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Abstract

We propose a quantile-based nonparametric approach to inference on the

probability density function (PDF) of the private values in �rst-price sealed-

bid auctions with independent private values. Our method of inference is based

on a fully nonparametric kernel-based estimator of the quantiles and PDF of

observable bids. Our estimator attains the optimal rate of Guerre et al. (2000),

and is also asymptotically normal with the appropriate choice of the bandwidth.
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1 Introduction

Following the seminal article of Guerre et al. (2000), GPV hereafter, there has been

an enormous interest in nonparametric approaches to auctions.1 By removing the
�Department of Economics, University of British Columbia, 997 - 1873 East Mall, Vancouver,

BC, Canada V6T 1Z1. Email: vadim.marmer@ubc.ca
yDepartment of Economics, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal,

QC, Canada H3G 1M8. Email: achneero@alcor.concordia.ca
1See a recent survey by Athey and Haile (2007).
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need to impose tight functional form assumptions, the nonparametric approach pro-

vides a more �exible framework for estimation and inference. Moreover, the sample

sizes available for auction data can be su¢ ciently large to make the nonparametric

approach empirically feasible.2 This paper contributes to this literature by providing

a fully nonparametric framework for making inferences on the density of bidders�val-

uations f (v). The need to estimate the density of valuations arises in a number of

economic applications, as for example the problem of estimating a revenue-maximizing

reserve price.3

As a starting point, we brie�y discuss the estimator proposed in GPV. For the

purpose of introduction, we adopt a simpli�ed framework. Consider a random, i.i.d.

sample bil of bids in �rst-price auctions each of which has n risk-neutral bidders;

l indexes auctions and i = 1; : : : ; n indexes bids in a given auction. GPV assume

independent private values (IPV). In equilibrium, the bids are related to the valuations

via the equilibrium bidding strategy B: bil = B (vil). GPV show that the inverse

bidding strategy is identi�ed directly from the observed distribution of bids:

v = � (b) � b+ 1

n� 1
G (b)

g (b)
; (1)

where G (b) is the cumulative distribution function (CDF) of bids in an auction with

n bidders, and g (b) is the corresponding density. GPV propose to use nonparametric

estimators Ĝ and ĝ. When b = bil, the left-hand side of (1) will then give what GPV

call the pseudo-values v̂il = �̂ (bil). The CDF F (v) is estimated as the empirical

CDF, and the PDF f (v) is estimated by the method of kernels, both using v̂il as

observations. GPV show that, with the appropriate choice of the bandwidth, their

estimator converges to the true value at the optimal rate (in the minimax sense;

Khasminskii (1979)). However, the asymptotic distribution of this estimator is as yet

unknown, possibly because both steps of the GPV method are nonparametric with

estimated values v̂il entering the second stage.

2For example, List et al. (2004) study bidder collusion in timber auctions using thousands of
auctions conducted in the Province of British Columbia, Canada. Samples of similar size are also
available for highway procurement auctions in the United States (e.g., Krasnokutskaya (2009)).

3Several previous articles have studied that problem, see Paarsch (1997), Haile and Tamer (2003),
and Li et al. (2003). In the supplement to this paper, we discuss how the approach developed here
can be used for construction of con�dence sets for the optimal reserve price. The supplement is
available as Marmer and Shneyerov (2010) from the UBC working papers series and the authors�
web-sites.
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The estimator f̂ (v) proposed in this paper avoids the use of pseudo-values. It

builds instead on the insight of Haile et al. (2003).4 They show that the quantiles of

the distribution of valuations can be expressed in terms of the quantiles, PDF, and

CDF of bids. We show below that this relation can be used for estimation of f (v).

Consider the � -th quantile of valuations Q (�) and the � -th quantile of bids q (�). The

latter can be easily estimated from the sample by a variety of methods available in

the literature. As for the quantile of valuations, since the inverse bidding strategy

� (b) is monotone, equation (1) implies that Q (�) is related to q (�) as follows:

Q (�) = q (�) +
�

(n� 1) g (q (�)) ; (2)

providing a way to estimate Q (�) by a plug-in method. The CDF F (v) can then be

recovered by inverting the quantile function, F (v) = Q�1 (v).

Our estimator f̂ (v) is based on a simple idea that by di¤erentiating the quantile

function we can recover the density: Q0 (�) = 1=f (Q (�)), and therefore f (v) =

1=Q0 (F (v)). Taking the derivative in (2) and using the fact that q0 (�) = 1=g (q (�)),

we obtain, after some algebra, our basic formula:

f (v) =

�
n

n� 1
1

g (q (F (v)))
� 1

n� 1
F (v) g0 (q (F (v)))

g3 (q (F (v)))

��1
: (3)

Note that all the quantities on the right-hand side, i.e. g (b), g0 (b), q (�), F (v) =

Q�1 (v) can be estimated nonparametrically, for example, using kernel-based methods.

Once this is done, we can plug them in (3) to obtain our nonparametric estimator.

The expression in (3) can be also derived using the following relationship between

the CDF of values and the CDF of bids:

F (v) = G (B (v)) :

Applying the change of variable argument to the above identity, one obtains

f (v) = g (B (v))B0 (v)

= g (B (v)) =�0 (B (v))

4The focus of Haile et al. (2003) is a test of common values. Their model is therefore di¤erent
from the IPV model, and requires an estimator that is di¤erent from the one in GPV. See also Li
et al. (2002).
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=

�
n

n� 1
1

g (B (v))
� 1

n� 1
F (v) g0 (B (v))

g3 (B (v))

��1
:

Note however, that from the estimation perspective, the quantile-based formula ap-

pears to be more convenient, since the bidding strategy function B involves integra-

tion of F (see equation (4) below). Furthermore, replacing B (v) with appropriate

quantiles has no e¤ect on the asymptotic distribution of the estimator.

Our framework results in the estimator of f (v) that is both consistent and asymp-

totically normal, with an asymptotic variance that can be easily estimated. Moreover,

we show that, with an appropriate choice of the bandwidth sequence, the proposed

estimator attains the minimax rate of GPV.

In a Monte Carlo experiment, we compare �nite sample biases and mean squared

errors of our quantile-based estimator with that of the GPV�s estimator. Our con-

clusion is that neither estimator strictly dominates the other. The GPV estimator

is more e¢ cient when the PDF of valuations has a positive derivative at the point

of estimation and the number of bidders tends to be large. On the other hand, the

quantile-based estimator is more e¢ cient when the PDF of valuations has a nega-

tive derivative and the number of bidders is small. The Monte Carlo results suggest

that the proposed estimator will be more useful when there are su¢ ciently many

independent auctions with a small number of bidders.5

The rest of the paper is organized as follows. Section 2 introduces the basic setup.

Similarly to GPV, we allow the number of bidders to vary from auctions to auction,

and also allow auction-speci�c covariates. Section 3 presents our main results. Section

4 discusses the bootstrap-based approach to inference on the PDF of valuations. In

Section 5, we extend our framework to the case of auctions with binding reserve price.

We report Monte Carlo results in Section 6. Section 7 concludes. The proofs of the

main results are given in the Appendix. The supplement to this paper contains the

proof of the bootstrap result in Section 4, some additional Monte Carlo results, as well

as an illustration of how the approach developed here can be applied for conducting

inference on the optimal reserve price.

5We thank a referee for pointing this out.
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2 De�nitions

The econometrician observes a random sample f(bil; xl; nl) : l = 1; : : : ; L; i = 1; : : : nlg,
where bil is the equilibrium bid of risk-neutral bidder i submitted in auction l with

nl bidders, and xl is the vector of auction-speci�c covariates for auction l. The cor-

responding unobservable valuations of the object are given by fvil : l = 1; : : : ; L; i =
1; : : : nlg. We make the following assumption similar to Assumptions A1 and A2 of
GPV (see also footnote 14 in their paper).

Assumption 1 (a) f(nl; xl) : l = 1; : : : ; Lg are i.i.d.

(b) The marginal PDF of xl, ', is strictly positive and continuous on its compact
support X � Rd, and admits up to R � 2 continuous derivatives on its interior.

(c) The distribution of nl conditional on xl is denoted by � (njx) and has support
N = fn; : : : ; �ng for all x 2 X , n � 2.

(d) fvil : l = 1; : : : ; L; i = 1; : : : ; nlg are i.i.d. and independent of the number of bid-
ders conditional on xl with the PDF f (vjx) and CDF F (vjx).

(e) f (�jx) is strictly positive and bounded away from zero and admits up to R � 1
continuous derivatives on its support, a compact interval [v (x) ; v (x)] � R+ for
all x 2 X ; f(vj�) admits up to R continuous partial derivatives on Interior (X )
for all v 2 [v (x) ; v (x)].

(f) For all n 2 N , � (nj�) is strictly positive and admits up to R continuous deriva-
tives on the interior of X .

Under Assumption 1(c), the equilibrium bids are determined by

bil = vil �
1

(F (viljxl))n�1
Z vil

v

(F (ujxl))n�1 du; (4)

(see, for example, GPV). Let g (bjn; x) and G (bjn; x) be the PDF and CDF of bil,
conditional on both xl = x and the number of bidders nl = n. Since bil is a function of

vil, xl, and F (�jxl), the bids fbilg are also i.i.d. conditional on (nl; xl). Furthermore,
by Proposition 1(i) and (iv) of GPV, for all n = n; : : : ; n and x 2 X , g (�jn; x) has the
compact support

�
b (n; x) ; b (n; x)

�
for some b (n; x) < b (n; x), and g (�jn; �) admits

up to R continuous bounded partial derivatives.
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The � -th quantile of F (vjx) is de�ned as

Q (� jx) = F�1 (� jx) � inf
v
fv : F (vjx) � �g :

The � -th quantile of G,

q (� jn; x) = G�1 (� jn; x) ;

is de�ned similarly. The quantiles of the distributions F (vjx) and G (bjn; x) are
related through the following conditional version of equation (2):

Q (� jx) = q (� jn; x) + �

(n� 1) g (q (� jn; x) jn; x) : (5)

Note that the expression on the left-hand side does not depend on n, since by Assump-

tion 1(d) and as it is usually assumed in the literature, the distribution of valuations

is the same regardless of the number of bidders.

The true distribution of the valuations is unknown to the econometrician. Our

objective is to construct a valid asymptotic inference procedure for the unknown f

using the data on observable bids. Di¤erentiating (5) with respect to � , we obtain the

following equation relating the PDF of valuations with functionals of the distribution

of the bids:

@Q (� jx)
@�

=
1

f (Q (� jx) jx)

=
n

n� 1
1

g (q (� jn; x) jn; x) �
�g(1) (q (� jn; x) jn; x)

(n� 1) g3 (q (� jn; x) jn; x) ; (6)

where g(k) (bjn; x) = @kg (bjn; x) =@bk. Substituting � = F (vjx) in equation (6) and
using the identity Q (F (vjx) jx) = v, we obtain the following equation that represents
the PDF of valuations in terms of the quantiles, PDF and derivative of PDF of bids:

1

f (vjx) =
n

n� 1
1

g (q (F (vjx) jn; x) jn; x)

� 1

n� 1
F (vjx) g(1) (q (F (vjx) jn; x) jn; x)

g3 (q (F (vjx) jn; x) jn; x) : (7)

Note that the overidentifying restriction of the model is that f (vjx) is the same for
all n.
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In this paper, we suggest a nonparametric estimator for the PDF of valuations

based on equations (5) and (7). Such an estimator requires nonparametric estimation

of the conditional CDF and quantile functions, PDF and its derivative.

Let K be a kernel function. We assume that the kernel is compactly supported

and of order R.

Assumption 2 K is compactly supported on [�1; 1], has at least R derivatives on

its support, the derivatives are Lipschitz, and
R
K (u) du = 1,

R
ukK (u) du = 0 for

k = 1; : : : ; R� 1.

To save on notation, denote

Kh (z) =
1

h
K
�z
h

�
,

and for x = (x1; : : : ; xd)
0, de�ne

K�h (x) =
1

hd
Kd

�x
h

�
=
1

hd
Qd
k=1K

�xk
h

�
:

Consider the following estimators:

'̂ (x) =
1

L

LX
l=1

K�h (xl � x) ; (8)

�̂ (njx) =
1

'̂ (x)L

LX
l=1

1 (nl = n)K�h (xl � x) ;

Ĝ (bjn; x) =
1

�̂ (njx) '̂ (x)nL

LX
l=1

nlX
i=1

1 (nl = n) 1 (bil � b)K�h (xl � x) ;

q̂ (� jn; x) = Ĝ�1 (� jn; x) � inf
b

n
b : Ĝ (bjn; x) � �

o
;

ĝ (bjn; x) =
1

�̂ (njx) '̂ (x)nL

LX
l=1

nlX
i=1

1 (nl = n)Kh (bil � b)K�h (xl � x) ; (9)
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where 1 (S) is an indicator function of a set S � R.6 ;7

The derivatives of the density g (bjn; x) are estimated simply by the derivatives of
ĝ (bjn; x):

ĝ(k) (bjn; x) = (�1)k

�̂ (njx) '̂ (x)nL

LX
l=1

nlX
i=1

1 (nl = n)K
(k)
h (bil � b)K�h (xl � x) ; (10)

where

K
(k)
h (u) =

1

h1+k
K(k)

�u
h

�
;

and K(k) (u) denotes the k-th derivative of K (u).

Our approach also requires nonparametric estimation of Q, the conditional quan-

tile function of valuations. An estimator for Q can be constructed using the relation-

ship between Q, q and g given in (5). A similar estimator was proposed by Haile et al.

(2003) in a di¤erent context. In our case, the estimator of Q will be used to construct

F̂ , an estimator of the conditional CDF of valuations. The CDF F is related to the

quantile function Q through

F (vjx) = Q�1 (vjx) = sup
�2[0;1]

f� : Q (� jx) � vg ; (11)

and therefore F̂ can be obtained by inverting the estimator of the conditional quantile

function. However, since an estimator of Q based on (5) involves kernel estimation

of the PDF g, it will be inconsistent for the values of � that are close to zero and

one because of the asymptotic bias in ĝ at the boundaries. In particular, such an

estimator of Q can exhibit large oscillations for � near one by taking on very small

values, which due to supremum in (11), might proliferate and bring an upward bias

into the estimator of F . A solution to this problem that we pursue in this paper

is to use a monotone version of the estimator of Q. First, we de�ne a preliminary

6We estimate the CDF of bids by a conditional version of the empirical CDF. In a recent paper, Li
and Racine (2008) discuss a smooth estimator of the CDF (and a corresponding quantile estimator)
obtained by integrating the kernel PDF estimator. We, however, adopt the non-smooth empirical
CDF approach in order for our estimator to be comparable with that of GPV; both estimator can
be modi�ed by using the smooth conditional CDF estimator.

7The quantile estimator q̂ is constructed by inverting the estimator of the conditional CDF of
bids. This approach is similar to that of Matzkin (2003).
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estimator, Q̂p:

Q̂p (� jn; x) = q̂ (� jn; x) + �

(n� 1) ĝ (q̂ (� jn; x) jn; x) : (12)

Next, we choose some � 0 2 (0; 1) su¢ ciently far from 0 and 1, for example, � 0 = 1=2.
We de�ne a monotone version of the estimator of Q as follows:

Q̂ (� jn; x) =
(
supt2[�0;� ] Q̂

p (tjn; x) ; � 0 � � < 1;
inft2[�;�0] Q̂

p (tjn; x) ; 0 � � < � 0:
(13)

The estimator of the conditional CDF of the valuations based on Q̂ (� jn; x) is then
given by

F̂ (vjn; x) = sup
�2[0;1]

n
� : Q̂ (� jn; x) � v

o
: (14)

Since Q̂ (�jn; x) is monotone, F̂ is not a¤ected by Q̂p (� jn; x) taking on small values
near � = 1. Furthermore, in our framework, inconsistency of Q̂ (� jn; x) near the
boundaries does not pose a problem, since we are interested in estimating F only on

a compact inner subset of its support.

Using (7), for a given n we propose to estimate f (vjx) by the plug-in method,
i.e. by replacing g (bjn; x), q (� jn; x), and F (vjx) in (7) with ĝ (bjn; x), q̂ (� jn; x), and
F̂ (vjn; x). That is our estimator f̂ (vjn; x) is given by the reciprocal of

n

n� 1
1

ĝ
�
q̂
�
F̂ (vjn; x) jn; x

�
jn; x

��
� 1

n� 1
F̂ (vjn; x) ĝ(1)

�
q̂
�
F̂ (vjn; x) jn; x

�
jn; x

�
ĝ3
�
q̂
�
F̂ (vjn; x) jn; x

�
jn; x

� : (15)

While the PDF of valuations does not depend on the number of bidders n, the

estimator de�ned by (15) does, and therefore we have a number of estimators for

f (vjx): f̂ (vjn; x), n = n; : : : ; n. The estimators f̂ (vjn; x) ; : : : ; f̂ (vj�n; x) can be
averaged to obtain:

f̂ (vjx) =
�nX

n=n

ŵ (n; x) f̂ (vjn; x) ; (16)
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where the weights ŵ (n; x) satisfy

ŵ (n; x)!p w (n; x) > 0;

�nX
n=n

w (n; x) = 1:

In the next section, we discuss how to construct optimal weights that minimize the

asymptotic variance of f̂ (vjx).
We also suggest estimating the conditional CDF of v using the average of F̂ (vjn; x),

n = n; : : : ; n:

F̂ (vjx) =
�nX

n=n

ŵ (n; x) F̂ (vjn; x) : (17)

3 Asymptotic properties

In this section, we discuss uniform consistency and asymptotic normality of the esti-

mator of f proposed in the previous section. The consistency of the estimator of f

follows from the uniform consistency of its components.

It is well known that kernel estimators can be inconsistent near the boundaries of

the support, and therefore we estimate the PDF of valuations at the points that lie

away from the boundaries of [v (x) ; �v (x)]. The econometrician can choose quantile

values � 1 and � 2 such that

0 < � 1 < � 2 < 1;

in order to cut o¤ the boundaries of the support where estimation is problematic.

While v (x) and �v (x) are unknown, consider instead the following interval of v�s for

selected � 1 and � 2:

�̂ (x) =

�
max

n=n;:::;�n
Q̂ (� 1jn; x) ; min

n=n;:::;�n
Q̂ (� 2jn; x)

�
: (18)

Remark. Since according to Lemma 1(g) below, Q̂ (� jn; x) consistently estimates
Q (� jx) for � 2 [� 1 � "; � 2 + "] and all n = n; :::; �n , the boundaries of �̂ (x) satisfy

maxn=n;:::;�n Q̂ (� 1jn; x)!p Q (� 1jx) andminn=n;:::;�n Q̂ (� 2jn; x)!p Q (� 2jx). Thus, the
boundaries of �̂ (x) consistently estimate the boundaries of � (x) = [Q (� 1jx) ; Q (� 2jx)],
the interval between the � 1 and � 2 quantiles of the distribution of bidders�valuations.

10



We also show in Theorems 1 and 2 below that our estimator of f is uniformly con-

sistent and asymptotically normal when f is estimated at the points from �̂ (x).

In practice, � 1 and � 2 can be selected as follows. Since by Assumption 2 the length

of the support of K is two, and following the discussion on page 531 of GPV, when

there are no covariates one can choose � 1 and � 2 such that

[q̂ (� 1jn) ; q̂ (� 2jn)] �
�
b̂min (n) + h; b̂max (n)� h

�
for all n 2 N , where b̂min (n) and b̂max (n) denote the minimum and maximum bids

respectively in the sample of auctions with n bidders. When there are covariates

available and f is estimated conditional on xl = x, one can replace b̂min (n) and

b̂max (n) with the corresponding minimum and maximum bids in the neighborhood of

x as de�ned on page 541 of GPV.

Next, we present a lemma that provides uniform convergence rates for the com-

ponents of the estimator f̂ . In the case of the estimators of g and its derivatives,

uniform consistency is established on the following interval. Since the bidding func-

tion is monotone, by Proposition 2.1 of GPV, there is an inner compact interval of

the support of the bids distribution, say [b1 (n; x) ; b2 (n; x)],8 such that

[q (� 1jn; x) ; q (� 2jn; x)] � (b1 (n; x) ; b2 (n; x)) ; and
[b1 (n; x) ; b2 (n; x)] �

�
b (n; x) ;�b (n; x)

�
: (19)

Lemma 1 Under Assumptions 1 and 2, for all x 2 Interior (X ) and n 2 N ,

(a) �̂ (njx)� � (njx) = Op
��

Lhd

logL

��1=2
+ hR

�
.

(b) '̂ (x)� ' (x) = Op
��

Lhd

logL

��1=2
+ hR

�
.

(c) supb2[b(n;x);�b(n;x)] jĜ (bjn; x)�G (bjn; x) j = Op
��

Lhd

logL

��1=2
+ hR

�
.

(d) sup�2[";1�"] jq̂ (� jn; x)�q (� jn; x) j = Op
��

Lhd

logL

��1=2
+ hR

�
, for any 0 < " < 1=2.

8The knowledge of b1 (n; x) and b2 (n; x) is not required for construction of our estimator.
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(e) sup�2[";1�"](limt#� q̂ (tjn; x) � q̂ (� jn; x)) = Op

��
Lhd

log(Lhd)

��1�
, for any 0 < " <

1=2.

(f) supb2[b1(n;x);b2(n;x)] jĝ(k) (bjn; x) � g(k) (bjn; x) j = Op

��
Lhd+1+2k

logL

��1=2
+ hR

�
, k =

0; : : : ; R, where [b1 (n; x) ; b2 (n; x)] is de�ned in (19).

(g) sup�2[�1�";�2+"] jQ̂ (� jn; x) � Q (� jx) j = Op
��

Lhd+1

logL

��1=2
+ hR

�
, for some " > 0

such that � 1 � " > 0 and � 2 + " < 1.

(h) supv2�̂(x) jF̂ (vjn; x)�F (vjx) j = Op
��

Lhd+1

logL

��1=2
+ hR

�
, where �̂ (x) is de�ned

in (18).

Remarks. 1. Parts (a), (b), and (f) of the lemma follow from Lemmas B.1 and B.2

of Newey (1994) which show that kernel estimators of k-order derivatives of smooth

functions of d variables are uniformly consistent with the rate (Lhd+2k= logL)�1=2+hR,

where R is the degree of smoothness. The conditional CDF estimator Ĝ (�jn; x) in part
(c) of Lemma 1 is a step function which involves kernel smoothing only with respect to

x. It therefore does not �t in Newey�s framework and his Lemma B.1 does not apply

in that case. However, precisely because there is no kernel smoothing with respect

to b, one should expect to see the uniform convergence rate of (Lhd= logL)�1=2 + hR

for Ĝ (bjn; x). In the proof of part (c) in the Appendix, we verify this claim using

the covering numbers results (Pollard, 1984, Chapter II). A similar result appears in

GPV. In their Lemma B2, they derive the uniform convergence rate for Ĝ (�jn; x) on
an expanding subset of

�
b (n; x) ;�b (n; x)

�
that does not include the neighborhoods of

the boundaries. In our case, uniform convergence of Ĝ (�jn; x) on the entire support�
b (n; x) ;�b (n; x)

�
is useful for establishing the uniform convergence rate of q̂ (�jn; x).

2. In part (d) of the lemma, we show that the quantile estimator q̂(�jn; x) inherits
the uniform convergence rate of its corresponding empirical CDF Ĝ (�jn; x). The result
is established using the following argument (to save on notation, we will suppress n

and x here). Since G(b) is a continuous CDF and by the properties of quantiles

(van der Vaart, 1998, Lemma 21.1), write G(q̂(�))�G(q(�)) = G(q̂(�))� Ĝ(q̂(�)) +
Ĝ(q̂(�)) � � . Since g(q (�)) is bounded away from zero, an application of the mean-

value theorem implies then that the uniform distance between q̂ (�) and q (�) can be
bounded by the uniform distance between Ĝ (�) and G (�) and the size of the largest
jump in Ĝ(�) (the later is of order (Lhd)�1).

12



3. Arguments similar to those in the previous remark are also used in the proof

of part (h) (recall that F̂ (�jn; x) is de�ned as the inverse function of Q̂(�jn; x)).
The jumps in Q̂ (�jn; x) depend on those of q̂(�jn; x) and are shown to be of order
(Lhd= logL)�1=2 using the results in Deheuvels (1984) (see the proof of part (e) of the

lemma).

As it follows from Lemma 1, the estimator of the derivative of g (�jn; x) has the
slowest rate of convergence among all the components of f̂ . Consequently, it deter-

mines the uniform convergence rate of f̂ .

Theorem 1 Let �̂ (x) be as de�ned in (18). Under Assumptions 1 and 2, and for

all x 2 Interior (X ), supv2�̂(x)
���f̂ (vjx)� f (vjx)��� = Op��Lhd+3logL

��1=2
+ hR

�
.

Remarks. 1. The theorem also holds when �̂ (x) is replaced by an inner closed

subset of [v (x) ; v (x)], as in Theorem 3 of GPV. Estimation of � (x) has no e¤ect on

the result of our theorem because the event

EL (n; x) =
n
v 2 �̂ (x) : q̂

�
F̂ (vjn; x) jn; x

�
2 [b1 (n; x) ; b2 (n; x)]

o
(20)

satis�es P (EL(n; x)) ! 1 as L ! 1 for all n 2 N and x 2 Interior (X ) by the
results in Lemma 1.

2. One of the implications of theorem is that our estimator achieves the opti-

mal rate of GPV. Consider the following choice of the bandwidth parameter: h =

c (L= logL)��. By choosing � so that
�
Lhd+3= logL

��1=2
and hR are of the same or-

der, one obtains � = 1= (d+ 3 + 2R) and the rate (L= logL)�R=(d+3+2R), which is the

same as the optimal rate established in Theorem 3 of GPV.

Next, we discuss asymptotic normality of the proposed estimator. We make fol-

lowing assumption.

Assumption 3 Lhd+1 !1, and
�
Lhd+1+2k

�1=2
hR ! 0.

The rate of convergence and asymptotic variance of the estimator of f are deter-

mined by ĝ(1) (bjn; x), the component with the slowest rate of convergence. Hence,
Assumption 3 will be imposed with k = 1 which limits the possible choices of the

bandwidth for kernel estimation. For example, if one follows the rule h = cL��, then

� has to be in the interval (1= (d+ 3 + 2R) ; 1= (d+ 1)). As usual for asymptotic

normality, there is some under smoothing relatively to the optimal rate.
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Lemma 2 Let [b1 (n; x) ; b2 (n; x)] be as in (19). Then, under Assumptions 1-3, for
all b 2 [b1 (n; x) ; b2 (n; x)], x 2 Interior (X ), and n 2 N ,

(a)
�
Lhd+1+2k

�1=2 �
ĝ(k) (bjn; x)� g(k) (bjn; x)

�
!d N (0; Vg;k (b; n; x)), where

Vg;k (b; n; x) = Kkg (bjn; x) = (n� (njx)' (x)) ;

and Kk =
�R
K2 (u) du

�d R �
K(k) (u)

�2
du.

(b) ĝ(k) (bjn1; x) and ĝ(k) (bjn2; x) are asymptotically independent for all n1 6= n2,

n1;n2 2 N .

Now, we present the main result of the paper. Using the result in (70) in the

Appendix, we have the following decomposition:

f̂ (vjn; x)� f (vjx) = F (vjx) f 2 (vjx)
(n� 1) g3 (q (F (vjx) jn; x) jn; x)

�
�
ĝ(1) (q (F (vjx) jn; x) jn; x)� g(1) (q (F (vjx) jn; x) jn; x)

�
+ op

��
Lhd+3

��1=2�
:

(21)

Lemma 2, the de�nition of f̂ (vjn; x), and the decomposition in (21) lead to the
following theorem.

Theorem 2 Let �̂ (x) be as de�ned in (18). Under Assumptions 1, 2, and 3 with
k = 1, for v 2 �̂ (x), x 2 Interior (X ), and n 2 N ,

�
Lhd+3

�1=2 �
f̂ (vjn; x)� f (vjx)

�
!d N (0; Vf (v; n; x)) ;

where

Vf (v; n; x) =
K1F

2 (vjx) f 4 (vjx)
n (n� 1)2 � (njx)' (x) g5 (q (F (vjx) jn; x) jn; x)

;

and K1 is as de�ned in Lemma 2. Furthermore, f̂ (vjn; x) ; : : : ; f̂ (vj�n; x) are asymp-
totically independent.

Remarks. 1. The theorem also holds for �xed v�s in an inner closed subset of

[v (x) ; v (x)]. Estimation of �̂(x) has no e¤ect on the asymptotic distribution of

f̂ (vjn; x) by the same reason as in Remark 1 after Theorem 1.
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2. Our approach can be used for estimation of the conditional PDF of values at

quantile � , f (Q (� jx)). In this case, the estimator, say f̂ (Q (� jx) jn; x), is given by

f̂ (Q (� jx) jn; x) =
�

n

n� 1
1

ĝ (q̂ (� jn; x) jn; x) �
1

n� 1
� ĝ(1) (q̂ (� jn; x) jn; x)
ĝ3 (q̂ (� jn; x) jn; x)

��1
;

and
�
Lhd+3

�1=2 �
f̂ (Q (� jx) jn; x)� f (Q (� jx) jx)

�
!d N (0; Vf (Q (� jx) ; n; x)).

By Lemma 1, the asymptotic variance Vf (v; n; x) can be consistently estimated by

the plug-in estimator which replaces the unknown F; f; '; �; g, and q in the expression

for Vf (v; n; x) with their consistent estimators.

Using asymptotic independence of f̂ (vjn; x) ; : : : ; f̂ (vj�n; x), the optimal weights
for the averaged PDF estimator of f (vjx) in (16) can be obtained by solving a GLS-
type problem. As usual, the optimal weights are inversely related to the variances

Vf (v; n; x):

ŵ� (n; x) =
�
1=V̂f (v; n; x)

�
=

 
�nX
j=n

1=V̂f (v; j; x)

!

=
n (n� 1)2 �̂ (njx) ĝ5

�
q̂
�
F̂ (vjn; x) jn; x

�
jn; x

�
P�n

j=n j (j � 1)
2 �̂ (jjx) ĝ5

�
q̂
�
F̂ (vjn; x) jj; x

�
jj; x

� ;
and the asymptotic variance of the optimal weighted estimator is therefore given by

Vf (v; x) =
K1F

2 (vjx) f 4 (vjx)P�n
n=n n (n� 1)

2 � (njx) g5 (q (F (vjx) jn; x) jn; x)
: (22)

In small samples, the accuracy of the normal approximation can be improved

by taking into account the variance of the second-order term multiplied by h2. To

make the notation simple, consider the case of a single value n. We can expand the

decomposition in (21) to obtain that
�
Lhd+3

�1=2 �
f̂ (vjx; n)� f (vjx)

�
is given by

Ff 2

(n� 1) g3
�
Lhd+3

�1=2 �
ĝ(1) � g(1)

�
+ h

�
3f

g
� 2nf 2

(n� 1) g2

��
Lhd

�1=2
(ĝ � g) + op (h) ;

where, F is the conditional CDF evaluated at v, and g, g(1), ĝ, ĝ(1) are the con-

ditional density (given x and n), its derivative, and their estimators evaluated at
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q (F (vjx) jn; x). According to this decomposition, one can improve the accuracy of
the asymptotic approximation in small samples by using the following variance esti-

mator instead of V̂f :9

~Vf = V̂f + h
2

 
3f̂

ĝ
� 2nf̂ 2

(n� 1) ĝ2

!2
V̂g;0:

Note that the second summand in the expression for ~Vf is Op (h2) and negligible in

large samples.

4 Bootstrap

The results in the previous section suggest that a con�dence interval for f = f (vjx),
for some chosen x 2 Interior(X ) and v 2 �̂(x), can be constructed using the usual
normal approximation. In this section, we discuss an alternative approach based on

the bootstrap percentile method.10 The bootstrap percentile method approximates

the distribution of f̂ � f by that of f̂ y� f̂ , where f̂ = f̂(vjx) and f̂ y is the bootstrap
analogue of f̂ computed using bootstrap data resampled from the original data. Note

that the distribution of f̂ y � f̂ can be approximated by simulations.
To generate bootstrap samples, �rst we draw randomly with replacement L auc-

tions from the original sample of auctions f(nl; xl) : l = 1; : : : ; Lg. In the second step,
we draw bids randomly with replacement from the bids data corresponding to each

selected auction. Thus, if auction �l is selected in the �rst step, in the second step we

draw n�l bids from fbi�l : i = 1; : : : ; n�lg.
Let M be the number of bootstrap samples. For each bootstrap sample m =

1; : : : ;M , we compute f̂ ym, the bootstrap analogue of f̂ . Note that f̂
y
m is computed

the same way as f̂ but using the data in bootstrap sample m instead of the original

data. Let �y� be the � empirical quantile of ff̂ ym : m = 1; : : : ;Mg. The bootstrap
percentile con�dence interval is constructed as

CIBP1�� =
h
�y�=2; �

y
1��=2

i
: (23)

9There is no covariance term because
R
K (u)K(1) (u) du = 0.

10See, for example, Shao and Tu (1995) for a general discussion of the bootstrap methods.
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Let Hf;L denote the CDF of
p
Lhd+3

�
f̂ � f

�
and Hy

f;L be the conditional CDF of
p
Lhd+3

�
f̂ ym � f̂

�
given the original data:

Hf;L (u) = P
�p
Lhd+3

�
f̂ � f

�
� u

�
;

Hy
f;L (u) = P y

�p
Lhd+3

�
f̂ ym � f̂

�
� u

�
;

where P y(�) denotes the conditional probability given the original sample of auctions
f(b1l; : : : ; bnll; nl; xl) : l = 1; : : : ; Lg. The asymptotic validity of CIBP1�� is implied by
the result of the following theorem.11

Theorem 3 Suppose that Assumptions 1, 2, and 3 with k = 1 hold. Then, as L !
1, supu2R jHf;L(u)�H

y
f;L(u)j !p 0.

5 Binding reserve prices

We have so far assumed that there is no reserve price. Alternatively, we could have

assumed that there is a reserve price, but it is non-binding. However, in real world

auctions, sellers often use binding reserve prices to increase their expected revenues,

so it is useful to extend our results in this direction.

Let r be the reserve price. As in GPV, we assume that only the bidders with

vil � r submit bids. In this section, we use nl to denote the number of actual observed
bidders in auction l. Let �n denote the unobserved number of potential bidders. We

make the following assumption identical to Assumption A5 in GPV.

Assumption 4 (a) The number of potential bidders �n � 2 is constant.

(b) The reserved price r is a possibly unknown deterministic R continuously di¤er-

entiable function Res (�) of the auction characteristics x.

(c) The reserve price is binding in the sense that, for some " > 0, v (x) + " �
Res (x) � �v (x)� " for all x 2 X .

11In the supplement, we compare the accuracy of the bootstrap percentile method with that of
the asymptotic normal approximation in Monte Carlo simulations, and �nd that the bootstrap is
more accurate.
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Our estimation method easily extends to this environment. Let

F � (vjx) � F (vjx)� F (rjx)
1� F (rjx)

be the distribution of valuations conditional on participation, and let f � (vjx) be its
density. Note that the parent density f (vjx) is related to f � (vjx) as

f (vjx) = (1� F (rjx)) f � (vjx) : (24)

Our estimator for f (vjx) is based on (24): we separately estimate F (rjx) and
f � (vjx). We estimate F (rjx) as a nonparametric regression exactly as in GPV:12

F̂ (rjx) = 1� 1

n̂Lhd'̂ (x)

LX
l=1

nlK�h (x� xl) ;

where again as in GPV,

n̂ = max
l=1;:::;L

nl

is the estimator of the number of potential bidders �n. Note that by standard results,

n̂ = �n+O(L�1) (25)

and

F̂ (rjx) = F (rjx) +Op
��
Lhd

��1=2�
: (26)

We now describe how our approach can be extended to estimation of f � (vjx).
Let G (bjx) be the CDF of bids conditional on x and on having a valuation above
the reserve price, vil � r. Let g (bjx) be the corresponding PDF. By the law of total
probability,

G (bjx) =

�nX
n=n

� (njx)G (bjn; x) ; (27)

g (bjx) =

�nX
n=n

� (njx) g (bjn; x) : (28)

12See the third equation on page 550 of GPV.
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The estimators Ĝ (bjx) and ĝ (bjx) then can be constructed by the plug-in method
using our previously derived estimators n̂, �̂ (njx), Ĝ (bjn; x), and ĝ (bjn; x).13

With Ĝ (bjx) and ĝ (bjx) in hand, we estimate the density f � (vjx) by following
exactly the same steps as in the case without reserve price. Since the inverse bidding

strategy under a binding reserve price is given by

� (bjx) = b+ 1

�n� 1
(1� F (rjx))G (bjx) + F (rjx)

(1� F (rjx)) g (bjx) ;

the valuation quantile for the participants becomes

Q� (� jx) = q (� jx) + 1

�n� 1
(1� F (rjx)) � + F (rjx)
(1� F (rjx)) g (q (� jx) jx) ; (29)

where Q� (� jx) is the quantile function of F � (vjx). Let Q̂�p (� jx) be the plug-in
estimator of Q� (� jx) based on (29), Q̂� (� jx) be its monotone version as in (13), and
F̂ � (vjx) be the corresponding estimator of the CDF F � (vjx) as in (14). The estimator
f̂ � (vjx) is derived parallel to (15), as the reciprocal of 

1 +
1� F̂ (rjx)
n̂� 1

!
1

ĝ
�
q̂
�
F̂ � (vjx) jx

�
jx
�

� 1

n̂� 1

�
1� F̂ (rjx)

�
F̂ � (vjx) ĝ(1)

�
q̂
�
F̂ � (vjx) jx

�
jx
�

ĝ3
�
q̂
�
F̂ � (vjx) jx

�
jx
� :

Similarly to �̂ (x) in Section 3, de�ne �̂� (x) =
h
Q̂� (� 1jx) ; Q̂� (� 2jx)

i
, where 0 <

� 1 < � 2 < 1 are chosen by the econometrician. Note that by construction, v > Res (x)

with probability approaching one for all v 2 �̂� (x). As before, the asymptotics of
f̂ � (vjx) are driven by ĝ(1), the term with the slowest convergence rate. All the steps

in our previous results routinely transfer to this setting.14 In particular, we have an

exact analogue to Lemma 1, and parallel to (21), the delta-method expansion for the

13Assumption 4(a) implies that G (bjx) does not depend on n. Note that in the present setting,
nl are draws from the Binomial dostribution, nljx � Binomial (�n; 1� F (rjx)), and � (njx) are the
corresponding Binomial probabilities.
14Since we pick the inner quantiles 0 < �1 < �2 < 1, we only use the bid observations su¢ ciently

far from the boundary b (n; x) = r. We therefore do not need to transform the bids as in GPV to
avoid the singularity of g (bjx) when b # r.
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estimator f̂ � (vjx) for v 2 �̂� (x) takes the form

f̂ � (vjx)� f � (vjx) = (1� F (rjx))F � (vjx) f �2 (vjx)
(�n� 1) g3 (q (F � (vjx) jx) jx)

�
�
ĝ(1) (q (F � (vjx) jx) jx)� g(1) (q (F � (vjx) jx) jx)

�
+ op

��
Lhd+3

��1=2�
:

The estimator f̂ � (vjx) therefore satis�es

�
Lhd+1

�1=2 �
f̂ � (vjx)� f � (vjx)

�
!d N (0; Vf� (v; x)) ; (30)

for v 2 �̂� (x). The asymptotic variance is given by

Vf� (v; x) =

�
F � (vjx) f �2 (vjx)

(�n� 1) g3 (q (F � (vjx) jx) jx)

�2
Vg;1 (q (F

� (vjx) jx) ; x) ;

where from (28),

Vg;1 (b; x) =
�nX
n=1

� (njx)2 Vg;1 (b; n; x) :

The asymptotic variance Vf� can be consistently estimated by the plug-in method.

From (24), the estimator of f (vjx) for v 2 �̂� (x) is given by

f̂ (vjx) �
�
1� F̂ (rjx)

�
f̂ � (vjx) ;

Combining (30) and (26), we have the following asymptotic normality result.

Theorem 4 Under Assumptions 1, 2, 3 with k = 1, and 4, for v 2 �̂� (x) and

x 2 Interior (X ),

�
Lhd+1

�1=2 �
f̂ (vjx)� f (vjx)

�
!d N (0; Vf (v; x)) ;

where Vf (v; x) = (1� F (rjx))2 Vf� (v; x).

6 Monte Carlo experiments

In this section, we compare the �nite sample performance of our estimator with that of

the GPV�s estimator in terms of bias and mean squared error (MSE). We consider the
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case with no covariates (d = 0). The true CDF of valuations used in our simulations

is given by

F (v) =

8><>:
0; v < 0;

v�; 0 � v � 1;
1; v > 1;

(31)

where � > 0. Such a choice of F is convenient because the corresponding bidding

strategy is easy to compute:

B (v) =

�
1� 1

� (n� 1) + 1

�
v: (32)

In our simulations, we consider the values � = 1=2; 1, and 2. When � = 1, the

distribution of valuations is uniform over the interval [0; 1], � = 1=2 corresponds to

the case of a downward-sloping PDF of valuations, and � = 2 corresponds to the

upward-sloping PDF.

We report the results for v = 0:4; 0:5; 0:6, and the number of bidders n = 3 and

5. The number of auctions L is chosen so that the total number of observations in

a simulated sample, nL, is the same for all values of n. In this case, the di¤erences

in simulations results observed across n cannot be attributed to varying sample size.

We set nL = 4200. Each Monte Carlo experiment has 103 replications.

Similarly to GPV, we use the tri-weight kernel function for the kernel estimators,

and the normal rule-of-thumb bandwidth in estimation of g:

h1 = 1:06�̂b (nL)
�1=5 ;

where �̂b is the estimated standard deviation of bids. The MSE optimal bandwidth for

derivative estimation is of order L�1=7 (Pagan and Ullah, 1999, Page 56). Therefore,

for estimation of g(1) we use the following bandwidth:

h2 = 1:06�̂b (nL)
�1=7 :

In each Monte Carlo replication, we generate randomly nL valuations fvi : i =
1; : : : ; nLg from the CDF in (31), and then compute the corresponding bids accord-

ing to (32). The computation of the quantile-based estimator f̂ (v) involves sev-

eral steps. First, we estimate the quantile function of bids q (�). Let b(1); : : : ; b(nL)
denote the ordered sample of bids. We set q̂

�
i
nL

�
= b(i). Second, we estimate
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the PDF of bids g (b) using (9). To construct our estimator, g needs to be esti-

mated at all points
�
q̂
�
i
nL

�
: i = 1; : : : ; nL

	
. Given the estimates ĝ, we computen

Q̂p
�
i
nL

�
: i = 1; : : : ; nL

o
using (12), its monotone version according to (13), and

F̂ (v) according to (14). Let dxe denote the nearest integer greater than or equal

to x; we compute q̂
�
F̂ (v)

�
as q̂

�
dnLF̂ (v)e

nL

�
. Next, we compute ĝ

�
q̂
�
F̂ (v)

��
and

ĝ(1)
�
q̂
�
F̂ (v)

��
using (9) and (10) respectively, and f̂ (v) as the reciprocal of (15).

To compute the GPV�s estimator of f (v), in the �rst step we compute the pseudo-

valuations v̂il according to equation (1), with G and g replaced by their estimators.

In the second step, we estimate f (v) by the kernel method from the sample fv̂ilg
obtained in the �rst-step. To avoid the boundary bias e¤ect, GPV suggest trimming

of the observations that are too close to the estimated boundary of the support.

Note that no explicit trimming is necessary for our estimator, since implicit trimming

occurs from our use of quantiles instead of pseudo-valuations.15

In their simulations, GPV use the bandwidths of order (nL)�1=5 in the �rst and

second steps of estimation. We found, however, that using a bandwidth of order

(nL)�1=7 in the second step signi�cantly improves the performance of their estimator

in terms of bias and MSE. To compute the GPV�s estimator, we therefore use h1
as the �rst step bandwidth (for estimation of G and g), and h2 at the second step.

Similarly to the quantile-based estimator, the GPV�s estimator is implemented with

the tri-weight kernel.

The results are reported in Table 1. In most cases, the GPV�s estimator has

a smaller bias. This can be due to the fact that the GPV�s estimator is obtained

by kernel smoothing of the data, while the quantile-based estimator is a nonlinear

function of the estimated CDF, PDF and its derivative. In terms of MSE, however,

there is no clear winner, and the relative e¢ ciency of the estimators depends on the

underlying distribution of the valuations and the number of bidders in the auction.

The GPV�s estimator is more e¢ cient when the number of bidders is relatively large

and PDF has a positive slope. On the other hand, our estimator is more attractive

when the number of bidders is small and the PDF has a negative slope.16

15In our simulations, we found that trimming has no e¤ect on the estimator of GPV: essentially
the same estimates were obtained with and without trimming.
16Additional results, including the simulations for n = 2; 4; 6, and 7, are reported in the supple-

ment.
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7 Concluding remarks

In this paper, we have assumed that the bidders are risk-neutral. It would be impor-

tant to extend our method to the case of risk-averse bidders. Guerre et al. (2009)

consider nonparametric identi�cation of a �rst-price auction with risk-averse bidders

each of whom has an unknown utility function U (�), and �nd that exclusion restric-
tions are necessary to achieve the identi�cation of model primitives. They show that

under risk aversion, the bids and valuations are linked as

v = �� (bjn) � b+ ��1
�

1

n� 1
G (bjn)
g (bjn)

�
;

where ��1 (�) is the inverse of U (�) =U 0 (�).17 Consequently, the quantiles of bids and
valuations are now linked as Q (� jn) = �� (q (� jn) jn). Assuming that the variation
in n is exogenous, the valuation quantiles Q (� jn) do not depend on n. Guerre et al.
(2009) show that � (�) (and hence U (�)) is identi�able through this restriction, and in
the concluding section of their paper, discuss some strategies for the nonparametric

estimation of �. At this point, it is not known whether these approaches can lead

to a consistent estimator �̂. However, when such an estimator becomes available, it

might be possible to extend the approach of our paper to accommodate risk aversion.

Such an extension is left for future work.
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Appendix of proofs

Proof of Lemma 1. For part (c), de�ne

G0 (b; n; x) = n� (njx)G (bjn; x)' (x) ;

and its estimator

Ĝ0 (b; n; x) =
1

L

LX
l=1

nlX
i=1

1 (nl = n) 1 (bil � b)K�h (xl � x) : (33)

Next,

EĜ0 (b; n; x) = E

 
1 (nl = n)K�h (xl � x)

nlX
i=1

1 (bil � b)
!

= nE (1 (nl = n) 1 (bil � b)K�h (xl � x))
= nE (� (njxl)G (bjn; xl)K�h (xl � x))

= n

Z
� (nju)G (bjn; u)K�h (u� x)' (u) du

=

Z
G0 (b; n; x+ hu)Kd (u) du:

By Assumption 1(e) and Proposition 1(iii) of GPV, G (bjn; �) admits up to R con-

tinuous bounded derivatives. Then, as in the proof of Lemma B.2 of Newey (1994),

there exists a constant c > 0 such that���G0 (b; n; x)� EĜ0 (b; n; x)���
� chR

�Z
jKd (u)j kukR du

�vec �DR
xG

0 (b; n; x)
� ;

where k�k denotes the Euclidean norm and DR
xG

0 denotes the R-th partial derivative

of G0 with respect to x. It follows then that

sup
b2[b(n;x);�b(n;x)]

���G0 (b; n; x)� EĜ0 (b; n; x)��� = O �hR� : (34)
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Next, we show that

sup
b2[b(n;x);�b(n;x)]

jĜ0 (b; n; x)� EĜ0 (b; n; x) j = Op

 �
Lhd

logL

��1=2!
: (35)

We follow the approach of Pollard (1984). Fix n 2 N and x 2 Interior (X ), and
consider a class of functions Z indexed by h and b, with a representative function

zl (b; n; x) =

nlX
i=1

1 (nl = n) 1 (bil � b)hdK�h (xl � x) :

By the result in Pollard (1984) (Problem 28), the class Z has polynomial discrim-

ination. Theorem 37 in Pollard (1984) (see also Example 38) implies that for any

sequences �L, �L such that L�
2
L�

2
L= logL!1 and Ez2l (b; n; x) � �2L,

��1L �
�2
L sup

b2[b(n;x);�b(n;x)]
j 1
L

LX
l=1

zl (b; n; x)� Ezl (b; n; x) j ! 0 (36)

almost surely. We claim that this implies the result in (35). The proof is by contra-

diction. Suppose not. Then there exist a sequence L ! 1 and a subsequence of L

such that along this subsequence,

sup
b2[b(n;x);�b(n;x)]

jĜ0 (b; n; x)� EĜ0 (b; n; x) j � L
�
Lhd

logL

��1=2
: (37)

on a set of events 
0 � 
 with a positive probability measure. Now if we let �2L = hd

and �L = ( Lh
d

logL
)�1=2

1=2
L , then the de�nition of z implies that, along the subsequence

on a set of events 
0,

��1L �
�2
L sup

b2[b(n;x);�b(n;x)]
j 1
L

LX
l=1

zl (b; n; x)� Ezl (b; n; x) j

=

�
Lhd

logL

�1=2

�1=2
L h�d sup

b2[b(n;x);�b(n;x)]
j 1
L

LX
l=1

zl (b; n; x)� Ezl (b; n; x) j

=

�
Lhd

logL

�1=2

�1=2
L sup

b2[b(n;x);�b(n;x)]
jĜ0 (b; n; x)� EĜ0 (b; n; x) j
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�
�
Lhd

logL

�1=2

�1=2
L L

�
Lhd

logL

��1=2
= 

1=2
L !1;

where the inequality follows by (37), a contradiction to (36). This establishes (35),

so that (34), (35) and the triangle inequality together imply that

sup
b2[b(n;x);�b(n;x)]

jĜ0 (b; n; x)�G0 (b; n; x) j = Op

 �
Lhd

logL

��1=2
+ hR

!
: (38)

To complete the proof, recall that from the de�nitions of G0 (b; n; x) and Ĝ0 (b; n; x),

G (bjn; x) = G0 (b; n; x)

� (njx)' (x) and Ĝ (bjn; x) =
Ĝ0 (b; n; x)

�̂ (njx) '̂ (x) ;

so that by the mean-value theorem,
���Ĝ (bjn; x)�G (bjn; x)��� is bounded by


 

1

~� (n; x) ~' (x)
;
~G0 (b; n; x)

~�2 (n; x) ~' (x)
;
~G0 (b; n; x)

~� (n; x) ~'2 (x)

!�
�
�Ĝ0 (b; n; x)�G0 (b; n; x) ; �̂ (njx)� � (njx) ; '̂ (x)� ' (x)� ; (39)

where
� ~G0 �G0; ~� � �; ~'� '� � �Ĝ0 �G0; �̂ � �; '̂� '�. Further, by As-

sumption 1(b) and (c) and the results in parts (a) and (b) of the lemma, with the

probability approaching one ~� and ~' are bounded away from zero. The desired result

follows from (38), (39) and parts (a) and (b) of the lemma.

For part (d) of the lemma, since Ĝ (�jn; x) is monotone by construction,

P (q̂ ("jn; x) � b (n; x)) = P
�
inf
b

n
b : Ĝ (bjn; x) � "

o
� b (n; x)

�
= P

�
Ĝ (b (n; x) jn; x) � "

�
= o (1) ;

where the last equality is by the result in part (c). Similarly,

P
�
q̂ (1� "jn; x) � b (n; x)

�
= P

�
Ĝ
�
b (n; x) jn; x

�
� 1� "

�
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= o (1) :

Hence, for all x 2 Interior (X ) and n 2 N , b (n; x) < q̂ ("jn; x) < q̂ (1� "jn; x) <
b (n; x) with probability approaching one. Since the distribution G (bjn; x) is contin-
uous in b, G (q (� jn; x) jn; x) = � , and for � 2 ["; 1� "], we can write the identity

G (q̂ (� jn; x) jn; x)�G (q (� jn; x) jn; x) = G (q̂ (� jn; x) jn; x)� � : (40)

Next, we have that with probability one,

0 � Ĝ (q̂ (� jn; x) jn; x)� � � (supu2RK(u))
d

N (n; x)
; where (41)

N (n; x) =
LX
l=1

nlX
i=1

1 (nl = n) 1 (K�h (xl � x) > 0) : (42)

The �rst inequality in (41) is by Lemma 21.1(ii) of van der Vaart (1998). The sec-

ond inequality in (41) holds (with probability one) because Ĝ(�jn; x) is a weighted
empirical CDF of a continuous random variable (Ĝ(�jn; x) is a step function, bil is
continuously distributed, and therefore with probability one, the size of each step of

Ĝ(�jn; x) is inversely related to the number of observations with non-zero weights used
in its construction). Let Bh (x) =

�
u 2 Rd : K�h (u� x) > 0

	
. We have

EN (n; x) = P (nl = n;K�h (xl � x) > 0)nL

= nL

Z
Bh(x)

� (nju)' (u) du

� nL

�
sup
x2X

' (x)

��Z
Bh(x)

du

�
: (43)

By a similar argument, we have

EN (n; x) � nL
�
inf
x2X

� (njx)
��

inf
x2X

' (x)

��Z
Bh(x)

du

�
: (44)

Further,

V ar (N (n; x)) � P (nl = n;K�h (xl � x) > 0)nL
= O

�
Lhd

�
: (45)
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It follows now by Assumptions 1(b),(f) and from (43)-(45) that there is a constant

cn;x > 0 such that

N (n; x) = EN (n; x) +Op

��
Lhd

�1=2�
= Lhd

�
cn;x +Op

��
Lhd

��1=2��
: (46)

By the results in parts (a) and (b) and (46),

Ĝ (q̂ (� jn; x) jn; x) = � +Op
��
Lhd

��1�
(47)

uniformly over � . Combining (40) and (47), and applying the mean-value theorem to

the left-hand side of (40), we obtain

q̂ (� jn; x)� q (� jn; x) =

=
G (q̂ (� jn; x) jn; x)� Ĝ (q̂ (� jn; x) jn; x)

g (eq (� jn; x) jn; x) +Op

��
Lhd

��1�
; (48)

where eq lies between q̂ and q for all (� ; n; x). By Proposition 1(ii) of GPV, g (bjn; x) >
cg > 0 for all b 2

�
b (n; x) ;�b (n; x)

�
, and the result in part (d) follows from (48) and

part (c) of the lemma.

Next, we prove part (e) of the lemma. Let N (n; x) be as de�ned in (42). Consider

the ordered sub-sample of bids b(1) � : : : � b(N(n;x)) with nl = n and K�h (xl � x) > 0.
Then,

0 � lim
t#�
q̂ (tjn; x)� q̂ (� jn; x) � max

j=2;:::;N(n;x)

�
b(j) � b(j�1)

�
:

By the results of Deheuvels (1984),

max
j=2;:::;N

�
b(j) � b(j�1)

�
= Op

 �
N (n; x)

logN (n; x)

��1!
: (49)

The result of part (e) follows from (49) and (46).

To prove part (f), note that by Assumption 1(e) and Proposition 1(iv) of GPV,

g (�jn; �) admits up to R continuous bounded partial derivatives. Let

g
(k)
0 (b; n; x) = � (njx) g(k) (bjn; x)' (x) ; (50)
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and de�ne

ĝ
(k)
0 (b; n; x) =

1

nL

LX
l=1

nlX
i=1

1 (nl = n)K
(k)
h (bil � b)K�h (xl � x) : (51)

We can write the estimator ĝ (bjn; x) as ĝ (bjn; x) = ĝ0 (b; n; x) =(�̂ (njx) '̂ (x)), so
that ĝ(k) (bjn; x) = ĝ(k)0 (b; n; x) =(�̂ (njx) '̂ (x)). By Lemma B.3 of Newey (1994), the
estimator ĝ(k)0 (b; n; x) is uniformly consistent in b over [b1 (n; x) ; b2 (n; x)]. By the

results in parts (a) and (b), the estimators �̂ (njx) and '̂ (x) converge at the rate
faster than that of ĝ(k)0 (b; n; x). The desired result follows by the same argument as

in the proof of part (c), equation (39).

For part (g), let cg be as in the proof of part (d) of the lemma. First, we con-

sider the preliminary estimator, Q̂p (� jn; x). We have that
���Q̂p (� jn; x)�Q (� jx)��� is

bounded by

jq̂ (� jn; x)� q (� jn; x)j+ jĝ (q̂ (� jn; x) jn; x)� g (q (� jn; x) jn; x)j
ĝ (q̂ (� jn; x) jn; x) cg

� jq̂ (� jn; x)� q (� jn; x)j+ jg (q̂ (� jn; x) jn; x)� g (q (� jn; x) jn; x)j
ĝ (q̂ (� jn; x) jn; x) cg

+
jĝ (q̂ (� jn; x) jn; x)� g (q̂ (� jn; x) jn; x)j

ĝ (q̂ (� jn; x) jn; x) cg

�
 
1 +

supb2[b1(n;x);b2(n;x)]
��g(1) (bjn; x)��

ĝ (q̂ (� jn; x) jn; x) cg

!
jq̂ (� jn; x)� q (� jn; x)j

+
jĝ (q̂ (� jn; x) jn; x)� g (q̂ (� jn; x) jn; x)j

ĝ (q̂ (� jn; x) jn; x) cg
: (52)

By continuity of the distributions, we can pick " > 0 small enough so that

q (� 1 � "jn; x) > b1 (n; x) and q (� 2 + "jn; x) < b2 (n; x) :

De�ne

EL (n; x) = fq̂ (� 1 � "jn; x) � b1 (n; x) ; q̂ (� 2 + "jn; x) � b2 (n; x)g :

By the result in part (d), P (EcL (n; x)) = o (1). Hence, it follows from part (f)

of the lemma that the estimator ĝ (q̂ (� jn; x) jn; x) is bounded away from zero with

probability approaching one. Consequently, by Assumption 1(e) and part (d) of the
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lemma that the �rst summand on the right-hand side of (52) is Op (�L) uniformly

over [� 1 � "; � 2 + "], where �L =
�
Lhd+1+2k= logL

��1=2
+ hR. Next,

P

 
sup

�2[�1�";�2+"]
��1L jĝ (q̂ (� jn; x) jn; x)� g (q̂ (� jn; x) jn; x)j > M

!

� P

 
sup

�2[�1�";�2+"]
��1L jĝ (q̂ (� jn; x) jn; x)� g (q̂ (� jn; x) jn; x)j > M;EL (n; x)

!
+P (EcL (n; x))

� P

 
sup

b2[b1(n;x);b2(n;x)]
��1L jĝ (bjn; x)� g (bjn; x)j > M

!
+ o (1) : (53)

It follows from part (f) of the lemma and (53) that

sup
�2[�1�";�2+"]

jQ̂p (� jn; x)�Q (� jx) j = Op

 �
Lhd+1

logL

��1=2
+ hR

!
: (54)

Further, by construction, Q̂ (� jn; x) � Q̂p (� jn; x) � 0 for � � � 0. We can choose

� 0 2 [� 1; � 2]. Since Q̂p (�jn; x) is left-continuous, there exists � 0 2 [� 0; � ] such that
Q̂p (� 0jn; x) = supt2[�0;� ] Q̂p (tjn; x). Since Q (�jx) is nondecreasing,

Q̂ (� jn; x)� Q̂p (� jn; x)
= Q̂p (� 0jn; x)� Q̂p (� jn; x)
� Q̂p (� 0jn; x)�Q (� 0jx) +Q (� jx)� Q̂p (� jn; x)
� sup

t2[�0;� ]

�
Q̂p (tjn; x)�Q (tjx)

�
+Q (� jx)� Q̂p (� jn; x)

� 2 sup
�2[�1�";�2+"]

���Q̂p (� jn; x)�Q (� jx)���
= Op

 �
Lhd+1

logL

��1=2
+ hR

!
;

where the last result follows from (54). Using a similar argument for � < � 0, we

conclude that

sup
�2[�1�";�2+"]

���Q̂ (� jn; x)� Q̂p (� jx)��� = Op �Lhd+1
logL

��1=2
+ hR

!
: (55)
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The result of part (g) follows from (54) and (55).

Lastly, we prove part (h). Let " be as in part(g). By Lemma 21.1(ii) of van der

Vaart (1998), F̂
�
Q̂ (� jn; x) jn; x

�
� � , where the inequality becomes strict only at

the points of discontinuity, and therefore

F̂
�
Q̂ (� 1jn; x) jn; x

�
� � 1 > � 1 � "

for all n. Further, since Q̂ (�jn; x) is non-decreasing,

P
�
F̂
�
Q̂ (� 2jn; x) jn; x

�
< � 2 + "

�
= P

 
sup
t2[0;1]

n
t : Q̂ (tjn; x) � Q̂ (� 2jn; x)

o
< � 2 + "

!
� P

�
Q̂ (� 2jn; x) < Q̂ (� 2 + "jn; x)

�
! 1;

where the last result is by part (g) of the lemma and because Q(� 2jx) < Q (� 2 + "jx).
Thus, for all v 2 �̂ (x),

F̂ (vjn; x) 2 [� 1 � "; � 2 + "] (56)

with probability approaching one. Therefore, using the same argument as in part

(g), equation (53), it is su¢ cient to consider only v 2 �̂ (x) such that F̂ (vjn; x) 2
[� 1 � "; � 2 + "]. Since by Assumption 1(f), Q (�jx) is continuously di¤erentiable on
[� 1 � "; � 2 + "], for such v�s by the mean-value theorem we have that,

Q
�
F̂ (vjn; x) jx

�
� v = Q

�
F̂ (vjn; x) jx

�
�Q (F (vjx))

=
1

f (Q (~� (v; n; x) jn; x) jx)

�
F̂ (vjn; x)� F (vjx)

�
; (57)

where ~� (v; n; x) is between F̂ (vjn; x) and F (vjx).
By Lemma 21.1(iv) of van der Vaart (1998), Q̂

�
F̂ (vjn; x) jn; x

�
� v, and equality

can fail only at the points of discontinuity of Q̂. Hence,

sup
v2�̂(x)

�
v � Q̂

�
F̂ (vjn; x) jn; x

��
� sup

�2[�1�";�2+"]

�
lim
t#�
Q̂ (tjn; x)� Q̂ (� jn; x)

�
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+Op

 �
Lhd+1

logL

��1=2
+ hR

!
; (58)

however,

sup
�2[�1�";�2+"]

�
lim
t#�
Q̂ (tjn; x)� Q̂ (� jn; x)

�
�

 
1 +

supb2[b1(n;x);b2(n;x)]
��ĝ(1) (bjn; x)��

ĝ2 (q̂ (� jn; x) jn; x)

!
sup
�2[0;1]

(lim
t#�
q̂ (tjn; x)� q̂ (� jn; x))

= Op

 �
Lhd

log(Lhd)

��1!
; (59)

where the inequality follows from the de�nition of Q̂ and by continuity of K, and the

equality (59) follows from part (e) of the lemma. Note that, as shown in the proof of

part (g), ĝ (q̂ (� jn; x) jn; x) is bounded away from zero with probability approaching

one. Combining (57)-(59), and by Assumption 1(e) we obtain that there exists a

constant c > 0 such that supv2�̂(x)

���F̂ (vjn; x)� F (vjx)��� is bounded by
c sup
v2�̂(x)

���Q�F̂ (vjn; x) jx�� Q̂�F̂ (vjn; x) jn; x����+Op �Lhd+1
logL

��1=2
+ hR

!

� c sup
�2[�1�";�2+"]

���Q (� jx)� Q̂ (� jn; x)���+Op �Lhd+1
logL

��1=2
+ hR

!

= Op

 �
Lhd+1

logL

��1=2
+ hR

!
;

where the equality follows from part (g) of the lemma. �

Proof of Theorem 1. Let EL(n; x) be as de�ned in (20). By Lemma 1(d),(f) and
(h), P (EL(n; x))! 1 as L!1 for all n 2 N , x 2 Interior(X ), and therefore using
the same argument as in the proof of Lemma 1(g) equation (53), it is su¢ cient to

consider only v�s from EL(n; x). Next,���ĝ(1) �q̂ �F̂ (vjn; x) jn; x� jn; x�� g(1) (q (F (vjx) jn; x) jn; x)���
� sup

b2[b1(n;x);b2(n;x)]

��ĝ(1) (bjn; x)� g(1) (bjn; x)��
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+g(2) (eq (v; n; x)) ���q̂ �F̂ (vjn; x) jn; x�� q (F (vjx) jn; x)��� : (60)

where eq is the mean value between q̂ and q. Further, g(2) is bounded by Assumption
1(e) and Proposition 1(iv) of GPV, and���q̂ �F̂ (vjn; x) jn; x�� q (F (vjx) jn; x)���

� sup
�2[�1�";�2+"]

jq̂ (� jn; x)� q (� jn; x) j+ 1

cg
sup
v2�̂(x)

jF̂ (vjn; x)� F (vjx) j; (61)

where cg as in the proof of Lemma 1(d). By (60), (61) and Lemma 1(d),(f),(h),

sup
v2�̂(x)

���ĝ(1) �q̂ �F̂ (vjn; x) jn; x� jn; x�� g(1) (q (F (vjx) jn; x) jn; x)���
= Op

 �
Lhd+3

logL

��1=2
+ hR

!
: (62)

By a similar argument,

f̂ (vjn; x)� f (vjn; x)

=
F (vjx) ef 2 (vjn; x)

(n� 1) g3 (q (F (vjx) jn; x) jn; x)
�
���ĝ(1) �q̂ �F̂ (vjn; x) jn; x� jn; x�� g(1) (q (F (vjx) jn; x) jn; x)���

+Op

 �
Lhd+1

logL

��1=2
+ hR

!
; (63)

uniformly in v 2 �̂ (x), where ef (vjx) as in (15) but with some mean value eg(1) between
g(1) and its estimator ĝ(1). The desired result follows from (16), (62), and (63). �

Proof of Lemma 2. Consider g(k)0 (b; n; x) and ĝ
(k)
0 (b; n; x) de�ned in (50) and (51)

respectively. It follows from parts (a) and (b) of Lemma 1,

�
Lhd+1+2k

�1=2 �
ĝ(k) (bjn; x)� g(k) (bjn; x)

�
=

1

� (njx)' (x)
�
Lhd+1+2k

�1=2 �
ĝ
(k)
0 (b; n; x)� g(k)0 (b; n; x)

�
+ op(1): (64)

By the same argument as in the proof of part (f) of Lemma 1 and Lemma B2 of Newey
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(1994), Eĝ(k)0 (b; n; x)� g(k)0 (b; n; x) = O
�
hR
�
uniformly in b 2 [b1 (n; x) ; b2 (n; x)] for

all x 2 Interior (X ) and n 2 N . Then, by Assumption 3, it remains to establish
asymptotic normality of

�
nLhd+1+2k

�1=2 �
ĝ
(k)
0 (b; n; x)� Eĝ(k)0 (b; n; x)

�
:

De�ne

wil;n = h(d+1+2k)=21 (nl = n)K
(k)
h (bil � b)K�h (xl � x) ;

wL;n = (nL)�1
LX
l=1

nlX
i=l

wil;n;

so that

�
nLhd+1+2k

�1=2 �
ĝ
(k)
0 (b; n; x)� Eĝ(k)0 (b; n; x)

�
= (nL)1=2 (wL;n � EwL;n) : (65)

By the Liapunov CLT (see, for example, Corollary 11.2.1 on page 427 of Lehmann

and Romano (2005)),

(nL)1=2 (wL;n � EwL;n) = (nLV ar (wL;n))1=2 !d N (0; 1) ; (66)

provided that Ew2il;n <1, and for some � > 0,

lim
L!1

1

L�=2
E jwil;nj2+� = 0: (67)

The condition in (67) follows from the Liapunov�s condition (equation (11.12) on page

427 of Lehmann and Romano (2005)) and because wil;n are i.i.d. Next, Ewil;n is given

by

h(d+1+2k)=2E

�
� (njxl)

Z
K
(k)
h (u� b) g (ujn; xl) duK�h (xl � x)

�
= h(d+1+2k)=2

Z
� (njy)K�h (y � x)' (y)

Z
K
(k)
h (u� b) g (ujn; y) dudy

= h(d+1)=2
Z
� (njhy + x)Kd (y)' (hy + x)

�
Z
K(k) (u) g (hu+ bjn; hy + x) dudy
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! 0:

Further, Ew2il;n is given by

hd+1+2k
Z
� (njy)K2

�h (y � x)' (y)
Z �

K
(k)
h (u� b)

�2
g (ujn; y) dudy

=

Z
� (njhy + x)K2

d (y)' (hy + x)

�
Z �

K(k) (u)
�2
g (hu+ bjn; hy + x) dudy:

Hence, nLV ar (wL;n) converges to

� (njx) g (bjn; x)' (x)
�Z

K2 (u) du

�d Z �
K(k) (u)

�2
du: (68)

Lastly, E jwil;nj2+� is given by

h(d+1+2k)(1+�=2)

�
Z
� (njy) jK�h (y � x)j

2+� ' (y)

Z ���K(k)
h (u� b)

���2+� g (ujn; y) dudy
= h�(d+1)�=2

Z
� (njhy + x) jKd (y)j2+� ' (hy + x)

�
Z ��K(k) (u)

��2+� g (hu+ bjn; hy + x) dudy
� h

�(d+1)�=2
cg sup
u2[�1;1]

jK (u)jd(2+�) sup
x2X

' (x) sup
u2[�1;1]

��K(k) (u)
��2+� ; (69)

where cg as in the proof of Lemma 1(d). The condition (67) is satis�ed by Assumptions

1(b) and 3, and (69). It follows now from (64)-(69),

�
nLhd+3

�1=2 �
ĝ(k) (bjn; x)� g(k) (bjn; x)

�
!d N

 
0;

g (bjn; x)
� (njx)' (x)

�Z
K2 (u) du

�d Z �
K(k) (u)

�2
du

!
:

To prove part (b), note that the asymptotic covariance of wL;n1 and wL;n2 involves

the product of two indicator functions, 1 (nl = n1) 1 (nl = n2), which is zero for n1 6=
n2. The joint asymptotic normality and asymptotic independence of ĝ(k) (bjn1; x) and
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ĝ(k) (bjn2; x) follows then by the Cramér-Wold device. �

Proof of Theorem 2. Let EL (n; x) be as de�ned in (20). For all z 2 R,

P
��
Lhd+3

�1=2 �
f̂ (vjn; x)� f (vjx)

�
� z
�
=

= P
��
Lhd+3

�1=2 �
f̂ (vjn; x)� f (vjx)

�
� z; EL (n; x)

�
+Rn;

where 0 � Rn � P (EcL (n; x)) = o (1), by Lemma 1(d) and (56) in the proof of

Lemma 1(h). Therefore, it su¢ ces to consider only v�s from EL (n; x). For such v�s,

ĝ(1)
�
q̂
�
F̂ (vjn; x) jn; x

�
jn; x

�
� g(1) (q (F (vjx) jn; x) jn; x)

= ĝ(1) (q (F (vjx) jn; x) jn; x)� g(1) (q (F (vjx) jn; x) jn; x)
+ĝ(2) (eq (v; n; x) jn; x)�q̂ �F̂ (vjn; x) jn; x�� q (F (vjx) jn; x)� ; (70)

where eq is the mean value. It follows from Lemma 1(d) and (f) that the second

summand on the right-hand side of the above equation is op
��
Lhd+3

��1=2�
. One

arrives at (21), and the desired result follows immediately from (21), Theorem 1, and

Lemma 2. �

Proof of Theorem 3. We provide only an outline of the proof here. The detailed
proof is found in the supplement Marmer and Shneyerov (2010). First, one can show

that a bootstrap version of Lemma 1 holds, and from those results it can be shown

that

f̂ y (vjx)� f̂ (vjx) = F (vjx) f 2 (vjn; x)
(n� 1) g3 (q (F (vjx) jn; x) jn; x)
�
�
ĝy(1) (q (F (vjx) jn; x))� ĝ(1) (q (F (vjx) jn; x))

�
+ eyL; (71)

where ĝy(1)(bjn; x) is the bootstrap analogue of ĝ(1)(bjn; x), and eyL is the reminder
term satisfying P y((Lhd+3)1=2jeyLj > ")!p 0 for all " > 0. Let � denote the standard

normal CDF. By Theorem 1 in Mammen (1992) and Lemma 2(a),

P y
��
Lhd+3

�1=2 �
ĝy(1)(bjn; x)� ĝ(1)(bjn; x)

�
� u

�
!p �

 
u

V
1=2
g;1 (b; n; x)

!
; (72)

where Vg;1(b; n; x) is de�ned in Lemma 2(a). The desired result then follows from (71)
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and (72) by Pólya�s Theorem (Shao and Tu, 1995, page 447). �
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Table 1: The simulated bias and MSE of the quantile-based (QB) and GPV�s esti-
mators for di¤erent points of density estimations (v), numbers of bidders (n), and
di¤erent values of the distribution parameter �, for sample size nL = 4200

Bias MSE
v QB GPV QB GPV

� = 1=2; n = 3

0.4 -0.0302 -0.0110 0.0299 0.0572
0.5 -0.0323 0.0030 0.0352 0.0770
0.6 -0.0596 -0.0094 0.0393 0.0781

� = 1=2; n = 5

0.4 -0.0142 -0.0053 0.0156 0.0195
0.5 -0.0077 0.0035 0.0208 0.0261
0.6 -0.0278 -0.0039 0.0211 0.0273

� = 1; n = 3
0.4 -0.0063 0.0045 0.0194 0.0245
0.5 -0.0056 0.0147 0.0284 0.0371
0.6 -0.0342 -0.0059 0.0402 0.0519

� = 1; n = 5
0.4 -0.0017 0.0013 0.0087 0.0078
0.5 0.0026 0.0088 0.0124 0.0113
0.6 -0.0138 -0.0035 0.0171 0.0156

� = 2; n = 3
0.4 -0.0037 0.0028 0.0113 0.0106
0.5 -0.0166 -0.0084 0.0194 0.0188
0.6 -0.0137 0.0029 0.0310 0.0299

� = 2; n = 5
0.4 -0.0008 0.0014 0.0054 0.0040
0.5 -0.0075 -0.0054 0.0080 0.0062
0.6 -0.0041 0.0011 0.0127 0.0097
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