
 

 

 

 

 

 

C A R F  W o r k i n g  P a p e r 
 

 

 

 
 

CARF-F-166 
 

Alternative Asymmetric Stochastic Volatility 
Models 

 
Manabu Asai 

Soka University 
Michael McAleer 

Erasmus University Rotterdam 
Tinbergen Institute 

The University of Tokyo 
 

August 2009 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CARF is presently supported by Bank of Tokyo-Mitsubishi UFJ, Ltd., Citigroup, Dai-ichi 
Mutual Life Insurance Company, Meiji Yasuda Life Insurance Company, Nippon Life Insurance 
Company, Nomura Holdings, Inc. and Sumitomo Mitsui Banking Corporation (in alphabetical 
order). This financial support enables us to issue CARF Working Papers. 

 
 

 

 

 

 

 

 

 

CARF Working Papers can be downloaded without charge from: 
http://www.carf.e.u-tokyo.ac.jp/workingpaper/index.cgi 

 

 

 

 

Working Papers are a series of manuscripts in their draft form.  They are not intended for 
circulation or distribution except as indicated by the author.  For that reason Working Papers may 
not be reproduced or distributed without the written consent of the author. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6248045?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 

Alternative Asymmetric Stochastic Volatility Models* 
 
 

Manabu Asai  

Faculty of Economics  
Soka University, Japan 

 
 

 Michael McAleer 
Econometric Institute  

Erasmus School of Economics 
Erasmus University Rotterdam 

and 
Tinbergen Institute 
The Netherlands 

and 
Center for International Research on the Japanese Economy (CIRJE) 

Faculty of Economics 
University of Tokyo 

 
 

Revised: August 2009 
 
 

 

* The authors wish to acknowledge the insightful comments and suggestions of the 
Editor and a referee, and helpful discussions with Felix Chan, Neil Shephard and Jun 
Yu, and seminar participants at Fondazione Eni Enrico Mattei - Milan, National 
University of Singapore, University of Auckland, University of Melbourne, University 
of Milan-Bicocca, University of Venice “Ca’ Foscari”, Ente Einaudi - Rome, and 
University Pompeu Fabra. An earlier version of the paper was presented at the 
Symposium on Econometric Forecasting and High-Frequency Data Analysis in 
Singapore, May 2004. The first author appreciates the financial support of the Japan 
Society for the Promotion of Science, and the Australian Academy of Science. The 
second author is grateful for the financial support of the Australian Research Council. 



2 

 

Abstract 
 
 

The stochastic volatility model usually incorporates asymmetric effects by introducing 
the negative correlation between the innovations in returns and volatility. In this paper, 
we propose a new asymmetric stochastic volatility model, based on the leverage and 
size effects. The model is a generalization of the exponential GARCH (EGARCH) 
model of Nelson (1991). We consider categories for asymmetric effects, which 
describes the difference among the asymmetric effect of the EGARCH model, the 
threshold effects indicator function of Glosten, Jagannathan and Runkle (1992), and 
the negative correlation between the innovations in returns and volatility. The new 
model is estimated by the efficient importance sampling method of Liesenfeld and 
Richard (2003), and the finite sample properties of the estimator are investigated using 
numerical simulations. Four financial time series are used to estimate the alternative 
asymmetric SV models, with empirical asymmetric effects found to be statistically 
significant in each case. The empirical results for S&P 500 and Yen/USD returns 
indicate that the leverage and size effects are significant, supporting the general model. 
For TOPIX and USD/AUD returns, the size effect is insignificant, favoring the 
negative correlation between the innovations in returns and volatility. We also consider 
standardized t distribution for capturing the tail behavior. The results for Yen/USD 
returns show that the model is correctly specified, while the results for three other data 
sets suggest there is scope for improvement. 
 
 
 
 
 
 
Key words: Stochastic volatility, asymmetric effects, leverage, threshold, indicator 
function, importance sampling, numerical simulations. 
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1  Introduction 
 

It has long been recognized that the returns of financial assets are negatively 
correlated with changes in the volatilities of returns (see Black (1976) and Christie 
(1982)) and, moreover, that such volatilities tend to change over time. In the class of 
autoregressive conditional heteroskedasticity (ARCH) models pioneered by Engle 
(1982), several authors have proposed extensions of the ARCH model and found 
evidence of such negative correlation. For instance, Nelson (1991) proposed the 
exponential generalized ARCH (EGARCH) model, while Glosten, Jagannathan and 
Runkle (1992) developed GJR, a threshold indicator function GARCH model. The 
threshold effect is typically called asymmetry when the threshold is set to zero. A 
common idea used in such asymmetric models is the ‘leverage’ effect, in which 
negative shocks to returns increase the predictable volatility to a greater extent than do 
positive shocks of a similar magnitude.  

 
On the other hand, stochastic volatility (SV) models are based on the direct 

correlation between the innovations in both returns and volatility. For a theoretical 
development in continuous time, Hull and White (1987) generalized the Black-Scholes 
option pricing formula to analyse stochastic volatility and the negative correlation 
between the innovations. In empirical research, extensions of a simple discrete time 
model due to Taylor (1986) have been analysed by Wiggins (1987), Chesney and Scott 
(1989), and Harvey and Shephard (1996) in order to accommodate the direct 
correlation. Although this extension has been called the asymmetric SV model, we will 
refer to the asymmetric behaviour based on the direct correlation between the 
innovations as the “leverage” SV (SV-L) model to distinguish it from an alternative 
model of asymmetry. A comparison of a variety of univariate and multivariate, 
conditional and stochastic, models is given in McAleer (2005). 

 
In addition to the leverage model, this paper considers a general asymmetric SV 

model based on the EGARCH specification of Nelson (1991). As the EGARCH model 
incorporates both leverage and size effects, we will refer to the asymmetric behaviour 
as the “leverage and size effects” SV (SV-LS) model. The SV-LS model nests the SV-L 
model. As another special case of the SV-LS model, we will also consider the “size 
effect” SV (SV-S) model, which is a symmetric model. The SV-LS model will be 
estimated and tested for an optimal and practical representation of asymmetry. The 
general model also permits the non-nested SV-L and SV-S models to be tested against 
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each other. Recently, So et al. (2002) considered a threshold effects model in which the 
breaks in the constant and autoregressive parameter in the SV equation depend on the 
signs of the previous returns. Their model will not be discussed in detail here as the 
empirical results in Asai and McAleer (2005) show that their model is generally inferior 
to the SV-L model given below in terms of the AIC and BIC criteria.  

 
The empirical analysis is concerned with both stock returns and exchange rate 

returns. Although Gallant, Hsieh and Tauchen (1991) found that the response of 
conditional volatility to negative and positive shocks was essentially symmetric for the 
British pound/US dollar exchange rate by using the seminonparametric technique of 
Gallant and Tauchen (1989), we observed asymmetries in the exchange rate data based 
on the SV-L and SV-S models, even though such asymmetries may not be captured 
adequately using the ARCH approach. In addition to providing more accurate estimates 
of volatility, these empirical results should assist in calculating optimal Value-at-Risk 
(VaR) forecasts and capital charges for purposes of portfolio and risk management. 
 

For estimation of the SV model, recent developments have been on the 
likelihood-oriented procedures (see Fridman and Harris (1998), Sandmann and 
Koopman (1998), Liesenfeld and Richard (2003)), and on the Bayesian Markov Chain 
Monte Carlo (MCMC) technique proposed by Jacquier, Polson and Rossi (1994) (see, 
among others, Chib, Nardari and Shephard (2002) and Shephard and Pitt (1998)). The 
Monte Carlo results conducted by Fridman and Harris (1998) and Sandmann and 
Koopman (1998) show that the properties of these methods are very similar to those of 
Jacquier, Polson and Rossi (1994). While the procedures proposed by Fridman and 
Harris (1998) are more computationally demanding than the MCMC technique of 
Jacquier, Polson and Rossi (1994), the simulated maximum likelihood approaches 
proposed by Sandmann and Koopman (1998) and Liesenfeld and Richard (2003) are 
much easier to implement computationally. Although the Monte Carlo likelihood 
method of Sandmann and Koopman (1998) is computationally faster, the efficient 
importance sampling (EIS) method of Liesenfeld and Richard (2003) is flexible to 
various kinds of SV models. With regard to the Bayesian approach, Asai (2005) 
compared several methods with regard to a numerical efficiency measure that was 
proposed by Geweke (1992). 

 
The remainder of the paper is organized as follows. Section 2 examines the SV-L, 

SV-S and SV-LS models, and investigates their relationships. A non-nested testing 
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procedure to discriminate between the SV-L and SV-S models is also discussed. 
Section 3 compares a variety of leverage and asymmetric effects in the framework of 
both stochastic and conditional volatility models. Section 4 discusses some standard 
estimation techniques for SV models, and Section 5 presents the results of Monte Carlo 
experiments regarding the finite sample performance of the estimators of the 
alternative SV models. In Section 6, the two asymmetric SV models and the SV-LS 
model are estimated using S&P 500 Composite returns, the Tokyo stock price index 
(TOPIX) returns, and the exchange rates between the USA and Australia and between 
Japan and the USA. Section 7 gives some concluding remarks. 
 
2  Leverage and Asymmetry in SV Models 
 

In this paper we consider a new asymmetric SV model. Before going to the SV 
class, we review the typical models for the ARCH class. There are two standard 
methods of capturing asymmetric behaviour in ARCH-type models, one of which is the 
exponential generalized ARCH (EGARCH) model of Nelson (1991). Although the 
EGARCH model has been used quite frequently in empirical applications when 
asymmetric behaviour is observed, the presence of the absolute value of a standardized 
shock in the model poses a problem regarding the statistical properties of the model.  

 
The other frequently used model of asymmetric behaviour in ARCH-type models 

is the threshold indicator function ARCH model of Glosten, Jagannathan and Runkle 
(1992) (GJR). This effect is typically called asymmetry when the threshold is set to 
zero, in which case a distinction is made between the effects of positive and negative 
shocks on volatility. But, as shown in the next section, the GJR model is very limited 
to express various kinds of asymmetries. 
 
    The problem of EGARCH comes from the evaluation of the derivatives based on 
the absolute value of the standardized residuals. As shown in Hentschel (1995), we can 
avoid the problem by the two ways; one is to estimate the mean and variance equations 
separately, and the other is to approximate the absolute value function by using the 
rectangular hyperbola rotated counterclockwise by 45 degrees. As we can handle the 
problem of absolute values, the new asymmetric SV model will be based on the 
EGARCH model. 
 

In this paper we consider the new asymmetric SV model, as follows: 
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 exp( / 2), ~ (0,1), 1,..., ,t t t ty h N t Tε ε= =  (1) 

 ( ) { } 2
1 1 21 , ~ (0, ),t t t t t t th h E N ηφ μ φ γ ε γ ε ε η η σ+ = − + + + − +  (2) 

 
where ( ) 0t sE ε η =  for any t and s, and t t ty R μ= −  is the mean-adjusted return on an 
asset. Since many financial time series exhibit little or no dynamic behaviour in the 
mean but pronounced serial dependence in the variance (see Bollerslev, Chou and 
Kroner (1992), Bollerslev, Engle and Nelson (1994), and McAleer (2005) for useful 
surveys), the estimation of tμ  is not the subject of interest in this paper. 
 
    The model can be considered as a stochastic version of the EGARCH model of 
Nelson (1991), and thus can express various kinds of asymmetries, which we will 
discuss in the next section. The model contains several special cases. The first model is 

EGARCH model, which is obtained by putting 0ησ = . Secondly, when 1 2 0γ γ= = , 

the model reduces to the basic SV model, in which the log-volatility, th , follows a 
simple AR(1) process. The third case is the asymmetric SV model of Harvey and 
Shephard (1996). By setting 2 0γ = , we have another representation of the model as 
follows: 
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⎛ ⎞⎡ ⎤⎛ ⎞ ⎡ ⎤
⎜ ⎟⎢ ⎥⎜ ⎟ ⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠ ⎣ ⎦⎝ ⎠

 (3) 

 

where 2 2 2
1η ησ σ γ∗ = +  and 2 2

1 1ηρ γ σ γ= + ; see also Harvey and Shephard (1996). 

We will refer to this type of asymmetry as the SV with Leverage (SV-L) model. 
Leverage captures asymmetry by the negative correlation between returns and 
volatility innovations, which is described by putting 1 0γ < . The fourth model is the 
case 1 0γ = , yielding the symmetric size effect. In the model, positive and negative 
shocks increase future volatility by the same amount, if 2 0γ > . We will refer to this 
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model as the SV with size effects (SV-S) model. 
 
    The general model (1) and (2), which we will refer to the SV with leverage and 
size effects (SV-LS) model, can be considered as an extension of Asai and McAleer 
(2005). While Asai and McAleer (2005) is based on the unstandardized error, ty , the 
SV-LS model is based on the standardized error, tε . Hence, the SV-LS model capture 
standardized size effects. 
 

The first and second moments of the generalized error term,  
 

{ }1 2t t t t tEξ γ ε γ ε ε η≡ + − + , 

 

is given by ( ) 0tE ξ =  and ( ) ( )2 2 2 2 2
1 2 1 2tEξ ησ ξ γ γ π σ≡ = + − + . The correlation 

coefficient between tε  and tξ  is 1 ξγ σ . 

 
    In the class of SV, when 1 0γ ≠  and 2 0γ ≠  in, this yields our asymmetric SV 
model, which may be interpreted as either: (i) an asymmetric model which exhibits 
both leverage and thresholds; or (ii) an artifact which is used solely for purposes of 
testing the non-nested SV-L and SV-S models against each other. In the latter case, the 
four possible outcomes of the non-nested tests of the SV-L and SV-S models against 
each other are as follows: 
 
(i) 1 0γ =  and 2 0γ = , which leads to rejection of both SV-L and SV-S;  
(ii) 1 0γ ≠  and 2 0γ = , which leads to rejection of SV-S but not SV-L; 
(iii) 1 0γ =  and 2 0γ ≠ , which leads to rejection of SV-L but not SV-S; 
(iv) 1 0γ ≠  and 2 0γ ≠ , which leads to rejection of neither SV-L nor SV-S.  
 
    The reason why we consider the SV-S model in our analysis is to examine 
whether or not the exchange rate returns have symmetric effects on future volatilities, 
in the framework of SV. 
 
    Tests of non-nested conditional volatility models, specifically GARCH versus 
EGARCH, and GJR versus EGARCH, have been examined by Ling and McAleer 
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(2000) and McAleer, Chan and Marinova (2002), respectively. For further details 
regarding non-nested testing procedures in the context of econometric time series and 
regression models, see McAleer (2005). 
 
We may extend the SV-LS model (1) and (2) in order to incorporate the heavy-tailed 
return distributions. We consider the standardized t distribution for tε , for which the 
density function is given by 
 

( ) ( ) ( )( )
( )

( )1 22
1 2 1 2

2 1 , 2,
2 2

f
νν εε π ν ν

ν ν

− +
− Γ + ⎡ ⎤

= − + >⎡ ⎤ ⎢ ⎥⎣ ⎦ Γ −⎣ ⎦
 

 

where ν  represents the degrees-of-freedom and ( )xΓ  denotes the gamma function. 

For convenience, we call it as the SV model with t distribution, the leverage and size 
effects (SV-t-LS). As long as 4ν > , the kurtosis of the t distribution is 

( ) ( ) ( )4 3 2 4E ε ν ν= − − , which is greater than 3 if ν < ∞ . Needless to say, the t 

distribution approaches the standard normal distribution when ν →∞ . It should be 
noted that Asai (2008) introduced the t distribution in a different way. Asai (2008) 
decomposed the t distribution into the standard normal and chi-squared distributions, 
and assumed the negative correlation using the standard normal distribution. 
 
3  A Comparison of Stochastic and Conditional Volatility Models 
 

Although the terms “leverage” and “asymmetry” tend to have similar meanings 
in the ARCH literature, it is instructive to clarify any differences between them, as 
there is a greater range of asymmetric effects than is generally considered. Christie 
(1982, p. 408) states: 
 

“Historically a variance/stock price relation is part of market folklore, the 
usual claim being that the relation is a negative one; in other words when 
the stock price increases the variance declines.” 

 
Originally, Black (1976) and Christie (1982) investigated the negative relation between 
the ex-post volatility in the rate of returns on equity and the current value of the equity. 
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We will refer to this phenomenon as the “leverage” effect. On the other hand, we 
define “asymmetry” as the differential impacts of positive and negative shocks on 
volatility. Given these definitions, the leverage effect implies asymmetry as a negative 
shock increases volatility, while a positive shock decreases volatility. On the other 
hand, an effect that is symmetric implies that positive and negative shocks have the 
same effect on volatility.  
 

After the development of the ARCH class of volatility models in Engle (1982), 
many authors, including French, Schwert and Stambaugh (1987), Pagan and Schwert 
(1990), Nelson (1991) and Glosten, Jagannathan and Runkle (1992), analyzed the 
relation between returns and volatility using variations of ARCH. Of the various 
ARCH models to capture asymmetric effects, the EGARCH model proposed by 
Nelson (1991) and the GJR model of Glosten, Jagannathan and Runkle (1992), are the 
most widely used. The GARCH, GJR and EGARCH models are defined as follows: 
 

( )

( )
( )

1/ 2

2
1

2 2
1

1

, iid 0,1 ,

GARCH: ,

GJR: ,

EGARCH: exp ,

t t t t

t t t

t t t t t

t t t t

y h z z

h y h

h y y I z h

h h z zβ

ω α β

ω α γ β

ω λ θ

∗

∗ ∗
+

∗ ∗
+

∗ ∗
+

=

= + +

= + + +

= + +

 

 

where th∗  denotes conditional volatility to distinguish it from stochastic volatility, and 

( )I z  is an indicator function such that ( ) 1I z =  if  0z <  and ( ) 0I z =  otherwise. 
 

Although the GJR and EGARCH models are more flexible than the GARCH 
model, it is helpful to check their flexibility with respect to both the leverage and 
asymmetric effects. In order to distinguish several asymmetric effects of a shock to 
returns, we consider the following five cases, conditional on a negative shock 
increasing volatility: 
 
Case I (Symmetry): Negative and positive shocks have identical effects in increasing 
volatility. 
Case II (General Asymmetry): A negative shock increases volatility, but the effect of 
a positive shock differs from that of a negative shock. 
Case III (Wide Asymmetry): Negative and positive shocks increase volatility 
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differently (as a subset of Case II). 
Case IV (Standard Asymmetry): The impact of a negative shock exceeds that of a 
positive shock (as a subset of Case III). 
Case V (Leverage): A negative shock increases volatility, whereas a positive shock 
decreases volatility.  
 
Case II provides the general asymmetric framework, and includes Cases III-V. 
Furthermore, Case III includes Case IV. The empirical results based on the GJR and 
EGARCH models typically fall into Case IV. 
 
Under the concepts of symmetry, asymmetry and leverage, Table 1 provides the 
parametric restrictions on the GJR, EGARCH, SV-L, SV-S and the general SV-LS 
models under Cases I-V. The results are summarized as follows: 
 

(i) In Case I, the GJR model reduces to GARCH. The GJR model cannot 
accommodate leverage as the parametric restrictions for leverage are 0α <  
and 0α γ+ > , in which case volatility is not guaranteed to be positive.  

(ii) The EGARCH and our SV-LS models are entirely flexible with respect to 
symmetry, asymmetry and leverage.  

(iii) As SV-L and SV-S are special cases of SV-LS model, they cannot capture 
the specific asymmetric effects in Cases II, III and IV.  

 
Recently, Bollerslev and Zhou (2006) investigated not only asymmetric effects, 

but also the linear relationship between the contemporaneous returns and volatility, 
which they termed the “volatility feedback” effect. Their specification is similar to the 
GARCH-M and SV-M models, although their results are based on realized and implied 
volatility. As they reported that the empirical results are sensitive to the instrument 
choice of volatility, an examination of this effect requires further research. 
 
4  Model Estimation via EIS Method 
 

In this section, we examine the finite sample properties of ML estimator for 
the SV-LS models, based on the efficient importance sampling (EIS) method, in 
which the likelihood function is evaluated by the simulation. 

 
Before considering the SV-LS model, it will be useful to introduce several 
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methods for estimating the SV-L model shortly. With respect to the SV-L model, it 
is straightforward to apply the Monte Carlo likelihood (MCL) method of 
Sandmann and Koopman (1998), as it is based on the state space form derived by 
Harvey and Shephard (1996) (see Asai (2008)). For the Bayesian MCMC method, 
we would use the approach of Omori et al. (2007), which is based on the 
integration sampler of Chib, Nardari and Shephard (2002). It should be noted 
that Jacquier, Polson and Rossi (2004) proposed a Bayesian MCMC technique to 
estimate the SV-L model. However, this approach is based on Jacquier, Polson and 
Rossi (1994), which is less efficient than the method of Chib, Nardari and 
Shephard (2002) with respect to numerical efficiency. Moreover, Yu (2005) 
showed that it was not clear how to ensure or interpret the leverage effect in the 
model of Jacquier, Polson and Rossi (2004). 

 
As there is no technique to estimate the general SV-LS model, we will apply 

the EIS method, and investigate finite sample properties of the EIS estimator in 
the reminder of this section. The EIS is much easier to implement computationally, 
and flexible to the models discussed in this paper. See Liesenfeld and Richard 
(2003) for the detailed explanation for the likelihood evaluation of SV models via 
the EIS method. 
 

Simulation experiments were conducted in order to assess the performance of the 

EIS estimator. The range of parameter values ( )1 2, , , ,ηθ μ φ σ γ γ ′=  was selected as 

follows. First of all, the autoregressive parameter φ  and the mean of the log-volatility 

are set to 0.95 and 0, respectively. Secondly, ( )1 2, ,ησ γ γ  is selected so that the 

variances of the generalized error tξ  are the same in the three models. Specifically, 
we set the parameter vector to be 
 

 ( ) ( ) ( ) ( ){ }1 2, , 0.222, 0.08,0 , 0.215,0,0.16 , 0.200, 0.08,0.16ησ γ γ = − − , 

 
which represents the SV-L, SV-L and SV-LS models, respectively. Note that for each 

parameter set, the value of ( )2
tEξσ ξ=  is 0.236. With respect to the SV-L model, 

the value of the correlation coefficient in (3) is given by -0.339. 
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For each θ , we generated a sample of size T=2000, and estimated the SV-L, 

SV-S and SV-LS models using the EIS method. The number of replications is 500. 
 
  We consider a sample size of 2000T =  with 500 replications. Table 2 shows the 
sample means, standard deviations and root mean squared errors of the MCL 
estimators. The sample means are close to the true values for all models, indicating 
little bias. Compared with the Monte Carlo results in Table 3 of Sandmann and 
Koopman (1998) for the MCL estimator, which is limited to the parameter values 
given by 1 2 0ρ γ γ= = = , the standard deviations and root mean squared errors 
presented in Table 2 seem quite reasonable. Compared with Table 1 of Asai and 
McAleer (2005), which is also limited to the SV-L model, we have similar results. 
 
5  Empirical Results 
 

This section examines the MCL estimates of asymmetric behaviour in the SV, DL, 
AL, DAL and TSV models for four sets of empirical data, namely Standard and Poor's 
500 Composite Index (S&P 500), Tokyo stock price index (TOPIX), US 
Dollar/Australian Dollar exchange rate (USD/AUD), and Japanese Yen/US dollar 
exchange rate (YEN/USD). The sample period is 1/4/1999 to 8/2/2007. The sample 
size for S&P is T=2157, while those for TOPIX, USD/AUD and Yen/USD are T=2112. 
The returns, tR , are defined as 1logloglog −−=Δ ttt PPP  times 100, where tP  is the 
closing price on day t . 
 
   The autocorrelation structure in the stock returns, t tR m− , was removed by using 
the following threshold AR (TAR) model:  
 

1

,
t i t i

p

t s s t i
i

m c Rψ
− − −

=

= +∑  

 
where ts  is zero if 0ty > , and one otherwise. As there was no evidence of serial 
correlation for exchange rate returns, we only subtracted mean from the return series. 
Hereafter, for convenience we will refer to the stock and exchange rate returns series as 

t t ty R m= −  and t ty R R= − , respectively. 
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For stock returns such as S&P 500 and TOPIX, a negative correlation would be 
expected between the innovations in returns and volatility. Table 3 shows the EIS 
estimates for S&P 500 returns. Four kinds of SV model were estimated, namely the 
standard SV model with 1 2 0γ γ= = , SV-L with 2 0γ = , SV-S with 1 0γ = , and 
SV-LS with no restrictions. The significance of the estimates of 1γ  and/or 2γ  in the 
various models leads to a strong rejection of the basic SV model, which neglects the 
leverage and size effects. The estimates of 1γ  in the SV-L and SV-LS model are 
negative and significant, indicating the existence of the leverage effects. The estimates 
of 2γ  are negative and significant in the SV-S and SV-LS models. AIC and BIC chose 
the SV-LS model. The likelihood ratio tests favored the SV-LS model. 

 
At this stage, we need to discuss the sign of 2γ . While the estimates of 2γ  in the 

EGARCH models are always positive in the literature, that for the SV-LS was negative. 
Our estimates indicate that a negative shock increase volatility, while a positive shock 
decrease volatility with the different magnitude. This is Case V (Leverage). On the 
other hand, typical estimates for the EGARCH model imply the Case IV (Standard 
Asymmetry). As in the EGARCH estimates, it is reasonable that large positive and 
negative shocks will increase volatility. We need to pay attention to the effect of small 
positive shock. Recenlty, Chen and Ghysels (2007) found that small positive shock in 
S&P returns decrease volatility, by their semi-parametric method. This is Case II 
(General Asymmetry) in our category. However, as the direction of the effect of a small 
positive shock is different form that of a large positive shock, the SV-LS and EGARCH 
models are not flexible to capture such effects. If their finding is applicable to our data, 
the SV-LS model successfully describes the effect of small positive shock, while it fail 
to capture the effect of large positive shock, which may be absorbed by the innovation 
term, tη . On the other hand, the EGARCH model may fail to capture the effects of 
small positive shocks, as it lacks the innovation term. 

 
Table 4 for TOPIX returns shows that the estimates of 1γ  are negative and 

significant in the SV-L and SV-LS models, but that the estimate of 2γ  is insignificant, 
indicating the rejection of the SV-S model. Both AIC and BIC suggest that SV-L is the 
best model. The likelihood ratio tests also selected the SV-L. As in the case of S&P 500 
returns, the standard SV model is clearly rejected in favour of the two SV models with 
leverage effects. The size effects may be small so that they are absorbed by the 
innovation term of volatility. 
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    Tables 5 and 6 present the EIS estimates for the USD/AUD and Yen/USD returns, 
respectively. In Table 5, the results generally lead to similar implications as in the case 
of the TOPIX returns. AIC, BIC and the likelihood ratio tests also prefer the SV-L 
model. The estimate of correlation coefficient between the innovations of return and 

volatility, 2 2
1 1ηρ γ σ γ= + , is -0.39 for USD/AUD. 

 
The results for the YEN/USD returns in Table 6 are similar to those for S&P 

returns in Table 3. In Tables 6, there is significant evidence of leverage and size effects 
in the SV-L, SV-S and SV-LS models. The likelihood ratio tests favor the SV-LS model. 
AIC suggests that the SV-LS is the best model, while BIC chose the SV-S.  

 
Overall, all four estimates indicate that the asymmetric effects for the four 

datasets are classified to Case V (Leverage). The slopes of negative and positive 
shocks are different from each other for the cases of the S&P and YEN/USD returns. 

 
For the diagnostic checking, we calculated filtered estimates of volatility, 

( ) 1exp t tE h y −⎡ ⎤⎣ ⎦ , t=1,2,…,T. Table 7 shows the diagnostic statistics for the 

standardized residuals. For all four series, we have the same results as follows. The 
Ljung-Box portmanteau tests based on twenty lags support no serial correlation. The 
Jarque-Bera tests reject the null of normal distribution. 
 
    In order to consider the heavy-tailed conditional distribution, we estimated the 
SV-t-LS model. Table 8(a) presents the parameter estimates of the SV-t-LS model for 
four series. For all series except for YEN/USD, the estimates of 1 v  are close to zero 
and insignificant, which may be caused by misspecification of the structure of 
asymmetry and/or tail-behavior. With respect to YEN/USD, the estimate of 1γ  is 
negative and significant while that of 2γ  is positive and significant. Compared to the 
estimates of SV-LS in Table 6, the sign of 2γ  is changed. The estimate of 1 v  is 
significant, and the estimate of v is 6.33. Table 8(b) shows the log-likelihood, AIC and 
BIC. For the case of YEN/USD, the likelihood ratio test shows that 1 v  is significant, 
while the model has the smallest AIC and BIC. For the other three series, AIC and BIC 
shows that there is no improvement form introducing the heavy-tailed conditional 
distribution. Table 8(c) shows the diagnostic statistics for the standardized residuals. 
The Ljung-Box portmanteau tests based on twenty lags support no serial correlation for 
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all series. We employed the test proposed by Godfrey and Orme (1991) for asymmetry 
under heavy-tailed distributions. The test does not reject the null of symmetry except 
for TOPIX. The test for excess kurtosis rejects the null for YEN/USD, as expected 
from the t distribution. 
 
6  Conclusion 
 
In this paper, we suggested a new asymmetric stochastic volatility model, based on the 
leverage and size effects, as an extension of the EGARCH model. We considered five 
categories for asymmetric effects, which describes the difference among the 
asymmetric effect of the EGARCH model, the threshold effects of GJR model, and the 
leverage effects of SV model. We consider the SV with leverage effects (SV-L), the SV 
with size effect (SV-S), and the general asymmetric SV model (SV-LS). These three 
models are estimated by the efficient importance sampling method of Liesenfeld and 
Richard (2003), and the finite sample properties of the estimator are investigated using 
Monte Carlo experiments.  
 
We used four financial time series are used to estimate the alternative asymmetric SV 
models. The empirical results for S&P 500 and Yen/USD returns preferred the SV-LS 
model, while TOPIX and USD/AUD returns favored the SV-L model. For the case of 
standardized t distribution, the results for Yen/USD returns show that the model is 
correctly specified, while the results for three other data sets suggested there was scope 
for improvement. In addition to providing more accurate estimates of volatility, these 
empirical results should assist in calculating optimal Value-at-Risk (VaR) forecasts and 
capital charges for purposes of portfolio and risk management. 
 

This paper has made certain contributions, but several extensions are still possible. 
First, we may work with multi-factors as in Chernov et al. (2003) and Asai (2008), in 
order to capture tail behavior. Secondly, we may consider more flexible specifications 
of asymmetry, which describe the results of Chen and Ghysels (2007). Thirdly, the 
paper focuses on leptokurtic distribution, but it is also worthwhile fitting skewed 
distributions, including the skewed t distribution (Fernández and Steel (1998)). 
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Table 1: Parametric Restrictions for Symmetry, Asymmetry and Leverage 

 
Model Case I 

Symmetry 
Case II 
General 

Asymmetry 

Case III 
Wide 

Asymmetry 

Case IV 
Standard 

Asymmetry 

Case V 
Leverage 

GJR 
0,
0

α
γ
>
=

 NA 
0,

,
0

α
γ α
γ

>
> −
≠

 
0,
0

α
γ
>
>

 NA 

EGARCH 
0,
0

λ
θ
≠
=

 θ λ<  
,

0
θ λ
θ

<

≠
 

0,θ
λ θ
<
> −

 
0,θ

λ θ
<

< −
 

SV-L NA NA NA NA 1 0γ <  

SV-S 2 0γ ≠  NA NA NA NA 

SV-LS 1

2

0,
0

γ
γ
=
≠

 1 2γ γ<  1

1 2

0,γ
γ γ
≠

<
 1

2 1

0,γ
γ γ
<
> −

 1

2 1

0,γ
γ γ
<

< −
 

Note: NA denotes not applicable. 
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Table 2: Finite Sample Performance of the EIS Estimator for T=2000 

 
Parameter SV-L SV-S SV-LS 

μ  0.0074 0.0168 0.0193 
 (0.1074) (0.1158) (0.1686)
 [0.1076] [0.1170] [0.1697]
φ  0.9477 0.9466 0.9467 
 (0.0112) (0.0126) (0.0125)
 [0.0115] [0.0131] [0.0129]

ησ  0.2228 0.2117 0.1974 

 (0.0334) (0.0330) (0.0801)
 [0.0334] [0.0331] [0.0801]

1γ  -0.0802  -0.0817 
 (0.0380)  (0.0249)
 [0.0380]  [0.0249]

2γ   0.1655 0.1653 
  (0.0628) (0.0571)
  [0.0630] [0.0573]

Note: Standard errors are in parentheses and root mean squared errors are in brackets. 
True parameters are 0μ = , 0.95φ = , and  

( ) ( ) ( ) ( ){ }1 2, , 0.222, 0.08,0 , 0.215,0,0.16 , 0.200, 0.08,0.16ησ γ γ = − − , 

corresponding to the SV-L, SV-L and SV-LS models, respectively. 
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Table 3: EIS Estimates for S&P 500 Returns 

 

Model φ  ησ  μ  1γ  2γ  LogLike AIC BIC 

SV 0.9914 0.1048 -0.0751   -2993.45 5992.90 6009.93
 (0.0035) (0.0153) (0.2536)      

SV-L 0.9842 0.0718 -0.1398 -0.1191  -2943.84 5895.69 5918.39
 (0.0031) (0.0115) (0.1048) (0.0133)     

SV-S 0.9943 0.0722 -0.1870  -0.1130 -2990.72 5989.43 6012.14
 (0.0032) (0.0360) (0.3257)  (0.0535)    

SV-LS 0.9901 0.0104 -0.1624 -0.1140 -0.1282 -2937.35 5884.79 5913.08
 (0.0020) (0.0032) (0.1324) (0.0116) (0.0197)    

Note: Standard errors are given in parentheses. 
 
 
 

Table 4: EIS Estimates for TOPIX Returns 
 

Model φ  ησ  μ  1γ  2γ  LogLike AIC BIC 

SV 0.9714 0.1463 0.2111   -3308.10 6622.20 6639.16
 (0.0084) (0.0203) (0.1146)      

SV-L 0.9492 0.1706 0.2051 -0.1108  -3288.38 6584.77 6607.39
 (0.0118) (0.0226) (0.0800) (0.0207)     

SV-S 0.9735 0.1436 0.1815  -0.0522 -3307.57 6623.13 6645.75
 (0.0082) (0.0214) (0.1197)  (0.0514)    

SV-LS 0.9522 0.1707 0.1817 -0.1127 -0.0748 -3287.36 6584.71 6612.99
 (0.0112) (0.0233) (0.0804) (0.0207) (0.0531)    

Note: Standard errors are given in parentheses. 
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Table 5: EIS Estimates for USD/AUD Returns 

 

Model φ  ησ  μ  1γ  2γ  LogLike AIC BIC 

SV 0.9699 0.1322 0.5144   -3609.77 7225.55 7242.52
 (0.0096) (0.0212) (0.0997)      

SV-L 0.9619 0.1431 0.5034 -0.0598  -3601.54 7211.09 7233.71
 (0.0108) (0.0213) (0.0875) (0.0161)     

SV-S 0.9717 0.1311 0.4986  -0.0417 -3609.40 7226.80 7249.42
 (0.0094) (0.0222) (0.1017)  (0.0486)    

SV-LS 0.9624 0.1462 0.4890 -0.0607 -0.0428 -3601.15 7212.30 7240.57
 (0.0110) (0.0224) (0.0871) (0.0163) (0.0493)    

Note: Standard errors are given in parentheses. 
 
 
 

Table 6: EIS Estimates for YEN/USD Returns 
 

Model φ  ησ  μ  1γ  2γ  LogLike AIC BIC 

SV 0.9667 0.1496 -1.1207   -1877.46 3760.93 3777.90
 (0.0121) (0.0282) (0.1027)      

SV-L 0.9636 0.1501 -1.1200 -0.0377  -1874.64 3757.28 3779.91
 (0.0124) (0.0281) (0.0954) (0.0165)     

SV-S 0.9684 0.1548 -1.2635  -0.1320 -1871.71 3751.42 3774.05
 (0.0115) (0.0311) (0.1164)  (0.0440)    

SV-LS 0.9675 0.1501 -1.2634 -0.0386 -0.1382 -1868.62 3747.24 3775.52
 (0.0113) (0.0309) (0.1118) (0.0158) (0.0447)    

Note: Standard errors are given in parentheses. 
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Table 7: Diagnostic Statistics for SV-LS Models 

 
Diagnostics S&P 500 TOPIX USD/AUD YEN/USD 
Skewness -0.2894 -0.1784 -0.0973 -0.1595 
 [0.000] [0.001] [0.068] [0.003] 
Kurtosis 3.8546 3.4363 3.4609 3.9472 
 [0.000] [0.000] [0.000] [0.000] 
LB(20) 19.630 16.122 19.893 13.259 
 [0.481] [0.709] [0.465] [0.866] 

Note: The p-values are in brackets. For skewness and kurtosis, we employ the 
Jarque-Bera tests. LB(20) denotes the Ljung-Box portmanteau test for serial 
correlation based on twenty lags.  
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Table 8: EIS Estimates for SV-t-LS Models 

 
(a) Paramter Estimates 

Model φ  ησ  μ  1γ  2γ  1 v  

S&P 500 0.9900 0.0162 -0.1628 -0.1141 -0.1263 2.52 510−×  
(0.0020) (0.0057) (0.1372) (0.0117) (0.0182) (0.0053) 

TOPIX 0.9522 0.1707 0.1820 -0.1126 -0.0748 3.93 510−×  
(0.0113) (0.0234) (0.0804) (0.0208) (0.0532) (0.0020) 

USD/AUD 0.9635 0.1441 0.4888 -0.0600 -0.0434 5.38 510−×  
(0.0107) (0.0222) (0.0884) (0.0162) (0.0500) (0.0066) 

YEN/USD 0.9808 0.0695 -1.0129 -0.0304 0.0663 0.1580 
(0.0073) (0.0190) (0.1456) (0.0149) (0.0275) (0.0362) 

Note: Standard errors are given in parentheses. 
 

(b) Log-Likelihood and Information Criterions 
Model LogLike AIC BIC 

S&P 500 -2937.35 5886.76 5920.78
TOPIX -3287.36 6586.72 6620.65

USD/AUD -3601.14 7214.28 7248.22
YEN/USD -1852.78 3717.55 3751.48

                                                    
 (c) Diagnostic Statistics 

Diagnostics S&P 500 TOPIX USD/AUD YEN/USD 
Skewness -0.2242 -0.2205 -0.1435 -0.1947 
 [0.075] [0.029] [0.121] [0.078] 
Kurtosis 4.2437 3.9706 3.7652 4.1848 
 [0.000] [0.000] [0.000] [0.000] 
LB(20) 22.753 16.219 20.573 13.029 
 [0.301] [0.703] [0.423] [0.876] 

Note: The p-values are in brackets. We employ the Jarque-Bera test for excess kurtosis. 
With respect to skewness, we use the test proposed by Godfrey and Orme (1991) for 
asymmetry under heavy-tailed distributions. LB(20) denotes the Ljung-Box 
portmanteau test for serial correlation based on twenty lags.  


