005), Gupta, González-Faŕıas, and Domı́nguez-Molina

(2004), and Ferreira and Steel (2004).

3 Factor MSV model

3.1 Volatility factor model

A simple factor SV model is considered by Quintana and West (1987), and Jungbacker and

Koopman (2006) who utilize a single factor to decompose the outcome into two multiplicative

components, a scalar common volatility factor and a vector of idiosyncratic noise variables, as

yt = exp
(

ht

2

)
εt, εt ∼ Np(0,Σεε),

ht+1 = µ + φ(ht − µ) + ηt, ηt ∼ N (0, σ2
η),

where ht is a scalar. The first element in Σεε is assumed to be one for identification reasons. By

construction, the positivity of the variance of yt is ensured. In comparison with the basic MSV

model, this model has fewer parameters, which makes it more convenient to fit. The downside

of the model, however, is that unlike the mean factor MSV model which we discuss below, the
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conditional correlations in this model are time-invariant. Moreover, the correlation between in

log-volatilities is 1, which is clearly limiting.

In order to estimate the model, Jungbacker and Koopman (2006) applied a Monte Carlo

likelihood method to fit data on exchange rate returns of the British pound, the Deutschemark,

and the Japanese yen against the U.S. dollar. They found that the estimate of φ is atypically

low, indicating that the model is inappropriate for explaining the movements of multivariate

volatility.

A more general version of this type is considered by Harvey, Ruiz, and Shephard (1994) who

introduced a common factor in the linearized state space version of the basic MSV model by

letting

wt = (−1.27)1 + Θht + h + ξt, (23)

ht+1 = ht + ηt, ηt ∼ Nq(0, I), (24)

where wt = (w1t, . . . , wpt)′, ξt = (ξ1t, . . . , ξpt)′ and ht = (h1t, . . . , hqt)′ (q ≤ p). Furthermore,

Θ =




θ11 0 · · · 0

θ21 θ22
. . .

...
...

. . . . . . 0
θq1 · · · θq,q−1 θqq
...

...
...

θp,1 · · · θp,q−1 θp,q




, h =




0
hq+1

...
hp


 .

The parameters are estimated by the QML method. To interpret factor loadings, they considered

a rotation of the common factors such that Θ∗ = ΘR′ and h∗t = Rht where R is an orthogonal

matrix. Harvey, Ruiz, and Shephard (1994) applied it to four daily foreign exchange rates in a

model with q = 2 factors.

Tims and Mahieu (2006) considered a similar but simpler model for the logarithm of the

range of the exchange rate. The daily high and low values were computed over a 24-period for

all possible six combinations of four currencies (the US dollar, the UK sterling, the Japanese

yen, the euro). Let wij denote a logarithm of the range of foreign exchange rate of the currency

i relative to the currency j, and w = (w12, w13, w14, w23, w24, w34). They assumed that

wt = c + Zht + ξt, ξt ∼ Np(0,Σξξ),

ht+1 = diag(φ1, . . . , φq)ht + ηt, ηt ∼ Nq(0,Σηη),

where c is a 6× 1 mean vector, Σηη is diagonal, ht = (h1t, . . . , h4t)′ and hjt is a latent factor for
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the j-th currency at time t and

Z =




1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1




Since this is a linear Gaussian state space model, the estimation of the parameters is straight-

forward using the Kalman filter.

Ray and Tsay (2000) introduced long range dependence into the volatility factor model using

a fractionally integrated process ht such that

yt = V1/2
t εt, V1/2

t = diag(exp(z′1ht/2), . . . , exp(z′qht/2)),

(1− L)dht = ηt, εt ∼ Np(0,Σεε), ηt ∼ Nq(0,Σηη),

where zi (i = 1, . . . , q) are q × 1 vectors with q < p. By taking a logarithm of y2
it as in Harvey,

Ruiz, and Shephard (1994), they considered

wt = (−1.27)1 + Zht + ξt,

where wt = (w1t, . . . , wpt)′ (wit = log y2
it), Z′ = (z1, . . . , zq), ξt = (ξ1t, . . . , ξqt)′ (ξit = log ε2

it +

1.27). They applied the test statistic proposed by Ray and Tsay (1997) to data on stock returns

for groups of companies, randomly selected from those in the S&P 500 index, and found strong

evidence in support of common persistence in volatility.

Calvet, Fisher, and Thompson (2006) generalize the univariate Markov-switching multifrac-

tal (MSM) model proposed by Calvet and Fisher (2001) to the multivariate MSM and factor

MSM models. The univariate model is given by

yt = (M1,tM2,t · · ·Mk,t)1/2εt, εt ∼ N (0, σ2),

where Mj,t (j ≤ k) are random volatility components, satisfying E(Mj,t) = 1. Given Mt =

(M1,t,M2,t, . . . , Mk,t), the stochastic volatility of return yt is given by σ2M1,tM2,t · · ·Mk,t. Each

Mj,t follows a hidden Markov chain as follows;

Mj,t drawn from distribution M, with probability γj ,

Mj,t = Mj,t−1, with probability 1− γj ,

where γj = 1 − (1 − γ)(b
j−k), (0 < γ < 1, b > 1) and the distribution of M is binomial giving

values m or 2−m (m ∈ [1, 2]) with equal probability. Thus the MSM model is governed by four

parameters (m,σ, b, γ), which is estimated by the maximum likelihood method.
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For the bivariate MSM model, we consider the vector of random volatility component Mj,t =

(M1
j,t,M

2
j,t)

′ (j ≤ k). Then, the bivariate model is given by

yt = (M1,t ¯M2,t ¯ · · · ¯Mk,t)
1/2 ¯ εt, εt ∼ N2(0, V ),

where ¯ denotes the element-by-element product. For each component Mj,t in the bivariate

model, Calvet, Fisher, and Thompson (2006) assume that volatility arrivals are correlated but

not necessarily simultaneous. For details, let si
j,t (i = 1, 2) denote the random variable equal to 1

if there is an arrival on M i
j,t with probability γj , and equal to 0 otherwise. Thus, each si

j,t follows

the Bernoulli distribution. At this stage, Calvet, Fisher, and Thompson (2006) introduced the

correlation coefficient λ, giving the conditional probability P (s2
j,t = 1|s1

j,t = 1) = (1− λ)γj + λ.

They showed that arrivals are independent if λ = 0, and simultaneous if λ = 1. Given the

realization of the arrival vector s1
j,t and s2

j,t, the construction of the volatility components Mj,t

is based on a bivariate distribution M = (M1, M2). If arrivals hit both series (s1
j,t = s2

j,t = 1),

the state vector Mj,t is drawn from M. If only one series i (i = 1, 2) receives an arrival, the

new component M i
j,t is sampled from the marginal M i of the bivariate distribution M. Finally,

Mj,t = Mj,t−1 if there is no arrival (s1
j,t = s2

j,t = 0). They assume that M has a bivariate

binomial distribution controlled by m1 and m2, in parallel fashion to the univariate case. Again,

the closed form solution of the likelihood function is available. This approach can be extended

to a general multivariate case. As the number of parameter therefore grows at least as fast as a

quadratic function of p, Calvet, Fisher, and Thompson (2006) proposed not only the multivariate

MSM model but also the factor MSM model.

The factor MSM model based on q volatility factors f l
t = (f l

1,t, . . . , f
l
k,t)

′, (f l
j,t > 0) (l =

1, 2, . . . , q) is given by

yt = (M1,t ¯M2,t ¯ · · · ¯Mk,t)
1/2 ¯ εt, εt ∼ N2(0, V ),

Mj,t = (M1
j,t,M

2
j,t, . . . , M

p
j,t)

′, (j ≤ k),

M i
j,t = Ci

(
f1

j,t

)wi
1
(
f2

j,t

)wi
2 · · ·

(
f q

j,t

)wi
q (

ui
j,t

)wi
q+1 ,

where the weights are non-negative and add up to one, and the constant Ci is chosen to guarantee

that E(M i
j,t) = 1, and is thus not a free parameter. Calvet, Fisher, and Thompson (2006)

specified the model as follows. For each vector f l
t , f l

j,t follows an univariate MSM process with

parameters (b, γ, ml). The volatility of each asset i is also affected by an idiosyncratic shock

ui
t = (ui

1,t, . . . , u
i
k,t)

′, which is specified by parameters (b, γ,mq+i). Draws of the factors f l
j,t and

idiosyncratic shocks ui
j,t are independent, but timing of arrivals may be correlated. Factors and

idiosyncratic components thus follow univariate MSM with identical frequencies.
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3.2 Mean factor model

Pitt and Shephard (1999b), following a model proposed in Kim, Shephard, and Chib (1998),

analyzed a factor-based MSV model which extends the general MSV model by including a linear

combination of the q × 1 factor vector ft in the mean function as follows:

yt = Bft + V1/2
t εt, εt ∼ Np(0, I), (25)

ft = D1/2
t γt, γt ∼ Nq(0, I), (26)

ht+1 = µ + Φ(ht − µ) + ηt, ηt ∼ Np+q(0,Σηη) (27)

where

Vt = diag(exp(h1t), . . . , exp(hpt)), (28)

Dt = diag (exp(hp+1,t), . . . , exp(hp+q,t)) , (29)

Φ = diag(φ1, . . . , φp+q) (30)

Σηη = diag(σ1,ηη, ..., σp+q,ηη) (31)

and ht = (h1t, . . . , hpt, hp+1,t, ..., hp+q,t). For identification purpose, the p × q loading matrix

B is assumed to be such that bij = 0 for (i < j, i ≤ q) and bii = 1 (i ≤ q) with all other

elements unrestricted. Thus, in this model, each of the factors and each of the errors evolve

according to univariate SV models. The model is a generalization of the ones considered by

Jacquier, Polson, and Rossi (1999) and Liesenfeld and Richard (2003) where Vt was not time-

varying and only the factors followed a univariate SV process. Jacquier, Polson, and Rossi (1999)

estimated their model by MCMC methods, sampling hit one at a time from its full conditional

distribution, a procedure that is known to be inefficient from Kim, Shephard, and Chib (1998),

whereas Liesenfeld and Richard (2003) showed how the MLE could be obtained by the Efficient

Importance Sampling method. For the more general model above, Pitt and Shephard (1999b)

also employed a MCMC based approach, now sampling ht along the lines of Shephard and

Pitt (1997). As an application, they considered returns on daily closing prices of five foreign

exchange rates (Deutschemark, British pound, Japanese yen, Swiss franc, French franc) quoted

in US dollars. The model they fit had one factor. An even further generalization of this factor

model was developed by Chib, Nardari, and Shephard (2006) who allowed for jumps in the

observation model and a fat-tailed t-distribution for the errors εt. The resulting model and its

fitting is explained later in Section 3.3.

Lopes and Carvalho (2006) have considered a general model which nests the models of Pitt

and Shephard (1999b) and Aguilar and West (2000), and extended it in two directions by (i)
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letting the matrix of factor loadings B to be time dependent, and (ii) allowing Markov switching

in the common factors volatilities. The general model is given by equations (26)–(29) with

yt = Btft + V1/2
t εt, εt ∼ Np(0, I),

hf
t+1 = µf

st
+ Φfhf

t + ηf
t , ηf

t ∼ Nq

(
0,Σf

ηη

)
,

where hf
t = (hp+1,t, . . . , hp+q,t)′, µf = (µp+1, . . . , µp+q)′, Φf = diag(φp+1, . . . , φp+q), and Σf

ηη

is the non-diagonal covariance matrix. Letting the pq − q(q + 1)/2 unconstrained elements of

vec(Bt) be bt = (b21,t, b31,t, . . . , bpq,t)′, they assumed that each element of bt follows an AR(1)

process. Following So, Lam, and Li (1998), where the fitting was based on the work of Albert and

Chib (1993), µst
was assumed to follow a Markov switching model, where st follows a multi-state

first order Markovian process. Lopes and Carvalho (2006) applied this model to two datasets:

(i) returns on daily closing spot rates for six currencies relative to US dollar (Deutschemark,

British pound, Japanese yen, French franc, Canadian dollar, Spanish peseta), and returns on

daily closing rates for four Latin American stock markets indices. In the former application,

they used q = 3 factors and in the latter case q = 2 factors.

Han (2006) modified the model of Pitt and Shephard (1999b) and Chib, Nardari, and Shep-

hard (2006) by allowing the factors to follows an AR(1) process

ft = c + Aft−1 + D1/2
t γt, γt ∼ Nq(0, I). (32)

The model was fit by adapting the approach of Chib, Nardari, and Shephard (2006) and applied

to a collection of 36 arbitrarily chosen stocks to examine the performance of various portfolio

strategies.

3.3 Bayesian analysis of mean factor MSV model

We describe the fitting of factor models in the context of the general model of Chib, Nardari,

and Shephard (2006). The model is given by

yt = Bft + Ktqt + V1/2
t Λ−1

t εt, εt ∼ Np(0, I), (33)

where Λt = diag(λ1t, . . . , λpt), qt is p independent Bernoulli “jump” random variables, and

Kt = diag(k1t, . . . , kpt) are jump sizes. Assume that each element qjt of qt takes the value one

with probability κj and the value zero with probability 1 − κj , and that each element ujt of

ut = V1/2
t Λ−1

t εt follows an independent Student-t distribution with degrees of freedom νj > 2,

which we express in hierarchical form as

ujt = λ
−1/2
jt exp(hjt/2)εjt, λjt

i.i.d.∼ G
(νj

2
,
νj

2

)
, t = 1, 2, . . . , n. (34)

22



The εt and ft are assumed to be independent and
(

V1/2
t εt

ft

)
|Vt,Dt,Kt,qt ∼ Np+q

{
0,

(
Vt O
O Dt

)}

are conditionally independent Gaussian random vectors. The time-varying variance matrices Vt

and Dt are defined by equations (27)–(28). Chib, Nardari, and Shephard (2006) assumed that

the variable ζjt = ln(1 + kjt), j ≤ p, are distributed as N (−0.5δ2
j , δ

2
j ), where δ = (δ1, . . . , δp)′

are unknown parameters.

We may calculate the number of parameters and latent variables as follows. Let β denote

the free elements of B after imposing the identifying restrictions. Let Σηη = diag(σ2
1, . . . , σ

2
p)

and Σf
ηη = diag(σ2

p+1, . . . , σ
2
p+q). Then there are pq − (q2 + q)/2 elements in β. The model has

3(p + q) parameters θj = (φj , µj , σj) (1 ≤ j ≤ p + q) in the autoregressive processes (27) of

{hjt}. We also have p degrees of freedom ν = (ν1, . . . , νp), p jump intensities κ = (κ1, . . . , κp),

and p jump variances δ = (δ1, . . . , δp). If we let ψ = (β, θ1, . . . , θp, ν, δ, κ) denote the entire

list of parameters, then the dimension of ψ is 688 when p = 50 and q = 8. Furthermore, the

model contains n(p + q) latent volatilities {ht} that appears non-linearly in the specification of

Vt and Dt, 2np latent variables {qt} and {kt} associated with the jump component, and np

scaling variables {λt}.
To conduct the prior-posterior analysis of this model, Chib, Nardari, and Shephard (2006)

focus on the posterior distribution of the parameters and the latent variables

π
(
β, {ft}, {θj}, {hj.}, {νj}, {λj.}, {δj}, {κj}, {ζj.}, {qj.}|Yn

)
, (35)

where the notation zj. is used to denote the collection (zj1, . . . , zjn). They sample this distribu-

tion by MCMC methods through the following steps.

1. Sample β. The full conditional distribution of β is given by

π(β|Yn, {hj.}, {ζj.}, {qj.}, {λj.}) ∝ p(β)
n∏

t=1

Np(yt|Ktqt,Ωt),

where p(β) is the normal prior,

Ωt = V∗
t + BDtB′ and V∗

t = Vt ¯ diag(λ−1
1t , . . . , λ−1

pt ).

To sample from this density, Chib, Nardari, and Shephard (2006) employed the Metropolis-

Hastings (M-H) algorithm (Chib and Greenberg (1995)), following Chib and Greenberg

(1994) and taking the proposal density to be multivariate-t, T (β|m,Σ, v), where m is the
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approximate mode of l = ln{∏n
t=1Np(yt|Ktqt,Ωt)}, and Σ is minus the inverse of the

second derivative matrix of l; the degrees of freedom v is set arbitrarily at 15. Let us

denote the ij-th free element of B be denoted by bij and define ỹt = yt −Ktqt. We have

that

l =
n∑

t=1

lnNp(yt|Ktqt,Ωt) = const− 1
2

n∑

t=1

ln |Ωt| − 1
2

n∑

t=1

(yt −Ktqt)′Ω−1
t (yt −Ktqt)

and

∂l

∂bij
=

1
2

n∑

t=1

{
ỹ′tΩ

−1
t

∂Ωt

∂bij
Ω−1

t ỹt − tr
(
Ω−1

t

∂Ωt

∂bij

)}

=
n∑

t=1

{
s′t

∂B
∂bij

DtB′st − tr
(
Et

∂B′

∂bij

)}
,

where st = Ω−1
t ỹt, Et = Ω−1

t BDt, and

Ω−1
t = (V∗

t )
−1 − (V∗

t )
−1B

{
D−1

t + B′(V∗
t )
−1B

}−1
B(V∗

t )
−1.

With these derivatives, (m,Σ) can be found by a sequence of Newton-Raphson itera-

tions. Then the M-H step for sampling β is implemented by drawing a value β∗ from

the multivariate-t distribution, namely T (m,Σ, v), and accepting the proposal value with

probability

α(β,β∗|ỹ, {hj.}, {λj.})

= min
{

1,
p(β∗)

∏n
t=1Np (ỹt|0,V∗

t + B∗DtB∗′) T (β|m,Σ, v)
p(β)

∏n
t=1Np ((ỹt|0,V∗

t + BDtB′)T (β∗|m,Σ, v)

}
,

where β is the current value. If the proposal value is rejected, the next item of the chain

is taken to be the current value β.

2. Sample {ft}. The distribution {ft}|Ỹn,B,h, λ can be divided into the product of the distri-

butions ft|ỹt,ht,h
f
t , λt,B, which have Gaussian distribution with mean f̂t = FtB′(V∗

t )
−1ỹt

and variance Ft =
{
B′(V∗

t )
−1B + D−1

t

}−1.

3. Sample {θj} and {hj.}. Given {ft} and the conditional independence of the errors in (27),

the model separates into q conditionally Gaussian state space models. Let

zjt =
{

ln(yjt − αjt − exp(ζjt)− 1)qjt + c)2 + ln(λjt), j ≤ p,

ln(f2
j−p,t), j ≥ p + 1,

where c is an “offset” constant that is set to 10−6. Then from Kim, Shephard, and Chib

(1998) it follows that the p + q state space models can be subjected to an independent
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analysis for sampling the {θj} and {hj.}. In particular, the distribution of zjt, which is hjt

plus a log chi-squared random variable with one degree of freedom, may be approximated

closely by a seven component mixture of normal distributions, allowing us to express the

model as

zjt|sjt, hjt ∼ N
(
hjt + msjt , v

2
sjt

)
,

hj,t+1 − µj = φj

(
hj,t − µj

)
+ ηjt, j ≤ p + q,

where sjt is a discrete component indicator variable with mass function Pr(sjt = i) = qi,

i ≤ 7, t ≤ n, and msjt , v2
sjt

and qi are parameters that are reported in Chib, Nardari,

and Shephard (2002). Thus, under this representation, conditioned on the transformed

observations we have that

p ({sj.}, θ, {hj.}|z) =
p+q∏

j=1

p (sj., θj ,hj.|zj.) ,

which implies that the mixture indicators, log-volatilities and series specific parameters

can be sampled series by series. Now, for each j, one can sample (sj., θj ,hj.) by the

univariate SV algorithm given by Chib, Nardari, and Shephard (2002). Briefly, sj. is

sampled straightforwardly from

p (sj.|zj.,hj.) =
n∏

t=1

p (sjt|zjt, hjt) ,

where p(sjt|zjt, hjt) ∝ p(sjt)N
(

zjt|hjt + msjt , v
2
sjt

)
is a mass function with seven points

of support. Next, θj is sampled by the M-H algorithm from the density π(θj |zj., sj.) ∝
p(θj)p(zj.|sj., θj) where

p (zj.|sj., θj) = p (zj1|sj., θj)
n∏

t=2

p
(
zjt|F∗j,t−1, sj., θj

)
(36)

and p(zjt|F∗j,t−1, sj., θj) is a normal density whose parameters are obtained by the Kalman

filter recursions, adapted to the differing components, as indicated by the component vector

sj.. Finally, hj. is sampled from [hj.|zj., sj.,θj ] by the simulation smoother algorithm of

de Jong and Shephard (1995).

4. Sample {νj}, {qj.} and {λj.}. The degrees of freedom parameters, jump parameters

and associated latent variables are sampled independently for each time series. The full

conditional distribution of νj is given by

Pr(νj |yj.,hj ,B, f ,qj., ζj.) ∝ Pr(νj)
n∏

t=1

T (yjt|αjt + {exp(ζjt)− 1}qjt, exp(hjt), νj), (37)
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and one can apply the Metropolis-Hastings algorithm in a manner analogous to the case

of β. Next, the jump indicators {qj.} are sampled from the two-point discrete distribution

Pr(qjt = 1|yj.,hj.,B, f , νj , ζj., κj) ∝ κjT (yjt|αjt + {exp(ζjt)− 1}, exp(hjt), νj),

Pr(qjt = 0|yj.,hj.,B, f , νj , ζj., κj) ∝ (1− κj)T (yjt|αjt, exp(hjt), νj),

followed by the components of the vector {λj.} from the density

λjt|yjt, hjt,B, f , νj , qjt, ψjt ∼ G
(

νj + 1
2

,
νj + (yjt − αjt − (exp(ζjt)− 1)qjt))2

2 exp(hjt)

)
.

5. Sample {δj} and {ζj.}. For simulation efficiency reasons, δj and ζj. must also be sampled

in one block. The full conditional distribution of δj is given by

π(δj)
n∏

t=1

N(αjt − 0.5δ2
jqjt, δ

2
jq

2
jt + exp(hjt)λ−1

jt ) (38)

by the M-H algorithm. Once δj is sampled, the vectors ζj. are sampled, bearing in mind

that their posterior distribution is updated only when qjt is one. Therefore, when qjt

is zero, we sample ζjt from N (−0.5δ2
j , δ

2
j ), otherwise we sample from the distribution

N (Ψjt(−0.5+ exp(−hjt)λjtyjt), Ψjt), where Ψjt = (δ−2
j +exp(−hjt)λjt)−1. The algorithm

is completed by sampling the components of the vector κ independently from κj |qj. ∼
beta(u0j + n1j , u1j + n0j), where n0j is the count of qjt = 0 and n1j = n− n0j is the count

of qjt = 1.

A complete cycle through these various distributions completes one transition of our Markov

chain. These steps are then repeated G times, where G is a large number, and the values beyond

a suitable burn-in of say a 1000 cycles, are used for the purpose of summarizing the posterior

distribution.

4 Dynamic correlation MSV model

A weakness of the standard MSV model is that it has a conditional correlation matrix that is

time-invariant. This weakness is overcome in the mean factor model. For example, consider a

bivariate model with a common mean factor

yt = bft + V1/2
t εt, Vt = diag(exp(h1t), exp(h2t)), εt ∼ N2(0, I),

ft = exp(h3t/2)γt, γt ∼ N (0, 1),

ht+1 = µ + Φ(ht − µ) + ηt, ηt ∼ N2(0, I),
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where b = (1, b21)′. Then the variance covariance matrix of yt given b21, ht and hf
t is

Var(yt|ht) =
(

exp(h1t) 0
0 exp(h2t)

)
+ exp(h3t)

(
1 b21

b21 b2
21

)
,

and hence the correlation coefficient is given by

Corr(y1t, y2t|ht) =
b21√

{1 + exp (h1t − h3t)}
{
b2
21 + exp (h2t − h3t)

}

which is time varying. Another way of achieving the same end is by modeling the correlation

matrix directly. For instance, we may model a time-varying covariance matrix Σt and obtain a

time-varying correlation matrix using some positive definite matrix Qt such that

Σεε,t = Q∗−1/2
t QtQ

∗−1/2
t

where Q∗
t is a diagonal matrix whose (i, i)-th element is the same as that of Qt. (e.g. Asai,

McAleer, and Yu (2006)). We describe several such approaches in this section.

4.1 Modeling by reparameterization

We begin by considering two approaches for modeling time-varying correlations that are based

on the dynamic modeling of reparameterized correlations, as in Tsay (2005). The first approach

is illustrated by Yu and Meyer (2006) in the context of the bivariate SV model

yt = V1/2
t εt, εt ∼ N2(0,Σεε,t), Σεε,t =

(
1 ρt

ρt 1

)
,

ht+1 = µ + diag(φ1, φ2)(ht − µ) + ηt, ηt ∼ N2

(
0,diag(σ2

1, σ
2
2)

)
,

qt+1 = ψ0 + ψ1(qt − ψ0) + σρvt, vt ∼ N (0, 1),

ρt =
exp(qt)− 1
exp(qt) + 1

,

where h0 = µ and q0 = ψ0. The correlation coefficient ρt is then obtained from qt by the Fisher

transformation. Yu and Meyer (2006) estimated this model by MCMC methods with the help

of WinBUGS program and found that it was superior to other models including the mean factor

MSV model. However, the generalization of this bivariate model to the higher dimensions is not

easy because it is difficult to ensure the positive definiteness of the correlation matrix Σεε,t.

The second reparameterization introduced by Tsay (2005) is based on the Choleski decom-

position of the time-varying correlation matrix. Specifically, we consider the Choleski decom-

position of the correlation matrix Σεε,t such that Cov(yt|ht) = LtVtL′t. The outcome model is

then given by

yt = LtV
1/2
t εt, εt ∼ Np(0, I),
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As an example, when bivariate outcomes are involved we have

Lt =
(

1 0
qt 1

)
, Vt = diag(exp(h1t), exp(h2t)),

Then,

y1t = ε1t exp(h1t/2),

y2t = qtε1t exp(h1t/2) + ε2t exp(h2t/2),

which shows that the distribution of yt is modeled sequentially. We first let y1t ∼ N (0, exp(h1t))

and then we let y2t|y1t ∼ N (qty1t, exp(h2t)). Thus qt is a slope of conditional mean and the

correlation coefficient between y1t and y2t is given by

Var(y1t) = exp(h1t),

Var(y2t) = q2
t exp(h1t) + exp(h2t),

Cov(y1t, y2t) = qt exp(h1t),

Corr(y1t, y2t) =
qt√

q2
t + exp(h2t − h1t)

As suggested in Asai, McAleer, and Yu (2006), we let qt follow an AR(1) process

qt+1 = ψ0 + ψ1(qt − ψ0) + σρvt, vt ∼ N (0, 1).

The generalization to higher dimensions is straightforward. Let

Lt =




1 0 · · · 0

q21,t 1
. . .

...
...

. . . . . . 0
qp1,t · · · qp,p−1,t 1




, Vt = diag(exp(h1t), . . . , exp(hpt)),

and

y1t = ε1t exp(h1t/2),

y2t = q21,tε1t exp(h1t/2) + ε2t exp(h2t/2),
...

ypt = qp1,tε1t exp(h1t/2) + . . . + qp,p−1,tεp−1,t exp(hp−1,t/2) + εpt exp(hpt/2)
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Var(yit) =
i∑

k=1

q2
ik,t exp(hkt), qii,t ≡ 1, i = 1, . . . , p,

Cov(yit, yjt) =
i∑

k=1

qik,tqjk,t exp(hkt), i < j, i = 1, . . . , p− 1,

Corr(yit, yjt) =

i∑

k=1

qik,tqjk,t exp(hkt)

√√√√
i∑

k=1

q2
ik,t exp(hkt)

j∑

k=1

q2
jk,t exp(hkt)

, i < j,

where qit now follows the AR(1) process

qi,t+1 = ψi,0 + ψi,1(qi,t − ψ0) + σi,ρvit, vit ∼ N (0, 1),

Jungbacker and Koopman (2006) considered a similar model with Lt = L and estimated the

parameters of the model by the Monte Carlo likelihood method. As in the one factor case, they

used the data set for the daily exchange rate returns of British pound, the Deutschemark, and

the Japanese yen against the U.S. dollar.

4.2 Matrix exponential transformation

For any p×p matrix A, the matrix exponential transformation is defined by the following power

series expansion,

exp(A) ≡
∞∑

s=0

1
s!

As,

where A0 is equal to a p×p identity matrix. For any real positive definite matrix C, there exists

a real symmetric p× p matrix A such that

C = exp(A).

Conversely, for any real symmetric matrix A, C = exp(A) is a positive definite matrix (see

e.g. Lemma 1 of Chiu, Leonard, and Tsui (1996), Kawakatsu (2006)). If At is a p × p real

symmetric matrix, there exists a p × p orthogonal matrix Bt and a p × p real diagonal matrix

Ht of eigenvalues of A such that At = BtHtB′
t and

exp(At) = Bt

( ∞∑

s=0

1
s!

Hs
t

)
B′

t = Bt exp(Ht)B′
t
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Thus we consider the matrix exponential transformation for the covariance matrix Var(yt) =

Σt = exp(At) where At is a p × p real symmetric matrix such that At = BtHtB′
t (Ht =

diag(h1t, . . . , hpt)). Note that

Σt = BtVtB′
t, Vt = diag(exp(h1t), . . . , exp(hpt)),

Σ−1
t = B′

tV
−1
t Bt, |Σt| = exp

(
p∑

i=1

hit

)
,

We model the dynamic structure of covariance matrices through αt = vech(At). We may

consider a first order autoregressive process for αt

yt|At ∼ Np(0, exp(At)),

αt+1 = µ + Φ(αt − µ) + ηt, (Φ : diagonal),

αt = vech(At), ηt ∼ Np(p+1)/2(0,Σηη),

as suggested in Asai, McAleer, and Yu (2006). The estimation of this model can be done using

MCMC or a simulated maximum likelihood estimation, but it is not straightforward to interpret

the parameters.

4.3 Wishart Process

4.3.1 Standard model

Philipov and Glickman (2006b) and Philipov and Glickman (2006a) considered a dynamic asset

covariance structure and assumed that the conditional covariance matrix Σt follows an inverted

Wishart distribution whose parameter depends on the past covariance matrix Σt−1. That is

yt|Σt ∼ Np(0,Σt),

Σt|ν,St−1 ∼ IWp(ν,St−1),

where IW(ν0,Q0) denotes an inverted Wishart distribution with parameters (ν0,Q0),

St−1 =
1
ν
A1/2

(
Σ−1

t−1

)d
A1/2′, (39)

A = A1/2A1/2′,

and A1/2 is a Choleski decomposition of a positive definite symmetric matrix A and −1 <

d < 1. Asai and McAleer (2007) point out that it also possible to parameterize St−1 as

ν−1
(
Σ−1

t−1

)d/2
A

(
Σ−1

t−1

)d/2′.
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The conditional expected values of Σ−1
t and Σt are

E
(
Σ−1

t |ν,St−1

)
= νSt−1 = A1/2

(
Σ−1

t−1

)d
A1/2′,

E (Σt|ν,St−1) =
1

ν − p− 1
S−1

t−1 =
ν

ν − p− 1
A−1/2 (Σt−1)

d A−1/2′,

respectively. Thus the scale parameter d expresses the overall strength of the serial persistence

in the covariance matrix over time. Based on the process of the logarithm of the determinant,

and asymptotic behavior of expectation of the determinant, they assume that |d| < 1 although it

is natural to assume that 0 < d < 1. Notice that when d = 0, for example, the serial persistence

disappears and we get that

E
(
Σ−1

t |ν,St−1

)
= A,

E (Σt|ν,St−1) =
ν

ν − p− 1
A−1.

The matrix A in this model is a measure of the inter-temporal sensitivity and determines how the

elements of the current period covariance matrix Σt are related to the elements of the previous

period covariance matrix. When A = I, we note that

E
(
Σ−1

t |ν,St−1

)
=





Σ−1
t−1, d = 1,

I, d = 0,
Σt−1, d = −1.

Philipov and Glickman (2006b) estimated this model from a Bayesian approach and proposed

an MCMC algorithm to estimate their models using monthly return data of five industry port-

folios (Manufacturing, Utilities, Retail/Wholesale, Financial and Other) in NYSE, AMEX and

NASDAQ stocks. Under the prior

A ∼ IWp(ν0,Q0), d ∼ π(d), ν − p ∼ G(α, β)

with Σ0 assumed known, the MCMC algorithm is implemented as follows:

1. Sample Σt|{Σs}s6=t,A, ν, d, Yn (t = 1, . . . , n−1) where Yn = {y1, . . . ,yn}. Given a current

sampler Σt, we generate a candidate Σ∗
t ∼ Wp(ν̃, S̃t−1) where Wp(ν̃, S̃t−1) denotes a

Wishart distribution with parameters (ν̃, S̃t−1),

ν̃ = ν(1− d) + 1,

S̃t−1 = S−1
t−1 + yty′t,

St−1 =
1
ν

(A1/2)
(
Σ−1

t−1

)d (A1/2)′,
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and accept it with probability

|Σ∗
t |(νd−1)/2 exp

[
−1

2tr
{

νA−1 (Σ∗
t )
−d Σ−1

t+1

}]

|Σt|(νd−1)/2 exp
[
−1

2tr
{

νA−1 (Σt)
−d Σ−1

t+1

}]

2. Sample Σn|{Σt}n−1
t=1 ,A, ν, d, Yn ∼ Wp(ν̃, S̃n−1).

3. Sample A|{Σt}n
t=1, ν, d,y ∼ IWp(γ̃, Q̃), where γ̃ = nν + ν0, and

Q̃−1 = ν

{
n∑

t=1

(
Σ−1

t

)−d/2
Σ−1

t

(
Σ−1

t−1

)−d/2

}
+ Q−1

0 ,

4. Sample d from

π(d|{Σt}n
t=1,A, ν,y) ∝ π(d) exp

[
νd

2

n∑

t=1

log |Σt| − 1
2

n∑

t=1

tr
{
S−1

t

(
Σ−1

t−1

)−d
}]

.

To sample d, Philipov and Glickman (2006b) suggested discretizing the conditional dis-

tribution (see Appendix A.2 of Philipov and Glickman (2006b)). Alternatively, we may

conduct an independent M-H algorithm using a candidate from a truncated normal distri-

bution T N (0,1)(d̂, V̂d) where T N (a,b)(µ, σ2) denote a normal distribution with mean µ and

variance σ2 truncated on the interval (a, b), d̂ is a mode of conditional posterior probability

density π(d|{Σt}n
t=1,A, ν,y) and

V̂d =
{
− ∂2 log π(d|{Σt}n

t=1,A, ν, Yn)
∂d2

∣∣∣∣
d=d̂

}−1

.

5. Sample ν from

π(ν|{Σt}n
t=1,A, d,y) ∝ (ν − p)α−1 exp{−β(ν − p)}

{
|νA−1|ν/2

2νp
∏p

j=1 Γ(ν+j−1
2 )

}n

× exp

[
−ν

2

n∑

t=1

{
log |Qt|+ tr

(
A−1Q−1

t

)}
]

.

As in the previous step, we may discretize the conditional distribution or conduct an inde-

pendent M-H algorithm using a candidate from a truncated normal distribution T N (p,∞)(ν̂, V̂ν)

where ν̂ is a mode of conditional posterior probability density π(ν|{Σt}n
t=1,A, d,y) and

V̂ν =
{
− ∂2 log π(ν|{Σt}n

t=1,A, d, Yn)
∂ν2

∣∣∣∣
ν=ν̂

}−1

.
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Asai and McAleer (2007) proposed two further models that are especially useful in higher

dimensions. Let Qt be a sequence of positive definite matrices, which is used to define correlation

matrix Σεε,t = Q∗−1/2
t QtQ

∗−1/2
t where Q∗

t is a diagonal matrix whose (i, i)-th element is the

same as that of Qt. Then the first of their Dynamic Correlation (DC) MSV model is given by:

yt = V1/2
t εt, εt ∼ Np(0,Σεε,t), Σεε,t = Q∗−1/2

t QtQ
∗−1/2
t ,

ht+1 = µ + Φ(ht − µ) + ηt, ηt ∼ Np (0,Σηη) , (Φ and Σηη : diagonal)

Qt+1 = (1− ψ)Q̄ + ψQt + Ξt, Ξt ∼ Wp(ν,Λ)

Thus, in this model the MSV shocks are assumed to follow a Wishart process, where Wp(ν,Λ)

denotes a Wishart distribution with degrees of freedom parameter ν and scale matrix Λ. The

model guarantees that Pt is symmetric positive definite under the assumption that Q̄ is positive

definite and |ψ| < 1. It is possible to consider a generalization of the model by letting Qt+1 =

(11′−Ψ)¯ Q̄+Ψ¯Qt +Ξt, which corresponds to a generalization of the Dynamic Conditional

Correlation (DCC) model of Engle (2002).

The second DC MSV model is given by

Σt+1|ν,St ∼ IWp(ν,St), St =
1
ν
Σ−d/2

t AΣ−d/2
t ,

where ν and St are the degrees of freedom and the time-dependent scale parameter of the

Wishart distribution, respectively, A is a positive definite symmetric parameter matrix, d is a

scalar parameter, and Q−d/2
t is defined by using a singular value decomposition. The quadratic

expression, together with ν ≥ p, ensures that the covariance matrix is symmetric and positive

definite. For convenience, it is assumed that Q0 = Ip. Although their model is closely related to

the models of Philipov and Glickman (2006b) and Philipov and Glickman (2006a), the MCMC

fitting procedures are different. Asai and McAleer (2007) estimated these models using returns

of the Nikkei 225 Index, Hang Seng Index and Straits Times Index.

Gourieroux, Jasiak, and Sufana (2004) and Gourieroux (2006) take an alternative approach

and derived a Wishart autoregressive process. Let Yt and Γ denote respectively a stochastic

symmetric positive definite matrices of dimension p×p and a deterministic symmetric matrix of

dimension p× p. A Wishart autoregressive process of order 1 is defined to be a matrix process

(denoted by WAR(1) process) with conditional Laplace transform:

Ψt(Γ) = Et [exp{tr(ΓYt+1)}]

=
exp

[
tr

{
M′−1MYt

}]

|I− 2ΣΓ|k/2
(40)

where k is a scalar degree of freedom (k < p − 1), M is an p × p matrix of autoregressive

parameters, and Σ is a p × p symmetric and positive definite matrix such that the maximal
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eigenvalue of 2ΣΓ is less than 1. Here Et denotes the expectation conditional on {Yt,Yt−1, . . . , }.
It can be shown that

Yt+1 = MYtM′ + kΣ + ηt+1,

where E(ηt+1) = O. The conditional probability density function of Yt+1 is given by

f(Yt+1|Yt) =
|Yt+1|(k−p−1)/2

2kp/2Γp(k/2)|Σ|k/2
exp

[
−1

2
tr

{
Σ−1(Yt+1 + MYtM′)

}]

×0F1(k/2; (1/4)MYtM′Yt+1)

where Γp is the multidimensional gamma function and 0F1 is the hypergeometric function of

matrix augment (see Gourieroux, Jasiak, and Sufana (2004) for details). When K is an integer

and Yt is a sum of outer products of k independent vector AR(1) processes such that

Yt =
k∑

j=1

xjtx′jt, (41)

xjt = Mxj,t−1 + εjt, εjt ∼ Np(0,Σ),

we obtain the Laplace transform Ψt(Γ) is given by (40). Gourieroux, Jasiak, and Sufana (2004)

also introduced a Wishart autoregressive process of higher order. They estimate the WAR(1)

using a series of intra-day historical volatility-covolatility matrices for three stocks traded on the

Toronto Stock Exchange. Finally, Gourieroux (2006) introduced the continuous time Wishart

process as the multivariate extension of the Cox-Ingersoll-Ross (CIR) model in Cox, Ingersoll,

and Ross (1985).

4.3.2 Factor model

Philipov and Glickman (2006a) propose an alternative factor MSV model that assumes that the

factor volatilities follow an unconstrained Wishart random process. Their model has close ties

to the model in Philipov and Glickman (2006b), and is given by

yt = Bft + V1/2εt, εt ∼ Np(0, I),

ft|Σt ∼ Nq(0,Σt), Σt|ν,St−1 ∼ IWq(ν,St−1),

where St−1 is defined by (39). In other words, the conditional covariance matrix Σt of the factor

ft follows an inverse Wishart distribution whose parameter depends on the past covariance matrix

Σt−1. They implemented the model with q = 2 factors on return series data of 88 individual

companies from the S&P500.

In another development, Carvalho and West (2006) proposed dynamic matrix-variate graph-

ical models, which are based on dynamic linear models accommodated with the hyper-inverse
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Wishart distribution that arises in the study of graphical models (Dawid and Lauritzen (1993)

and Carvalho and West (2006)). The starting point is the dynamic linear model

y′t = X′
tΘt + u′t, ut ∼ Np(0, vtΣ),

Θt = GtΘt−1 + Ωt, Ωt ∼ Nq×p(O,Wt,Σ),

where yt is the p× 1 vector of observations, Xt is a known q× 1 vector of explanatory variables,

Θt is the q× p matrix of states, ut is the p× 1 innovation vector for observation, Ωt is the q× p

innovation matrix for states, Gt is a known q × q matrix, and Σ is the p× p covariance matrix.

Ωt follows a matrix-variate normal with mean O (q × p), left covariance matrix Wt and right

covariance matrix Σ; in other words, any row ωit of Ωt has a multivariate normal distribution

Nq(0, σiiWt), while any row ωi
t of Ωt, ωi′

t has a multivariate normal distribution Np(0, wii,tΣ).

Next, we suppose that Σ ∼ HIWp(b,D), the hyper-inverse Wishart distribution with a degree-

of-freedom parameter b and location matrix D. It should be noted that the dynamic linear

model with Σ ∼ HIWp(b,D) can be handled from the Bayesian perspective without employing

simulation-based techniques. Finally, instead of time-invariant Σ, Carvalho and West (2006)

suggested a time-varying process given by

Σt ∼ HIWp(bt,St),

bt = δbt−1 + 1,

St = δSt−1 + vtv′t,

where vt is defined by Theorem 1 of Carvalho and West (2006). Intuitively, vt is the residual

from the observation equation. As Σt appears in both of the observation and state equations,

the proposed dynamic matrix-variate graphical model can be considered as a variation of the

“Factor MSV model with MSV error.” Setting δ = 0.97, Carvalho and West (2006) applied the

dynamic matrix-variate graphical models to two datasets; namely (i) 11 international currency

exchange rates relative to US dollar, and (ii) 346 securities from the S&P500 stock index.
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