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Computing Densities: A Conditional Monte
Carlo Estimator∗

Richard Anton Braun † Huiyu Li ‡ John Stachurski §

October 12, 2009

Abstract

We propose a generalized conditional Monte Carlo technique for comput-
ing densities in economic models. Global consistency and functional asymp-
totic normality are established under ergodicity assumptions on the simu-
lated process. The asymptotic normality result allows us to characterize the
asymptotic distribution of the error in density space, and implies faster con-
vergence than nonparametric kernel density estimators. We show that our
results nest several other well-known density estimators, and illustrate po-
tential applications.

Keywords: Distributions, numerical methods, simulation
JEL Classification Codes: C15, C63

1 Introduction

The Monte Carlo method is routinely used by economists and econometricians to
extract information on probabilities from their models. In some cases, the random
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variables of interest have distributions that can be described by densities, and the
researcher seeks to recover, via simulation, an approximation to these densities.
In these cases, after the relevant variables have been simulated, there remains the
problem of how to produce density estimates from the simulated observations.
This paper describes an efficient solution to that problem, based on the use of
conditioning information.

The Monte Carlo density estimation problem arises frequently in econometric
modelling, such as when Markov chain Monte Carlo is used to calculate posterior
densities, or simulated maximum likelihood is used to fit a models where the like-
lihood function is intractable (see, e.g., Danielsson, 1994; Brandt and Santa-Clara,
2002; Durham and Gallant, 2002; or Chib, Nardari and Shepard, 2002).1 Simu-
lation of densities also arises in a wide range of economic applications. For ex-
ample, decision makers compute posterior densities of model parameters when
making Bayesian or robust control decisions in real time (e.g., Hansen and Sar-
gent, 2007). Additionally, densities are computed when solving for equilibria in
a variety of economic models. For instance, simulations methods are often used
to compute the density of wealth in heterogeneous agent economies.

While the random variables in these models can usually be simulated, the esti-
mation problem associated with recovering densities from the simulated obser-
vations is nontrivial. In general, parametric estimation techniques do not apply.
Instead, many economists use methods such as nonparametric kernel density es-
timation, which converges to the density of any random variable given sufficient
observations. These nonparametric kernel methods typically use no information
beyond the Monte Carlo sample (and some notion of smoothness depending on
the choice of kernel).

However, for this class of estimation problems, more information is available
than just the sample itself. The researcher also has at hand the model that was
used to generate the sample, and some aspects of that model may be tractable. If
so, one might be able to exploit this information to obtain a more efficient esti-
mator. For example, in many models, some conditional densities relating different
variables to one another are either known or inexpensive to compute. More-
over, unconditional densities can be expressed as averages of conditional densi-
ties. When estimating the unconditional densities, the information provided by

1Many other examples of Monte Carlo density estimation can be found in econometrics. For
example, Diebold and Schuerman (1996) describe a Monte Carlo approach for computing the
density of initial observations when conducting exact (i.e., unconditional) maximum likelihood.
Poon and Granger (2003) compute forecast densities to assess alternative models of conditional
volatility.

2



conditional densities can be exploited by averaging over these densities across
simulated realizations of the conditioning variable.

This idea has appeared in the literature under different names in a number of
specialized settings. For example, Santa-Clara (1995) and Pedersen (1995) inde-
pendently proposed a method of simulated maximum likelihood based on this
conditioning method. Other examples include the density estimator based on
Gibbs sampling proposed in the famous paper of Gelfand and Smith (1990), and
the look-ahead estimator of Glynn and Henderson (2001), used for computing
marginal state densities of discrete time Markov processes.2

The objective of this paper is to connect these separate ideas and expand the range
of potential applications by providing a general theory of conditional Monte
Carlo density estimation.3 To this end, we pose the estimation problem in a
general setting, and prove global consistency and a functional central limit the-
orem. In order to accommodate standard economic and econometric environ-
ments, these results are established without requiring that the sampled data be
independent, nor identically distributed. Instead, global consistency is proved
using ergodicity, while the central limit theorem requires so-called V-uniform er-
godicity and a restriction on second conditional moments.

The assumption of V-uniform ergodicity is weaker than the classical uniform er-
godicity condition used in many studies of asymptotic normality in the Markov
setting. For example, the stationary linear AR(1) model with Gaussian shocks is
V-uniformly ergodic but not uniformly ergodic. Nishimura and Stachurski (2005)
establish that the standard Brock–Mirman model satisfies V-uniform ergodicity.
In the econometric setting, Kristensen (2008) establishes specific conditions un-
der which V-uniform ergodicity holds for a broad range of linear and nonlinear
time series models. More generally, Meyn and Tweedie (2009) provide a range of
sufficient conditions under which V-uniform ergodicity is known to hold.

The conditional Monte Carlo density estimator (CMCDE) we study is unbiased,
2The idea of averaging over conditional distributions is used to compute not only densi-

ties but also expectations. This procedure is referred to as conditional Monte Carlo, or Rao-
Blackwellization. We also consider the problem of computing expectations in a related paper
(Braun, Li and Stachurski, 2009).

3We focus on densities rather than distributions, because density estimates are typically more
useful than estimates of cumulative distribution functions or probability measures. One reason is
that the process of computing distributions from estimated densities is numerically stable, while
that of computing densities from empirical distributions is typically ill-posed. (In essence, this is
because the first operation involves integration, while the second requires differentiation.) Sec-
ond, densities play a central role in many applications, such as those involving maximum likeli-
hood or Bayesian statistics. See Braun, Li and Stachurski (2009) for an application of similar ideas
to the problem of computing expectations.
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and exhibits a parametric rate of convergence independent of the dimension of
the state space. In contrast, nonparametric kernel density estimators (NPKDEs),
which make no use of conditioning information, converge at a rate that is slower
than the parametric rate, and sensitive to the dimension of the state space. In
numerical experiments, we also found excellent small sample properties. For
example, in numerical simulations of a GARCH(1,1) model, we report L1 norm
errors for the CMCDE up to 42% lower than a Gaussian NPKDE.

The generality of our convergence results open up new avenues for exploiting
existing ideas on conditional Monte Carlo. For example, as noted above, the CM-
CDE nests the Gibbs sampling technique for computing marginal densities pro-
posed by Gelfand and Smith (1990). It also provides an asymptotic justification
for Monte Carlo sampling schemes that relax their IID structure. In particular,
our asymptotic theory provides a justification for computing the unconditional
marginal density from a single time series draw, instead of n independent paths
generated by the Gibbs sampler.

The CMCDE can be applied to estimate densities in both stationary and non-
stationary environments. For instance, a cross-sectional version of the CMCDE
can be used to compute t-step ahead distributions in settings where these dis-
tributions are far from the stationary distribution (as in, e.g., the Brock-Mirman
model with a low initial capital stock), or in environments where there is no well-
defined asymptotic distribution (such as a unit root process).

The remainder of the paper is organized as follows. In Section 2 we define the
general CMCDE and derive its asymptotic properties. Section 3 relates the CM-
CDE to the previous literature. In Section 4 we discuss a number of potential new
applications. Section 5 concludes.

2 Conditional Monte Carlo Density Estimation

In this section, we begin by providing an intuitive motivation for the conditional
Monte Carlo density estimation method. We then state definitions and give a
formal treatment of the problem.

2.1 Motivation

Let ψ be a density on some set Y that is defined by a given model. For exam-
ple, ψ might represent a posterior density given prior and conditional densities,
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it might represent a cross-sectional distribution of asset holdings in a macroeco-
nomic model, or it might represent a long run marginal density of returns in a
stochastic volatility model. Even if the model itself is analytically tractable, the
density ψ may not be. And if the model itself is not tractable, then ψ (which is
defined in terms of the model) is almost certainly intractable. Thus, we consider
the numerical problem of computing an approximation ψn to the density ψ.

One simulation-based approach to computing this approximation can be described
as follows. Suppose that the model in question defines a second random variable
X such that X is correlated with Y, and that the conditional density of Y given
X = x is q(y | x). By definition, the density ψ of Y and the conditional density q
must satisfy4

ψ(y) = E q(y |X) for all y ∈ Y (1)

This equation suggests the following strategy: sample from the distribution of X,
use the conditional density q of Y given X to infer the probabilities for Y, and,
in this way, build an approximation ψn to ψ. In particular, suppose that we are
able to generate IID draws X1, . . . , Xn of the random variable X, and that q can
be evaluated numerically. Then an estimator of ψ is provided by the (random)
density

ψn(y) =
1
n

n

∑
i=1

q(y |Xi) (2)

We refer to this estimator as the conditional Monte Carlo density estimator (CM-
CDE). The pointwise properties of the CMCDE are readily apparent. Fixing
y ∈ Y, the strong law of large numbers yields

lim
n→∞

ψn(y) = lim
n→∞

1
n

n

∑
i=1

q(y |Xi) = E q(y |X) = ψ(y) P-a.s. (3)

where the last equality is due to (1). Hence ψn(y) is strongly consistent for ψ(y).
A simple calculation along the same lines shows that ψn(y) is also unbiased (i.e.,
Eψn(y) = ψ(y)). Furthermore, if the second moment condition Eq(y |X)2 < ∞
is satisfied, then, by the central limit theorem,

√
n{ψn(y)− ψ(y)} =

√
n

{
1
n

n

∑
i=1

q(y |Xi)−E q(y |X)

}

converges in distribution to a centered Gaussian on R. An immediate corollary is
that |ψn(y)− ψ(y)| = OP(n−1/2). Hence the CMCDE attains the parametric rate
of convergence.

4Informally, this equation can be regarded as a density equivalent of iterated expectations.
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All of the results we have presented so far are pointwise, pertaining to conver-
gence of ψn(y) to ψ(y) at some fixed y ∈ Y. However, in the case of densities,
convergence at a single point conveys relatively little information, since densites
can be altered at individual points while still representing the same distribution.5

Moreover, if Y is uncountable, then (3) does not imply that ψn → ψ pointwise
with probability one, since the measure zero set on which (3) fails is indexed by
y, and uncountable families of null sets are not generally null.

A more informative measure of deviation between ψn and ψ is provided by the
Lp(µ)-norm distance. In order to study norm deviation, we view ψn as an Lp(µ)-
valued random variable. This functional setting also permits us to derive the
asymptotic distribution of the error ψn − ψ. The details are presented in sec-
tion 2.3.

A further goal of our analysis is to accomodate non-IID environments. To il-
lustrate why this is desirable in economic and econometric settings, consider a
stochastic volatility model of the form rt = σtWt, where rt is a measure of returns
on investment, σt is a stochastic volatility term, and Wt is a standard normal shock
independent of σt. Let ψ be the (unconditional) density of rt. The conditional
density of rt given σt is q(r | σt) = N(0, σt), and by (1) we have

ψ(r) = Eq(r | σt) = E
1

(2π)1/2σt
exp

{
− y2

2σ2
t

}
(4)

Suppose our goal is to compute ψ for a given specification of the process gener-
ating σt. If σt is specified as IID from a fixed distribution, then we can use the
CMCDE ψn(r) := n−1 ∑n

t=1 q(r | σt), where (σt)n
t=1 is an IID sample generated via

Monte Carlo from that distribution. The previous (pointwise) convergence re-
sults then apply, and ψn(r) is consistent for ψ(r).

However, for the stochastic volatility model, the data rarely supports an IID spec-
ification for σt. Instead, (σt)t≥0 is usually assumed to follow a (stationary and er-
godic) Markov process that induces bursts of volatility. In this case, it is desirable
that the CMCDE remains consistent whenever (σt)t≥0 is simulated from such a
data generating process. We prove that this consistency holds in the general CM-
CDE setting described above, not only pointwise but globally as well. Moreover,
assuming V-uniform ergodicity, we derive a functional asymptotic distribution
for the error.

5We refer here to densities with respect to Lebesgue measure.
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2.2 Definitions

In order to develop the formal theory, we recall a number of definitions and
standard theorems. To begin, let (Y, Y , µ) be a σ-finite measure space, and let
(Ω, F , P) be a probability space. A Y-valued random variable is a measurable
map Y from (Ω, F ) into (Y, Y ). A measurable function g : Y → R is called a
density if g ≥ 0 µ-almost everywhere and

∫
gdµ = 1. We say that Y-valued

random variable Y has density g if

P{Y ∈ B} =
∫

B
g dµ for all B ∈ Y

For p ∈ [1, ∞], we let Lp(µ) := Lp(Y, Y , µ) be the Banach space of p-integrable
real-valued functions on Y.6 The norm on Lp(µ) is given by

‖g‖p :=
{∫

gpdµ

}1/p
(g ∈ Lp(µ))

with ‖g‖∞ being the essential supremum. If Y is countably generated,7 then
Lp(µ) is separable whenever p < ∞. If q ∈ [1, ∞] satisfies 1/p + 1/q = 1, then
Lq(µ) can be identified (via the Reisz representation theorem) with the norm dual
of Lp(µ). We define

〈g, h〉 :=
∫

gh dµ :=:
∫

g(x)h(x)µ(dx) (g ∈ Lp(µ), h ∈ Lq(µ))

In the sequel, we consider random variables taking values in Lp(µ), where p ∈
{1, 2}. An Lp(µ)-valued random variable F is a measurable map from the proba-
bility space (Ω, F , P) into Lp(µ).8 An Lp(µ)-valued random variable G is called
centered Gaussian if, for every h ∈ Lq(µ), the real-valued random variable 〈G, h〉
is centered Gaussian on R.

Below, we consider data generating processes that produce Markov realizations.
In this connection, we recall some facts concerning discrete-time Markov pro-
cesses taking values in a measurable space (X, X ). A stochastic kernel on X is

6As usual, functions equal µ-almost everywhere are identified.
7Y is called countably generated if there exists a countable family A of subsets of Y such that

A generates Y .
8Measurability requires that F−1(B) ∈ F for every Borel subset B of Lp(µ). If L1(µ) and

L2(µ) are separable, then the Pettis measurability theorem assures us that F will be measurable
whenever the real-valued random variable 〈F, h〉 is measurable with respect to the Borel subsets
of R for every h in the dual space Lq(µ). This condition is easily verified in the applications that
follow, and hence further discussion of measurability issues is omitted.
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a function P : X×X → [0, 1] such that B 7→ P(x, B) is a probability measure
on X for all x ∈ X, and x 7→ P(x, B) is X -measurable for all B ∈ X . Infor-
mally, P(x, B) gives the probability of moving from state x into set B in one step.
The t step transitions are given by Pt, where Pt(x, B) :=

∫
Pt−1(x, dy)P(y, B) and

P1 := P.

A discrete-time, X-valued stochastic process (Xt)t≥0 is said to be P-Markov if
P(Xt, dy) is the conditional distribution of Xt+1 given Xt. More precisely,

P[Xt+1 ∈ B |Ft] = P(Xt, B) for all B ∈ X

where Ft is the σ-algebra generated by the history X0, . . . , Xt. A distribution (i.e.,
probability measure) φ on X is called stationary for P if

φ(B) =
∫

P(x, B)φ(dx) for all B ∈ X

The kernel P is called ergodic if it has a unique stationary distribution φ, and, for
every P-Markov process (Xt)t≥0 and every measurable h : X→ R with

∫
|h|dφ <

∞, we have

1
n

n

∑
t=1

h(Xt)→
∫

h dφ P-almost surely as n→ ∞ (5)

The kernel P is called V-uniformly ergodic if, in addition, there exist a measurable
function V : X 7→ [1, ∞) and nonnegative constants λ < 1 and L < ∞ satisfying

sup
|h|≤V

∣∣∣∣∫ h(y)Pt(x, dy)−
∫

h(y)φ(dy)
∣∣∣∣ ≤ λtLV(x) for all x ∈ X, t ∈N

(If V can be chosen identically equal to 1, then the left-hand side becomes the
total variation distance between Pt(x, dy) and φ, while the right hand side is in-
dependent of x. This is the uniformly ergodic case.) Under the V-uniform ergod-
icity assumption, the central limit theorem can be established for a broad class of
functions. Moreover, V-uniform ergodicity has been shown to hold in a range of
economic and econometric applications.9

2.3 Main Results

We now give a more formal presentation of the CMCDE defined in (2). The ran-
dom variable Y is assumed to take values in a measure space (Y, Y , µ), where the

9See, for example, Kristensen (2008) or Nishimura and Stachurski (2005).
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σ-algebra Y is countably generated and µ is σ-finite. We let ψ be the density of
Y on (Y, Y , µ). One common case is where Y ⊂ Rk, Y is the Borel sets, and µ is
Lebesgue measure. In this case, ψ is a density in the usual sense of the term. An-
other common case is where Y is discrete, Y is the set of all subsets, and µ is the
counting measure. In the latter setting, integration corresponds to summation,
and ψ is a probability mass function on Y.

We allow X in (1) to take values in an arbitrary measurable space (X, X ). The
distribution of X is denoted by φ. The conditional density q in (1) is required to
be a measurable map from Y×X into R+ such that y 7→ q(y | x) is a density on
(Y, Y , µ) for each x ∈ X. Existence of q requires that the conditional distribution
of Y given X = x is absolutely continuous with respect to µ for every x ∈ X.

The relationship (1) can be re-expressed in terms of ψ, q and φ:

ψ(y) =
∫

q(y | x)φ(dx) for all y ∈ Y (6)

We refer to (6) as the conditional density representation of ψ. Suppose now that there
exists a stochastic kernel P on (X, X ) such that (a) φ is the unique stationary
distribution of P, and (b) we can simulate P-Markov time series from some initial
X0 = x0 ∈ X. In this setting, we define the CMCDE of ψ as

ψn(y) =
1
n

n

∑
t=1

q(y |Xt) where (Xt)n
t=1 is P-Markov (7)

Example 2.1. Recall the stochastic volatility example presented in section 2.1. The
conditional density representation (6) needed to estimate ψ is given in (4). Sup-
pose now that the process for conditional volatility σt can be expressed as a sta-
tionary Markov process of the form σt+1 = F(σt, Wt+1), where (Wt) is an IID

sequence. Let P be the stochastic kernel that represents this process, in the sense
that P(σ, B) = P{F(σ, Wt) ∈ B}. Let φ be the stationary distribution of P. Iter-
ating on the equation σt+1 = F(σt, Wt+1) produces a P-Markov time series (σt),
which can be used to construct the CMCDE.

Example 2.2. Suppose that there exists a conditioning variable X with distribu-
tion φ that admits the conditional density representation (6). Suppose further
that direct IID sampling from φ is either infeasible or computationally expensive.
In this setting, the Markov chain Monte Carlo (MCMC) solution is to construct a
kernel P such that φ is the stationary distribution of P. By sampling a P-Markov
time series, the CMCDE can be constructed.

Example 2.3. Suppose again that there exists a conditioning variable X with dis-
tribution φ that admits the conditional density representation (6), but suppose
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now that IID draws from φ are possible and efficient. This can also be regarded as
a special case of the CMCDE defined in (7). The stochastic kernel P is defined as
P(x, B) = φ(B). With this definition, P-Markov processes are IID samples from φ.

Our interest is in global convergence of ψn to ψ, in the sense of norm deviation
between the two functions in Lp(µ). Provided that P is ergodic, global L1(µ)
consistency of the estimator (7) obtains without any additional assumptions:

Theorem 2.1. If P is ergodic, then ψn is globally consistent for ψ, in the sense that, with
probability one, ψn → ψ in L1(µ) as n→ ∞.

The L1(µ) norm is perhaps the most attractive way to measure the deviation be-
tween two densities (Devroye and Lugosi, 2001). For example, Scheffé’s identity
and theorem 2.1 imply that

sup
B∈Y

∣∣∣∣∫B
ψn dµ−

∫
B

ψ dµ

∣∣∣∣→ 0 as n→ ∞ P-a.s.

so the maximum deviation in probabilities over all events converges to zero. On
the other hand, L1(µ) is a Banach space but not a Hilbert space, and, without
the Hilbert space property, asymptotic normality is difficult to obtain. To prove
asymptotic normality, we now shift our analysis into the Hilbert space L2(µ).
We also require that P is V-uniformly ergodic for some function V, as well as a
second moment condition described below.

Let Q(x) := q(·, x)− ψ, and define the linear operator C : L2(µ)→ L2(µ) by

〈g, Ch〉 = E〈g, Q(X∗1)〉〈h, Q(X∗1)〉

+
∞

∑
t≥2

E〈g, Q(X∗1)〉〈h, Q(X∗t )〉+
∞

∑
t≥2

E〈h, Q(X∗1)〉〈g, Q(X∗t )〉

for arbitrary h, g ∈ L2(µ), where (X∗t )t≥0 is stationary and P-Markov.10 We can
now state the following result:

Theorem 2.2. If P is V-uniformly ergodic and the second moment condition∫
q(y | x)2µ(dy) ≤ V(x) for all x ∈ X (8)

10That is, (X∗t )t≥0 is P-Markov and X∗0 is drawn from the stationary distribution φ. That C is
indeed a well-defined operator from L2(µ) to itself follows from the proof of theorem 2.2. In fact
C is also self-adjoint and compact (i.e., maps bounded subsets of L2(µ) into relative compact sets).
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holds, then
√

n(ψn − ψ) converges in distribution to a centered Gaussian G on L2(µ)
with covariance operator C.11

Remark 2.1. Since h 7→ ‖h‖2 is continuous on L2(µ), the continuous mapping
theorem now implies that ‖ψn − ψ‖2 = OP(n−1/2).

Remark 2.2. As mentioned above, the IID setting, where IID sampling from φ is
possible, can be viewed as a special case. Working through the logic or proving
it directly, one can show that the strong consistency result in theorem 2.1 holds
without any additional conditions on q and φ, and that theorem 2.2 holds when-
ever∫ ∫

q(y | x)2µ(dy)φ(dx) < ∞ and
{∫

q(y | x)2µ(dy) < ∞ ∀x ∈ X

}
The IID case is more important than it might seem, even in time series environ-
ments. Below, we will provide examples where we can sample in an IID way from
time series which are persistent and possibly nonstationary.

One important aspect of theorems 2.1 and 2.2 is that the simulated P-Markov
process (Xt)n

t=1 used to construct ψn need only be asymptotically stationary, rather
than stationary per se. In particular, when simulating (Xt)n

t=1, the initial condition
X0 can be any arbitrarily chosen x0 ∈ X (as opposed to being drawn from φ). In
applications this is often essential, as the stationary distribution φ is typically
intractable, and no direct method for sampling from it is available.

However, in the case where it is possible to generate time series with common
distribution φ, the CMCDE ψn is also unbiased, both locally and globally:

Lemma 2.1. If (Xt) is identically distributed with Xt ∼ φ for all t, then ψn is an
unbiased estimator of ψ. In particular, Eψn(y) = ψ(y) for all y ∈ Y, and Eψn = ψ.12

Before continuing, let us make a brief comparison with standard results for non-
parametric kernel density estimation. This comparison is easiest if we limit atten-
tion to the IID case. In order to define the NPKDE, we need to restrict attention
to the case where Y ⊂ Rk, as opposed to the general measure space setting of

11A centered Gaussian G has covariance operator C if E〈g, G〉〈h, G〉 = 〈Cg, h〉 for every g, h ∈
L2(µ). Also, convergence in distribution is defined in the obvious way: Let C be the continous,
bounded, real-valued functions on L2(µ), where continuity is with respect to the norm topology.
Let (Gn)n≥0 be L2(µ)-valued random variables. Then Gn → G0 in distribution if Eh(Gn) →
Eh(G) for every h ∈ C .

12Here E is the functional expectation of ψn, defined in terms of the Dunford–Pettis integral in
L1(µ). For details, see the technical appendix.
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the CMCDE. We must also suppose that one can generate IID samples Y1, . . . , Yn
from ψ. The NPKDE fn is then defined in terms of a kernel (i.e., density) K on Y

and a “bandwidth” parameter δn:

fn(y) :=
1

nδn

n

∑
i=1

K
(

y−Yi

δn

)
(9)

The estimate is fn known to be consistent, in the sense that E‖ fn − ψ‖1 → 0
whenever δn → 0 and nδk

n → ∞ (Devroye and Lugosi, 2001). However, rates of
convergence are slower than the parametric rate obtained for the CMCDE. For
example, if we fix y ∈ Y and take ψ to be twice differentiable, then, for suitable
choice of K, it can be shown that

| fn(y)− ψ(y)| = OP[(nδk
n)
−1/2] when nδk

n → ∞ and (nδk
n)

1/2δ2
n → 0

Thus, even with this smoothness assumption on ψ—which may or may not hold
in practice—the convergence rate OP[(nδk

n)−1/2] of the NPKDE is slower than the
rate OP(n−1/2) of the CMCDE. Moreover, in contrast to the CMCDE, the rate of
convergence slows as the dimension k of the state space increases.

3 Special Cases of CMCDE in the Literature

In this section, we show how the CMCDE nests and extends conditional Monte
Carlo results that arise in distinct strands of the exisiting literature.

3.1 Density Estimation under Gibbs Sampling

Gelfand and Smith (1990) propose the following technique for computing marginal
densities. Suppose we have a pair of real-valued random variables (X, Y) with
joint density fX,Y (for simplicity, we are restricting attention to the bivariate case).
Suppose further that both conditional densities fY|X and fX|Y are available, and
can be sampled from. Our objective is to compute the marginal density fY of Y,
which is assumed to be intractable. The Gibbs sampler proceeds by choosing X0
arbitrarily, and then simulating (Xt, Yt)n

t=0 by repeated drawing

Yt ∼ fY|X(· |Xt) and then Xt+1 ∼ fX|Y(· |Yt)

Gelfand and Smith (1990) suggest fixing T to be a large number, and repeating
the above sampling method to generate n independent replications X1

T, . . . , Xn
T of
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XT. They then form the density estimate f n
Y of fY given by

f n
Y(y) =

1
n

n

∑
i=1

fY|X(y |Xi
T)

The sequence (Xt, Yt) produced by Gibbs sampling forms a Markov process. Let-
ting gT denote the marginal density of YT for this process, observe that the overall
error ‖ f n

Y − fY‖1 can be decomposed as follows:

‖ f n
Y − fY‖1 ≤ ‖ f n

Y − gT‖1 + ‖gT − fY‖1 (10)

Under mild assumptions, Gibbs sampling is sufficiently ergodic to ensure that
the second term on the right-hand side of (10) is small for large T. Regarding the
first term on the right-hand side , Gelfand and Smith (1990) use the IID structure
of the sampling data to show that ‖ f n

Y − gT‖1 converges to zero in probability
as n → ∞. Our asymptotic theory shows that this convergence occurs almost
surely (theorem 2.1). Moreover, theorem 2.2 implies that the deviation f n

Y − gT is
asymptotically Gaussian, and that the L2 norm of this deviation is OP(n−1/2).

One limitation of Gelfand and Smith’s approach is that f n
Y is consistent for gT,

but not for fY. Our asymptotic theory suggests an alternative approach which is
consistent for fY. Instead of replicating the Gibbs sampling procedure n times to
generate independent draws of XT, a single replication can be used to produce
the estimator

ψn(y) =
1
n

n

∑
t=1

fY|X(y |Xt)

Here (Xt)n
t=1 is one time series produced by the the Gibbs sampler. Although

(Xt)n
t=1 is not IID, under certain restrictions on the conditional densities it can be

shown to be V-uniformly ergodic (Rosenthal, 1995, lemma 7), and theorems 2.1
and 2.2 apply. In this case, ψn is L1-consistent for fY with probability one, and the
L2 deviation is OP(n−1/2).

It is beyond the scope of this paper to provide a detailed comparative efficiency
analysis of the two estimators. However, we note an additional attractive prop-
erty of the second estimator: It uses all observations produced in the Gibbs sam-
pling process to construct the estimate of fY. The first estimator, in contrast, dis-
cards (T − 1)n observations.

3.2 The Look-Ahead Estimator

Another estimator that can be studied as a special case of the CMCDE defined
in this paper is the look-ahead estimator of Glynn and Henderson (2001). Con-
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sider a Y-valued P-Markov process (Xt)t≥0, where the stochastic kernel P sat-
isfies P(x, B) =

∫
B q(y | x)µ(dy) for some conditional density q : Y×Y → R+.

Suppose that a unique stationary distribution exists. In this setting, the station-
ary distribution can be represented by a density ψ on Y, and

ψ(y) =
∫

q(y | x)ψ(x)µ(dx) for all y ∈ Y (11)

Comparison of (11) and (6) reveals that a conditional density representation of
ψ can be obtained by setting φ(dx) = ψ(x)µ(dx), and the CMCDE can be ap-
plied. Since φ is then the stationary distribution of the kernel P in question,
we simulate a P-Markov time series (Xt)n

t=1, and form the CMCDE as ψn(y) =
n−1 ∑n

t=1 q(y |Xt).

The CMCDE ψn so derived is precisely the look-ahead estimator of Glynn and Hen-
derson (2001). Hereafter, we refer to this as the time-series look-ahead estimator
(TSLAE). Stachurski and Martin (2008) showed that if P is V-uniformly ergodic
and

∫
q(y | x)2µ(dy) ≤ V(x) for all x ∈ Y, then the TSLAE converges to ψ in

L2(µ) at rate OP(n−1/2). This is a special case of theorem 2.2,

The CMCDE also nests another form of the look-ahead estimator considered by
Glynn and Henderson (2001). Consider a nonstationary (time-inhomogenous)
Markov process of the form Xt+1 = Ft(Xt, Wt+1), where (Wt) is an IID process.
Let qt+1(y | x) be the conditional density of Xt+1 given Xt = x, and let ψt(y | x0) be
the conditional density of Xt given X0 = x0. Suppose that we wish to estimate the
conditional density ψT(y | x0) for some fixed T ∈ N. From the Markov property
we have the recursion

ψT(y | x0) =
∫

qT(y | x)ψT−1(x | x0) µ(dx) for all y ∈ Y (12)

Comparison of (12) and (6) shows that ψT admits a conditional density represen-
tation, with φ(dx) = ψT−1(x | x0) µ(dx). Given that the model is nonstationary,
a different approach is required to sample from ψT−1(x | x0) µ(dx). A natural ap-
proach is as follows: Starting at X0 = x0, draw successive shock values for Wt
and iterate on Xt+1 = Ft(Xt, Wt+1) to generate a random variable XT−1 with dis-
tribution ψT−1(x | x0)µ(dx). Replicating this process n times gives n independent
observations from this distribution. This allows us to construct the CMCDE as a
special case of example 2.3. Specifically, combining the IID draws with the condi-
tional density qT yields the estimator

ψn
T(y | x0) :=

n

∑
i=1

qT(y |Xi
T−1) (13)
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This CMCDE corresponds to the cross-sectional look-ahead estimator (CSLAE)
proposed by Glynn and Henderson (2001). Given that the samples are IID, the es-
timator is unbiased (lemma 2.1). Since IID samples are V-uniformly ergodic, the-
orems 2.1 and 2.2 also apply, and the estimator is globally consistent and asymp-
totically normal.

3.3 Simulated Maximum Likelihood

Another area where the idea of density simulation via conditioning has been used
is simulated maximum likelihood estimation (SML). As an illustration, we con-
sider the problem of estimating continous time diffusions, as studied by Pedersen
(1995) and Brandt and Santa-Clara (2001).13 Suppose that dynamics of a process
(Yt) are described by a stochastic differential equation of the form

dYt = µ(Yt) dt + σ(Yt) dWt (14)

where (Wt) is a Wiener process. The contiuous time likelihood function associ-
ated with a discrete sequence (Yt) of observations is given by

L(Y0, . . . , YM) = ψ(Y0)
M−1

∏
t=0

p(∆, Yt, Yt+1) (15)

where p(t, x, y) is the transition probability function associated with (14), and ∆
is the (common) duration between observations.14 In many cases of interest, p
is intractible, and terms of the form p(∆, Yt, Yt+1) cannot easily be computed. In
order to approximate them, Pedersen (1995) and Brandt and Santa-Clara (2001)
propose the following method: Let T be any integer, and let δ := ∆/T. The Euler
discretization of (14) is given by

Ŷt+δ = Ŷt + µ(Ŷt)δ + σ(Ŷt)Zt δ1/2 (16)

where (Zt)
IID∼ N(0, 1). Let ψT(y | x) be time T state density associated with (16),

in the sense that ψT(· | x) is the density of ŶδT = Ŷ∆ given Ŷ0 = x. Brandt and
Santa-Clara (2001) provide sufficient conditions under which ψT(y | x) converges
to p(∆, x, y) as T → ∞ (and δ → 0). Hence, the problem of approximating the
likelihood function (15) reduces to approximating ψT(y | x) for large T.

13We consider only the implementation of the SML described in these papers. Further refine-
ments such as importance sampling have been shown to enhance the performance of the method
(see, e.g., Durham and Gallant, 2002).

14For notational simplicity, we are describing the case where the intervals between observations
are equal. The techniques presented below can also be applied to irregular observations.
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The strategy proposed by Pedersen (2001) and Brandt and Santa-Clara (2001) for
approximating ψT(y | x) is a special case of the CSLAE we described in section 3.2.
(To the best of our knowledge, this connection has not been previously made, and
the ideas were developed independently.) As discussed above, the CSLAE is, in
turn, a special case of the general CMCDE studied in this paper.

4 Potential Applications

The previous section discussed how several existing results could be seen as spe-
cial cases of the CMCDE. In this section, we show how our results broaden the
scope of potential applications to a larger class of models.

4.1 GARCH

The first potential application that we treat is computation of the stationary den-
sity of returns in a GARCH environment. There are a variety of reasons why
researchers are interested in the stationary density of returns, including den-
sity forecasting, value at risk, exact likelihood estimation and model assessment.
[cites] After illustrating the method, we go on to document the small sample
properties of the CMCDE. We show that these small sample properties compare
very favorably to those of a standard nonparametric alternative.

Consider a GARCH(1,1) process of the form

rt = σtWt, where (Wt)
IID∼ N(0, 1) (17)

σ2
t+1 = α0 + βσ2

t + α1r2
t (18)

where all parameters are strictly positive and α1 + β < 1. Let us consider how to
compute the stationary marginal density of returns rt. Letting ψ be this density
and letting φ be the stationary distribution of Xt := σ2

t , equation (17) implies
that rt =

√
XtWt, and hence the conditional density q(r | x) of rt given Xt = x

is centered Gaussian with variance x. For this q we have ψ(r) =
∫

q(r | x)φ(dx),
which is a version of (6). The process (Xt)t≥0 can be expressed as

Xt+1 = α0 + βXt + α1XtW2
t

Given this series, the CMCDE of ψ is the density

ψn(r) =
1
n

n

∑
t=1

q(r |Xt) =
1
n

n

∑
t=1

(2πXt)−1/2 exp
{
− r2

2Xt

}
(19)

16



Using the sufficient conditions of Meyn and Tweedie (2009), it can be shown
that (Xt)t≥0 is V-uniformly ergodic on X := [α0/(1− β), ∞) for V(x) = x + c,
where c is any constant in [1, ∞). (More generally, Kristensen (2008) establishes
V-uniform ergodicity for a large class of GARCH formulations.)

Regarding the moment condition (8) in theorem 2.2, we have

∫
q(r | x)2dr =

∫
(2πx)−1 exp

{
−r2

x

}
dr = (4πx)−1/2 ≤

{
4πα0

1− β

}−1/2

Recall that V(x) = x + c, where c can be chosen arbitrarily large. For large enough
c, then, we have

∫
q(r | x)2dr ≤ c ≤ x + c = V(x), and (8) is satisfied. As a result,

both theorems 2.1 and 2.2 apply.

The fast convergence for the CMCDE ψn implied by theorem 2.2 is illustrated in
figure 1. For the exercise, we set n = 500.15 The left panel of the figure contains
the true density ψ drawn in bold, as well as 50 replications of the NPKDE. Each
NPKDE replication uses a simulated time series (rt)n

t=1, combined with standard
default settings (a Gaussian kernel and bandwidth calculated according to Silver-
man’s rule).16 The right panel of figure 1 repeats the exercise, but this time using
the CMCDE instead of the NPKDE. Each replication of the CMCDE is calculated
according to (19).

It is very clear from the figure that the small sample properties of the CMCDE
are favorable to those of the NPKDE, at least for this application. The replica-
tions are more tightly clustered around the true distribution both at the center of
the distribution and at the tails. One reason the figure is interesting is that the
NPKDE foregoes an unbiased estimate in order to obtain lower variance. Never-
theless, fixing y at any value, we see that the variance Var ψn(y) of the CMCDE is
significantly smaller than that of the NPKDE.

Another metric for comparing density estimators is to look at L1-norm deviations
from the true density ψ. We computed average L1 deviations over 1000 replica-
tions. For n = 500, the ratio of the CMCDE L1 deviation to the NPKDE L1 devi-
ation was 0.5854, indicating that the average errors for the NPKDE were almost
twice those of the CMCDE. If instead we set n = 2000, the ratio was 0.7431.

15The parameters are α0 = α1 = 0.05 and β = 0.9.
16The density marked as “true” in the figure is in fact an approximation, calculated by simu-

lation with n = 107. For such a large n there is no visible variation of the density over different
realization, or different methods of simulation.
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Figure 1: Relative performance, n = 500

4.2 The Aiyagari Model

So far we have considered primarily econometric applications. The CMCDE can
be also be applied to computing densities in dynamic economic models. To il-
lustrate this point, consider the incomplete market economy of Aiyagari (1994).
We begin with the consumption smoothing problem of an individual who in-
sures against idiosyncratic earnings risk by saving at a risk free rate of r. Both the
real interest rate and the wage rate w are constant, but total earnings are random
due to idiosyncratic variations in labor productivity. Each individual also faces a
borrowing constraint that rules out uncollateralized borrowing. The household’s
problem can be described by the Bellman equation

V(a, z) = max
c,a′

{
u(c) + βE[V(a′, z′) | z]

}
subject to

0 ≤ a′ ≤ wz + a(1 + r)− c

The serially correlated shock to labor productivity evolves according to

ln z′ = ρ ln z + σ
√

1− ρ2ε, ε ∼ N(0, 1) (20)

A common approach to solving this problem is to discretize the productivity pro-
cess using Tauchen’s method (1986), obtaining a grid {z1, ..., zM} and an M×M
stochastic matrix R that represents the dynamics of (20) on the grid.17 Assuming

17In particular, P{zt+1 = z′ | zt = z} = R(z, z′) for any z, z′ ∈ {z1, . . . , zM}.
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that assets also lie on a finite grid {a1, ...aL}, the solution to the Bellman equation
is an L×M matrix of saving policies a′ = g(a, z).

Given the solution to the individual’s problem, we are interested in making in-
ferences about the stationary labor productivity-asset distribution ψ. The path of
assets and productivity shocks evolves according to at+1 = g(at, zt) with (zt)t≥0
generated by R. Taking Xt := (at, zt) as the state variable, the transition probabil-
ities from state x = (a, z) to state y = (a′, z′) are given by

q(y | x) :=: q((a′, z′) | (a, z)) := 1{g(a, z) = a′}R(z, z′) (21)

The problem of computing ψ can be expressed in terms of the conditional den-
sity representation (6). In this discretized setting, the state space is finite, and all
probability distributions can be represented by probability mass functions. Prob-
ability mass functions can be regarded as densities with respect to the counting
measure. In particular, q(· | x) is a density with respect to the counting measure
for all x. Moreover, ψ is also a density, and, given that ψ is the stationary distri-
bution of the Markov process with transition probabilities q(y | x), we have

ψ(y) = ∑
x

q(y | x)ψ(x)

for all y. This is a version of the conditional density representation (6). Hence,
the CMCDE of ψ is

ψn(a′, z′) =
1
n

n

∑
t=1

q((a′, z′) | (at, zt)) =
1
n

n

∑
t=1

1{g(at, zt) = a′}R(zt, z′) (22)

Implementation proceeds by drawing a sequence of n realizations of labor pro-
ductivity from the matrix R, and using the policy function g to derive n associated
values of assets. The resulting sequence (at, zt)n

t=1 is then inserted into (22), and
this expression is evaluated at all a′ ∈ {a1, . . . , aL} and z′ ∈ {z1, . . . , zM}.

For standard parameterizations, the Markov process associated with the matrix
R is ergodic. In the finite state case, ergodicity and V-uniform ergodicity are
equivalent, and hence the conditions of theorems 2.1 and 2.2 are satisfied. (Since
the state space is finite, the second moment conditions required for theorem 2.2
are automatically satisfied.)

5 Conclusion

We have covered only a few of the potential applications for conditional Monte
Carlo density estimation. There are many other substatitive applications where
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the density of interest admits a conditional density representation. These in-
clude computation of the initial distribution when conducting exact maximum
likelihood estimation in time series or panel environments, density forecasting,
Bayesian decision making and/or econometrics, and robust control.

At present, this conditioning information is not always used. Instead, densities
are simulated and computed via nonparametric kernel density methods or his-
tograms. We have shown that exploiting conditioning information yields estima-
tors with better asymptotic and small-sample properties.

This paper has documented how conditioning information can be used when
computing densities. The same insight can be applied to other problems as well.
In Braun et al. (2009), we study how conditioning information can be used to
produce efficient estimators of moments and other expectations.

6 Technical Appendix

The expectation of an Lp(µ)-valued random variable F is defined as the element
EF of Lp(µ) such that

E〈F, h〉 = 〈EF, h〉 for every h ∈ Lq(µ)

where E is the usual scalar expectation. It follows from the Reisz representation
theorem that if E‖F‖p is finite, then EF exists and is unique. The Banach-space
law of large numbers (cf., e.g., Bosq, 2000, Theorem 2.4) implies that if (Fi)i≥1 is
an IID sequence in Lp(µ) with expectation EF, then

1
n

n

∑
i=1

Fi → EF P-almost surely as n→ ∞ (23)

where convergence is with respect to the norm on Lp(µ).

In the case p = 2, the space L2(µ) is a Hilbert space, and a version of the central
limit theorem holds. In particular, if (Fi)i≥1 is an IID sequence in L2(µ) such that
E‖F‖2

2 is finite, then

n1/2

{
1
n

n

∑
i=1

Fi − EF

}
(24)

converges in distribution to a centered Gaussian on L2(µ).

Lemma 6.1. If X has distribution φ, then Eq(· |X) = ψ in L1(µ).
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Proof of lemma 6.1. Let us consider the L1(µ) case first. Because E‖q(· |X)‖1 =
1 < ∞, the expectation Eq(· |X) is well-defined. To show that Eq(· |X) = ψ,
we must prove that E〈q(· |X), h〉 = 〈ψ, h〉 for all h ∈ L∞(µ). Fixing h ∈ L∞(µ),
Fubini’s theorem and (1) yield

E〈q(· |X), h〉 = E

∫
q(y |X)h(y)µ(dy) =

∫
Eq(y |X)h(y)µ(dy)

By (1) this equals
∫

ψhdµ = 〈ψ, h〉, as was to be shown.

Proof of lemma 2.1. Assume the hypotheses of the lemma. To see that ψn is locally
unbiased, fix any y ∈ Y. Then

Eψn(y) = E

[
1
n

n

∑
t=1

q(y |Xt)

]
=

1
n

n

∑
t=1

Eq(y |Xt) = ψ(y)

That ψn is globally unbiased follows from linearity of E and lemma 6.1.

Proof of theorem 2.1. As in the statement of the theorem, let P be an ergodic stochas-
tic kernel on (X, X ) with stationary distribution φ. Let (Xt)t≥0 be P-Markov and
let X∗ ∼ φ. Define Q(x) := q(· | x)− ψ, which is a measurable function from X

to L1(µ). Note that EQ(X∗) = 0 by lemma 6.1. We need to show that

lim
n→∞
‖ψn − ψ‖ = lim

n→∞

∥∥∥∥∥ 1
n

n

∑
t=1

Q(Xt)

∥∥∥∥∥ = 0 (P-almost surely) (25)

Our proof is an extention of that for the IID Banach space LLN, as given in Bosq
(2000, thm. 2.4). To begin, fix ε > 0. Since L1(µ) is separable, we can choose a
partition {Bj}j∈N of L1(µ) such that each Bj has diameter less than ε. For any
L1(µ)-valued random variable U, we let LJU := ∑J

j=1 bj1{U ∈ Bj}, where, for
each j, bj is a fixed point in Bj. Thus, LJU is a simple random variable that ap-
proximates U. In particular, we have the following result, a proof of which can
be found in Bosq (2000, pp. 27-28):

∃ J ∈N with E‖Q(X∗)− LJQ(X∗)‖ < 2ε (26)

Our first claim is that

lim
n→∞

∥∥∥∥∥ 1
n

n

∑
t=1

LJQ(Xt)− ELJQ(X∗)

∥∥∥∥∥ = 0 (P-almost surely) (27)
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To establish (27), we can use the real ergodic law (5) to obtain

1
n

n

∑
t=1

LJQ(Xt) =
J

∑
j=1

bj
1
n

n

∑
t=1

1{Q(Xt) ∈ Bj}

→
J

∑
j=1

bjP{Q(X∗) ∈ Bj} = ELJQ(X∗)

almost surely, where the last equality follows immediately from the definition of
E . Thus (27) is established.

Returning to (25), we have∥∥∥∥∥ 1
n

n

∑
t=1

Q(Xt)

∥∥∥∥∥ ≤ 1
n

n

∑
t=1
‖Q(Xt)− LJQ(Xt)‖

+

∥∥∥∥∥ 1
n

n

∑
t=1

LJQ(Xt)− ELJQ(X∗)

∥∥∥∥∥+ ‖ELJQ(X∗)‖

Using real-valued ergodicity again, as well as (27), we get

lim sup
n→∞

∥∥∥∥∥ 1
n

n

∑
t=1

Q(Xt)

∥∥∥∥∥ ≤ E‖Q(X∗)− LJQ(X∗)‖+ ‖ELJQ(X∗)‖

But the fact that EQ(X∗) = 0 now gives

‖ELJQ(X∗)‖ = ‖EQ(X∗)− ELJQ(X∗)‖ ≤ E‖Q(X∗)− LJQ(X∗)‖

In view of (26) we then have

lim sup
n→∞

∥∥∥∥∥ 1
n

n

∑
t=1

Q(Xt)

∥∥∥∥∥ ≤ 4ε (P-almost surely)

Since ε is arbitrary, the proof of (25) is now done.

Proof of theorem 2.2. This theorem can be established using the Hilbert space CLT
of Stachurski (2009, theorem 3.1), where x 7→ q(· | x) corresponds to T0 in that
theorem. The only point that needs checking vis-a-vis that CLT is that Eq(· |X) =
ψ in L2(µ) when X is drawn from the stationary distribution φ. This result was
was already established for the L1(µ) case in the proof of lemma 6.1. The proof
of the L2(µ) case is similar. We verify only that E‖q(· |X)‖2 < ∞, in which case
the expectation Eq(· |X) is well-defined in L2(µ). For this, it suffices to show that

E‖q(· |X)‖2
2 = E

∫
q(y |X)2µ(dy)
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is finite. In view of (8), this quantity is bounded above by EV(X). Finiteness
of EV(X) follows from V-uniform ergodicity. Indeed, for every V-uniformly
ergodic process with stationary distribution φ, the term

∫
Vdφ is always finite

(Meyn and Tweedie, 2009).
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