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Abstract

In this paper we propose residual-based tests for the null hypothesis of cointegration with

structural breaks against the alternative of no cointegration. The Lagrange Multiplier test is

proposed and its limiting distribution is obtained for the case in which the timing of a structural

break is known. Then the test statistic is extended in two ways to deal with a structural break of

unknown timing. The first test statistic, a plug-in version of the test statistic for known timing,

replaces the true break point by the estimated one. We also propose a second test statistic

where the break point is chosen to be most favorable for the null hypothesis. We show the

limiting properties of both statistics under the null as well as the alternative. Critical values

are calculated for the tests by simulation methods. Finite-sample simulations show that the

empirical size of the test is close to the nominal one unless the regression error is very persistent

and that the test rejects the null when no cointegrating relationship with a structural break is

present.
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1 Introduction

Cointegration has been the subject of intensive research after Granger (1983) and Engle & Granger

(1987) introduced the concept. A number of tests for cointegration have been proposed since then.

The three most commonly used tests concerning cointegration are the residual-based test for the

null hypothesis of no cointegration by Engle & Granger (1987) and Phillips & Ouliaris (1990), the

residual-based test for the null hypothesis of cointegration by Shin (1994) and the cointegrating rank

test by Johansen (1988, 1991). Each has a different purpose yet complements the others.

These tests for cointegration have been generalized to accommodate structural breaks of

unknown timing, reflecting the recent upsurge of research on structural breaks.1 The residual-

based test for the null of no cointegration against the alternative of cointegration with structural

breaks of unknown timing is proposed by Gregory & Hansen (1996). Quintos (1997) and Seo (1998)

consider tests for the null of cointegration against the alternative of cointegration with structural

breaks of unknown timing by extending the approach of Johansen (1988, 1991). Inoue (1999) and

Lütkepohl et al. (2004) have developed the cointegrating rank test allowing structural breaks of

unknown timing in the trend and the level respectively. However, no residual-based test for the null

hypothesis of cointegration with structural breaks against the alternative of no cointegration has yet

been established.

The above-mentioned tests for cointegration with structural breaks specify “no cointegration”

or “cointegration without any structural break” as the null. Hence rejection of these null hypotheses

is often understood as the existence of cointegration with structural breaks. However,from the view

of classical hypothesis testing, if we are primarily concerned about cointegration with structural

breaks, it seems a more natural choice for the null hypothesis. Thus in this paper we propose a test

for the null of cointegration with structural breaks against the alternative of no cointegration.

The proposed test is a residual-based test derived from single equation models. It is an

extension of the test for the null of cointegration by Shin (1994), just as the test by Gregory &

Hansen (1996) is an extension of the test for the null of no cointegration by Engle & Granger (1987)

and Phillips & Ouliaris (1990). The Lagrange Multiplier (LM) test statistic is presented and the

limiting distribution is derived for the case in which a structural break occurs at known timing. We

show that the limiting distribution of the test statistic is free of nuisance parameter dependencies

except for the number of I(1) regressors and the location of the structural break. Then we develop

two test statistics for the case in which the break point is unknown. The first test statistic is a plug-in

version of the test statistic for known timing that replaces the true break point by the estimated

one. The second test statistic we propose is derived from the idea that the break point is chosen
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to give the most favorable result for the null. We show the limiting properties of both statistics

under the null as well as the alternative hypotheses. Critical values are calculated for the tests by

simulation methods. Finite-sample simulations show that the empirical size of the test is close to

the nominal one unless the regression error is very persistent and that the test rejects the null when

no cointegrating relationship with a structural break is present.

The rest of the paper is organized as follows. Section 2 describes three types of single-equation

cointegration regression models with a structural break. In Section 3 we present test statistics for the

null hypothesis of cointegration with a structural break of known timing against the alternative of

no cointegration. The tests are generalized to the case where a structural break occurs at unknown

timing in Section 4. Section 5 provides some simulation results and Section 6 concludes. All proofs

are in the Appendix.

2 Models

In this section we consider single-equation cointegrating regression models with structural breaks.

The observed data is yt = (y1t, y
′
2t)

′ where y1t is a scalar and y2t is an (m × 1)-vector, i.e. y2t =

(y21,t, y22,t, . . . , y2m,t)′. It is useful to define the dummy variable

ϕtτ =

 0 if t ≤ [nτ ],

1 if t > [nτ ],

where [s] denotes the largest integer not exceeding s. That is, ϕtτ = 1{t > [nτ ]} where 1{·} denotes

the indicator function. τ and [nτ ] represent the break fraction and the break date, respectively.

Following Gregory & Hansen (1996), three forms of structural breaks are considered:

Model 1: Level shift

y1t = µ1 + µ2ϕtτ + β′y2t + et, t = 1, . . . , n. (1)

Model 2: Level shift with trend

y1t = µ1 + µ2ϕtτ + αt + β′y2t + et, t = 1, . . . , n. (2)

Model 3: Regime shift

y1t = µ1 + µ2ϕtτ + β′1y2t + β′2y2tϕtτ + et, t = 1, . . . , n. (3)

where in each case

et = γt + v1t,

γt = γt−1 + ut, γ0 = 0.
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Here ut is i.i.d. (0, σ2
u). This formulation of the error process et has been frequently used in tests for

parameter constancy, stationarity, and cointegration (see, eg. Nabeya & Tanaka, 1988, Kwiatkowski

et al., 1992 and Shin, 1994). Our null hypothesis of cointegration with structural breaks corresponds

to et being stationary, i.e. σ2
u = 0. Note that et = v1t under the null hypothesis and assume ut is

independent of v1t.

Our test for the null of cointegration with structural breaks is residual-based. If the timing

of the break is known, regression model (1), (2) or (3) is estimated by ordinary least squares (OLS)

depending on the hypothesis of interest, and then we test for stationarity of the regression error. In

the next section, the test statistic is presented and its limiting properties are analyzed.

3 Testing the null of cointegration with structural breaks of

known timing

In this section we propose a test statistic for the null of cointegration with structural breaks when

the breaks occur at known timing. We begin by proposing a test statistic and developing its limiting

properties in a simple setting.

3.1 When regressors are strictly exogenous

For the moment, we assume that the regressors are strictly exogenous. Before moving on to the test,

we will analyze limiting properties of the OLS estimators for coefficients in models 1, 2 and 3 because

they play important roles in developing limiting distributions of the test statistic. To do so, we shall

place some assumptions on innovation sequences and introduce some notation. Define ∆y2t = v2t.

Let vt = (v1t, v
′
2t)

′ and assume that vt satisfies the following assumption.

ASSUMPTION 3.1 (a) {vt} is mean-zero and strong mixing with mixing coefficients of size

−pβ/(p− β) and E|vt|p < ∞ for some p > β > 5/2.

(b) y0 is a random vector with E|y0| < ∞

Under Assumption 3.1, the multivariate invariance principle holds with long–run variance Ω:

n−1/2

[nr]∑
t=1

vt ⇒ B(r), 0 ≤ r ≤ 1 (4)

where B(r) = (B1(r), B2(r)′)
′ is an (m+1)-dimensional Brownian motion with covariance matrix Ω

and B1(r) and B2(r) denote Brownian motions of 1 and m dimensions, respectively (see Herrndorf,

4



1984 and Phillips & Durlauf, 1986 for the proof). We assume that Ω can be written as

Ω =

 ω11 ω′21

ω21 Ω22

 = lim
n→∞

n−1E(ξnξ′n), (5)

= Σ + Λ + Λ′, (6)

where

ξs =
s∑

t=1

vt (7)

Σ =

 σ11 σ′21

σ21 Σ22

 = lim
n→∞

n−1
n∑

t=1

E(vtv
′
t), (8)

Λ =

 λ11 λ12

λ21 Λ22

 = lim
n→∞

n−1
n∑

t=2

t−1∑
j=1

E(vjv
′
t). (9)

We assume that covariance matrices ω11 and Ω22 of B1(r) and B2(r) are positive definite. This

implies that the elements of y2t are not cointegrated and also rules out multicointegration (see

Granger & Lee (1989) for further explanations of the concept of multicointegration).

Let the least squares estimator of b be b̂τ , where b is a vector that consists of the coefficient

vectors in each model. For example, b = (µ1, µ2, β
′)′ for model 1. Note that the OLS estimator

b̂τ depends on τ because it is a function of ϕtτ . Define “⇒” as denoting weak convergence of the

associated probability measures with respect to the uniform metric over either τ ∈ [0, 1] or T where

T = [τ , τ̄ ], 0 < τ < τ̄ < 1. Since the results shown in the following lemma do not represent a mere

pointwise convergence, we will refer them as holding “uniformly over τ” (see Gregory & Hansen,

1996 for further explanations). The limiting properties of the OLS estimator of b̂τ are given in the

following lemma.

LEMMA 3.1 Let Assumption 3.1 hold. Assume ω21 = 0; that is, y2t is strictly exogenous with

respect to v1t. Then under the null hypothesis as n →∞,

Dn(b̂τ − b) ⇒
(∫ 1

0

Xτ (r)Xτ (r)′dr

)−1 ∫ 1

0

Xτ (r)dB1(r)

uniformly over τ ∈ [0, 1] where b, Dn and Xτ depend on the model. If the least squares estimator is

from OLS estimation of model 1, then

b = (µ1, µ2, β
′)′

Dn = diag
(
n1/2, n1/2, nIm

)
,

Xτ (r) = (1, ϕτ (r), B2(r)′)
′

5



where Im is an m-dimensional identity matrix and ϕτ (r) = 1{r > τ}. If the least squares estimator

is from OLS estimation of model 2, then

b = (µ1, µ2, α, β′)′

Dn = diag
(
n1/2, n1/2, n3/2, nIm

)
,

Xτ (r) = (1, ϕτ (r), r, B2(r)′)
′
.

If the least squares estimator is from OLS estimation of model 3, then

b = (µ1, µ2, β
′
1, β

′
2)
′

Dn = diag
(
n1/2, n1/2, nIm, nIm

)
,

Xτ (r) = (1, ϕτ (r), B2(r)′, B2(r)′ϕτ (r))′ .

Next we describe how to compute the test statistic. For a given change point τ , estimate

one of the models 1–3 by OLS according to our hypothesis of interest. Denote the residual by êtτ .

Note that the residual depends on the choice of change point τ . Following Shin (1994), the Lagrange

Multiplier (LM) test can be written as

Vnτ = n−2
n∑

t=1

Ŝ2
tτ/ω̂11τ (10)

where Ŝtτ =
∑t

s=1 êsτ and ω̂11τ is any consistent estimator of ω11. ω̂11τ depends on τ because

it in turn depends on the residual êtτ . One of many valid candidates for ω̂11τ is the standard

semiparametric estimator (see e.g., Newey & West, 1987, Andrews, 1991 and Shin, 1994). It is

defined by

ω̂11τ = n−1
n∑

t=1

ê2
tτ + 2n−1

∑̀
s=1

k(s/`)
n∑

t=s+1

êtτ êt−s,τ (11)

where k(·) is a kernel function and ` is a bandwidth parameter.

The test statistic given by (10) leads to the following limiting distribution as the sample size

n goes to infinity.

THEOREM 3.1 Suppose the conditions in Lemma 3.1 are satisfied. Then under the null hypothesis

as n →∞

Vnτ ⇒
∫ 1

0

Q2
τ (r)dr

uniformly over τ ∈ [0, 1] where

Qτ (r) = W1(r)−
(∫ r

0

Wτ (s)ds

)′(∫ 1

0

Wτ (s)Wτ (s)′ds

)−1(∫ 1

0

Wτ (s)dW1(s)
)
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and Wτ (r) depends on the model. If the residuals are from OLS estimation of model 1, then

Wτ (r) = (1, ϕτ (r),W2(r)′)′

where W2(r) is an m-dimensional standard Brownian motion independent of the scalar valued stan-

dard Brownian motion W1(r). If the residuals are from OLS estimation of model 2, then

Wτ (r) = (1, ϕτ (r), r,W2(r)′)′.

If the residuals are from OLS estimation of model 3, then

Wτ (r) = (1, ϕτ (r),W2(r)′,W2(r)′ϕτ (r))′.

Theorem 3.1 shows that the limiting distributions of the test statistics depend only on the

timing of break τ and the number of I(1) regressors m.

3.2 When regressors are not strictly exogenous

Next we generalize the results in the last section to the case where regressors are not strictly exoge-

nous. It is well known that the exogeneity assumption made in the last section is overly restrictive.

Thus our generalization is of practical importance.

We employ the asymptotically efficient estimation technique developed by Saikkonen (1991)

to extend the results of the last section. In the following, we show that we can construct a test

statistic whose limiting distribution is free of nuisance paramters as a result of this efficient estima-

tion technique. First we show how this technique works under the null hypothesis. Note that the

regression error et in (1)–(3) is equal to v1t under the null. Consider the following modified regression

models:

Model 1’: Level shift (C)

y1t = µ1 + µ2ϕtτ + β′y2t +
K∑

i=−K

π′i∆y2,t−i + ε∗t , t = 1, . . . , n. (12)

Model 2’: Level shift with trend (C/T)

y1t = µ1 + µ2ϕtτ + αt + β′y2t +
K∑

i=−K

π′i∆y2,t−i + ε∗t , t = 1, . . . , n. (13)

Model 3’: Regime shift (C/S)

y1t = µ1 + µ2ϕtτ + β′1y2t + β′2y2tϕtτ +
K∑

i=−K

π′i∆y2,t−i + ε∗t , t = 1, . . . , n (14)
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where πi is an (m×1) parameter vector for −K ≤ i ≤ K and ∆y2t = y2t−y2,t−1. These are regression

models where the leads and lags of ∆y2t are added to models 1–3. Note that the regression error

here is not v1t but ε∗t . The relationship between them is characterized below. Researchers who are

familiar with the technique of Saikkonen (1991) may wonder whether we might need the leads and

lags of ∆y2tϕtτ in addition to those of ∆y2t. In fact we do not, and the reason will be explained after

we introduce some assumptions and describe some basic results. To derive the limiting distribution

of the OLS estimator in models 1’–3’, we need to make the following assumption on the error process

vt in (1)–(3):

ASSUMPTION 3.2 (a) {vt} is strictly stationary with spectral density matrix fvv(λ) bounded away

from zero so that

fvv(λ) ≥ αIn, λ ∈ [0, π],

where α > 0.

(b) The covariance function of vt is absolutely summable

∞∑
j=−∞

||Γ(j)|| < ∞,

where Γ(j) = E(vtv
′
t+j) and || · || is the standard Euclidean norm.

(c) Denote the fourth cumulants of εt by κijkl(m1,m2,m,3 ) (for a definition, see Brillinger, 1981,

chap. 2). We assume
∞∑∑∑

m1,m2,m3=−∞
|κijkl(m1,m2,m3)| < ∞.

It is well known that we can deduce under Assumption 3.1 that

v1t =
∞∑

j=−∞
π′jv2,t−j + εt

where
∞∑

j=−∞
||πj || < ∞

and εt is a stationary process with the property that

E(v2tεt+k) = 0, k = 0,±1,±2, . . . . (15)

See Brillinger (1981) for more details. Furthermore,

2πfεε(0) = ω11 − ω′21Ω
−1
22 ω21
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where fεε(λ) is the spectral density of ε at frequency λ. We shall now explain why we do not

have to include the leads and lags of ∆y2tϕtτ . The key requirement for our asymptotically efficient

estimation technique is that εt be exogenous with respect to the regressors. Note that (15) means

that εt is strictly exogenous with respect to v2t. This in turn implies that εt is strictly exogenous

with respect to not only ∆y2t but also to ∆y2tϕtτ . Thus including the leads and lags of ∆y2t suffices

to ensure that εt is strictly exogenous with respect to regressors that include both y2t and y2tϕtτ .

Observe that ε∗t in (12)–(14) can be represented as

ε∗t = εt +
∞∑

|j|>K

π′jv2,t−j .

If πj = 0 for |j| > K, then ε∗t is strictly exogenous with respect to v2t. This makes it relatively easy

to derive the limiting distributions of the OLS estimators of the coefficients and the accosiated test

statistics. However, this is not the case in general. Thus we also need to make an assumption on the

truncation parameter K.

ASSUMPTION 3.3 K tends to infinity with n at a suitable rate:

(a) K3/n → 0,

(b) n1/2
∞∑

j>|K|

||πj || → 0.

First we will show the limiting properties of the OLS estimator of the coefficients as we did

in the last section. For a given change point τ , we estimate one of models 1’–3’ by OLS according to

our hypothesis of interest. Let b̃τ be the OLS estimator of b based on the modified regression model.

For example, b = (µ1, µ2, β
′)′ for model 1’. Also let π̃i be the least squares estimator2 of πi.

LEMMA 3.2 Let Assumptions 3.2 and 3.3 hold. Also suppose that the process (εt, v
′
2t)

′ satisfies

Assumption 3.1 imposed on vt. Then under the null hypothesis as n →∞,

Dn(b̃τ − b) ⇒
(∫ 1

0

Xτ (r)Xτ (r)′dr

)−1 ∫ 1

0

Xτ (r)dB1·2(r)

uniformly over τ ∈ [0, 1] where B1·2(r) ≡ B1(r)− ω′21Ω
−1
22 B2(r). b, Dn and Xτ depend on the model

and are as defined in Lemma 3.1. In addition, we have

K∑
j=−K

||π̃j − πj ||2 = Op

(
K

n

)
.
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Next we propose a test statistic and show its limiting properties under both the null and

the alternative hypotheses. Denote the residual based on OLS estimation of the modified regression

models by ẽtτ . Note that this residual depends on the choice of break fraction τ . The test statistic

is given by

Ṽnτ = n−2
n∑

t=1

S̃2
tτ/ω̃1·2τ (16)

where S̃tτ =
∑t

s=1 ẽsτ and ω̃1·2τ is any consistent estimator of ω1·2 = ω11−ω′21Ω22ω21. The subscript

τ of ω̃1·2τ is meant to imply that the residual is from OLS estimation of the model in which the change

point τ is known. To derive the limiting properties of the test statistic under the alternative, we

need to specify what kind of consistent estimator we are using. We employ the following estimator:

ω̃1·2τ = n−1
n∑

t=1

ẽ2
tτ + 2n−1

∑̀
s=1

k(s/`)
n∑

t=s+1

ẽtτ ẽt−s,τ (17)

where ẽtτ is the residual obtained from the modified regression, k(·) is a kernel function and ` is a

bandwidth parameter. We assume that ` goes to infinity as the sample size n goes to infinity and

` = o(n1/2).

THEOREM 3.2 Suppose the conditions in Lemma 3.2 are satisfied. Then (i) under the null hy-

pothesis Ṽnτ has the same limiting distribution as Vnτ uniformly over τ ∈ [0, 1]. (ii) Under the

alternative, Ṽnτ = Op(n/`).

The first part of Theorem 3.2 implies that the test statistics based on models 1’–3’ have

the same limiting distributions as those in Theorem 3.1 even if the I(1) regressors are not strictly

exogenous. Critical values of the tests are calculated for m = 1–5 in Tables 1–5, respectively. They

are based on the representation of the limiting distributions in Theorem 3.1 where m is the number

of I(1) regressors. Each table is calculated for values of τ = 0.1–0.9. The critical values are obtained

from 50, 000 replications at sample size n = 2, 000. The second part of Theorem 3.2 shows that the

test is consistent. Indeed, the test statistic diverges to infinity at a rate (n/l) under the alternative.

This result is analogous to that in Kwiatkowski et al. (1992) and Shin (1994), where the rate of

divergence of the test statistics depends on the bandwidth parameter `. The consistency of the test

proposed in Theorem 3.1 is straightforward, a special case of the second part of Theorem 3.2.

[Table 1–5 About Here]

10



4 Testing the null of cointegration with structural breaks of

unknown timing

In this section, we generalize the results given in the last section to the case where a structural break

occurs at unknown timing. When the location of the break point (or, equivalently, break fraction

τ) is unknown, we can employ two strategies. One is to first estimate the break fraction and then

construct the test statistic by replacing the known fraction with the estimated one. The other is to

construct the test statistic for all possible break points and then take the infimum of those statistics.

In the framework of testing for stationarity with a structural break, the first method is suggested by

Kurozumi (2002) while the second is proposed by Busetti & Harvey (2001).

To present the first test statistic and derive its asymptotic distribution, we need to begin

by estimating the break fraction. Two types of estimators for the break fraction are present in the

literature. One is the pseudo-Gaussian maximum likelihood estimator (MLE) proposed by Bai et al.

(1998) and the other is the least squares estimator developed by Kurozumi & Arai (2005). Whereas

Bai et al. (1998) show detailed limiting properties (including the limiting distribution) of the pseudo-

Gaussian MLE under restrictive assumptions, Kurozumi & Arai (2005) only show particular limting

properties of the least squares estimator under much less restrictive assumptions. In this paper we

employ the second estimator because some of the assumptions made in Bai et al. (1998) are not very

realistic. Moreover, as we shall see in the proof of Theorem 4.1, the properties given in Kurozumi &

Arai (2005) are sufficient for our purpose. The estimator is defined by

τ̂ = arg inf
τ∈T

SSRn(τ) (18)

where SSRn(τ) =
∑n

t=1 ê2
tτ and êtτ is defined as before. The limiting properties of this estimator

are derived under the following assumption:3

ASSUMPTION 4.1 β2 in (12), (13) and (14) shrinks to zero as the sample size n goes to infinity

at the rate of n1/2, i.e. β2 = β2n = n−1/2β2o where β2o is a vector of constants.

Assumption 4.1 embodies the idea that the post-break coefficients of the integrated regressors

shrink to the pre-break coefficients at a suitable rate. This is equivalent to considering that the

magnitude of a shift is small and converges to zero as the sample size goes to infinity. Bai et al.

(1998) convincingly explain three reasons for assuming this shift to be small. First, we can show

some analytical properties of the estimated break point. This becomes important when we develop

the limiting properties of the test statistics. Second, if we can consistently estimate the break point

for a small shift, we should be able to estimate it consistently for a large shift. Third, if a shift in the
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coefficients for the I(1) regressors does not converge to zero much faster than that for the intercept,

the limiting behavior of the estimated break point will be dominated by the I(1) coefficients (see Bai

et al., 1998 for more detailed explanations).

Now we are ready to propose a test statistic and show its limiting distribution. Let τ̂ be

the estimated break fraction defined in (18) and estimate one of models 1–3 by OLS using modified

regression model (12), (13) or (14). Denote the residual by ẽtτ̂ . Note that this residual depends on

the estimated change point τ̂ . Then the test statistic is given by

Ṽnτ̂ = n−2
n∑

t=1

S̃2
tτ̂/ω̃1·2τ̂ (19)

where S̃tτ̂ =
∑t

s=1 ẽsτ̂ and ω̃1·2τ̂ is any consistent estimator of ω1·2 = ω11 − ω′21Ω22ω21. As an

example, the standard semiparametric estimator based on ẽtτ̂ would satisfy the requirement of con-

sistency. The subscript τ̂ in ω̃1·2τ̂ implies that the residual is from OLS estimation of the model

where the break fraction τ is estimated. The next theorem derives the limiting properties of the test

statistic Ṽnτ̂ .

THEOREM 4.1 Suppose the conditions in Lemma 3.2 are satisfied. In addition, suppose Assump-

tion 4.1 holds. Then, (i) under the null hypothesis as n →∞

Ṽnτ̂ − Ṽnτ
p→ 0

uniformly over τ . (ii) Under the alternative, Ṽnτ̂ = Op(n/l).

The first part of Theorem 4.1 implies that the test statistic has the same limiting distribution

given in Theorem 3.2, even if we use the estimated break fraction to construct it. Thus even if we do

not know the timing of the structural break, by constructing the test statistic using the estimated

break fraction, we can conduct a test for cointegration with structural breaks based on the same

critical values as if the true break fraction was known. The second part of Theorem 4.1 shows that

the test is consistent against the alternative.

Next we introduce the second type of test statistic. When the location of a break point is

unknown in the context of testing for stationarity, Busetti and Harvey (2001) propose an approach

to construct a test statistic such that the break point is chosen to be most favorable for the null

hypothesis.4 We apply this approach to the test of cointegration with structural breaks. As in

Busetti & Harvey (2001), we assume the following instead of Assumption 4.1:

ASSUMPTION 4.2 We assume µ2 = µ2n = o(n−1/2) for models 1 and 2, and µ2 = µ2n =

op(n−1/2) and β2 = β2n = o(n−1) for model 3.
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Assumption 4.2 implies that we need to impose stronger conditions on how µ2n and β2n shrink to

zero as the sample size n goes to infinity. The test statistic is proposed by

Vn
def= inf

τ≤τ≤τ̄
Ṽnτ = inf

τ≤τ≤τ̄

(
n−2

n∑
t=1

S̃2
tτ/ω̃1·2τ

)
.

THEOREM 4.2 Let the conditions in Lemma 3.2 be satisfied. In addition, suppose Assumption 4.2

holds. Then, (i) under the null hypothesis,

inf
τ≤τ≤τ̄

Ṽnτ ⇒ inf
τ≤τ≤τ̄

∫ 1

0

Q2
τ (r)dr,

where Qτ (r) is given in Theorem 3.1. (ii) Under the alternative, the test statistic is Op(n/`).

5 Simulation Evidence

In this section we investigate finite sample properties of the test statistics. The data generating

processes in our experiments are

y1t = 1 + µ2ϕtτ + 2y2t + et (model 1),

y1t = 1 + µ2ϕtτ + 0.2t + 2y2t + et (model 2),

y1t = 1 + µ2ϕtτ + 2y2t + β2y2tϕtτ + et (model 3)

where the dimension of y2t (m) is equal to one,

et = γt + v1t,

y2t = y2,t−1 + v2t,

γt = γt−1 + ut,

vt = Avt−1 + εt,

with A =diag{a11, a22}, εt ∼ i.i.d.N(0, I2) and ut ∼ i.i.d.N(0, σ2
u) independent of {εs} for all s. We

set a11 = a22 = 0, ±0.4 or ±0.8, σ2
u = 0, 0.01, 0.1, 1 or 10, and sample size n = 100 or 200. The break

fraction τ is primarily set at 0.5 and other values are discussed briefly without providing results.5

The values of µ2 and β2 are discussed and specified later. We use the semiparametric consistent

estimator defined by (17) with the Bartlett kernel k(s/`) = 1 − s/(` + 1). We use three kinds of

bandwidth parameter `: `4 = [4(n/100)1/4] and `12 = [12(n/100)1/4] as used by Schwert (1989) and

Kwiatkowski et al. (1992), while the third choice `a is a truncated version of the data-dependent

13



method proposed by Andrews (1991) and used by Arai (2004) and Kurozumi (2002):6

`a = min

(
1.1447

{
4ρ̂2n

(1 + ρ̂)2(1− ρ̂)2

}1/3

, 1.1447
{

4× 0.92n

(1 + 0.9)2(1− 0.9)2

}1/3
)

,

where ρ̂ is the coefficient estimated by the first order autoregression of ε∗t . The number of leads and

lags used to estimate the parameters is determined by a F test for the significance of leads and lags

with a maximum lag length `4.7 The level of significance is 0.05 and the number of replications is

1,000 in all experiments.

For the known break point case the test statistics are invariant to the true values of the

coefficients so µ2 and β2 can be set to zero without loss of generality. Results are tabulated in Tables

6 and 7. On the whole, the empirical size of the test is close to the nominal one unless |aii| is large,

in which case the test tends to be oversized, especially when n = 100. The bandwidth of `4 is enough

for the test to have an empirical size close to 0.05 when aii is small, but a bandwidth such as `12

or `a is required for the empirical size of the test to be close to the nominal one for large aii. The

test tends to be more powerful for larger n and smaller |aii|. We also note that power does not

necessarily increase as σ2
u increases, especially when σ2

u is greater than 1 and `a is used. The reason

is that a unit root process γt dominates the other stationary components when σ2
u is large (even in

small samples), and then the longer bandwidth in `a tends to be chosen. Hence the power of the

test decreases as predicted by the second part of Theorem 3.2.

[Tables 6 and 7 around here]

For the unknown break point case the finite-sample properties of the test statistics are affected

by the magnitude of the break and so we consider two cases: for models 1 and 2 we set µ2 = 1.1

for a small shift and µ2 = 2.2 for a large shift for all sample sizes. For model 3 {µ2, β2} are

set equal to {0.4, 0.1} and {0.8, 0.2} for a small and large shift when n = 100, while they are

{0.2, 0.09} and {0.4, 0.18} when n = 200. These parameters are chosen so that the magnitude of

the change is about equal to a half or one standard deviation of y1,t+1, for a respective small or

large shift. Note that the component of variation in y1,t+1 given y1t is 2v2,t+1 + et+1, with variance

Var(2v2,t+1 + et+1) = 4 + 1 = 5 when {vt} is an i.i.d. sequence, such that a half standard deviation

is 0.5×
√

5 ' 1.1. Then, for example, since the magnitude of the break is µ1 for models 1 and 2, it

is set equal to 1.1 for the small shift case. For model 3, the magnitude of the break is µ2 + β2y2,51

when n = 100 and since the standard deviation of β2y2,51 is
√

51β2, we set µ2 and β2 such that

µ2 +
√

51β2 ' 1.1 for the small magnitude case.

[Tables 8 and 9 around here]

Tables 8 and 9 summarize the results of experiments when we use T = T1 = [0.05, 0.95]. We
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report only the small shift case because the results for the large shift case turns out to be very similar

in our unreported simulation results. The size of the test is close to the nominal one when `a is used

(except for the case where aii = −0.8), but the power of the test is low when aii is large and n = 100.

On the whole, the bandwidth parameter `4 is not a suitable choice for large aii. We also conducted

simulations for T = T2 = [0.15, 0.85]. Unreported results show that the small sample properties of

the proposed tests are not significantly affected by the choice of T .

[Tables 10 and 11 about here]

The results for the inf-type test are summarized in Tables 10 and 11.8 The empirical sizes are

rarely below 0.10. Since the size distortions are very large even for n = 200, we do not recommend

using these statistics when structural changes are considered in the model.

We now study the effect produced by the location of the break point. We conduct the same

experiments as above for different values of τ : 0.05, 0.25, 0.75 and 0.95. The results are roughly

symmetric around τ = 0.5. There is no strong tendency for the finite-sample properties of a specific

value of τ to be any better than those for other values. For example, the differences in the empirical

sizes are never larger than 0.04 unless we use `12 in model 3 with known timing. These properties

are preserved in the case when the break point is unknown. Hence we conclude that the effect of the

location of the break point is small.

6 Concluding Remarks

In this paper we have developed residual-based tests for the null hypothesis of cointegration with

structural breaks against the alternative hypothesis of no cointegration. The LM test statistic is

derived and its limiting distribution is obtained for the case where the timing of a structural break

is known. Then it is generalized to accommodate a structural break of unknown timing in two

ways. The limiting properties of both statistics are studied under the null as well as the alternative.

Finite-sample simulations show that the empirical size of the test is close to the nominal one unless

the regression error is very persistent. Additionally, the test rejects the null when no cointegrating

relationship with a structural break is present. It is also revealed in our limited set of simulations

that the “Inf-type” statistic proposed for the case where a structural break occurs at unknown timing

suffers large size distortions and hence is not very useful in practice.
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APPENDIX A

Throughout the proof, ⇒ denotes weak convergence of the associated probability measure with

respect to the uniform metric over τ ∈ [0, 1] or τ ∈ T where T = [τ , τ̄ ], 0 < τ < τ̄ < 1. Remember

that ξt =
∑t

s=1 vs is the partial sum of the innovations vt and B(r) is an (m + 1)-dimensional

Brownian motion. Partition ξt = (ξ1t, ξ
′
2t)

′ and B(r) = (B1(r), B2(r)′)′ in conformity with vt. The

following lemma, which we state without proof, is fundamental for our proof.

LEMMA 6.1 (Gregory & Hansen, 1996) Under Assumption 3.1, the following joint weak con-

vergence holds

(a)
1

n3/2

n∑
t=[nτ ]

ξt ⇒
∫ 1

τ

B(r)dr,

(b)
1
n2

n∑
t=[nτ ]

ξtξt ⇒
∫ 1

τ

B(r)B(r)′dr,

(c)
1
n

n∑
t=[nτ ]

ξtv
′
t+1 ⇒

∫ 1

τ

B(r)dB(r)′ + (1− τ)Λ.

Following Gregory & Hansen (1996), we refer to results such as (a), (b) and (c) in Lemma 6.1 as

holding “uniformly over τ”.

Proof of Lemma 3.1: We provide a rigorous proof for model 3. A proof for model 1 is a special

case of that for model 3 and that for model 2 is a simple extension of that for model 3. For model

3, we have b = (µ1, µ2, β
′
1, β

′
2)
′ and Dn =

(
n1/2, n1/2, nIm, nIm

)
as defined in Section 3. Then the

OLS estimator of b is given by

b̂τ =

(
n∑

t=1

XtτX ′
tτ

)−1( n∑
t=1

Xtτy1t

)

where Xtτ = (1, ϕtτ , y′2t, y
′
2tϕtτ )′. This implies that under the null hypothesis

Dn

(
b̂τ − b

)
= Dn

(
n∑

t=1

XtτX ′
tτ

)−1

DnD−1
n

(
n∑

t=1

Xtτv1t

)

or equivalently

Dn

(
b̂τ − b

)
=
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
1 n−1

∑n
t=1 ϕtτ n−3/2

∑n
t=1 y′2t n−3/2

∑n
t=1 y′2tϕtτ

n−1
∑n

t=1 ϕtτ n−1
∑n

t=1 ϕtτ n−3/2
∑n

t=1 y′2tϕtτ n−3/2
∑n

t=1 y′2tϕtτ

n−3/2
∑n

t=1 y2t n−3/2
∑n

t=1 y2tϕtτ n−2
∑n

t=1 y2ty
′
2t n−2

∑n
t=1 y2ty

′
2tϕtτ

n−3/2
∑n

t=1 y2tϕtτ n−3/2
∑n

t=1 y2tϕtτ n−2
∑n

t=1 y2ty
′
2tϕtτ n−2

∑n
t=1 y2ty

′
2tϕtτ



−1

×


n−1/2

∑n
t=1 v1t

n−1/2
∑n

t=1 ϕtτv1t

n−1
∑n

t=1 y2tv1t

n−1
∑n

t=1 y2tϕtτv1t


where we used the facts that et = v1t under the null and ϕ2

tτ = ϕtτ . It follows from Lemma 6.1 that

Dn

(
b̂τ − bτ

)
⇒

1
∫ 1

0
ϕτ (r)dr

∫ 1

0
B2(r)′dr

∫ 1

0
B2(r)′ϕτ (r)dr∫ 1

0
ϕτ (r)dr

∫ 1

0
ϕτ (r)dr

∫ 1

0
B2(r)′ϕτ (r)dr

∫ 1

0
B2(r)′ϕτ (r)dr∫ 1

0
B2(r)dr

∫ 1

0
B2(r)ϕτ (r)dr

∫ 1

0
B2(r)B2(r)′dr

∫ 1

0
B2(r)B2(r)′ϕτ (r)dr∫ 1

0
B2(r)ϕτ (r)dr

∫ 1

0
B2(r)ϕτ (r)dr

∫ 1

0
B2(r)B2(r)′ϕτ (r)dr

∫ 1

0
B2(r)B2(r)′ϕτ (r)dr



−1

×


B1(1)∫ 1

0
ϕτ (r)dB1(r)∫ 1

0
B2(r)dB1(r)∫ 1

0
B2(r)ϕτ (r)dB1(r)


=

(∫ 1

0

Xτ (r)Xτ (r)′dr

)−1(∫ 1

0

Xτ (r)dB1(r)
)

where Xτ (r) = (1, ϕτ (r), B2(r)′, B2(r)′ϕτ (r))′ for model 3, giving the required results. 2

Proof of Theorem 3.1: Using the notation given in the proof of Lemma 3.1, Ŝtτ can be expressed

as

Ŝtτ =
t∑

s=1

êsτ =
t∑

s=1

(
y1s − b̂′τXsτ

)
=

t∑
s=1

v1s −
(
b̂τ − b

)′ t∑
s=1

Xsτ

by noting that et = v1t under the null. It follows from Lemma 6.1 and Lemma 3.1 that

n−1/2Ŝ[nr]τ = n−1/2

[nr]∑
t=1

v1t −
(
b̂τ − b

)′
DnD−1

n n−1/2

[nr]∑
t=1

Xtτ

⇒ B1(r)−
(∫ r

0

Xτ (s)ds

)′(∫ 1

0

Xτ (s)Xτ (s)′ds

)−1(∫ 1

0

Xτ (s)dB1(s)
)

def= QXτ (r).
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Define ΩX = diag (1, 1,Ω22,Ω22) and remember that

Qτ (r) = W1(r)−
(∫ r

0

Wτ (s)ds

)′(∫ 1

0

Wτ (s)Wτ (s)′ds

)−1(∫ 1

0

Wτ (s)dW1(s)
)

.

where Wτ (r) = (1, ϕτ (r),W2(r)′,W2(r)′ϕτ (r))′ and W2(r) is an m-dimensional standard Brownian

motion independent of a scalar-valued Brownian motion W1(r). Then we get

QXτ (r) d= ω
1/2
11 W1(r)

−ω
1/2
11

(∫ r

0

Wτ (s)ds

)′
Ω1/2

X Ω−1/2
X

(∫ 1

0

Wτ (s)Wτ (s)′ds

)−1

Ω−1/2
X Ω1/2

X

(∫ 1

0

Wτ (s)dW1(s)
)

= ω
1/2
11 Qτ (r)

where “ d=” signifies equality in distribution. Since ω̂11τ is a consistent estimator of ω11, we have

Vnτ = n−2
n∑

t=1

Ŝ2
tτ/ω̂11τ ⇒

∫ 1

0

Q2
τ (r)dr.

If we use the semiparametric estimator given in (11), its consistency can be shown as in Shin (1994)

under general regularity conditions. 2

Proof of Lemma 3.2: Note that we now have n − 2K observations, but we will use n instead of

n− 2K without loss of generality. Denote

π = (π′−K , π′−K+1, . . . , π
′
K−1, π

′
K)′,

γ = (b′, π′)′,

ZtK = (∆y′2,t−K ,∆y′2,t−K+1, . . . ,∆y′2,t+K−1,∆y′2,t+K)′,

Utτ = (X ′
tτ , Z ′

tK)′

D∗
n = diag(n1/2Im, . . . , n1/2Im)

and D̃n = diag(Dn, D∗
n)

where Xtτ is defined as in Lemma 3.1 and dependence of Utτ on K is suppressed for simplicity. Also

let the OLS estimator of π and γ be π̃τ and γ̃τ respectively. We have

D̃n (γ̃τ − γ) = D̃n

(
n∑

t=1

UtτU ′
tτ

)−1

D̃nD̃−1
n

(
n∑

t=1

Utτε∗t

)

= R̃−1D̃−1
n

(
n∑

t=1

Utτε∗t

)
(20)

where

R̃ =

 D−1
n

∑n
t=1 XtτX ′

tτDn
−1 D−1

n

∑n
t=1 XtτZ ′

tKD∗
n
−1

D∗
n
−1∑n

t=1 ZtKX ′
tτDn

−1 D∗
n
−1∑n

t=1 ZtKZ ′
tKD∗

n
−1

 .
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Define

R =

 D−1
n

∑n
t=1 XtτX ′

tτDn
−1 0

0 E (ZtKZ ′
tK)

 .

Lemma A4 of Saikkonen (1991) shows that∣∣∣∣∣∣R̃−1 −R−1
∣∣∣∣∣∣

1
= Op

(
K/T 1/2

)
where || · ||1 is the matrix norm ||A||1 = sup{||Ax|| : ||x|| ≤ 1} and || · || is the standard Euclidean

norm. Define ηtK =
∑

j>|K| πjv2,t−j . Since R is block diagonal, (20) implies

Dn

(
b̃τ − b

)
= Dn

(
n∑

t=1

XtτX ′
tτ

)−1

DnD−1
n

(
n∑

t=1

Xtτε∗t

)
+ op(1)

= Dn

(
n∑

t=1

XtτX ′
tτ

)−1

DnD−1
n

(
n∑

t=1

Xtτεt

)

+Dn

(
n∑

t=1

XtτX ′
tτ

)−1

DnD−1
n

(
n∑

t=1

XtτηtK

)
+ op(1). (21)

It was shown in the proof of Lemma 3.1 that

Dn

(
n∑

t=1

XtτX ′
tτ

)−1

Dn = Op(1). (22)

Define wt = (εt, v
′
2t)

′. Note that we have assumed that (εt, v
′
2t)

′ satisfies Assumption 3.1. Then the

multivariate invariance principle holds:

n−1/2

[nr]∑
t=1

wt ⇒ B̃(r)

where B̃(r) = (B1·2(r), B2(r)′)
′ is an (m + 1)-dimensional Brownian motion with covariance matrix

Ω̃ = diag(ω1·2,Ω22), ω1·2 = ω11 − ω′21Ω22ω21, and B1·2(r) and B2(r) denote Brownian motions of 1

and m dimensions respectively. By Lemma 6.1, we have

D−1
n

n∑
t=1

Xtτεt ⇒
∫ 1

0

Xτ (r)dB1·2(r) (23)

uniformly over τ . (A12) in Saikkonen (1991) also shows that∣∣∣∣∣
∣∣∣∣∣D−1

n

n∑
t=1

XtτηtK

∣∣∣∣∣
∣∣∣∣∣ = op(1). (24)

Combining (21), (22), (23) and (24) gives the result required for the first part of Lemma 3.2. The

second part of Lemma 3.2 is shown by Saikkonen (1991, pp.21). 2
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Proof of Theorem 3.2: Using the notation given in the proof of Lemma 3.2, S̃tτ can be expressed

as

S̃[nr]τ =
[nr]∑
t=1

ẽtτ

=
[nr]∑
t=1

(
y1t − b̃′τXtτ − π̃′τZtK

)

=
[nr]∑
t=1

εt +
[nr]∑
t=1

ηtK −
(
b̃τ − bτ

)′ [nr]∑
t=1

Xtτ − (π̃τ − π)′
[nr]∑
t=1

ZtK .

It follows from Lemma 6.1, and Lemma 3.2 that

n−1/2S̃[nr]τ = n−1/2

[nr]∑
t=1

εt + n−1/2

[nr]∑
t=1

ηtK

−
(
b̂τ − b

)′
DnD−1

n n−1/2

[nr]∑
t=1

Xtτ − (π̃τ − π)′ n−1/2

[nr]∑
t=1

ZtK

⇒ B1·2(r)−
(∫ r

0

Xτ (s)ds

)′(∫ 1

0

Xτ (s)Xτ (s)′ds

)−1(∫ 1

0

Xτ (s)dB1·2(s)
)

def= Q̃Xτ (r),

if we have

sup
0≤r≤1

∣∣∣∣∣∣n−1/2

[nr]∑
t=1

ηtK

∣∣∣∣∣∣ = op(1),

sup
0≤r≤1

∣∣∣∣∣∣
∣∣∣∣∣∣(π̃τ − π)′ n−1/2

[nr]∑
t=1

Zt

∣∣∣∣∣∣
∣∣∣∣∣∣ = op(1). (25)

These were shown in the proof of Theorem 2 by Shin (1994, p.113). Define ΩX = diag (1, 1,Ω22,Ω22)

and remember that

Qτ (r) = W1(r)−
(∫ r

0

Wτ (s)ds

)′(∫ 1

0

Wτ (s)Wτ (s)′ds

)−1(∫ 1

0

Wτ (s)dW1(s)
)

.

Then we get

Q̃Xτ (r) d= ω
1/2
1·2 W1(r)

−ω
1/2
1·2

(∫ r

0

Wτ (s)ds

)′
Ω1/2

X Ω−1/2
X

(∫ 1

0

Wτ (s)Wτ (s)′ds

)−1

Ω−1/2
X Ω1/2

X

(∫ 1

0

Wτ (s)dW1(s)
)

= ω
1/2
1·2 Qτ (r).

Since ω̂1·2 is a consistent estimator of ω1·2, we have

Ṽnτ = n−2
n∑

t=1

S̃2
tτ/ω̃1·2 ⇒

∫ 1

0

Q2
τ (r)dr,
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proving the first part of Theorem 3.1.

To show the second part, we derive the convergence rate of (b̃τ − b) and (π̃j − πj) under the

alternative. As in the proof of Lemma 3.2, we have

D̃n(γ̃τ − γ) = R̃−1D̃−1
n

n∑
t=1

Utτ (γt + ε∗t )

under the alternative. Since R̃ is the same as under the null hypothesis, we can investigate b̃τ

separately from π̃τ as we did in the proof of Lemma 3.2. Noting that

D−1
n

n∑
t=1

Xtτ (γt + ε∗t ) = D−1
n

n∑
t=1

Xtτ (γt + εt + ηtK),

we can see that D−1
n

∑n
t=1 Xtτγt is of order n and dominates the other terms. Then we have

Dn(b̃τ − b) = Op(n), (26)

under the alternative.

To derive the convergence rate of (π̃j − πj) under the alternative, let us define R̃22 =

D∗−1
n

∑n
t=1 ZtKZ ′

tKD∗−1
n and R22 = E(ZtKZ ′

tK). Since R̃ is asymptotically block diagonal, ||D∗
n(π̃τ−

π)|| is asymptotically equivalent to ||R̃−1
22 D∗−1

n

∑n
t=1 ZtK(γt + ε∗t )||. Note that

||R̃−1
22 D∗−1

n

n∑
t=1

ZtK(γt + ε∗t )||

≤ ||R̃−1
22 −R−1

22 ||1||D∗−1
n

n∑
t=1

ZtK(γt + ε∗t )||+ ||R−1
22 ||1||D∗−1

n

n∑
t=1

ZtK(γt + ε∗t )||.

Since

n−1/2
n∑

t=1

v2,t−j(γt + ε∗t ) = Op(n1/2),

we have

||D∗−1
n

n∑
t=1

ZtK(γt + ε∗t )|| = Op(K1/2n1/2).

Using this result and the following results shown by Saikkonen (1991)

||R̃−1
22 −R−1

22 ||1 = Op(K/n1/2) and ||R−1
22 ||1 = Op(1),

we can show that

||D∗
n(π̃τ − π)|| = Op(K1/2n1/2).

Then it follows by noting ||D∗
n(π̃τ − π)|| = n1/2(

∑K
j=−K ||π̃j − πj ||2)1/2 that

K∑
j=−K

||π̃j − πj ||2 = Op(K). (27)
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Next, we consider the partial sum of the regression residuals ẽtτ ,

[nr]∑
t=1

ẽtτ =
[nr]∑
t=1

(y1t − b̃′τXtτ − π̃τ
′ZtK)

=
[nr]∑
t=1

{
γt + εt + ηtK − (b̃τ − b)′DnD−1

n Xtτ − (π̃τ − π)′ZtK

}
. (28)

Observe that we have by (27)

sup
0≤r≤1

|(π̃τ − π)′Z[nr]K | ≤ sup
0≤r≤1

∣∣∣∣{(π̃τ − π)′(π̃τ − π)(Z ′
[nr]KZ[nr]K)

}1/2
∣∣∣∣

= sup
0≤r≤1

∣∣∣∣∣∣∣
 K∑

j=−K

||π̃j − πj ||2
K∑

j=−K

||v2,[nr]−j ||2
1/2

∣∣∣∣∣∣∣
≤ (2K + 1)1/2 sup

0≤r≤1
||v2[nr]||

 K∑
j=−K

||π̃j − πj ||2
1/2

= Op(K). (29)

Then it follows by (26) and (29) that the first and fourth terms in (28) dominate the other terms

and are of order n3/2, such that
∑[nr]

t=1 ẽtτ = Op(n3/2). Then we have

n∑
t=1

 t∑
j=1

˜ejτ

2

= Op(n4).

In the same way as Kwiatkowski et al. (1992) and Phillips (1991), we can also see that

n−1
∑n−j

t=1 ẽtτ ẽt+j,τ = Op(n) and then ω̃1·2τ = Op(`n) under some general regularity conditions on

k(·). Then the order of Ṽnτ becomes n−2 ×Op(n4)×Op(`−1n−1) = Op(n/`). 2

Proof of Theorem 4.1: We note that b is now defined as b = (µ1, µ2n, β′1, β
′
2n)′. Let b̃τ and π̃τ

be defined as in the proof of Lemma 3.2 and also let b̃τ̂ and π̃τ̂ be the OLS estimates of b and π

obtained using the estimated change point τ̂ . First we show the following lemma.

LEMMA 6.2 Let Assumption 3.1 and 4.1 hold. Then we have, as n →∞

(i) n−1/2
∑[nr]

t=1(ϕtτ̂ − ϕtτ )
p→ 0,

(ii) n−1
∑[nr]

t=1 y2t(ϕtτ̂ − ϕtτ )
p→ 0,

(iii) n−3/2
∑[nr]

t=1 y2ty
′
2t(ϕtτ̂ − ϕtτ )

p→ 0,

(iv) n−1/2
∑[nr]

t=1 v1t(ϕtτ̂ − ϕtτ )
p→ 0,

(v) n−1
∑[nr]

t=1 y2tv1t(ϕtτ̂ − ϕtτ )
p→ 0,

(vi) Dn

(
b̃τ̂ − b̃τ

)
p→ 0.

The convergences (i)-(v) hold uniformly over r ∈ [0, 1].
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Proof of Lemma 6.2: (i) Without loss of generality we shall assume that nτ and nτ̂ are integers. We

have ∣∣∣∣∣∣n−1/2

[nr]∑
t=1

(ϕtτ̂ − ϕtτ )

∣∣∣∣∣∣ ≤
∣∣∣n1/2(τ̂ − τ)

∣∣∣ p→ 0

by Proposition 3 of Kurozumi & Arai (2005).

(ii) We get ∣∣∣∣∣∣n−1

[nr]∑
t=1

y2t(ϕtτ̂ − ϕtτ )

∣∣∣∣∣∣ ≤ sup
0≤r≤1

∣∣∣y2[nr]

n1/2

∣∣∣ ∣∣∣n1/2(τ̂ − τ)
∣∣∣ p→ 0

because sup0≤r≤1

∣∣y2[nr]/n1/2
∣∣ = Op(1).

(iii)-(v) can be proved in the same way as (ii). To prove (vi), observe that

Dn

(
b̃τ̂ − b̃τ

)
= Dn


(

n∑
t=1

Xtτ̂X ′
tτ̂

)−1 n∑
t=1

Xtτ̂y1t −

(
n∑

t=1

XtτX ′
tτ

)−1 n∑
t=1

Xtτy1t

+ op(1) (30)

by the argument used to prove Lemma 3.2. The required result follows if we show

D−1
n

(
n∑

t=1

Xtτ̂X ′
tτ̂ −

n∑
t=1

XtτX ′
tτ

)
D−1

n
p→ 0 (31)

and

D−1
n

n∑
t=1

(Xtτ̂ −Xtτ ) v1t
p→ 0. (32)

Noting that

Xtτ̂X ′
tτ̂ −XtτX ′

tτ = (Xtτ̂ −Xtτ )X ′
tτ̂ + Xtτ (Xtτ̂ −Xtτ )′

and

(Xtτ̂ −Xtτ )′ = [0, (ϕtτ̂ − ϕtτ ), 0, y′2t(ϕtτ̂ − ϕtτ )]′,

we can show (31) using Lemma 6.2 (i), (ii) and (iii). Similarly, (32) follows by Lemma 6.2 (iv) and

(v).

To prove the main result, it is sufficient to show that

sup
0≤r≤1

∣∣∣n−1/2S̃[nr]τ̂ − n−1/2S[nr]τ

∣∣∣ p→ 0 (33)

and ω̃1·2τ̂ − ω1·2τ
p→ 0. (34)

Using the notation given above, S̃[nr]τ and S̃[nr]τ̂ can be written as

S̃[nr]τ =
[nr]∑
s=1

ẽsτ =
[nr]∑
s=1

(
y1s − b̃′τXsτ − π̃′τZsK

)
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and

S̃[nr]τ̂ =
[nr]∑
s=1

ẽsτ̂ =
[nr]∑
s=1

(
y1s − b̃′τ̂Xsτ̂ − π̃′τ̂ZsK

)
.

Then it follows that

n−1/2S̃[nr]τ̂ − n−1/2S̃[nr]τ = −
(
b̃τ̂ − b

)′
Dn

n−1/2D−1
n

[nr]∑
s=1

(Xsτ̂ −Xsτ )


−b′n−1/2

[nr]∑
s=1

(Xsτ̂ −Xsτ )

−
(
b̃τ̂ − b̃τ

)′
Dn

n−1/2D−1
n

[nr]∑
s=1

Xsτ


− (π̃τ̂ − π̃τ )′ n−1/2

[nr]∑
s=1

ZsK . (35)

To show (33), it suffices to show that each term in (35) converges to zero in probability uniformly

over r ∈ [0, 1]. It follows by (i), (ii) and (vi) of Lemma 6.2 that the first term in (35) vanishes in

probability as n → ∞. For the second term in (35), we have by Assumption 4.1, (i) and (ii) of

Lemma 6.2 that

b′n−1/2

[nr]∑
s=1

(Xsτ̂ −Xsτ ) = µ2nn−1/2

[nr]∑
s=1

(ϕsτ̂ − ϕsτ ) + β′2nn−1/2

[nr]∑
s=1

y2t(ϕsτ̂ − ϕsτ )
p→ 0.

The third term of (35) converges to zero in probability by (a) of Lemma 6.1 and (vi) of Lemma 6.2.

To show the convergence of the fourth term in (35), observe that the CLT and an argument similar

to the one used to show Lemma 6.2 (vi) give

||D∗
n (π̃τ̂ − π̃τ )|| = op

(
K1/2/n1/2

)
and ∣∣∣∣∣∣

∣∣∣∣∣∣n−1/2

[nr]∑
s=1

ZsK

∣∣∣∣∣∣
∣∣∣∣∣∣ = Op

(
K1/2

)
.

Thus the fourth term also converges to zero in probability. Observing that all convergences shown

above are uniform in r shows (33). (34) can be shown by noting that n1/2(τ̂ − τ) = op(1) by

Proposition 3 of Kurozumi & Arai (2005) and using standard arguments (see Shin (1994)). This

finishes the proof of the first part of Theorem 4.1.

Proof of (ii): Let τ be an arbitrary break fraction and τo be the true one. Then the model

can be expressed as

y1t = b′Xtτ + π′ZtK + γt + ε∗t − b′(Xtτ −Xtτo
),
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where b′(Xtτ−Xtτo) = µ2n(ϕtτ−ϕtτo)+β′2ny2t(ϕtτ−ϕtτo). We have by Assumption 4.1 and Lemma

6.1 that
n∑

t=1

b′(Xtτ −Xtτo
) = Op(n) (36)

and
n∑

t=1

y2tb
′(Xtτ −Xtτo) = Op(n3/2). (37)

It can be deduced from (36) and (37) that

D−1
n

n∑
t=1

Xtτ{γt + ε∗t − b′(Xtτ −Xtτo)} = D−1
n

n∑
t=1

Xtτγt + op(n)

= Op(n).

As in the proof of Lemma 3.2, we can show that R̃ becomes asymptotically block diagonal and that

(27) holds. Then we have by (27), (36) and (37) that

[nr]∑
t=1

ẽtτ =
[nr]∑
t=1

(y1t − b̃′τXtτ − π̃′τZtK)

=
[nr]∑
t=1

{
γt + ε∗t − (b̃τ − b)′Xtτ − (π̃τ − π)′ZtK − b′(Xtτ −Xtτo

)
}

=
[nr]∑
t=1

γt − (b̃τ − b)′DnD−1
n

[nr]∑
t=1

Xtτ + op(n3/2)

= Op(n3/2)

under the alternative. This implies that
∑n

t=1(
∑t

j=1 ẽjτ )2 is of order n4. We can also show that

ω̃1·2τ = Op(`n) as in the known break point case. Therefore Ṽnτ = Op(n/`). Since this relation holds

for any τ , the theorem is proved. 2

Proof of Theorem 4.2: In this proof, let τo and τ be the true break fraction and the fraction that

is used for estimation, respectively. We first show that (b̃τ − b) has the same asymptotic properties

as (b̃τo − b) in Lemma 3.2. Since the model is expressed as

y1t = b′Xtτ + π′ZtK + ε∗t − b′(Xtτ −Xtτo
),

we can proceed the same way we did in Lemma 3.2, with ε∗t replaced by ε∗t − b′(Xtτ −Xtτo
). Since

b′(Xtτ −Xtτo) = µ2n(ϕtτ − ϕtτo) + β′2ny2t(ϕtτ − ϕtτo),
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we can see that

D−1
n

n∑
t=1

Xtτ (Xtτ −Xtτo
)′b =


n−1/2

∑n
t=1 {µ2n(ϕtτ − ϕtτo

) + β′2ny2t(ϕtτ − ϕtτo
)}

n−1/2
∑n

t=1 ϕtτ {µ2n(ϕtτ − ϕtτo) + β′2ny2t(ϕtτ − ϕtτo)}

n−1
∑n

t=1 y2t {µ2n(ϕtτ − ϕtτo
) + β′2ny2t(ϕtτ − ϕtτo

)}

n−1
∑n

t=1 y2tϕtτ {µ2n(ϕtτ − ϕtτo
) + β′2ny2t(ϕtτ − ϕtτo

)}


p→ 0,

where the convergence is established because∣∣∣∣∣n−1/2
n∑

t=1

{µ2n(ϕtτ − ϕtτo
) + β′2ny2t(ϕtτ − ϕtτo

)}

∣∣∣∣∣
≤ n−1/2

n∑
t=1

|µ2n(ϕtτ − ϕtτo
)|+ n−1/2

n∑
t=1

|β′2ny2t(ϕtτ − ϕtτo
)|

≤ n1/2|µ2n|+ sup
0≤r≤1

∣∣∣y2[nr]

n1/2

∣∣∣n|β2n|
p→ 0

by Assumption 4.2. This implies that Dn(b̃τ−b) has the same limiting distribution as that in Lemma

3.2. Similarly, we can show that
∑K

j=−K ||π̃j − πj ||2 = Op(K/n) in the same way we did in Lemma

3.2.

Next, note that

ẽtτ = y1t − b̃′τXtτ − π̃′τZtK

= εt + ηtK − (b̃τ − b)′Xtτ − (π̃τ − π)′ZtK − b′τo
(Xtτ −Xtτo

)

and that (b̃τ − b) has the same asymptotic properties as (b̃τo
− b) in Lemma 3.2. Then, just as in

the proof of Theorem 3.2, we can show that S̃[nr]τ converges weakly to Q̃Xτ (r) and ω̃1·2τ converges

to ω1·2 in probability, implying that Ṽnτ ⇒
∫ 1

0
Q2

τ (r)dr. Then the theorem is established using the

continuous mapping theorem.

Consistency of the test statistic can be proved in the same way as in Theorem 3.2. 2

Notes

1Tests for cointegration with structural breaks of “known” timing are proposed by Saikkonen & Lütkepohl (2000),

Hansen (2003) and Lütkepohl et al. (2003).

2Although π̃i depends on the break fraction τ , we suppress the dependence for simplicity.
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3 To prove Theorem 4.1 by using the pseudo-Gaussian MLE, we need to assume the following: ASSUMPTION

4.1’(a) The I(1) regressor y2t satisfies:

E

(
ty2

2i,t

y2
2i,1 + y2

2i,2 + · · · + y2
2i,t

)
≤ M for all t ≥ 1 and i = 1, . . . , m.

(b) εt is independent of the regressors for all leads and lags. (c) πi = 0 for all i > |K| where K is a finite constant.

(d) µ2 and β2 in (12), (13) and (14) depend on the sample size n. We denote them by µ2n and β2n. We assume

µ2n = δnµ0 for the models 1 and 2, and for the model 3, µ2n = µoδn, β2n = n−1/2βoδn where δn is a scalar such

that δn = o(n−ρ) for 0 < ρ < 1/4, µ0 is a constant scalar and β0 is a constant m-vector. These assumptions are

obviously more restrictive than Assumption 4.1. Assumption 4.1’ (b) would not be very realistic among others as we

note in the last section.

4We also consider the analogous approach to constructing a test statistic so as to give the least favorable result for

the null as in Zivot & Andrews (1992). The test statistic is defined as supτ≤τ≤τ̄ Ṽnτ where Ṽnτ is as in (19) and we

can show results similar to those in Theorem 4.2. However, we do not present them in this and subsequent sections

because unreported simulation experiments show that the finite-sample performance of such a “sup-type” test statistic

is dominated by the “inf-type” one.

5All unreported results are available upon request.

6There are typos in the expression of `AK in Kurozumi (2002, pp.81). The numerator of the second argument in

parentheses must be multiplied by 4 as the above expression.

7We use a maximum lag length less than `4 when τ is close to the end points in order to obtain enough observations

for estimation.

8Asymptotic critical values are calculated by employing the method of MacKinnon (1991).
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Table 1: Percentiles for the null distribution of the test statistic (m = 1)

0.01 0.05 0.1 0.5 0.9 0.95 0.99

a. Model 1

τ = 0.1 0.01826 0.02550 0.03111 0.06967 0.19117 0.25936 0.44825

τ = 0.2 0.01745 0.02417 0.02896 0.06197 0.15999 0.21613 0.35836

τ = 0.3 0.01751 0.02373 0.02846 0.05860 0.13928 0.18173 0.29459

τ = 0.4 0.01733 0.02385 0.02851 0.05757 0.12828 0.16218 0.24215

τ = 0.5 0.01755 0.02393 0.02855 0.05742 0.12435 0.15452 0.22353

τ = 0.6 0.01765 0.02393 0.02855 0.05770 0.12674 0.16041 0.24412

τ = 0.7 0.01753 0.02401 0.02864 0.05864 0.13812 0.17948 0.29220

τ = 0.8 0.01757 0.02422 0.02912 0.06203 0.15842 0.21490 0.35681

τ = 0.9 0.01820 0.02551 0.03093 0.06959 0.19136 0.25810 0.44634

b. Model 2

τ = 0.1 0.01395 0.01849 0.02151 0.03999 0.08163 0.10088 0.14716

τ = 0.2 0.01399 0.01811 0.02109 0.03793 0.07311 0.08829 0.12646

τ = 0.3 0.01400 0.01818 0.02111 0.03841 0.07433 0.08934 0.12567

τ = 0.4 0.01396 0.01838 0.02150 0.03953 0.08009 0.09949 0.15045

τ = 0.5 0.01400 0.01839 0.02157 0.03997 0.08453 0.10649 0.16299

τ = 0.6 0.01392 0.01837 0.02155 0.03959 0.08053 0.10019 0.14566

τ = 0.7 0.01397 0.01820 0.02117 0.03858 0.07492 0.08902 0.12445

τ = 0.8 0.01380 0.01808 0.02108 0.03806 0.07340 0.08889 0.12824

τ = 0.9 0.01387 0.01837 0.02155 0.03980 0.08107 0.10063 0.15110

c . Model 3

τ = 0.1 0.01777 0.02495 0.03041 0.06868 0.18930 0.25684 0.44560

τ = 0.2 0.01641 0.02251 0.02709 0.05840 0.15357 0.20784 0.34951

τ = 0.3 0.01595 0.02148 0.02552 0.05170 0.12574 0.16678 0.27798

τ = 0.4 0.01564 0.02111 0.02497 0.04869 0.10877 0.13943 0.21848

τ = 0.5 0.01564 0.02091 0.02466 0.04791 0.10375 0.12913 0.19226

τ = 0.6 0.01572 0.02113 0.02495 0.04876 0.10783 0.13789 0.21751

τ = 0.7 0.01595 0.02156 0.02564 0.05188 0.12455 0.16442 0.27529

τ = 0.8 0.01662 0.02262 0.02723 0.05815 0.15210 0.20626 0.34447

τ = 0.9 0.01773 0.02489 0.03028 0.06859 0.18954 0.25650 0.44203
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Table 2: Percentiles for the null distribution of the test statistic (m = 2)

0.01 0.05 0.1 0.5 0.9 0.95 0.99

a. Model 1

τ = 0.1 0.01610 0.02170 0.02590 0.05360 0.13500 0.18020 0.31100

τ = 0.2 0.01570 0.02100 0.02490 0.04930 0.11720 0.15620 0.26110

τ = 0.3 0.01560 0.02090 0.02460 0.04810 0.10710 0.13790 0.22770

τ = 0.4 0.01550 0.02090 0.02460 0.04790 0.10300 0.12990 0.20270

τ = 0.5 0.01540 0.02070 0.02460 0.04780 0.10330 0.12950 0.19090

τ = 0.6 0.01550 0.02080 0.02460 0.04790 0.10420 0.13090 0.20100

τ = 0.7 0.01550 0.02080 0.02470 0.04820 0.10840 0.14010 0.22790

τ = 0.8 0.01560 0.02100 0.02480 0.04950 0.11740 0.15570 0.26290

τ = 0.9 0.01580 0.02150 0.02570 0.05390 0.13520 0.18070 0.32580

b. Model 2

τ = 0.1 0.01270 0.01660 0.01920 0.03460 0.06910 0.08500 0.12550

τ = 0.2 0.01270 0.01650 0.01900 0.03350 0.06390 0.07740 0.11080

τ = 0.3 0.01280 0.01660 0.01920 0.03390 0.06520 0.07830 0.10960

τ = 0.4 0.01270 0.01660 0.01920 0.03440 0.06800 0.08360 0.12280

τ = 0.5 0.01280 0.01670 0.01920 0.03450 0.06970 0.08660 0.13490

τ = 0.6 0.01280 0.01670 0.01930 0.03430 0.06810 0.08400 0.12400

τ = 0.7 0.01280 0.01660 0.01910 0.03390 0.06490 0.07830 0.11070

τ = 0.8 0.01270 0.01650 0.01910 0.03350 0.06390 0.07700 0.10830

τ = 0.9 0.01270 0.01660 0.01920 0.03470 0.06900 0.08570 0.12560

c . Model 3

τ = 0.1 0.01540 0.02070 0.02470 0.05210 0.13230 0.17780 0.30750

τ = 0.2 0.01400 0.01860 0.02190 0.04380 0.10780 0.14370 0.24730

τ = 0.3 0.01330 0.01760 0.02050 0.03880 0.08780 0.11430 0.19490

τ = 0.4 0.01300 0.01700 0.01980 0.03630 0.07680 0.09760 0.15800

τ = 0.5 0.01300 0.01670 0.01950 0.03560 0.07330 0.09230 0.14310

τ = 0.6 0.01300 0.01690 0.01970 0.03630 0.07700 0.09880 0.15880

τ = 0.7 0.01330 0.01750 0.02040 0.03890 0.08960 0.11730 0.20060

τ = 0.8 0.01390 0.01860 0.02190 0.04400 0.10750 0.14300 0.24950

τ = 0.9 0.01500 0.02060 0.02470 0.05220 0.13180 0.17810 0.31890
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Table 3: Percentiles for the null distribution of the test statistic (m = 3)

0.01 0.05 0.1 0.5 0.9 0.95 0.99

a. Model 1

τ = 0.1 0.01430 0.01900 0.02230 0.04350 0.10150 0.13190 0.22610

τ = 0.2 0.01420 0.01860 0.02170 0.04100 0.09080 0.11780 0.19160

τ = 0.3 0.01430 0.01860 0.02170 0.04050 0.08640 0.10910 0.17190

τ = 0.4 0.01410 0.01860 0.02180 0.04040 0.08490 0.10640 0.16080

τ = 0.5 0.01410 0.01860 0.02170 0.04050 0.08490 0.10620 0.15810

τ = 0.6 0.01410 0.01860 0.02170 0.04060 0.08500 0.10690 0.16290

τ = 0.7 0.01420 0.01860 0.02170 0.04060 0.08620 0.10970 0.17620

τ = 0.8 0.01420 0.01870 0.02190 0.04130 0.09040 0.11730 0.19860

τ = 0.9 0.01430 0.01900 0.02230 0.04340 0.10070 0.13210 0.22470

b. Model 2

τ = 0.1 0.01190 0.01520 0.01760 0.03050 0.05890 0.07190 0.10510

τ = 0.2 0.01180 0.01520 0.01740 0.03010 0.05570 0.06660 0.09470

τ = 0.3 0.01190 0.01520 0.01750 0.03030 0.05650 0.06810 0.09690

τ = 0.4 0.01190 0.01510 0.01750 0.03040 0.05770 0.07050 0.10580

τ = 0.5 0.01190 0.01510 0.01740 0.03040 0.05860 0.07260 0.11000

τ = 0.6 0.01190 0.01520 0.01740 0.03030 0.05780 0.07050 0.10400

τ = 0.7 0.01190 0.01520 0.01750 0.03030 0.05680 0.06850 0.09620

τ = 0.8 0.01180 0.01510 0.01740 0.02990 0.05550 0.06710 0.09530

τ = 0.9 0.01180 0.01520 0.01750 0.03050 0.05830 0.07190 0.10610

c . Model 3

τ = 0.1 0.01350 0.01790 0.02110 0.04160 0.09800 0.12780 0.22020

τ = 0.2 0.01210 0.01590 0.01850 0.03500 0.07950 0.10410 0.17610

τ = 0.3 0.01150 0.01490 0.01720 0.03090 0.06560 0.08460 0.13870

τ = 0.4 0.01130 0.01430 0.01640 0.02870 0.05680 0.07140 0.11380

τ = 0.5 0.01120 0.01420 0.01630 0.02810 0.05430 0.06760 0.10390

τ = 0.6 0.01120 0.01440 0.01650 0.02870 0.05720 0.07150 0.11480

τ = 0.7 0.01160 0.01490 0.01720 0.03080 0.06560 0.08460 0.14240

τ = 0.8 0.01220 0.01600 0.01860 0.03520 0.07970 0.10460 0.18030

τ = 0.9 0.01340 0.01780 0.02100 0.04160 0.09750 0.12850 0.22190
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Table 4: Percentiles for the null distribution of the test statistic (m = 4)

0.01 0.05 0.1 0.5 0.9 0.95 0.99

a. Model 1

τ = 0.1 0.01300 0.01690 0.01980 0.03690 0.07960 0.10210 0.16730

τ = 0.2 0.01300 0.01680 0.01950 0.03540 0.07320 0.09270 0.15050

τ = 0.3 0.01290 0.01680 0.01950 0.03530 0.07100 0.08890 0.13800

τ = 0.4 0.01290 0.01690 0.01950 0.03530 0.07080 0.08740 0.13500

τ = 0.5 0.01290 0.01680 0.01950 0.03540 0.07110 0.08830 0.13250

τ = 0.6 0.01290 0.01680 0.01950 0.03530 0.07080 0.08800 0.13440

τ = 0.7 0.01290 0.01670 0.01950 0.03520 0.07150 0.08940 0.13860

τ = 0.8 0.01290 0.01680 0.01960 0.03540 0.07360 0.09300 0.14830

τ = 0.9 0.01290 0.01700 0.01980 0.03680 0.07990 0.10240 0.16810

b. Model 2

τ = 0.1 0.01090 0.01390 0.01600 0.02720 0.05100 0.06170 0.08950

τ = 0.2 0.01110 0.01390 0.01590 0.02700 0.04890 0.05910 0.08460

τ = 0.3 0.01100 0.01400 0.01600 0.02710 0.04960 0.05970 0.08460

τ = 0.4 0.01100 0.01400 0.01600 0.02720 0.05060 0.06110 0.08930

τ = 0.5 0.01110 0.01410 0.01610 0.02720 0.05110 0.06190 0.09150

τ = 0.6 0.01110 0.01400 0.01600 0.02710 0.05060 0.06150 0.08950

τ = 0.7 0.01100 0.01390 0.01600 0.02710 0.04950 0.05960 0.08530

τ = 0.8 0.01100 0.01400 0.01600 0.02690 0.04890 0.05880 0.08360

τ = 0.9 0.01100 0.01400 0.01600 0.02720 0.05110 0.06240 0.08990

c . Model 3

τ = 0.1 0.01190 0.01570 0.01840 0.03480 0.07610 0.09810 0.16230

τ = 0.2 0.01090 0.01390 0.01620 0.02920 0.06190 0.07970 0.12980

τ = 0.3 0.01020 0.01290 0.01480 0.02560 0.05120 0.06430 0.10440

τ = 0.4 0.00990 0.01240 0.01420 0.02370 0.04420 0.05430 0.08430

τ = 0.5 0.00990 0.01240 0.01400 0.02310 0.04230 0.05140 0.07580

τ = 0.6 0.01000 0.01250 0.01420 0.02370 0.04420 0.05450 0.08380

τ = 0.7 0.01030 0.01300 0.01490 0.02550 0.05120 0.06470 0.10310

τ = 0.8 0.01090 0.01390 0.01610 0.02930 0.06180 0.07980 0.13110

τ = 0.9 0.01210 0.01580 0.01840 0.03470 0.07630 0.09810 0.16170
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Table 5: Percentiles for the null distribution of the test statistic (m = 5)

0.01 0.05 0.1 0.5 0.9 0.95 0.99

a. Model 1

τ = 0.1 0.01200 0.01540 0.01790 0.03200 0.06500 0.08240 0.13340

τ = 0.2 0.01200 0.01540 0.01770 0.03110 0.06120 0.07630 0.11950

τ = 0.3 0.01200 0.01540 0.01770 0.03110 0.06050 0.07460 0.11310

τ = 0.4 0.01200 0.01540 0.01770 0.03100 0.06050 0.07440 0.11090

τ = 0.5 0.01200 0.01540 0.01770 0.03110 0.06030 0.07430 0.11170

τ = 0.6 0.01200 0.01530 0.01770 0.03100 0.06040 0.07360 0.11010

τ = 0.7 0.01190 0.01530 0.01770 0.03100 0.06040 0.07460 0.11420

τ = 0.8 0.01190 0.01530 0.01770 0.03100 0.06130 0.07600 0.11980

τ = 0.9 0.01210 0.01550 0.01790 0.03200 0.06500 0.08200 0.13300

b. Model 2

τ = 0.1 0.01030 0.01300 0.01480 0.02450 0.04460 0.05390 0.07790

τ = 0.2 0.01030 0.01300 0.01480 0.02450 0.04350 0.05190 0.07270

τ = 0.3 0.01030 0.01310 0.01490 0.02450 0.04420 0.05300 0.07470

τ = 0.4 0.01040 0.01300 0.01480 0.02460 0.04450 0.05340 0.07660

τ = 0.5 0.01030 0.01310 0.01480 0.02460 0.04460 0.05360 0.07730

τ = 0.6 0.01040 0.01300 0.01480 0.02460 0.04460 0.05340 0.07620

τ = 0.7 0.01030 0.01300 0.01480 0.02460 0.04420 0.05300 0.07420

τ = 0.8 0.01040 0.01300 0.01480 0.02450 0.04370 0.05250 0.07370

τ = 0.9 0.01040 0.01300 0.01480 0.02470 0.04490 0.05380 0.07740

c . Model 3

τ = 0.1 0.01090 0.01410 0.01640 0.02970 0.06170 0.07800 0.12690

τ = 0.2 0.00980 0.01250 0.01430 0.02490 0.05040 0.06310 0.10190

τ = 0.3 0.00920 0.01150 0.01310 0.02180 0.04160 0.05160 0.08150

τ = 0.4 0.00890 0.01110 0.01250 0.02020 0.03630 0.04420 0.06620

τ = 0.5 0.00890 0.01090 0.01230 0.01970 0.03430 0.04130 0.06040

τ = 0.6 0.00890 0.01100 0.01250 0.02010 0.03600 0.04380 0.06500

τ = 0.7 0.00920 0.01150 0.01310 0.02190 0.04160 0.05170 0.08040

τ = 0.8 0.00980 0.01250 0.01420 0.02500 0.05020 0.06360 0.10190

τ = 0.9 0.01100 0.01430 0.01650 0.02980 0.06150 0.07820 0.12690
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Table 6: Rejection frequencies of the tests when the break point is known (n = 100)

aii σ2
u Model 1 Model 2 Model 3

n = 100 `4 `12 `a `4 `12 `a `4 `12 `a

0 0.006 0.073 0.097 0.011 0.125 0.159 0.089 0.249 0.272

0.01 0.321 0.350 0.371 0.211 0.314 0.335 0.365 0.459 0.469

-0.8 0.1 0.695 0.516 0.652 0.550 0.447 0.518 0.678 0.542 0.647

1 0.771 0.515 0.823 0.660 0.438 0.775 0.756 0.548 0.834

10 0.788 0.525 0.476 0.666 0.423 0.447 0.759 0.547 0.584

0 0.029 0.074 0.038 0.042 0.106 0.043 0.050 0.134 0.057

0.01 0.391 0.339 0.395 0.250 0.303 0.255 0.334 0.363 0.340

-0.4 0.1 0.698 0.501 0.811 0.559 0.420 0.682 0.647 0.483 0.739

1 0.777 0.515 0.603 0.649 0.434 0.514 0.724 0.506 0.601

10 0.791 0.519 0.431 0.658 0.424 0.426 0.724 0.512 0.502

0 0.048 0.072 0.042 0.053 0.103 0.044 0.063 0.130 0.051

0.01 0.303 0.272 0.321 0.189 0.247 0.201 0.250 0.294 0.265

0 0.1 0.656 0.478 0.683 0.501 0.389 0.553 0.566 0.444 0.610

1 0.762 0.504 0.518 0.639 0.410 0.441 0.679 0.475 0.507

10 0.784 0.517 0.419 0.654 0.411 0.414 0.701 0.487 0.470

0 0.085 0.083 0.084 0.079 0.110 0.078 0.091 0.125 0.091

0.01 0.209 0.180 0.199 0.145 0.170 0.137 0.186 0.215 0.177

0.4 0.1 0.564 0.403 0.496 0.399 0.318 0.346 0.451 0.388 0.414

1 0.742 0.487 0.451 0.598 0.390 0.395 0.644 0.440 0.447

10 0.774 0.504 0.412 0.635 0.398 0.403 0.670 0.443 0.452

0 0.245 0.110 0.108 0.196 0.122 0.114 0.214 0.150 0.129

0.01 0.256 0.127 0.118 0.209 0.138 0.133 0.228 0.155 0.139

0.8 0.1 0.429 0.248 0.232 0.281 0.178 0.176 0.322 0.212 0.211

1 0.655 0.415 0.356 0.466 0.293 0.288 0.489 0.331 0.324

10 0.724 0.466 0.379 0.539 0.336 0.328 0.567 0.363 0.365
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Table 7: Rejection frequencies of the tests when the break point is known (n = 200)

aii σ2
u Model 1 Model 2 Model 3

n = 200 `4 `12 `a `4 `12 `a `4 `12 `a

0 0.006 0.051 0.064 0.013 0.084 0.109 0.072 0.188 0.211

0.01 0.685 0.618 0.625 0.521 0.483 0.488 0.639 0.588 0.596

-0.8 0.1 0.919 0.717 0.881 0.860 0.582 0.770 0.896 0.676 0.844

1 0.947 0.730 0.869 0.915 0.569 0.826 0.941 0.666 0.884

10 0.961 0.732 0.575 0.922 0.570 0.502 0.945 0.665 0.607

0 0.028 0.049 0.038 0.035 0.075 0.046 0.030 0.077 0.046

0.01 0.712 0.580 0.708 0.545 0.447 0.542 0.631 0.513 0.622

-0.4 0.1 0.921 0.705 0.964 0.866 0.558 0.935 0.880 0.629 0.940

1 0.956 0.726 0.689 0.911 0.567 0.581 0.929 0.643 0.635

10 0.962 0.728 0.553 0.921 0.573 0.493 0.932 0.645 0.546

0 0.056 0.055 0.054 0.056 0.081 0.058 0.054 0.072 0.051

0.01 0.626 0.499 0.664 0.457 0.380 0.491 0.546 0.440 0.575

0 0.1 0.905 0.691 0.865 0.828 0.531 0.778 0.852 0.597 0.797

1 0.950 0.718 0.606 0.904 0.566 0.517 0.922 0.628 0.564

10 0.957 0.724 0.547 0.915 0.569 0.482 0.926 0.631 0.532

0 0.112 0.075 0.090 0.093 0.082 0.085 0.091 0.085 0.078

0.01 0.460 0.357 0.425 0.353 0.274 0.311 0.409 0.319 0.364

0.4 0.1 0.860 0.636 0.700 0.747 0.485 0.556 0.784 0.535 0.610

1 0.938 0.713 0.559 0.889 0.552 0.478 0.889 0.602 0.518

10 0.954 0.718 0.537 0.913 0.556 0.465 0.920 0.607 0.512

0 0.345 0.122 0.119 0.311 0.128 0.123 0.297 0.117 0.116

0.01 0.424 0.182 0.176 0.377 0.158 0.151 0.370 0.167 0.157

0.8 0.1 0.715 0.438 0.376 0.593 0.320 0.295 0.616 0.370 0.340

1 0.898 0.645 0.486 0.838 0.460 0.400 0.834 0.519 0.438

10 0.940 0.690 0.504 0.896 0.504 0.423 0.888 0.548 0.461
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Table 8: Rejection frequencies of the tests when the break point is unknown (n = 100)

aii σ2
u Model 1 Model 2 Model 3

n = 100 `4 `12 `a `4 `12 `a `4 `12 `a

0 0.016 0.071 0.095 0.026 0.144 0.179 0.144 0.214 0.219

0.01 0.200 0.220 0.238 0.101 0.195 0.218 0.214 0.225 0.234

-0.8 0.1 0.388 0.252 0.356 0.270 0.243 0.268 0.385 0.274 0.355

1 0.460 0.239 0.607 0.419 0.287 0.671 0.457 0.283 0.614

10 0.485 0.235 0.254 0.462 0.299 0.314 0.477 0.270 0.308

0 0.025 0.060 0.029 0.039 0.119 0.041 0.057 0.112 0.060

0.01 0.220 0.206 0.226 0.101 0.153 0.105 0.145 0.162 0.154

-0.4 0.1 0.380 0.222 0.516 0.305 0.245 0.394 0.353 0.249 0.466

1 0.456 0.229 0.337 0.422 0.279 0.388 0.435 0.252 0.366

10 0.461 0.230 0.229 0.449 0.290 0.282 0.446 0.258 0.258

0 0.040 0.066 0.031 0.052 0.112 0.039 0.049 0.099 0.035

0.01 0.155 0.168 0.164 0.068 0.127 0.062 0.107 0.142 0.095

0 0.1 0.350 0.217 0.388 0.245 0.226 0.300 0.331 0.242 0.367

1 0.451 0.219 0.260 0.401 0.259 0.292 0.416 0.243 0.280

10 0.454 0.217 0.208 0.431 0.285 0.273 0.433 0.237 0.233

0 0.054 0.074 0.057 0.056 0.130 0.056 0.064 0.092 0.061

0.01 0.092 0.094 0.092 0.062 0.116 0.063 0.096 0.119 0.098

0.4 0.1 0.255 0.176 0.212 0.160 0.164 0.141 0.241 0.203 0.215

1 0.425 0.228 0.228 0.357 0.242 0.238 0.389 0.237 0.238

10 0.441 0.219 0.200 0.404 0.270 0.259 0.401 0.230 0.223

0 0.116 0.076 0.072 0.112 0.102 0.064 0.137 0.090 0.081

0.01 0.121 0.074 0.076 0.112 0.104 0.079 0.125 0.093 0.082

0.8 0.1 0.181 0.097 0.098 0.150 0.128 0.105 0.179 0.121 0.117

1 0.319 0.156 0.166 0.252 0.176 0.150 0.276 0.180 0.173

10 0.358 0.184 0.178 0.329 0.228 0.202 0.330 0.186 0.186
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Table 9: Rejection frequencies of the tests when the break point is unknown (n = 200)

aii σ2
u Model 1 Model 2 Model 3

n = 200 `4 `12 `a `4 `12 `a `4 `12 `a

0 0.010 0.051 0.060 0.022 0.076 0.094 0.181 0.225 0.234

0.01 0.485 0.395 0.407 0.288 0.254 0.271 0.392 0.307 0.318

-0.8 0.1 0.693 0.366 0.601 0.653 0.298 0.491 0.666 0.357 0.569

1 0.759 0.381 0.651 0.778 0.323 0.779 0.778 0.388 0.711

10 0.777 0.383 0.293 0.784 0.332 0.295 0.789 0.377 0.328

0 0.024 0.041 0.036 0.039 0.078 0.045 0.027 0.058 0.041

0.01 0.504 0.351 0.501 0.327 0.231 0.318 0.353 0.262 0.345

-0.4 0.1 0.703 0.354 0.816 0.667 0.296 0.808 0.684 0.347 0.818

1 0.762 0.381 0.379 0.767 0.319 0.399 0.764 0.362 0.380

10 0.768 0.381 0.267 0.791 0.330 0.267 0.765 0.361 0.287

0 0.042 0.047 0.043 0.052 0.083 0.045 0.048 0.069 0.046

0.01 0.388 0.265 0.435 0.238 0.175 0.261 0.288 0.225 0.329

0 0.1 0.658 0.335 0.567 0.597 0.275 0.584 0.624 0.319 0.574

1 0.758 0.370 0.311 0.757 0.310 0.310 0.742 0.354 0.310

10 0.767 0.380 0.259 0.778 0.317 0.266 0.755 0.352 0.268

0 0.085 0.053 0.071 0.073 0.070 0.068 0.071 0.074 0.067

0.01 0.236 0.160 0.201 0.154 0.115 0.133 0.235 0.175 0.204

0.4 0.1 0.567 0.293 0.364 0.476 0.218 0.306 0.550 0.277 0.351

1 0.731 0.348 0.258 0.725 0.292 0.267 0.707 0.326 0.272

10 0.758 0.362 0.253 0.764 0.311 0.251 0.744 0.341 0.248

0 0.182 0.077 0.077 0.175 0.068 0.069 0.228 0.092 0.092

0.01 0.198 0.073 0.070 0.197 0.067 0.067 0.264 0.129 0.129

0.8 0.1 0.393 0.154 0.144 0.326 0.125 0.115 0.430 0.216 0.208

1 0.640 0.281 0.196 0.639 0.237 0.206 0.633 0.277 0.218

10 0.722 0.327 0.221 0.738 0.269 0.231 0.694 0.290 0.218
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Table 10: Rejection frequencies of the Inf-type tests when the break point is unknown (n = 100)

aii σ2
u Model 1 Model 2 Model 3

n = 100 `4 `12 `a `4 `12 `a `4 `12 `a

0 0.034 0.327 0.361 0.118 1.000 0.954 0.067 0.530 0.519

0.01 0.341 0.553 0.551 0.327 1.000 0.953 0.305 0.676 0.623

-0.8 0.1 0.701 0.662 0.704 0.732 0.998 0.893 0.731 0.782 0.753

1 0.824 0.693 0.912 0.911 0.992 0.956 0.856 0.790 0.927

10 0.831 0.704 0.684 0.919 0.989 0.897 0.868 0.800 0.760

0 0.078 0.313 0.086 0.217 1.000 0.267 0.057 0.463 0.076

0.01 0.400 0.520 0.407 0.456 1.000 0.476 0.325 0.629 0.336

-0.4 0.1 0.712 0.660 0.794 0.784 0.994 0.792 0.715 0.747 0.784

1 0.824 0.695 0.736 0.905 0.992 0.920 0.841 0.778 0.786

10 0.825 0.698 0.694 0.920 0.990 0.920 0.842 0.774 0.733

0 0.105 0.294 0.096 0.218 1.000 0.138 0.082 0.431 0.064

0.01 0.316 0.455 0.318 0.369 0.998 0.291 0.247 0.556 0.232

0 0.1 0.648 0.622 0.696 0.712 0.992 0.715 0.646 0.711 0.680

1 0.799 0.682 0.660 0.892 0.991 0.861 0.807 0.753 0.713

10 0.826 0.694 0.705 0.919 0.989 0.927 0.824 0.757 0.728

0 0.115 0.261 0.115 0.225 0.993 0.215 0.130 0.404 0.128

0.01 0.223 0.359 0.223 0.283 0.993 0.272 0.218 0.451 0.214

0.4 0.1 0.527 0.553 0.486 0.560 0.994 0.558 0.521 0.648 0.493

1 0.759 0.669 0.626 0.853 0.989 0.839 0.749 0.731 0.655

10 0.812 0.691 0.698 0.906 0.991 0.920 0.805 0.733 0.727

0 0.247 0.226 0.172 0.456 0.964 0.499 0.284 0.367 0.226

0.01 0.258 0.233 0.175 0.439 0.968 0.506 0.292 0.362 0.233

0.8 0.1 0.376 0.342 0.274 0.539 0.977 0.584 0.372 0.442 0.314

1 0.633 0.545 0.501 0.761 0.985 0.800 0.583 0.581 0.501

10 0.724 0.605 0.601 0.828 0.988 0.877 0.665 0.615 0.587
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Table 11: Rejection frequencies of the Inf-type tests when the break point is unknown (n = 200)

aii σ2
u Model 1 Model 2 Model 3

n = 100 `4 `12 `a `4 `12 `a `4 `12 `a

0 0.026 0.158 0.197 0.067 0.590 0.734 0.070 0.231 0.274

0.01 0.709 0.669 0.680 0.671 0.825 0.850 0.620 0.647 0.659

-0.8 0.1 0.949 0.783 0.896 0.960 0.887 0.921 0.937 0.813 0.895

1 0.973 0.794 0.958 0.987 0.900 0.996 0.975 0.823 0.965

10 0.977 0.782 0.722 0.994 0.900 0.914 0.979 0.821 0.800

0 0.096 0.175 0.117 0.214 0.550 0.275 0.061 0.161 0.076

0.01 0.765 0.646 0.764 0.756 0.795 0.761 0.677 0.621 0.677

-0.4 0.1 0.955 0.766 0.980 0.969 0.889 0.984 0.945 0.792 0.975

1 0.970 0.790 0.800 0.991 0.897 0.921 0.972 0.814 0.845

10 0.976 0.782 0.718 0.994 0.900 0.929 0.978 0.808 0.778

0 0.140 0.177 0.139 0.267 0.523 0.234 0.105 0.170 0.098

0.01 0.673 0.559 0.696 0.632 0.730 0.669 0.568 0.535 0.605

0 0.1 0.931 0.745 0.914 0.945 0.857 0.949 0.919 0.761 0.904

1 0.963 0.779 0.742 0.990 0.894 0.895 0.969 0.800 0.786

10 0.975 0.776 0.719 0.991 0.896 0.940 0.976 0.804 0.779

0 0.181 0.166 0.161 0.277 0.426 0.263 0.183 0.184 0.155

0.01 0.502 0.414 0.451 0.477 0.582 0.448 0.450 0.397 0.409

0.4 0.1 0.874 0.678 0.759 0.894 0.795 0.812 0.865 0.680 0.742

1 0.959 0.767 0.717 0.987 0.882 0.892 0.961 0.781 0.744

10 0.973 0.765 0.719 0.991 0.901 0.945 0.972 0.789 0.779

0 0.431 0.171 0.166 0.597 0.393 0.378 0.484 0.225 0.221

0.01 0.469 0.212 0.202 0.637 0.399 0.398 0.508 0.285 0.270

0.8 0.1 0.720 0.439 0.416 0.805 0.596 0.599 0.723 0.459 0.445

1 0.933 0.702 0.645 0.970 0.815 0.872 0.919 0.664 0.653

10 0.959 0.735 0.687 0.985 0.872 0.947 0.955 0.733 0.727
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