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Abstract—This study uses an agent-based test bed (“AMES”)
to investigate separation and volatility of locational marginal
prices (LMPs) in an ISO-managed restructured wholesale power
market operating over an AC transmission grid. Particular at-
tention is focused on the dynamic and cross-sectional response of
LMPs to systematic changes in demand-bid price sensitivities and
supply-offer price cap levels under varied learning specifications
for the generation companies. Also explored is the extent to which
the supply offers of the marginal (price-determining) generation
companies induce correlations among neighboring LMPs.

Index Terms—Restructured wholesale power markets, agent-
based modeling,, locational marginal prices (LMPs), LMP sepa-
ration, LMP volatility, multi-agent learning, demand-bid price
sensitivity, supply-offer price caps, AMES Wholesale Power
Market Test Bed

I. INTRODUCTION

THE wholesale power market design proposed by the
U.S. Federal Energy Regulatory Commission (FERC)

in an April 2003 white paper [1] recommends that loca-
tional marginal prices (LMPs) be used for the management
of transmission grid congestion. Under locational marginal
pricing, the solution of suitably formulated optimal power flow
problems at successive time intervals is used to price electric
power in accordance with both the location and timing of its
injection into, or withdrawal from, the transmission grid.

Locational marginal pricing has now been implemented –
or scheduled for implementation – in U.S. energy regions
in the midwest (MISO), New England (ISO-NE), New York
(NYISO), the mid-atlantic states (PJM), California (CAISO),
the southwest (SPP), and Texas (ERCOT) [2]. Consequently,
it is critical for market operators in these regions to understand
how LMPs respond under alternative structural conditions,
institutional arrangements, and behavioral dispositions of par-
ticipant traders.

Previous studies have derived analytical expressions for
LMPs at a point in time, conditional on given grid, demand,
and supply conditions; see, for example, [3] and [4]. However,
only recently have researchers begun to pay attention to the
dynamic response of LMP solution paths to changed circum-
stances, particularly when traders have learning capabilities
permitting them to strategically adjust their trade behaviors
over time.
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For example, Sueyoshi and Tadiparthi [5] use an agent-
based test bed to examine price response under alternative
transmission line limit conditions for a wholesale power
market separated into multiple zones (collections of wholesale
power sellers and buyers). Prices separate across any two zones
functionally disconnected by a binding constraint on their
intertie line. Sellers and buyers use reinforcement learning to
determine their supply offers and demand bids (price-quantity
pairs) for day-ahead and real-time markets. One of the key
experimental findings of the authors is that the average level
and volatility of day-ahead prices both increase as the number
of capacity-limited intertie lines is systematically increased.

Sun and Tesfatsion [6] report findings for several dy-
namic 5-bus test case experiments to illustrate the capabilities
of AMES(V1.31), an agent-based test bed for restructured
wholesale power markets.1 AMES(V1.31) models a wholesale
power market with load-serving entities (LSEs) and generation
companies (GenCos) for which the GenCos have learning
capabilities. The market operates over an AC transmission grid
in accordance with core features of the market design proposed
by the U.S. FERC [1]. The market operator uses LSE fixed
demands (loads) and GenCo supply offers as input data for
DC optimal power flow problems to determine hourly dispatch
and LMP levels for the day-ahead market. A key finding of
the authors is that the GenCos quickly learn to tacitly collude
on supply offers resulting in LMPs substantially higher than
competitive price levels.

Li et al. [7] report preliminary experimental findings to
demonstrate the capabilities of AMES(V2.01), an extension of
AMES(V1.31). This extended version permits LSEs to submit
price-sensitive as well as fixed demand bids for the day-
ahead market.2 In addition, the market operator is permitted to
impose a price cap on the supply offers submitted by GenCos
for the day-ahead market in an attempt to mitigate their ability
to exercise market power.3

Building on Li et al. [7], this study uses AMES (V2.02) to

1AMES is an acronym for Agent-based Modeling of Electricity Systems.
AMES(V1.31) was formally released as open-source software at the IEEE
Power and Energy Society General Meeting in June 2007. Downloads,
manuals, and tutorial information for all AMES version releases to date can
be accessed at the AMES homepage [8].

2Although price-sensitive demand bids are permitted in U.S. restructured
wholesale power markets operating under the FERC market design, most
demand is still in the form of price-insensitive loads. For example, the
actual ratio of cleared price-sensitive demand to cleared fixed demand in the
MISO [9] is currently only about 1%.

3Price-cap policies differ widely across U.S. restructured wholesale power
markets. For example, MISO [9] currently imposes a price cap on supply
offers only under extreme conditions. Consequently, this price cap is more of
a “damage control” device than a device for controlling market power.
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undertake a comprehensive and systematic investigation of the
effects of changes in learning parameters, demand-bid price
sensitivities, and supply-offer price caps on LMP separation
and volatility over time. Each GenCo uses stochastic reinforce-
ment learning to adaptively choose its supply offers on the
basis of its past net earnings outcomes. Careful attention is
paid both to dynamic market performance effects and to spatial
cross-correlation effects. The primary objective is to gain a
more fundamental understanding of how learning, network
externalities, and GenCo pivotal and marginal supplier status
interact to determine the distribution of LMPs both across the
grid (separation) and over time (volatility).

As usual for agent-based models, AMES is most easily
explained in general descriptive terms (verbal summaries, flow
diagrams, and pseudo-code) as an accompaniment to the actual
source code available at the AMES homepage [8].4 This
general description is provided in Section II.

Section III explains the AMES experimental design used to
explore dynamic market performance under systematically var-
ied settings for the following three treatment factors: (i) GenCo
learning (absent, or present with different learning parameter
settings); (ii) the degree to which LSE demand bids are price
sensitive (0 to 100%); and (iii) the level of the supply-offer
price cap (infinite, high, moderate, or low relative to average
peak-hour LMP). Experimental findings for dynamic market
performance are reported in Section IV. Section V presents
experimental findings for spatial cross-correlations, including
GenCo-LMP cross-correlations, LMP-LMP cross-correlations,
and comparisons with empirical LMP-LMP cross-correlations
determined from MISO price data.

Concluding remarks are given in Section VI. Appendices A
through D provide additional discussion of technical details:
namely, the market operator’s DC-OPF problem formulation;
the construction of supply-offer action domains for the Gen-
Cos; the learning method used by GenCos to choose their
supply offers from their action domains; and the precise
construction of the measures used to characterize dynamic
market performance.

As an aid to the reader, annotated listings of the admis-
sible exogenous variables and endogenous variables used in
subsequent sections of this study are provided in Table I and
Table II, respectively.

II. THE AMES TEST BED (VERSION 2.02)
A. Overview

AMES(V2.02) incorporates, in simplified form, core fea-
tures of the wholesale power market design proposed by the
U.S. FERC [1]; see Figure 1. A detailed description of many
of these features can be found in Sun and Tesfatsion ([6],
[15]). Below is a summary description of the logical flow of
daily market events:5

4Additional materials provided at the AMES homepage [8] include instruc-
tions for downloading the source code, instructions for setting up AMES
as a standard Java package in an integrated development environment (e.g.,
NetBeans), a user manual, tutorials, and research publications.

5Interested readers might also wish to view ref. [12], which recasts AMES
in more standard state-space equation form. The result is a highly nonlinear
and highly coupled system of first-order stochastic difference equations
describing an open-ended dynamic game.

Fig. 1. AMES test bed architecture.

Fig. 2. AMES GenCo: A cognitive agent with learning capabilities.

• The AMES wholesale power market operates over an
AC transmission grid starting on day 1 and continuing
through a user-specified maximum day (unless terminated
earlier in accordance with a user-specified stopping rule).
Each day D consists of 24 successive hours H = 00,01,
...,23.

• The AMES wholesale power market includes an Indepen-
dent System Operator (ISO) and a collection of energy
traders consisting of Load-Serving Entities (LSEs) and
Generation Companies (GenCos) distributed across the
buses of the transmission grid. Each of these entities is
implemented as a software program encapsulating both
methods and data; see, e.g., the schematic depiction of a
GenCo in Fig. 2

• The objective of the ISO is the reliable attainment of
appropriately constrained operational efficiency for the
wholesale power market, i.e., the maximization of total
net surplus subject to generation and transmission con-
straints.

• In an attempt to attain this objective, the ISO undertakes
the daily operation of a day-ahead market settled by
means of locational marginal pricing (LMP), i.e., the
determination of prices for electric power in accordance
with both the location and timing of its injection into, or
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withdrawal from, the transmission grid.6

• The objective of each LSE is to secure for itself the high-
est possible net earnings each day through the purchase
of power in the day-ahead market and the resale of this
power to its downstream (retail) customers.

• During the morning of each day D, each LSE reports
a demand bid to the ISO for the day-ahead market for
day D+1. Each demand bid consists of two parts: a
fixed demand bid (i.e., a 24-hour load profile); and 24
price-sensitive demand bids (one for each hour), each
consisting of a demand function defined over a purchase
capacity interval. LSEs have no learning capabilities; LSE
demand bids are user-specified at the beginning of each
simulation run.

• The objective of each GenCo is to secure for itself the
highest possible net earnings each day through the sale
of power in the day-ahead market.

• During the morning of each day D, each GenCo i uses
its current action choice probabilities to choose a supply
offer from its action domain ADi to report to the ISO for
use in all 24 hours of the day-ahead market for day D+1.7

Each supply offer in ADi consists of a linear marginal
cost function defined over an operating capacity interval.
GenCo i’s ability to vary its choice of a supply offer
from ADi permits it to adjust the ordinate/slope of its
reported marginal cost function and/or the upper limit of
its reported operating capacity interval in an attempt to
increase its daily net earnings.

• After receiving demand bids from LSEs and supply offers
from GenCos during the morning of day D, the ISO
determines and publicly reports hourly dispatch and LMP
levels for the day-ahead market for day D+1 as the
solution to hourly bid/offer-based DC optimal power flow
(DC-OPF) problems. Transmission grid congestion is
managed by the inclusion of congestion cost components
in LMPs.

• At the end of each day D, the ISO settles all of the LSE
and GenCo payment obligations for the day-ahead market
for day D+1 on the basis of the LMPs for the day-ahead
market for day D+1.

• At the end of each day D, each GenCo i uses stochastic
reinforcement learning to update the action choice proba-
bilities currently assigned to the supply offers in its action
domain ADi, taking into account its day-D settlement
payment (“reward”). In particular, as depicted in Fig. 3, if
the supply offer reported by GenCo i on day D results in a

6Roughly stated, a locational marginal price (LMP) at any particular
transmission grid bus k during any particular time period T is the least cost to
the system of servicing demand for one additional megawatt (MW) of power
at bus k during period T. See Liu et al. [10] for a careful discussion of LMP
derivation from optimal power flow solutions.

7In the MISO [9], GenCos each day are actually permitted to report a
separate supply offer for each hour of the day-ahead market. In order to
simplify the learning problem for GenCos, the current version of AMES
restricts GenCos to the daily reporting of only one supply offer for the day-
ahead market. Interestingly, the latter restriction is imposed on GenCos by
the ISO-NE [11] in its particular implementation of FERC’s market design.
Baldick and Hogan [13, pp. 18-20] conjecture that imposing such limits on
the ability of GenCos to report distinct hourly supply offers could reduce their
ability to exercise market power.

Fig. 3. AMES GenCos use stochastic reinforcement learning to determine
the supply offers they report to the ISO for the day-ahead market.

Fig. 4. AMES ISO activities during a typical day D.

relatively good reward, GenCo i increases the probability
of choosing this supply offer on day D+1, and conversely.

• There are no system disturbances (e.g., weather changes)
or shocks (e.g., forced generation outages or line out-
ages). Consequently, the binding financial contracts de-
termined on each day D for the day-ahead market for day
D+1 are carried out as planned; traders have no need to
engage in real-time market trading.

• Each LSE and GenCo has an initial holding of money
that changes over time as it accumulates earnings and
losses.

• There is no entry of traders into, or exit of traders
from, the wholesale power market. LSEs and GenCos
are currently allowed to go into debt (negative money
holdings) without penalty or forced exit.

The activities of the ISO on a typical day D are depicted
in Fig. 4. The overall dynamical flow of activities in the
wholesale power market on a typical day D in the absence
of system disturbances or shocks is depicted in Fig. 5.

B. Demand Bids and Supply Offers

For each day D, the demand bid reported by LSE j for each
hour H of the day-ahead market in day D+1 consists of a fixed
demand bid pF

Lj(H) (MW) and a price-sensitive demand bid
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Fig. 5. Illustration of AMES dynamics on a typical day D in the absence
of system disturbances or shocks for the special case of a 5-bus grid.

function

DjH(pS
Lj(H)) = cj(H)−2dj(H)pS

Lj(H) ($/MWh) (1)

defined over a true purchase capacity interval

0 ≤ pS
Lj(H) ≤ SLMaxj(H) (MW ) (2)

for real power pS
Lj(H). The expression DjH (pS

Lj(H)) denotes
LSE j’s true purchase reservation value for energy evaluated
at pS

Lj(H), i.e., the maximum dollar amount it is truly willing
to pay per MWh.

Also, for each day D, the single supply offer reported by
GenCo i for use in each hour H of the day-ahead market for
day D+1 consists of a reported marginal cost function

MCR
i (pGi) = aR

i + 2bRi pGi ($/MWh) (3)

defined over a reported operating capacity interval

CapL
i ≤ pGi ≤ CapRU

i (MW ) (4)

for real power pGi. The expression MCR
i (pGi) denotes GenCo

i’s reported sale reservation value for energy evaluated at pGi,
i.e., the minimum dollar amount it reports it is willing to accept
per MWh.

To avoid operating at a point where true incremental cost
exceeds payment received for its last supplied MW of power,
GenCo i’s reported marginal cost functions always lie on or
above its true marginal cost function

MCi(pGi) = ai + 2bipGi ($/MWh) . (5)

Also, to avoid infeasible dispatch levels, GenCo i always
reports an upper operating capacity level CapRU

i that lies
within GenCo i’s true operating capacity interval

CapL
i ≤ pGi ≤ CapU

i (MW ) . (6)

Note from the above discussion that each reported supply
offer for GenCo i can be summarized in the form of a vector
(aR

i ,bR
i ,CapRU

i ).

C. Costs, Profits, and Net Earnings

At the beginning of any planning period, the avoidable costs
of a GenCo refer to the production costs that the GenCo
can avoid incurring during the period by shutting down, by
resale of purchased assets, or by other actions. Conversely,
the sunk costs of the GenCo refer to the production costs that
the GenCo cannot avoid incurring during the period because of
irrevocable commitments, lack of asset resale value, or other
circumstances. Total costs refer to the sum of the two.

For the specific context at hand, it is assumed that GenCos
do not have any avoidable fixed costs. Thus, the true avoidable
cost function for GenCo i for any hour H is simply the integral
of its marginal cost function, as follows:

V Costi(pGi) =
∫ pGi

0

MCi(p)dp = aipGi + bi[pGi]2 ($/h),

(7)
The true total cost function for GenCo i for any hour H then
takes the form

TCi(pGi) = [V Costi(pGi) + SCosti] ($/h), (8)

where pGi (in MWs) denotes any feasible real-power gener-
ation level for GenCo i in hour H and SCosti ($/h) denotes
GenCo i’s pro-rated sunk costs for hour H.

Profit is defined as revenues minus true total costs. On the
other hand, net earnings are defined as revenues minus true
total avoidable costs. Suppose, in particular, that GenCo i is
located at bus k(i) and is dispatched at a generation level pGi

at price LMPk(i) for hour H of the day-ahead market for day
D+1. Then the profit of GenCo i for hour H of day D+1,
incurred at the end of day D, is given by

πi(H,D) = LMPk(i) ∗ pGi − TCi(pGi) ($/h). (9)

On the other hand, the net earnings of GenCo i for hour H of
day D+1, incurred at the end of day D, are given by

NEi(H,D) = LMPk(i) ∗pGi−V Costi(pGi) ($/h). (10)

The net earnings of GenCo i over all 24 hours of day D+1,
incurred at the end of day D, are then given by

NEi(D) =
H=23∑
H=00

NEi(H,D) ($/h). (11)

As will be seen in Section III, we make use of estimates
MaxDNEi for each GenCo i’s maximum possible daily net
earnings derived from its action domain ADi assuming “com-
petitive” marginal-cost pricing (sales price = reported marginal
cost). Specifically,8

MaxDNEi = 24 ∗

(
max

sR
i
∈ADi

[
HNE(sR

i )
])

($/h), (12)

8Compare (12) with definition (11) for the actual net earnings of GenCo i
over all 24 hours of the day-ahead market for day D+1 under LMP pricing.
The LMP received by GenCo i at a positive generation dispatch level pGi in
any hour H can exceed GenCo i’s reported marginal cost at pGi for hour H
if GenCo i has a binding upper operating capacity limit at pGi. This is why
MaxDNEi is characterized as an estimate rather than a true upper bound for
GenCo i’s maximum possible daily net earnings.
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where sR
i = (aR

i ,bR
i ,CapRU

i ) denotes a generic supply offer in
its action domain ADi and the hourly net earnings function
HNE(sR

i ) ($/h) is given by

HNE(sR
i ) = (13)

MCR
i (CapRU

i ) ∗ CapRU
i − V Costi(CapRU

i ) .

D. Supply-Offer Price Cap

As explained more carefully in Appendix A, the goal of
the ISO is the reliable attainment of appropriately constrained
operational efficiency for the wholesale power market. That is,
the ISO attempts to maximize the total net surplus accruing
to LSEs and GenCos from hourly bulk power trades subject
to various transmission and generation constraints.

The ISO is concerned about loss of operational efficiency
due to the possible exercise of “market power” by GenCos
through strategic reporting of supply offers. Specifically, a
GenCo has market power if the GenCo can use capacity
withholding to increase its net earnings. Capacity withholding
can take two possible forms: economic withholding, i.e., re-
porting a higher-than-true marginal cost function; and physical
withholding, i.e., reporting a less-than-true upper operating
capacity limit. As one possible approach to GenCo market
power mitigation, the ISO can impose a supply-offer price cap
(PCap). Under such a policy, the maximum sale reservation
value MCR

i (CapRU
i ) reported by any GenCo i cannot exceed

PCap.

E. Determination of Dispatch and LMP Levels

As detailed in Appendix A, the ISO computes hourly power
dispatch levels and LMPs for the day-ahead market by solving
bid/offer-based DC Optimal Power Flow (OPF) problems that
approximate underlying AC-OPF problems. To handle these
computations, the ISO makes repeated calls to DCOPFJ, an
accurate and efficient DC-OPF solver developed by Sun and
Tesfatsion ([14], [15]). DCOPFJ consists of a strictly convex
quadratic programming solver wrapped in an outer SI-pu data
conversion shell.

F. GenCo Action Domain Construction

The construction of the action domain (supply offer choice
set) ADi for each GenCo i is a critical modeling issue. Em-
pirical sensibility suggests these action domains should permit
flexible choice from among a wide range of possible supply
offers, and that the degree of flexibility should be roughly
similar across the GenCos. On the other hand, computational
practicality suggests the number of supply offers included in
each action domain should not be unduly large.

Appendix B briefly summarizes how action domains have
been constructed for the GenCos in accordance with these
objectives. A rigorous detailed discussion and illustration of
action domain construction for the AMES GenCos can be
found in Sun and Tesfatsion [6, Appendix].

G. GenCo Learning

The essential idea of stochastic reinforcement learning is
that the probability of choosing an action should be increased
(reinforced) if the corresponding reward is relatively good and
decreased if the corresponding reward is relatively poor. As
detailed in Appendix C, each GenCo determines its supply
offers by means of VRE reinforcement learning (VRE-RL),
a variant of a stochastic reinforcement learning algorithm
developed by Alvin Roth and Ido Erev ([16], [17]) on the
basis of human-subject experiments.

Each GenCo’s learning is implemented by means of a Java
reinforcement learning module, JReLM, developed by Gieseler
[18]. The user can tailor the settings of each GenCo’s learning
parameters to its situation, in particular to its cost attributes,
its operating capacity, and its anticipated net earnings.

H. Graphical User Interface

AMES has a graphical user interface (GUI) with sepa-
rate screens for carrying out the following functions: (a)
creation, modification, analysis, and storage of case studies;
(b) initialization and editing of the structural attributes of
the transmission grid; (c) initialization and editing of the
structural attributes of LSEs and GenCos; (d) specification of
learning parameter settings for GenCos; (e) specification of
simulation controls (e.g., the simulation stopping rule); and
(f) customization of table and chart output displays.

III. EXPERIMENTAL DESIGN

The experimental design for this study is based on the
benchmark dynamic 5-bus test case presented in Table III. This
benchmark case is characterized by the following structural,
institutional, and behavioral conditions:
• The wholesale power market operates over a 5-bus trans-

mission grid as depicted in Fig. 6, with branch reactances,
locations of LSEs and GenCos, and initial hour-0 LSE
fixed demand levels adopted from Lally [19].9

• True GenCo cost and capacity attributes are as depicted
in Figure 7. GenCos range from GenCo 5, a relatively
large coal-fired baseload unit with low marginal operating
costs, to GenCo 4, a relatively small gas-fired peaking
unit with relatively high marginal operating costs.

• Demand is 100% fixed (no price sensitivity) with LSE
daily fixed demand profiles adopted from a case study
presented in Shahidehpour et al. [20, p. 296-297]; see
Fig. 8. Hourly load varies from light (hour 4:00) to peak
(hour 17:00), which systematically affects the market
power potential of the GenCos; see Fig. 9.

• GenCos are non-learners, meaning they report supply
offers to the ISO that convey their true marginal cost
functions (5) and true operating capacity limits (6).

• There is no supply-offer price cap.

9Lally’s transmission grid configuration is now used extensively in ISO-
NE/PJM training manuals to derive DC-OPF solutions at a given point in
time. An implicit assumption in these derivations is that the ISO knows the
true structural attributes of the LSEs and GenCos. No mention is made of
the possibility that LSEs and GenCos in real-world ISO-managed wholesale
power markets might learn to exercise market power over time through
strategic reporting of these attributes.
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Fig. 6. Transmission grid for the benchmark dynamic 5-bus test case.

Fig. 7. GenCo true marginal cost functions and true capacity attributes for
the benchmark dynamic 5-bus test case.

Each experiment reported in this study extends the bench-
mark dynamic 5-bus test case by systematically varying one
or more treatment factors. Three types of treatment factors
are considered: GenCo learning capabilities; LSE demand-bid
price sensitivity; and an ISO-imposed supply-offer price cap.

With regard to GenCo learning, in each experiment one of
the following two treatments is imposed. Either (i) the GenCos
are non-learners, or (ii) each GenCo i is a learner that makes
daily use of the VRE-RL algorithm to adjust the ordinate
and slope parameters {aR

i , b
R
i } of its reported marginal cost

Fig. 8. Daily LSE fixed demand (load) profiles for the benchmark dynamic
5-bus test case.

Fig. 9. True total supply and demand curves for hours 4:00 and 17:00 for
the benchmark dynamic 5-bus test case. Demand for this benchmark case is
100% fixed (R=0.0).

function (3) in pursuit of increased net earnings.10

For the learning treatments, the action domain ADi for each
GenCo i is constructed as in [7] to include 100 candidate
supply offer choices, and the VRE-RL recency and experi-
mentation parameters ri and ei for each GenCo i are fixed
at 0.04 and 0.96, respectively, in keeping with the VRE-RL
parameter sensitivity results determined in [22]. A range of
settings is then systematically tested for each GenCo i’s VRE-
RL initial propensity and temperature parameters q(1)i and Ti;
see Table IV for a precise listing of tested values.

When GenCos have learning capabilities, random effects
are present in their supply offer selections. To control for
these random effects, we generated thirty seed values via the
standard Java class “random;” see Table IV for a listing of
these seed values. For each learning treatment we then used
these thirty seed values to implement thirty distinct runs, each
1000 simulated days in length.11

The second treatment factor we consider is the ratio R
of maximum potential price-sensitive demand to maximum
potential total demand. More precisely, for each LSE j and
each hour H, let

Rj(H) =
SLMaxj(H)
MPTDj(H)

. (14)

In (14) the expression SLMaxj(H) denotes LSE j’s maximum
potential price-sensitive demand in hour H as measured by
the upper bound of its purchase capacity interval (2), and

MPTDj(H) = [pF
Lj(H) + SLMaxj(H)] (MW ) (15)

10Recall that a detailed description of the VRE-RL algorithm is provided in
Appendix C. In this study the GenCos are only allowed to exercise economic
withholding of capacity through strategic marginal cost reporting. In a separate
study [21] we explore the consequences of permitting GenCos to engage in
physical withholding of capacity through strategic reporting of their operating
capacity limits.

11As a stability check, we sampled each run at multiple intermediate days.
In all cases, the outcome variables of interest showed essentially no change
from day 500 to day 1000.

 7 / 35



 

7

Fig. 10. Illustration of the R ratio construction for measuring relative
demand-bid price sensitivity. The depicted special case is for R=0.33

Fig. 11. True total supply and demand curves for hours 4:00 and 17:00 for
the benchmark dynamic 5-bus test case extended to include 20% potential
price-sensitive demand (R=0.2).

denotes LSE j’s maximum potential total demand in hour H
as the sum of its fixed demand and its maximum potential
price-sensitive demand in hour H. The construction of the R
ratio is illustrated in Figure 10 for the special case R=0.33.

For our price-sensitive demand experiments we start by
setting all of the R values (14) for each LSE j and each
hour H equal to R=0.0 (the 100% fixed-demand case). We
then systematically increase R by tenths, ending with the value
R=1.0 (the 100% price-sensitive demand case). A positive R
value indicates that the LSEs are able to exercise at least some
degree of price resistance. Compare, for example, the true total
demand curves in Fig. 9 with 100% fixed demand (R=0.0) to
the true total demand curves in Fig. 11 with 20% potential
price-sensitive demand (R=0.2).

The maximum potential price-sensitive hourly demands
SLMaxj(H) for each LSE j are thus systematically increased
across experiments. However, we control for confounding
effects arising from changes in overall demand capacity as
follows: For each LSE j and each hour H, the denominator
value MPTDj(H) in (15) is held constant across experiments
by appropriate reductions in the fixed demand pF

Lj(H) as
SLMaxj(H) is increased. Specifically, MPTJj(H) is set equal
across all experiments to BPF

Lj(H), the hour-H fixed-demand

level BPF (H) for LSE j depicted in Table III for the benchark
dynamic 5-bus test case. Consequently, for each tested R value,

pF
Lj(H) = [1−R] ∗BPF

Lj(H) ; (16)

SLMaxj(H) = R ∗BPF
Lj(H). (17)

Moreover, as R is incrementally increased from R=0.0
to R=1.0, we control for confounding effects arising from
changes in the LSEs’ price-sensitive demand bids by hold-
ing fixed the ordinate and slope values {(cj(H),dj(H)):
H=00,...,23} for each LSE j. A listing of the specific numerical
values used can be found in Table V.

In particular, for conceptual consistency with the bench-
mark dynamic 5-bus test case with no price-sensitive demand
(R=0.0), LSE j’s ordinate value cj(H) is set equal to the
hour-H LMP solution LMPk(j)(H) for this benchmark case,
where k(j) denotes the particular bus k at which LSE j is
located. This guarantees that no price-sensitive demand would
be cleared in the benchmark case even if the LSEs were
permitted to report price-sensitive demand bids as well as fixed
demand bids. Also, the ratio cj(H)/2dj(H) for each LSE j is
set to ensure that it is greater or equal to the SLMaxj(H)
value determined by (17), as required by the admissibility
restrictions imposed on LSE j’s demand function DHj(p) in
Table I.

The third treatment factor we consider is PCap ($/MWh), an
ISO-imposed supply-offer price cap. In experiments in which
PCap is imposed, GenCos are not permitted to report marginal
costs (sale reservation values) that rise above PCap. Conse-
quently, each GenCo i selects its daily supply offer so that
its maximum reported sale reservation value, MCR

i (CapRU
i ),

does not exceed PCap.
As will be seen in the following Section IV – in particular

Table XIII – the mean outcome for average hourly LMP
with GenCo learning and with 100% fixed demand (R=0.0)
is approximately 140 ($/MWh). We therefore tested six PCap
settings centered around this “normal” value, as follows: (a)
no PCap; (b) a high value 160; (c) a normal value 140; (d) a
moderately low value 120; (e) a low value 100; and (f) a very
low value 80.

IV. REPORT OF KEY FINDINGS
FOR DYNAMIC MARKET PERFORMANCE

This section uses the experimental design outlined in Sec-
tion III to test the effects on dynamic market performance
of changes in GenCo learning capabilities, demand-bid price-
sensitivities, and supply-offer price caps. Dynamic market
performance is characterized by the following seven measures:
• total GenCo daily net earnings (Total Gen DNE)
• average hourly cleared price-sensitive and fixed demand

(Avg Total Demand) for LSEs
• average hourly true total avoidable costs (Avg TrueTV-

Cost) for GenCos
• average hourly reported total avoidable costs (Avg

RepTVCost) for GenCos
• average hourly Lerner index values (Avg LI) for GenCos
• LMP spiking across 24 hours of a designated day
• LMP volatility range across 24 hours of a designated day
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Fig. 12. A heat-map depiction of mean outcomes for total GenCo daily
net earnings (Total Gen DNE) under alternative settings for the VRE rein-
forcement learning parameters (α, β) for the benchmark dynamic 5-bus test
case extended to include GenCo learning. Red (lighter) shades indicate higher
Total Gen DNE.

For no-learning treatments, we calculate each of these mea-
sures for a typical day. For learning treatments, we calculate
the mean of each of these measures across thirty runs for
the final (1000th) simulated day. The precise definitions and
calculations of these measures (with accompanying standard
deviations) are provided in Appendix D.

A. Learning Calibration

As a prelude to conducting experiments with GenCo learn-
ing, we first used intensive parameter sweeps to determine
suitable settings for two potentially critical VRE-RL learning
parameters for each GenCo i. In particular, as indicated in
Table IV, we systematically tested a range of values for αi

and βi, defined as follows:
• GenCo i’s net earnings aspirations at the beginning of

the initial day 1, as captured by the ratio αi of its initial
propensity level qi(1) to its maximum possible daily net
earnings MaxDNEi defined in (12);

• the ratio βi = qi(1)/Ti of GenCo i’s initial propensity
level qi(1) to its temperature parameter Ti.

Figure 12 depicts experimental findings for mean Total Gen
DNE outcomes under alternative settings for12

α =
qi(1)

MaxDNEi
, β =

qi(1)
Ti

, i = 1, . . . , I (18)

assuming common α and β values across GenCos, 100%
fixed demand, and no supply-offer price cap. An inter-
esting pattern is immediately evident. The (α,β) combi-
nations associated with the highest mean Total Gen DNE
outcomes lie along a nonlinear ridge line spanning com-
binations from (high,high)=(1,100) in the northwest corner

12As detailed in Section II, the estimate MaxDNEi for each GenCo i’s
maximum possible daily net earnings is exogenously derived from its action
domain ADi. Consequently, each specification for α and β in (18) determines
a distinct initial propensity level qi(1) and temperature level Ti for each
GenCo i. In our earlier study [7], identical initial propensity and temperature
levels were set for all learning GenCos: namely, q(1)=6000 and T=1000. This
was unsatisfactory since the “prior anticipated net earnings” q(1) were then set
commonly across GenCos with different costs and locations without regard
for their distinct earnings opportunities.

to (low,moderate)=(1/24,2) in the south-central region. What
causes this nonlinear coupled dependence of mean Total Gen
DNE on α and β?

The settings for α and β have distinct but correlated
effects on the degree to which each GenCo experiments with
different actions, i.e., different ordinate and slope values aR

and bR for its reported marginal cost function (3). All else
equal, high α values reflecting optimistically high initial net
earnings expectations tend to induce experimentation with
many different actions due to “disappointment” with the net
earnings outcomes that result from each choice. Conversely,
low α values reflecting pessimistically low initial net earnings
expectations tend to induce premature fixation on an early
chosen action due to the “surprisingly high” net earnings that
result from this choice.

High β values reflecting high cooling levels (low temper-
ature parameter settings) amplify the tendency to premature
fixation in the case of low α values by amplifying differences
in propensity levels across action choices. Moderately low
β values can prevent premature fixation by dampening the
effects of propensity differences on action choice probabilities.
However, extremely low β values result in action choice
probability distributions that are essentially uniform across
each GenCo’s action domain, negating all GenCo efforts to
learn which actions result in the highest daily net earnings.
This deleterious effect is seen in the uniformly low mean Total
Gen DNE outcomes achieved in Fig. 12 for the lowest tested
β levels 1 and 1/2.

As seen in Fig. 12, the GenCos attain their highest mean
Total Gen DNE outcomes for the sweet-spot VRE learning
parameter settings (α, β) = (1,100). These sweet-spot settings
are used in all of the learning treatments reported in the
remainder of this study.

B. Pure Learning Experiments
Fig. 13 depicts hourly bus LMP levels, GenCo dispatch

levels, and branch power flows during a typical day for the
benchmark dynamic 5-bus test case. Recall this benchmark
case involves non-learning GenCos, 100% fixed demand, and
no supply-offer price cap. Fig. 14 depicts hourly LMP levels,
GenCo dispatch levels, and branch power flows for day
1000 of a typical run (ID=03) for this benchmark case after
extension to include learning GenCos.

Comparing Figures 13 and 14, the most significant pure
learning effect is clearly the substantial increase in LMP out-
comes for each bus in each hour, ranging from an approximate
2-fold increase for buses 1 and 5 to an approximate 6-fold
increase for buses 2 and 3. In addition, learning also affects
the GenCo dispatch levels. For example, the dispatch level for
the peaker-unit GenCo 4 located at bus 4 is higher in each hour
whereas the dispatch level for the small GenCo 1 located at
bus 1 is markedly lower in every hour except the peak-demand
hour 17. In contrast, branch power flows appear to be relatively
unaffected.

Tables VI through XI provide more detailed numerical data
regarding the effects of learning on hourly bus LMPs, GenCo
dispatch levels and branch power flows. These numerical data
help to explain the learning effects seen in Figures 13 and 14.
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Fig. 13. Hourly bus LMP levels, GenCo dispatch levels, and branch power
flows during a typical day for the benchmark dynamic 5-bus test case (no
GenCo learning).

Consider, first, the benchmark no-learning case. To un-
derstand the pattern of LMPs reported in Table VI for this
benchmark case, it is important to understand congestion
effects. Note from Table X that the branch 1-2 connecting
bus 1 and bus 2 is congested in every hour; all other branches
are uncongested in every hour.

The congestion on branch 1-2 creates a potential load pocket
for GenCo 3 in the following sense. As seen from the depiction
of the 5-bus transmission grid in Figure 6, the fixed load from
LSEs 1, 2, and 3 is located at buses 2, 3, and 4, and GenCo 3 at
bus 3 is centrally located relative to this load. The congestion
on branch 1-2 results in the semi-islanding of this load from
the less-expensive power of GenCos 1, 2, and 5 located at
buses 1 and 5. Consequently, the ISO must dispatch GenCo
3 to meet the bulk of this load, particularly during the peak-
demand hour 17, no matter what the expense.

To fully understand the pattern of hourly bus LMPs reported
in Table VI for the benchmark no-learning case, however, it
is also essential to consider limits on generation operating
capacity. A GenCo i is said to be marginal if it is operating at
a point where it is not constrained either by its lower or upper
operating capacity limits CapL

i and CapU
i in (6). As is well

known, the LMP at each bus with a marginal GenCo is given
by the marginal cost of this GenCo, whereas the LMP at each
bus without a marginal GenCo is given by a weighted linear
combination of the marginal costs of the marginal GenCos;
see, e.g., [4].

From Table VIII, it is seen that GenCo 1 is only marginal
during the peak-demand hour 17 and the non-peak hour 18,

Fig. 14. Hourly bus LMP levels, GenCo dispatch levels, and branch power
flows for a typical run (ID=03) of the benchmark dynamic 5-bus test case
extended to include GenCo learning.

whereas GenCo 2 and GenCo 3 are marginal in every hour
except hour 17. Also, GenCo 4 is only marginal during the
peak-demand hour 17, and GenCo 5 is marginal in every hour.

It follows that the LMP at bus 1 (with GenCos 1 and 2) is
determined at the peak-demand hour 17 by the marginal cost
of the marginal GenCo 1. For all non-peak hours apart from
hour 18 the LMP at bus 1 is determined by the marginal cost
of the marginal GenCo 2. For the non-peak hour 18 the LMP
at bus 1 is determined by the equalized marginal costs of the
marginal GenCos 1 and 2. Note from Figure 7 that GenCo 1
is a relatively cheap generation source, and GenCo 2 is only
slightly more expensive than GenCo 1. Consequently, as seen
in Table VI, the LMP at bus 1 is relatively low in all hours,
particularly so in hours 17 and 18 when GenCo 1 is marginal.
Similar arguments explain the relatively low LMP level for
bus 5 in all hours.

In contrast, apart from hours 17 and 18 the LMP at bus
2 (with no generation) is determined as a weighted linear
combination of the marginal costs of the marginal GenCos
2, 3, and 5. For the peak-demand hour 17 the LMP at bus 2 is
determined as a weighted linear combination of the marginal
costs of the marginal GenCos 1, 4, and 5. For the non-peak
hour 18 the LMP at bus 2 is determined as a weighted linear
combination of the marginal costs of the marginal GenCos
1, 2, and 5. As seen in Table VI, the need to dispatch the
expensive peaker unit, GenCo 4, during the peak-demand
hour 17 due to the congestion on branch 1-2 results in an
approximate doubling of the LMP at bus 2 during this hour
relative to other hours. Similar arguments explain the relatively
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large bump in LMP at bus 3 and bus 4 during hour 17.
Now consider, instead, the hourly bus LMP outcomes

reported in Table VII for the benchmark case extended to
include learning GenCos. Comparing these outcomes to the
outcomes reported in Table VI for the no-learning case, it
is immediately seen that the LMPs attained with learning
GenCos are substantially higher in all hours. What explains
this?

As seen in Table XI, the branch 1-2 connecting bus 1 and
bus 2 is congested at all hours with learning GenCos, just as it
was for non-learning GenCos. On the other hand, comparing
the dispatch outcomes reported in Table IX for learning
GenCos with the dispatch outcomes reported in Table VIII for
non-learning GenCos, it is seen that learning changes these
dispatch levels and hence the marginal status of the GenCos.
In particular, every GenCo is now marginal in every hour, apart
from GenCo 2 and GenCo 3 in the peak-demand hour 17.

The explanation for these dispatch effects is that the learning
GenCos, in particular the two largest GenCos 3 and 5, quickly
learn to report higher-than-true marginal costs to the IS0.
This economic withholding means that the dispatch merit
order calculated by the ISO from reported marginal cost
functions no longer coincides with the true merit order based
on true marginal cost functions, which in turn affects the ISO’s
dispatch schedule.

Economically, however, the most serious effect of this eco-
nomic witholding is not the changed dispatch levels per se but
rather the resulting increase in LMPs. The price rise relative
to the benchmark no-learning case is particularly dramatic for
the load-pocket buses 2 through 4 during the peak-demand
hour 17.

The opportunity for learning GenCos to profitably undertake
substantial economic withholding arises from the fact that
LSE demand in the benchmark case is 100% fixed (no price
sensitivity). The ISO is forced to meet fixed demand in every
hour, no matter how expensive the required generation might
be. Consequently, the GenCos rapidly come to understand,
through trial-and-error reinforcement learning, that their most
profitable strategy is to implicitly collude on high reported
marginal cost functions. Since all GenCos end up exercising
economic withholding, the overall effect on the dispatch
schedule and resulting branch power flows is relatively modest;
but the increase in hourly bus LMPs is substantial.

These findings suggest the importance of encouraging a
greater sensitivity of LSE demand to price. The following
subsection explores what happens when LSE demands are
systematically varied from 100% fixed to 100% price sensitive,
both with and without GenCo learning.

C. Price-Sensitivity Experiments With and Without Learning

Table XII presents dynamic market performance findings for
the benchmark dynamic 5-bus test case extended to include
alternative settings for R (relative demand-bid price sensitiv-
ity). Table XIII presents parallel mean-outcome findings for
a modified version of this experiment in which GenCos have
learning capabilities and report strategically chosen marginal
cost functions to the ISO.

Fig. 15. Mean outcomes for average hourly LMPs and LI levels on day
1000 for the benchmark dynamic 5-bus test case extended to include GenCo
learning and demand varying from R=0.0 (100% fixed) to R=1.0 (100% price
sensitive).

As seen in Table XII, in the absence of GenCo learning an
incremental increase in R starting from the benchmark case
R=0.0 (100% fixed demand) has the usual intuitively-expected
effects. Avg LMP, Avg Total Demand, Avg TrueTVCost,
and Avg LI all monotonically decline with increases in R.
Indeed, except for the presence of binding operating-capacity
constraints for some of the GenCos for the cases in which Avg
Total Demand is relatively high, all of the Avg LI outcomes
in the absence of GenCo learning would be zero.13

Comparing the no-learning results presented in Table XII to
the results with GenCo learning presented in Table XIII, it is
seen that GenCo learning has strong effects. Mean outcomes
for Avg LMP, Avg Total Demand, Avg TrueTVCost, and Avg
LI all monotonically decline with increases in R, as before.
However, as highlighted in Fig. 15, mean Avg LMP and mean
Avg LI are substantially higher for each level of R even though
mean Avg Total Demand is lower for each positive level of R.

In addition, mean Avg TrueTVCost under learning is higher
than its corresponding no-learning level at R=0.0 and R=0.2
due to out-of-merit order dispatch. However, as R continues to
increase, mean Avg TrueTVCost under learning falls below its
corresponding no-learning level due to the relatively stronger
contraction in mean Avg Total Demand. Moreover, under
learning, mean Avg RepTVCost is substantially higher than

13In no-learning treatments the GenCos report their true cost and capacity
conditions to the ISO each day. Consequently, the GenCos do not deliberately
exercise market power, i.e., they do not engage in either economic or physical
withholding of capacity. Nevertheless, for reasons explained in [23], a binding
operating-capacity constraint on a GenCo G located at a bus k typically
causes the LMP at bus k to separate from the marginal cost of G. In standard
economic terminology, the cleared units of capacity-constrained GenCos are
strictly inframarginal, meaning they are not the units at the intersection of
demand and supply that determine the market clearing price. This separation
results in a non-zero value for this GenCo’s LI value.

 11 / 35



 

11

mean Avg TrueTVCost at each level of R.
The explanation for these effects is that the profit-seeking

GenCos quickly learn to implicitly collude on higher-than-true
reported marginal costs. This implicit collusion occurs even
when demand bids are fully price sensitive (R=1.0) and the
GenCos are forced to compete for limited demand.

Real-world day-ahead markets are meant to operate as
double auctions, i.e., as two-sided auctions with actively
managed demand bids as well as actively managed supply
offers. As elaborated in ([23],[24]), theoretical, empirical, and
human-subject experimental studies all provide strong support
for the general efficiency of the double-auction market form.
A cautionary implication of the findings in this subsection
is that the preponderance of passive fixed demand in real-
world day-ahead markets (due largely to a lack of retail
market restructuring) prevents the proper operation of these
markets as double auctions. Given essentially vertical demand
curves unresponsive to price, the only way that ISOs can
hope to control the exercise of seller market power is through
the imposition of strong mitigation rules that constrain seller
supply-offer behaviors.

D. Price Sensitivity and ISO Net Surplus Extraction

As detailed in [25], in a standard ISO-managed day-ahead
market the ISO settles the market for each day D+1 at the end
of day D. Each power buyer is obliged at the end of day D to
purchase from the ISO its cleared power demand for hour H
of day D+1 at a price given by the particular LMP determined
for its particular bus location. Similarly, each power seller is
obliged at the end of day D to sell to the ISO its cleared power
supply for hour H of day D+1 at a price given by the particular
LMP determined for its particular bus location.

For the 5-bus test case at hand, the power buyers are LSEs
and the power sellers are GenCos. Also, hourly LMPs for the
day-ahead market are determined by the ISO by means of
bid/offer-based DC OPF with losses assumed to be zero. The
difference between the total LSE payments collected by the
ISO on day D and the total GenCo revenues paid out by the
ISO on day D is referred to below as the ISO daily net surplus
(on day D).14 In the absence of transmission grid congestion,
a uniform LMP is determined across the grid and ISO daily
net surplus is necessarily zero. On the other hand, congestion
causes the LMPs to separate across the grid, and in this case
it can be shown that the ISO daily net surplus must be non-
negative and typically will be positive; see [26, Prop. 2.1].

Table XIV reports total GenCo daily net earnings, total
GenCo daily revenues, total LSE daily payments, and ISO
daily net surplus during a typical day for the benchmark
dynamic 5-bus test case extended to permit six different
treatments for R (demand-bid price sensitivity). For each R
treatment, congestion occurs on branch 1-2. Consequently, as
expected, ISO daily net surplus is strictly positive for each R
treatment.

However, Table XIV also reveals two new findings. First,
when R=0.0 (100% fixed demand) the ISO daily net surplus

14Other terms used in the literature include “congestion rent” (when the
surplus is due entirely to congestion) and “merchandising surplus.”

is substantial, comprising approximately 28% of total LSE
daily payments. This implies that total LSE daily payments
are substantially higher than total GenCo daily revenues. As
indicated in Table VI, this differential is due to the relatively
high LMP for bus 2, which has the largest load (LSE 1) and
no generation, and to the relatively low LMPs for bus 1 and
bus 5, which have generation but no load.

Second, total GenCo daily net earnings, total GenCo daily
revenues, total LSE daily payments, and ISO daily net surplus
all undergo marked monotonic declines as R increases to
R=1.0 (100% price-sensitive demand). The explanation for
these monotonic declines can be deduced from the findings
in the previous subsection IV-C as follows.

Given low R values, the LSEs have very little price resis-
tance; they are willing to pay any price to satisfy their fixed
demands, and their fixed demands constitute the bulk of their
total demands. Around the peak-demand hour 17, due in part
to congestion on branch 1-2, the ISO must dispatch the most
expensive GenCos 3, 4, and 5 to meet the large LSE fixed
demand, i.e., these GenCos are pivotal suppliers for hour 17.
This results in relatively high LMPs. As R increases, however,
the LSEs are increasingly able to resist high prices through
demand withholding. As indicated in Table XII, this results in
lower LMPs, lower total demand, and lower avoidable costs
of production. Total GenCo daily revenues and total LSE
daily payments are thus lower, and total GenCo daily net
earnings are also lower because the decline in total GenCo
daily avoidable costs is more than offset by the decline in
total GenCo daily revenues. Similarly, ISO daily net surplus
is lower because the decline in total GenCo daily revenues is
more than offset by the decline in total LSE daily payments.

Table XV reports mean outcomes for total GenCo daily
net earnings, total GenCo daily revenues, total LSE daily
payments, and ISO daily net surplus on day 1000 for a parallel
set of price-sensitivity experiments with learning GenCos.
As in the previous no-learning case, six different treatments
for R are tested. Congestion again occurs on branch 1-2 in
all hours under all R treatments, resulting in positive mean
outcomes for ISO daily net surplus. Moreover, the mean
outcomes for total GenCo daily net earnings, total GenCo daily
revenues, total LSE daily payments, and ISO daily net surplus
all monotonically decline with increases in R as a result of
the corresponding decreases in LMPs, total demand, and true
avoidable costs of production; see Table XIII.

Comparing the outcomes in Tables XIV and XV, however,
it is seen that learning does have economically significant
effects. For each tested R level the mean total GenCo daily net
earnings under learning are substantially higher than for the
no-learning case, ranging from a 26-fold increase for R=0.0
to a 2.5-fold increase for R=1.0. In particular, even when
demand is 100% price sensitive (R=1.0) the GenCos still learn
to exercise some degree of market power through economic
withholding of capacity.

Also, for R=0.0 the mean outcomes for total GenCo daily
revenues, total LSE daily payments, and ISO daily net surplus
under learning are all substantially higher than their corre-
sponding values under no learning. Specifically, mean total
GenCo daily revenues are over five times higher, mean total
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LSE payments are over six times higher, and mean ISO daily
net surplus is over ten times higher. Since total demand for
R=0.0 is the same under learning and no learning, the ten-fold
increase in mean ISO daily net surplus under learning implies
that the mean LMP paid by the LSEs is substantially higher
than the mean LMP received by the GenCos. As indicated in
Table VII, this is due to the approximately six-fold increase
under learning in the mean LMP for bus 2, which has the
largest load (LSE 1) and no generation, and to the much
smaller increases under learning in the mean LMPs for bus
1 and bus 5, which have generation but no load.

As R increases, however, the mean outcomes for total
GenCo daily revenues, total LSE daily payments, and ISO
daily net surplus under learning eventually drop below their
corresponding values under no learning. For mean total GenCo
daily revenues the switch point is at R=1.0, whereas for mean
total LSE daily payments and mean ISO daily net surplus the
switch point is at R=0.6.

The explanation for these switch points can be deduced from
the LMP and total demand findings presented in Tables XII
and XIII for the no-learning and learning cases. When GenCos
are learners, low R values (implying large fixed demands)
provide pivotal suppliers with a substantial opportunity to
engage in profitable economic withholding. This dramatically
increases LMPs relative to the no-learning case, particularly at
the load-only bus 2. Since total demand for the learning case
is only modestly lower than for the no-learning case for low
R values, the end result is substantially higher total GenCo
daily revenues, total LSE daily payments, and ISO daily net
surplus.

On the other hand, as R increases and the LSEs acquire
an increasing ability to resist high prices through demand
withdrawal, the learning GenCos are increasingly forced to
compete with each other for dispatch by lowering their re-
ported marginal costs. This competitive process results in
lower LMPs. However, comparing the outcomes in Tables XII
and XIII, it is seen that the LMPs resulting under learning
remain higher than under no learning for all R values, which
in turn induces the LSEs to engage in greater demand with-
holding under learning.

The result is that mean total GenCo daily revenues, mean
total LSE daily payments, and mean ISO daily net surplus
under learning all fall below their corresponding no-learning
values as R approaches 1.0 due to the relatively strong contrac-
tion in total demand under learning. As can be verified from
the total GenCo daily net earnings data provided in Table XV,
the most expensive GenCo 4 is at the greatest disadvantage in
this competitive process while the least expensive GenCo 5 is
most advantaged.

A general conclusion drawn from the findings presented in
Tables XIV and XV is that ISO net surplus is substantially
enhanced both by grid congestion (LMP separation) and by
a lack of demand-bid price sensitivity (low R values) leading
to GenCo economic withholding of capacity. Overall market
efficiency is compromised when congestion and economic
withholding result in out-of-merit-order dispatch of generation.
System reliability can also be compromised when capacity is
effectively withheld from market operations.

The ISOs for U.S. restructured wholesale power markets are
typically organized as independent not-for-profit entities with
a fiduciary responsibility for ensuring market efficiency and
reliable system operations. Maximization of ISO net surplus
is certainly not the intended objective of ISOs. Nevertheless,
ISO net surplus represents a revenue stream for ISOs whose
use is discretionary to the ISO.

In some markets (e.g., MISO) the ISO net surplus is used
in part to encourage new transmission investment through
the subsidization of financial transmission rights for those
who invest in new transmission capacity, which should in
principle lead to a reduction of ISO net surplus to the extent
that congestion is alleviated. However, transmission investment
needs can arise for reasons other than congestion (e.g., the
need to reach distributed energy sources), and congestion
might better be alleviated by more local generation rather
than by more transmission capacity. Consequently, it is unclear
whether the benefits flowing from the current uses of ISO net
surplus outweigh the potential costs; indeed, these uses could
even amplify the problem of misallocated resources. In any
case the basic misalignment between intended ISO objectives
and ISO revenue incentives remains.

A cautionary implication of the findings in this subsection,
then, is that transparent reporting and oversight of ISO op-
erations (“monitoring of the monitors”) is desirable because
LMP pricing as currently practiced does not achieve proper
incentive alignments for ISOs.

E. Price Cap Experiments With and Without Learning

Table XVI reports mean outcomes for average hourly LMP
during day 1000 for the benchmark dynamic 5-bus test ex-
tended to include GenCo learning and a supply-offer price
cap (PCap).15 None of the tested PCap settings is binding on
supply offers in the absence of GenCo learning. To see this,
note in Figure 7 that the highest true marginal cost for any
GenCo over its true capacity operating interval is only about
35.40 ($/MWh), which is much lower than the lowest tested
PCap value 80 ($/MWh). Consequently, the average hourly
LMP outcome 25.18 ($/MWh) with non-learning GenCos
provides a common benchmark of comparison for all of the
PCap treatments with learning GenCos.

Although the tested PCap settings are not binding for
non-learning GenCos, they can be binding on the marginal
cost functions reported by learning GenCos. In this study
it is assumed that GenCos with learning capabilities whose
reported marginal cost functions are constrained by PCap are
not willing to supply power at reported marginal costs that
exceed PCap. Rather, they reduce their reported maximum
capacities until their reported marginal costs at their reported
maximum capacities are no greater than PCap.

15For the subsequent interpretation of these findings, it is important to recall
from Section III that PCap is a price cap on GenCo-reported supply offers
(marginal cost functions) and not on LMPs per se. LMPs are system marginal
costs subject to network effects, not GenCo marginal costs. As discussed
more carefully in [23], in the presence of grid congestion the LMPs at buses
without marginal GenCos can strictly exceed the marginal cost of each GenCo.
Consequently, PCap is not necessarily an upper bound on LMPs.
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Consequently, in PCap experiments with learning GenCos,
capacity shrinkage can result in a total offered supply that
is below total fixed demand. Careful attention must therefore
be paid to the possible occurrence of inadequacy events (IE),
i.e., hours during which GenCo offered supply is less than
LSE fixed demand.

In Table XVI two different methods are used to account for
IE effects. The first method (“with IE”) sets a reserve price
of 1000 ($/MWh) during any hour in which an IE occurs,
and this reserve price is used as the LMP at each bus for this
hour. The second method (“without IE”) simply ignores hours
during which an IE occurs.

The outcomes reported in Table XVI show that no IE occurs
in the absence of a supply-offer price cap; offered supply is
adequate to meet fixed demand in each hour. However, as
PCap is successively lowered from 160 to 80, the frequency
of IE increases from 4% to 31.1%. Ignoring hours in which
IE occurs, it appears that the imposition of a successively
lower PCap results in a successively lower mean Avg LMP
value, although this value is still substantially higher than
in the no-learning case. However, when IE hours are taken
into account by imposition of the reserve price, results are
dramatically different; the successive lowering of PCap results
in a subtantial increase in mean Avg LMP, a reflection of the
substantial increase in IE frequency.

One aspect of the mean Avg LMP outcomes reported in
Table XVI with GenCo learning and w/o IE might appear
puzzling. Note that mean Avg LMP with no price cap is 140.30
($/MWh) whereas mean Avg LMP for PCap=160 ($/MWh)
is only 89.65 ($/MWh). This finding indicates that the PCap
level 160 is binding on the GenCos’ reported marginal costs
even though this PCap level is substantially higher than the
resulting value 89.65 for mean Avg LMP. A similar comment
holds for the remaining four tested PCap levels.

The explanation for this finding is that the distribution of
LMPs across the 24 hours of a day can exhibit substantial
fluctuations that are obscured when only average hourly LMP
outcomes are considered. In particular, the maximum LMP
value attained during the peak-demand hour on any given
day can be substantially higher than the average hourly LMP
attained for this day. Thus, the imposition of a price cap
can be a binding constraint on GenCo-reported marginal costs
during peak-demand hours even if not in other hours. Since
GenCos are only permitted to report one supply offer per day,
a binding constraint on reported marginal costs during peak-
demand hours translates into a binding supply-offer constraint
for every hour.

Figure 16 provides a more disaggregated 24-hour depiction
of the mean Avg LMP results reported in Table XVI for GenCo
learning with IE reserve prices taken into account. It is now
seen more clearly that IE largely occurs around the peak-
demand hour 17, and that IE tends to occur in these hours
with higher frequency for lower PCap settings.

Figure 17 presents still another way to visualize the mean
Avg LMP outcomes reported in Table XVI for GenCo learning
with IE reserve prices taken into account. This figure shows
that the imposition of a successively lower PCap tends to
induce a dramatic increase in LMP spiking and volatility range

Fig. 16. Mean outcomes for average hourly LMP levels on day 1000 for
the benchmark dynamic 5-bus test case extended to include GenCo learning
and a supply-offer price cap varying from infinitely high (none) to low (80).
Inadequacy Event (IE) LMP reserve prices are included in this figure.

Fig. 17. Mean outcomes for LMP spiking and LMP volatility range on day
1000 for the benchmark dynamic 5-bus test case extended to include GenCo
learning and a supply-offer price cap varying from infinitely high (none) to
low (80). Inadequacy Event (IE) LMP reserve prices are included in this
figure.

relative to the no-PCap treatment. As explained more carefully
in Appendix D, “spiking” refers to the absolute difference
between successive hourly LMPs across all 24 hours of the
final (1000th) simulated day, whereas “volatility range” refers
to the difference between maximum and minimum LMP across
all 24 hours of this final simulated day.

The cautionary bottom line here is that supply-offer price
caps can have unintended consequences that outweigh in-
tended benefits. Improperly imposed caps can lead to increased
LMP spiking and volatility as well as increased system se-
curity issues through inducement of IE, particularly around
peak-demand hours, even if LMP values are indeed lowered
during other hours.

V. REPORT OF KEY FINDINGS
FOR SPATIAL CROSS-CORRELATIONS

A. Correlation Experiment Preliminaries

Table VII depicts hourly bus LMP outcomes on day 1000
for a typical run of the benchmark dynamic 5-bus test case
extended to include GenCo learning. Table XVII provides
mean outcomes for hourly bus LMP outcomes on day 1000
across all runs under the same experimental conditions.

This subsection examines the extent to which these hourly
bus LMPs are cross-correlated with GenCo reported marginal
costs and with each other. Of particular interest is the extent
to which cross-correlations are induced in hourly bus LMPs
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either by the marginal status of strategically located and sized
GenCos or by network effects.

Three types of experimental findings are reported below: (a)
pairwise cross-correlations between reported GenCo marginal
costs evaluated at dispatch operating points; (b) pairwise
cross-correlations between GenCo reported marginal costs and
bus LMPs evaluated at dispatch operating points; and (c)
pairwise cross-correlations between bus LMPs evaluated at
dispatch operating points. In each case the cross-correlations
are calculated at the following four representative hours from
the LSE load profiles depicted in Figure 8:
• the off-peak hour 4:00
• the shoulder hour 11:00
• the peak-demand hour 17:00
• the shoulder hour 20:00

Moreover, for each of these four hours the three types of cross-
correlations are calculated for three different demand scenarios
as characterized by three different settings for R. In total, then,
thirty-six distinct cross-correlation treatments (3 × 4 × 3) are
reported below.

Illustrative findings from these treatments are depicted us-
ing correlation diagrams as well as tables. Each correlation
diagram uses shape, shape direction, and color to convey in-
formation about the sign and strength of the resulting pairwise
cross-correlations.

The shapes and shape directions in the correlation diagrams
are rough indicators of the patterns observed in the underly-
ing scatter plots for the two random variables whose cross-
correlation is under examination. Color is used to reinforce
shape and shape direction information.

More precisely, if a scatter plot for two random variables X
and Y roughly lies along a straight line, this suggests that
X and Y are perfectly correlated. If the line is positively
sloped, the indication is perfect positive correlation (1.0); if
the line is negatively sloped, the indication is perfect negative
correlation (-1.0). The correlation diagrams indicate these
possible patterns by means of straight lines that are either
forward or backward slanted to indicate positive or negative
correlation respectively. Conversely, if the scatter plot for X
and Y instead consists of a roughly rectangular cloud of points,
this indicates that X and Y are independent of each other,
implying zero correlation. The correlation diagrams indicate
this pattern by means of full circles. Intermediate to this are
scatter plots for X and Y that are roughly elliptical in shape,
indicating moderate but not perfect correlation between X and
Y. The correlation diagrams indicate this pattern by means
of oval shapes that point to the right for positive correlation
values and to the left for negative correlation values.

Red-colored shapes indicate positive correlation and blue-
colored shapes indicate negative correlation. The intensity of
the red (blue) color indicates the degree of the positive (nega-
tive) correlation. Specifically, the darkest red color corresponds
to a positive correlation value between 1.0 and 0.8, whereas
the lightest red color corresponds to a positive correlation
value between 0.2 and 0.0. Conversely, the darkest blue color
corresponds to a negative correlation value between -1.0 and
-0.8, whereas the lightest blue color corresponds to a negative
correlation value between -0.2 and 0.0.

B. GenCo Cross-Correlations

Table XVIII presents pairwise cross-correlations for GenCo
reported marginal costs for the benchmark dynamic 5-bus test
case extended to include GenCo learning. The indicated cross-
correlations are calculated at the GenCos’ dispatch points for
the peak-demand hour 17 on the final (1000th) simulated day
for 30 different runs.

These GenCo cross-correlations are fairly weak, an indica-
tion that the GenCos are not responding in a direct strategic
manner to the supply-offer choices of other GenCos. Indeed,
the VRE learning algorithm used by the GenCos to determine
their daily supply offer choices only takes into account each
GenCo’s own past net earnings as determined by its own past
dispatch and LMP levels. The presence of rival GenCos is not
considered.

As will next be shown, stronger patterns are obtained for
GenCo-LMP and LMP-LMP cross-correlations.

C. GenCo-LMP Cross Correlations

Table XIX presents pairwise cross-correlations between
GenCo reported marginal costs and bus LMPs for the peak-
demand hour 17 of day 1000 under the same experimental
conditions as in subsection V-B. These cross-correlations
indicate a moderately-positive correlation between GenCo 3
and the LMPs at buses 2-4, a negative correlation between
GenCo 4 and the LMPs at buses 1 and 5, and a strong positive
correlation between GenCo 5 and the LMPs at buses 1 and
5. Note, also, that the final column of values in Table XIX is
identical to the final column of values in Table XVIII. What
explains these correlation patterns?

One important explanatory factor is branch congestion and
direction of branch power flows during hour 17. Recall from
section IV that the branch 1-2 connecting bus 1 and bus 2 is
typically congested in every hour under learning; an example
of this is seen in Table IX. Consequently, buses 2-4 constitute
a load-pocket for GenCo 3 located at bus 3. It is therefore
not surprising that GenCo 3’s reported marginal costs are
positively correlated with the LMPs at these load-pocket buses
during the peak-demand hour 17.

In addition, the persistent congestion on branch 1-2 results
in a negative correlation between the reported marginal cost
for GenCo 4 at bus 4 and the LMPs at buses 1 and 5 during
the peak-demand hour 17. This happens because the power
injected by GenCo 4 during hour 17 substitutes in part for the
cheaper power of the marginal GenCos 1 and 5 in servicing
load at the load-pocket buses 2-4. This substitution occurs
because GenCos 1 and 5 are located at buses 1 and 5 and hence
are semi-islanded behind the congested branch 1-2 during
hour 17 as dictated by the directions of branch power flows;
cf. Table XI.

A second important explanatory factor is limits on gener-
ation operating capacities during hour 17, which affect the
marginal status of the different GenCos. As previously noted in
subsection IV-B, the LMP at each bus with a marginal GenCo
is given by the reported marginal cost of this GenCo, whereas
the LMP at each bus without a marginal GenCo is given by
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Fig. 18. Pairwise cross-correlations between GenCo reported marginal costs
and bus LMPs for hours 04, 11, 17, and 20 during day 1000 for the benchmark
dynamic 5-bus test case extended to include GenCo learning. Demand for this
case is 100% fixed (R=0.0).

a weighted linear combination of the reported marginal costs
of the marginal GenCos.

Table XX reports the frequency (across thirty runs) of each
GenCo’s marginality during four different hours on day 1000,
including the peak-demand hour 17. As indicated, GenCo
5 located at bus 5 is persistently marginal during hour 17,
hence the LMP at bus 5 persistently coincides with GenCo 5’s
reported marginal cost. This explains the finding in Table XIX
of a perfect positive correlation of 1.0 between GenCo 5’s
reported marginal cost and the LMP at bus 5 during hour 17,
as well as the appearance of identical final columns of values
in Tables XVIII and XIX.

Table XX also indicates that no other GenCo is persistently
marginal during hour 17. For example, GenCo 3 is dispatched
at maximum operating capacity in 13% of the runs due either
to a relatively low reported marginal cost by GenCo 3 or
a relatively high reported marginal cost by GenCo 4. This
non-marginality of GenCo 3 restrains the positive correlation
between GenCo 3’s reported marginal costs and the LMPs at
the load-pocket buses 2-4 as well as the extent to which power
supplied by GenCo 3 can substitute for the power of GenCos
1 and 5 during hour 17.

The correlation diagram in Fig. 18 for the peak-demand
hour 17 provides a visualization of the GenCo-LMP cross-
correlation findings in Table XIX. In particular, it helps to
highlight the importance of GenCos 3 and 4 for the determina-
tion of LMPs at the load-pocket buses 2-4, and the importance
of GenCo 5 for the determination of LMPs at buses 1 and 5.

The remaining correlation diagrams in Fig. 18 depict the
GenCo-LMP cross-correlations that arise in the off-peak hour
4:00, the shoulder hour 11:00, and the shoulder hour 20:00.
Comparing these results to the results depicted in Fig. 18 for
hour 17, note that GenCo 3’s reported marginal cost is now
perfectly positively correlated with the LMP at bus 3 and is

Fig. 19. Pairwise cross-correlations between GenCo reported marginal costs
and bus LMP for hours 04, 11, 17, and 20 during day 1000 for the benchmark
dynamic 5-bus test case extended to include GenCo learning and 50% potential
price-sensitive demand (R=0.5).

Fig. 20. Pairwise cross-correlations between GenCo reported marginal costs
and bus LMPs for hours 04, 11, 17, and 20 during day 1000 for the benchmark
dynamic 5-bus test case extended to include GenCo learning and 100% price-
sensitive demand (R=1.0).

strongly positively correlated with the LMPs at its neighboring
buses 2 and 4. These changes arise because the substantially
lower fixed demand in these three non-peak hours results in
the persistent marginality of the relatively large GenCo 3; see
Table XX.

Also, in contrast to the peak-demand hour 17, GenCo 4’s
reported marginal cost is negatively correlated with the LMPs
at buses 2 and 3 in the three non-peak hours. This occurs
because GenCo 4 is in direct rivalry with the marginal GenCo
3 to supply power to buses 2 and 3 during these non-peak
hours. For example, GenCo 4 is dispatched at maximum
capacity when its reported marginal cost is relatively low,
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Fig. 21. Pairwise LMP cross-correlations for hours 04, 11, 17, and 20 during
day 1000 for the benchmark dynamic 5-bus test case extended to include
GenCo learning. Demand for this case is 100% fixed (R=0.0).

which then permits GenCo 3 to service residual demand at
buses 2 and 3 at a relatively high reported marginal cost.

Figures 19 and 20 report the effects on GenCo-LMP
cross-correlations when the R ratio measuring the relative
price-sensitivity of demand is sytematically increased first
to R=0.5 (50% price sensitivity) and then to R=1.0 (100%
price sensitivity). As demand becomes more price sensitive,
the LSEs more strongly contract their demand in response to
price increases and branch congestion becomes less frequent.
This limits the ability of the GenCos to profitably exercise
economic withholding, which in turn results in dramatically
lower reported marginal costs.

In particular, as R increases, the GenCos with relatively low
true marginal costs are advantaged and those with relatively
high true marginal costs lose out. This can be seen by
comparing the correlation diagrams in Figures 18 through 20.
As R increases from R=0.0 to R=1.0, the relatively cheap
GenCo 5 gains increased influence over each bus LMP while
the relatively expensive GenCo 3 loses influence over the load-
pocket buses 2 through 4.

D. LMP-LMP Cross Correlations

Table XXI reports pairwise cross-correlations for the bus
LMPs during the peak-demand hour 17 on day 1000 for the
benchmark dynamic 5-bus test case extended to include GenCo
learning. Figs. 21 through 23 depict the changes induced in
these cross-correlations when the price-sensitivity of demand
is systematically increased from R=0.0 (100% fixed) to R=1.0
(100% price sensitive).

The most dominant regularity seen in these LMP correlation
results is that the bus LMP cross-correlations become increas-
ingly positive as R increases. This is particularly true for the
non-peak hours 04, 11, and 20 with relatively lower LSE fixed
demands.

Fig. 22. Pairwise LMP cross-correlations for hours 04, 11, 17, and 20 during
day 1000 for the benchmark dynamic 5-bus test case extended to include
GenCo learning and 50% potential price-sensitive demand (R=0.5).

Fig. 23. Pairwise LMP cross-correlations for hours 04, 11, 17, and 20 during
day 1000 for the benchmark dynamic 5-bus test case extended to include
GenCo learning and 100% price-sensitive demand (R=1.0).

As R increases, a larger portion of LSE total demand is price
sensitive. Consequently, the LSEs are able to exercise more
resistance to higher prices through demand contraction, which
in turn reduces branch congestion. In the current context, bus
LMPs are derived from DC OPF solutions with zero losses
assumed.16 Consequently, as congestion diminishes, the LMPs
exhibit less separation. In the limit, if all congestion were to
disappear, the LMPs would converge to a single uniform price
across the grid, which in turn would imply perfect positive
correlation among all bus LMPs.

For the non-peak hours 04, 11, and 20, the typical result

16See [10] for a rigorous presentation of this LMP derivation.
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for the limiting case R=1.0 is no branch congestion. Hence,
the bus LMPs during these hours—particularly hour 04—are
close to being perfectly positively correlated when R=1.0.
For the peak-demand hour 17, however, the branch 1-2 is
typically congested even for R=1.0. Consequently, LMP cross-
correlations for hour 17 exhibit a strong but not perfect positive
correlation.

Another regularity seen in Table XXI and Figs. 21-23 is
that the LMP at bus 2 is always strongly positively correlated
with the LMP at bus 3. At high R levels, this reflects a lack
of branch congestion and hence a lack of LMP separation. At
low R levels, however, the branch 1-2 tends to be congested at
all hours; cf. Table XI. The congestion on branch 1-2 means
that the bulk of the demand at the load-only bus 2 must be
supplied along branch 3-2 by the large and frequently marginal
GenCo 3. This in turn means that the LMP at bus 2 is most
strongly influenced by the LMP at bus 3.

E. Empirical Evidence on LMP Correlations

In this subsection we calculate LMP cross-correlations
using real-world price data. In particular, we focus on LMP
determination in a neighborhood of the MidAmerican Energy
Company (MEC), the largest utility in Iowa.

Through April 2009, MEC was treated as a Balancing Au-
thority (BA) in MISO.17 A BA is responsible for maintaining
load-interchange-generation balance and the support of the
Interconnection frequency.

From the geographical map depicted in Fig. 24, we picked
four neighboring BAs of MEC in order to study MEC’s effect
on their LMPs. These BAs are Alliant Energy Corporate
Services, Inc. (ALTW), Muscatine Power and Water (MPW),
Omaha Public Power District (OPPD), and Nebraska Public
Power District (NPPD). We obtained 24-hour historical data
from MISO for the real-time and day-ahead LMPs determined
for these BAs on August 1, 2, 3 and September 1 in 2008;
see [27]. In particular, for ALTW we used the LMP for the
loadzone ALTW.MECB, and for the remaining four BAs we
used interface LMPs. We then used these data to calculate
pairwise cross-correlations between the LMP reported for
MEC and the LMPs reported at its four neighboring BAs.

Table XXII reports our LMP cross-correlation findings. All
of the LMP cross-correlations are strongly positive. Since
MEC is large, and presumably marginal, this suggests that the
supply behavior of the MEC could be spilling over to affect
the LMPs at neighboring BAs.

On the other hand, as always, care must be taken to
recognize potentially confounding effects in real-world data.
As noted above, the LMPs reported by MISO for MEC and
its four neighboring BAs are load-weighted prices determined
for a loadzone and interfaces and not for a single bus. The
strong positive LMP cross-correlations in Table XXII could be
a statistical artifact arising from the particular load-weighting
method employed. Alternatively, they could indicate a lack
of branch congestion during the selected days arising either
through happenstance or through deliberate ISO planning.

17On May 1, 2009, MEC filed an application with the Iowa Utilities Board
to become a transmission-owning member of MISO.

Fig. 24. MidAmerican Energy Company (MEC) Balancing Authority and
four neighboring Balancing Authorities in relation to MISO.

To differentiate between these various potential explanations
for the strong positive correlations in Table XXII—GenCo
spillover effects, statistical artifact, and lack of congestion—
we would need to obtain data on MEC supply offers and
branch congestion at an hourly level for the selected test
days, as well as data giving individuated bus LMPs. To our
knowledge, these data are not currently publicly available.

Although agent-based test beds such as AMES can be used
to develop interesting hypotheses using simulated scenarios,
the real payoff to such development will only come when
these hypotheses can be tested more fully against real-world
data.

VI. CONCLUDING REMARKS

This study has used AMES(V2.02) to conduct a systematic
experimental study of LMP separation and volatility under al-
ternative specifications for GenCo learning, demand-bid price
sensitivity, and supply-offer price caps. AMES(V2.02) is an
agent-based test bed intended to facilitate the study of strategic
trading in restructured wholesale power markets for research,
teaching, and training purposes.

Particular attention has been focused on dynamic market
performance measured in terms of LMPs, dispatch levels,
branch flows, LSE payments, GenCo net earnings, and ISO
net surplus extractions, and on spatial correlations between
differentially situated GenCos and bus LMPs. Future studies
will focus on financial and operational risk management issues
using AMES(V3.0), an extended version of AMES(V2.02)
incorporating a more fully operational two-settlement system,
security constrained unit commitment, and enhanced represen-
tations of decision-making by traders and market operators.

APPENDIX A
AMES DC-OPF PROBLEM FORMULATION

The DC-OPF problem formulation for the AMES(V2.02) day-
ahead market outlined below is applicable for any hour H of
any day D+1. Reference to these time dimensions is supressed
for ease of notation.

The formulation relies heavily on the demand bid, supply
offer, and cost function representations developed in Subsec-
tions II-B and II-C. An annotated listing of all of the variables
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used in the formulation is given in Tables I and II. A more
detailed discussion of this formulation can be found in Sun
and Tesfatsion ([6], [14], [15]).

A.1 DC-OPF Objective Function Representation

The gross surplus of LSE j ($/h) corresponding to a price-
sensitive demand level pS

Lj (MW) is derived from LSE j’s
price-sensitive demand bid function as follows:18

GSj(pS
Lj) =

∫ pS
Lj

0

Dj(p)dp = cj · pS
Lj − dj · [pS

Lj ]
2 (19)

The total gross surplus ($/h) of LSEs is then given by

TGS(pS
L) =

J∑
j=1

GSj(pS
Lj) , (20)

where
pS

L =
(
pS

L1, p
S
L2, · · · , pS

LJ

)
(21)

The reported avoidable cost of GenCo i ($/h) corresponding
to a generation level pGi (MW) is derived from GenCo i’s
reported marginal cost function as follows:

V CostRi (pGi) =
∫ pGi

0

MCR
i (p)dp = aR

i · pGi + bRi · [pGi]2

(22)
The reported total avoidable cost ($/h) corresponding to a
vector of GenCo operating levels

pG = (pG1, pG2, · · · , pGI) (23)

is then given by

TV CR(pG) =
I∑

i=1

V CR
i (pGi) (24)

Reported total net surplus ($/h) is calculated by the ISO from
the LSE price-sensitive demand bids (if any) and the reported
GenCo supply offers, as follows:

TNSR(pS
L,pG) = TGS(pS

L)− TV CR(pG) (25)

Reported total net avoidable cost ($/h) is calculated as the
negative of reported total net surplus:

TNCR(pS
L,pG) = − TNSR(pS

L,pG) (26)

The standard DC-OPF problem formulation with price-
sensitive demand bids involves the minimization of TNCR,
the reported total net avoidable cost of generation, subject to
transmission and generation capacity constraints. In this study
we augment this standard objective function by inclusion of
a penalty function for voltage angle differences. As carefully
explained in Sun and Tesfatsion [6], this augmentation pro-
vides a number of advantages based on both physical and
mathematical considerations.

These advantages can be summarized as follows. First, the
validity of the DC-OPF problem as an AC-OPF approximation

18The gross surplus of LSE j corresponding to its fixed demand bid pF
Lj

is infinite if pF
Lj > 0; a vertical demand curve literally implies an infinite

willingness to pay. For this reason, the DC-OPF objective function used by
the ISO to determine the dispatch of generation only takes into account LSE
gross surplus corresponding to price-sensitive demand bids.

relies on an assumption of small voltage angle differences, and
the augmented objective function permits this assumption to
be subjected to systematic sensitivity tests through variations
in the penalty weight. Second, solution differences between
the non-augmented and augmented forms of the DC-OPF
problem can be reduced to arbitrarily small levels by selecting
an appropriately small value for the penalty weight. Third,
the augmented DC-OPF problem has a numerically desirable
strictly convex quadratic programming form permitting the
direct determination of solution values for LMPs and voltage
angles as well as for price-sensitive demands, generation
levels, and branch flows.

A.2 DC-OPF Problem

The SI form of the DC-OPF problem used in this study is as
follows:
Minimize

TNCR(pS
L,pG) + µ

[ ∑
km∈BR

[δk − δm]2
]

(27)

with respect to LSE real-power price-sensitive demands,
GenCo real-power generation levels, and voltage angles:

pS
Lj , j = 1, ..., J ; pGi, i = 1, ..., I; δk, k = 1, ...,K (28)

subject to

Real-power balance constraint for each bus k=1,...,K:

∑
i∈Ik

pGi −
∑
j∈Jk

pS
Lj −

∑
km or mk ∈ BR

Pkm =
∑
j∈Jk

pF
Lj

(29)
where

Pkm = [Vo]2 ·Bkm [δk − δm] (30)

Real-power thermal constraint for each branch km in BR:

|Pkm| ≤ PU
km (31)

Reported real-power operating capacity interval for each
GenCo i = 1,...,I:

CapL
i ≤ pGi ≤ CapRU

i (32)

Real-power purchase capacity interval for price-sensitive de-
mand for each LSE j = 1,...,J:

0 ≤ pS
Lj ≤ SLMaxj (33)

Voltage angle setting at reference bus 1:

δ1 = 0 (34)

The shadow price (Lagrange multiplier) solution for the real
power balance constraint (29) at bus k, denoted by LMPk,
constitutes the locational marginal price for bus k. By the
well-known envelope theorem, LMPk ($/MWh) measures the
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change in the minimized DC-OPF objective function ($/h)
with respect to a change in fixed demand (MW) at bus
k; see [10] for a rigorous discussion. Stated less formally,
LMPk essentially measures the cost of efficiently servicing an
additional MW of fixed demand at bus k.

The special DC-OPF case in which all LSE demand bids are
fixed (no price-sensitive demand) is handled as follows. First,
total gross surplus TGB is omitted from (27), so that TNCR

reduces to TVCR, i.e., to the reported total avoidable costs of
generation. Second, the price-sensitive demand variables pS

Lj ,
j=1,...,J, are removed from the list (28) of choice variables for
the DC-OPF problem.

APPENDIX B
ACTION DOMAIN CONSTRUCTION FOR AMES GENCOS

As explained in Section II-B, at the beginning of each day D
each GenCo i must choose a supply offer sR

i = (aR
i ,bR

i ,CapRU
i )

to report to the ISO for each hour H of the day D+1 day-ahead
market. Each supply offer sR

i characterizes a reported marginal
cost function

MCR
i (p) = aR

i + 2bRi p (35)

defined over a reported operating capacity interval

CapL
i ≤ p ≤ CapRU

i (36)

Each GenCo i chooses its supply offers sR
i from an action

domain ADi with finite positive cardinality Mi. In keeping
with the modeling goals of empirical sensibility and compu-
tational practicality, the action domain ADi for each GenCo
i is constructed under four simplifying assumptions. First, we
assume GenCo i only reports upward-sloping marginal cost
functions, i.e., bR

i > 0. Second, we assume GenCo i only
reports non-trivial operating capacity intervals, i.e., CapL

i <
CapRU

i . Third, we assume that GenCo i only reports marginal
cost functions that lie on or above its true marginal cost
function (5) over the range of its reported operating capacity
intervals. Fourth, we assume GenCo i always reports an upper
operating capacity limit CapRU

i that is less than or equal to
its true upper operating capacity limit CapU

i .
Let a supply offer sR

i for GenCo i be called admissible
if the corresponding reported marginal cost function MCR

i (p)
and reported upper operating capacity limit CapRU

i are in com-
pliance with these four simplifying assumptions. As shown in
Sun and Tesfatsion [6, Appendix], given any positive value for
a slope-start parameter SSi for GenCo i, any 4-dimensional
vector sA

i consisting of four components in percentage form
can be uniquely mapped into an admissible supply offer sR

i

for GenCo i.
Referring to Table I for more precise variable definitions,

one can then construct a matrix ADi for GenCo i characterized
by three integer-valued density-control parameters M1i, M2i,
and M3i (with M1i ×M2i ×M3i = Mi) and three range-index
parameters RIMaxL

i , RIMaxU
i , and RIMinC

i in percentage
form. The three density-control parameters control the number
of distinct possible ordinate values aR

i , slope values bR
i ,

and upper operating capacity limits CapRU
i , respectively, that

GenCo i can report. The three range-index parameters control

the range of possible ordinate values, slope values, and upper
operating capacity limits, respectively, that GenCo i can report.

The resulting matrix ADi then has the following prop-
erty: For any given SSi > 0, the Mi rows of this ma-
trix constitute Mi distinct vectors sA

i in percentage form
that can be transformed uniquely into Mi distinct admis-
sible supply offers sR

i for GenCo i. Consequently, the
matrix ADi effectively constitutes an action domain for
GenCo i consisting of Mi admissible supply offers sR

i .
Moreover, if the values for the action domain parameters
(M1i,M2i,M3i,RIMaxL

i ,RIMaxU
i ,RIMinC

i ,SSi) are set iden-
tically across the GenCos, and if the above supply-offer
construction is then applied for each GenCo i = 1,...,I, the
result is a collection {ADi : i =1,...,I} of GenCo-specific
action domains that have equal cardinalities and whose supply-
offer elements sR provide similar densities of coverage of the
regions lying above the GenCos’ true marginal cost curves.

As indicated in Table IV, in this study we set the action do-
main parameters identically across the GenCos to ensure equal
cardinalities and similar densities of their action domains. In
addition, we construct the first row of each action domain ADi

to correspond to GenCo i’s true cost and capacity attributes
(ai, bi, CapU

i ), meaning that GenCo i always has the option
of reporting its true marginal cost function and true operating
capacity interval to the ISO.

APPENDIX C
AMES GENCO LEARNING

The AMES(V2.02) GenCos are autonomous energy traders
with strategic learning capabilities. Each GenCo i adaptively
chooses its supply offers (“actions”) sR

i = (aR
i ,bR

i ,CapRU
i ) from

its action domain ADi on the basis of its own past daily
net earnings outcomes. This adaptive choice is implemented
by means of a variant of a stochastic reinforcement learning
algorithm developed by Roth and Erev ([16], [17]) based on
human-subject experiments, hereafter referred to as the VRE-
RL algorithm. This section describes the implementation of
the VRE-RL algorithm for an arbitrary GenCo i starting from
the initial day D=1.

Suppose it is the beginning of the initial day D=1, and
GenCo i must choose a supply offer from its action domain
ADi to report to the ISO for the day-ahead market in day
D+1. As will be seen below, for learning purposes the only
relevant attribute of ADi is that it has finite cardinality Mi ≥
1. Consequently, it suffices to index the supply offers in ADi

by m = 1,...,Mi.
The initial propensity of GenCo i to choose supply offer

m ∈ ADi is given by qim(1) for m = 1,...,Mi. AMES
permits the user to set these initial propensity levels to any
real numbers. However, the assumption used in this study is
that GenCo i’s initial propensity levels are all set equal to
some common value qi(1), as follows:

qim(1) = qi(1) for all supply offers m ∈ ADi (37)

Now consider the beginning of any day D ≥ 1, and suppose
the current propensity of GenCo i to choose supply offer m in
ADi is given by qim(D). The choice probabilities that GenCo
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i uses to select a supply offer for day D are then constructed
from these propensities as follows:19

pim(D) =
exp(qim(D)/Ti)∑Mi

j=1 exp(qij(D)/Ti)
, m ∈ ADi (38)

In (38), Ti is a temperature parameter that affects the degree to
which GenCo i makes use of propensity values in determining
its choice probabilities. As Ti → ∞, then pim(D) → 1/Mi,
so that in the limit GenCo i pays no attention to propensity
values in forming its choice probabilities. On the other hand,
as Ti → 0, the choice probabilities (38) become increasingly
peaked over the particular supply offers m having the highest
propensity values qim(D), thereby increasing the probability
that these supply offers will be chosen.

At the end of day D, the current propensity qim(D) that
GenCo i associates with each supply offer m in ADi is updated
in accordance with the following rule. Let m′ denote the
supply offer that was actually selected and reported into the
day-ahead market by GenCo i in day D. Also, let NEim′ (D)
denote the actual daily net earnings (11) attained by GenCo i
at the end of day D as its settlement payment for all 24 hours
of the day-ahead market for day D+1. Then, for each supply
offer m in ADi,20

qim(D+1) = [1−ri]qim(D) + Responseim(D) , (39)

where

Responseim(D) =

 [1− ei] ·NEim′(D) if m = m′

ei · qim(D)/[Mi − 1] if m 6= m′,
(40)

and m 6= m′ implies Mi ≥ 2. The introduction of the recency
parameter ri in (39) acts as a damper on the growth of the
propensities over time. The experimentation parameter ei in
(40) permits reinforcement to spill over to some extent from
a chosen supply offer to other supply offers to encourage
continued experimentation with various supply offers in the
early stages of the learning process.

In summary, the complete VRE-RL algorithm applied to
GenCo i in AMES(V2.02) is fully characterized once user-
specified values are set for (Mi,qi(1),Ti,ri,ei), where: Mi

denotes the number of supply offer choices available to GenCo
i in its action domain ADi; qi(1) denotes the initial propensity
level in (37); Ti denotes the temperature parameter in (38);
ri denotes the recency parameter in (39); and ei denotes the
experimentation parameter in (40). It is interesting to note,
in particular, that this VRE-RL algorithm is well-defined for

19In the original algorithm developed by Roth and Erev ([16],[17]), the
choice probabilities are defined in terms of relative propensity levels. Here,
instead, use is made of a “simulated annealing” formulation in terms of
exponentials.

20The response function appearing in (39) modifies the response function
appearing in the original algorithm developed by Roth and Erev ([16],[17]).
The modification is introduced to ensure that learning (updating of choice
probabilities) occurs even in response to zero-profit outcomes, which are
particularly likely to arise in initial periods when GenCo i is just beginning to
experiment with different supply offers and the risk of overbidding to the point
of non-dispatch is relatively high. See Nicolaisen et al. [28] and Pentapalli [22]
for detailed motivation, presentation, and comparative experimental tests of
this modified response function.

any action domain ADi consisting of finitely many elements,
regardless of the precise form of these elements.

APPENDIX D
DYNAMIC MARKET PERFORMANCE MEASURES

This appendix section explains more carefully the construction
of the dynamic market performance measures reported in the
tables and figures for Section IV.

In the absence of GenCo learning, the dynamic 5-bus test
case generates a deterministic 24-hour dispatch and LMP
schedule for the day-ahead market that is repeated from one
day to the next. Table XII presents average hourly outcomes
for the dynamic 5-bus test case with no GenCo learning
under various demand conditions. Specifically, for each R
value in Table XII: (a) Avg LMP ($/MWh) denotes LMP
averaged across the five buses and the 24 hours of a typical
day-ahead market schedule; (b) Avg Total Demand (MW)
denotes LSE total demand averaged across the 24 hours of a
typical day-ahead-market schedule; (c) Avg True TVCost ($/h)
denotes GenCo true total avoidable cost averaged across the
five GenCos and the 24 hours of a typical day-ahead market
schedule; and (d) Avg LI (unit-free number) denotes the GenCo
Lerner Index value averaged across the five GenCos and the
24 hours of a typical day-ahead-market schedule.

For each learning treatment, we calculate mean outcomes
for the average hourly measures (a) through (d) across thirty
runs. Mean outcomes for measures are indicated by overlines.

More precisely, for each learning treatment we conduct
thirty runs corresponding to 30 different random seeds. The
length of each run is 1000 days, and only day-1000 data are
used for mean-value calculations. Note, however, that these
day-1000 calculations refer to scheduled outcomes for the day-
ahead market on the subsequent day 1001.

The mean outcomes for Avg LMP ($/MWh) presented in
Table XIII are calculated from the day-1000 LMP outcomes
LMPk(H,r) conditioned on bus (k), hour (H), and run (r), as
follows. First, for each transmission grid bus and each hour
of day 1000, determine the average hourly LMP across all 30
runs. Second, for each hour of day 1000, determine the average
of these run-averaged hourly LMP values across all five buses.
Finally, average these bus-averaged and run-averaged hourly
LMP values across all 24 hours of day 1000 to get mean Avg
LMP. Thus:

AvgLMP =

[∑30
r=1

∑5
k=1

∑23
H=00 LMPk(H, r)

]
30 ∗ 5 ∗ 24

. (41)

The corresponding standard deviation is then calculated us-
ing the “N” definition (i.e., division by the total number
N=[30*5*24] of summed terms rather than N-1), as follows:√√√√[∑30

r=1

∑5
k=1

∑23
H=00[LMPk(H, r)−AvgLMP ]2

]
30 ∗ 5 ∗ 24

.

(42)
The mean outcomes for Avg Total Demand (MW) presented

in Table XIII are calculated from day-1000 data as follows.
First, for each of the three LSEs and for each hour of day 1000,
determine the LSE’s average cleared (satisfied) price-sensitive
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demand across all 30 runs. Second, for each LSE and each
hour of day 1000, add the LSE’s fixed demand and average
cleared price-sensitive demand to get the LSE’s average total
demand. Third, for each hour, sum these LSE average total
demands across the three LSEs to get average total demand.
Finally, average these hourly average total demands across all
24 hours of day 1000 to get mean Avg Total Demand. The
corresponding standard deviation is then calculated in the usual
way using the “N” definition.

The mean outcomes for Avg RepTVCost ($/h) presented in
Table XIII are calculated from day-1000 data as follows. First,
for each of the five GenCos and for each hour of day 1000,
determine the reported total avoidable costs of the five GenCos
averaged across all 30 runs based on the GenCos’ reported
cost and capacity attributes together with their corresponding
hourly dispatch levels as determined by the ISO.21 Second,
for each hour of day 1000, determine the average of these
run-averaged reported total avoidable cost calculations across
all five GenCos. Third, average these GenCo-averaged and
run-averaged hourly reported total avoidable cost calculations
across all 24 hours of day 1000 to get mean Avg RepTVCost.
The corresponding standard deviation is then calculated in the
usual way using the “N” definition.

The Lerner Index (LI) for any GenCo i supplying a positive
amount of (real) power pGi at bus k(i) during some hour H
of some day D is defined as follows:

LIi =

[
LMPk(i) −MCi(pGi)

]
LMPk(i)

. (43)

In (43), LMPk(i) denotes the LMP at bus k(i), and MCi(pGi)
denotes GenCo i’s true marginal cost evaluated at pGi.

The mean outcomes for Avg LI (unit-free number) presented
in Table XIII are calculated from day-1000 data as follows.
First, for each run, for each hour of day 1000, and for each
GenCo i with a positive power dispatch level pGi for this run
and hour, determine the GenCo’s Lerner Index (43). Second,
for each GenCo and each hour of day 1000, determine the
average of this GenCo’s Lerner Indices across all of the runs
for which he had a positive power dispatch level for this
hour. Third, for each hour of day 1000, determine the average
of these run-averaged Lerner Indices across all GenCos who
were dispatched during this hour for at least one run. Finally,
determine the average of these GenCo-averaged and run-
averaged Lerner Indices across all 24 hours of day 1000 to
get mean Avg LI. The corresponding standard deviation is
then calculated in the usual way using the “N” definition.

In supply-offer price cap experiments with GenCo learning,
an inadequacy event (IE) occasionally occurs in some hours in
the sense that total GenCo reported capacity is insufficient to
meet total fixed demand.22 For hours in which IEs occur, it is

21More precisely, these calculations are made by the ISO using the marginal
cost functions reported by GenCos to the ISO as part of their reported supply
offers, because these are the functions actually used by the ISO in its DC-OPF
problems in an attempt to achieve efficient dispatch levels. The ISO does not
directly observe the GenCos’ true marginal cost functions.

22As discussed in Li et al. [7], IEs are an important hidden cost of price
caps, since in practice they would require special actions to be taken by the
ISO (e.g., reserve procurement, load shedding). AMES(V2.02) reports a tick-
count of IEs. Future versions of AMES will incorporate adequacy protection
procedures based on empirical ISO practices.

assumed that all fixed demand is met with reserve generation
priced at 1000 ($/MWh).

The mean outcomes for LMP spiking ($/MWh) depicted
in Figure 17 for learning GenCos under different supply-
offer price caps are calculated from day-1000 data with LMP
set to the reserve price for hours in which an IE occurs.
More precisely, for each run r and for each of the five
transmission grid buses k, LMP spiking for run r and bus k is
first calculated as the maximum absolute difference between
successive hourly bus-k LMPs across all 24 hours of day
1000. Next, for each bus k, the average of these LMP spiking
measures is determined across all 30 runs r. Finally, the
average of these run-averaged LMP spiking measures across
all five buses is determined to get mean LMP spiking. The
corresponding standard deviation is then calculated in the usual
way using the “N” definition.

The mean outcomes for LMP volatility range ($/MWh)
depicted in Figure 17 for learning GenCos under different
supply-offer price caps are calculated from day-1000 data
with LMP set to the reserve price for hours in which an
IE occurs. More precisely, for each run r and for each of
the five transmission grid buses k, the LMP volatility range
is calculated as [maxLMP-minLMP] across all 24 hours of
day 1000. Second, for each bus k, the average of these LMP
volatility range measures is calculated across all 30 runs r.
Third, the average of these run-averaged LMP volatility range
measures is calculated across all five buses to get the mean
LMP volatility range. The corresponding standard deviation is
then calculated in the usual way using the “N” definition.

The LMP and IE frequency measures appearing in Ta-
ble XVI for learning GenCos under different supply-offer price
caps are determined for any designated day D as follows:
• Avg LMP with learning and IE: This measure reports

average hourly LMP for day-D data with IE reserve
charges included. Stated more precisely, during any day-
D hours in which an IE occurs, i.e., in which offered
supply is less than fixed demand, fixed demand is met
with reserve generation priced at 1000 ($/MWh). Avg
LMP with learning and IE is then calculated across all
24 hours of day D with the LMP for IE hours taken to
be 1000 ($/MWh).

• Avg LMP with learning and w/o IE: This measure reports
average hourly LMP only for those day-D hours in which
IEs do not occur. For example, suppose an IE occurs in
six of the 24 hours comprising day D, meaning that a
well-defined LMP solution is only obtained for each of
the remaining 18 hours. Then Avg LMP with learning
and w/o IE would be calculated by determining average
hourly LMP only for the latter 18 hours of day D.

• Avg IE with learning: This measure reports the frequency
of IEs for day-D data. For example, suppose that an IE
occurs in six of the 24 hours comprising day D. Then Avg
IE with learning would be reported as 100% × [6/24] =
25%.

The mean outcomes for these measures reported in Table XVI
are found by averaging their values across all thirty runs using
only day D=1000 data.
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TABLE I
ADMISSIBLE EXOGENOUS VARIABLES AND FUNCTIONAL FORMS

Variable Description Admissibility Restrictions

K Total number of transmission grid buses K > 0

N Total number of physically distinct network branches N > 0

J Total number of LSEs J > 0

I Total number of GenCos I > 0

Jk Set of LSEs located at bus k Card(∪K
k=1 Jk) = J

Ik Set of GenCos located at bus k Card(∪K
k=1 Ik) = I

So Base apparent power (in three-phase MVA) So ≥ 1

Vo Base voltage (in line-to-line kV) Vo > 0

Vk Voltage magnitude (kV) at bus k Vk = Vo

km Branch connecting buses k and m (if one exists) k 6= m

BR Set of all physically distinct branches km, k < m BR 6= ∅
xkm Reactance (ohm) for branch km xkm=xmk > 0, km in BR

Bkm [1/xkm] for branch km Bkm=Bmk > 0, km ∈ BR

PU
km Thermal limit (MW) for real power flow on km PU

km > 0, km ∈ BR

δ1 Voltage angle (radians) at specified angle reference bus 1 δ1 = 0

µ Penalty weight ($/h·radian) for voltage angle differences in DC-OPF objective function µ > 0

Rj Ratio of max potential price-sensitive demand to max potential total demand for LSE j 0 ≤ Rj ≤ 1

BPF
Lj (H) Benchmark-case hour-H fixed demand (MW) for LSE j BPF

Lj (H) > 0

pF
Lj (H) Actual hour-H fixed demand (MW) for LSE j pF

Lj (H) = [1-Rj ]*BPF
Lj (H)

SLMaxj (H) Hour-H upper limit for LSE j’s price-sensitive demand (MW) SLMaxj (H) = Rj*BPF
Lj (H)

MPTDj (H) Hour-H maximum potential total demand (MW) for LSE j MPTDj (H)= [pF
Lj (H)+SLMaxj (H)]

cj (H),dj (H) Hour-H demand coefficients ($/MWh,$/MW2h) for LSE j cj (H),dj (H) > 0

DjH (p) DjH (p) = cj (H) - 2dj (H)p = LSE j’s hour-H price-sensitive demand fct for real power p DjH (SLMaxj (H)) ≥ 0

SCosti Hourly pro-rated sunk cost ($/h) for GenCo i SCosti ≥ 0

CapL
i Lower real power operating capacity limit (MW) for GenCo i CapL

i ≥ 0

CapU
i Upper real power operating capacity limit (MW) for GenCo i CapU

i > 0

ai,bi Cost coefficients ($/MWh,$/MW2h) for GenCo i bi > 0

MCi(p) MCi(p) = ai+2bip = GenCo i’s true MC function for real power p MCi(CapL
i ) > 0

InitMoneyi Initial money holdings ($) of GenCo i InitMoneyi > 0

Mi Cardinality of the action domain ADi for GenCo i Mi ≥ 1

M1i,M2i,M3i Integer-valued density-control parameters for ADi construction
∏3

j=1
Mji = Mi

RIMaxL
i Ordinate range-index parameter for ADi construction RIMaxL

i ∈ [0, 1)

RIMaxU
i Slope range-index parameter for ADi construction RIMaxU

i ∈ [0,1)

RIMinC
i Capacity-withholding range-index parameter for ADi construction RIMinC

i ∈ (0, 1]

SSi Slope-start control parameter for ADi construction SSi > 0

MaxDNEi Estimate of maximum possible daily net earnings ($/D) for GenCo i from ADi MaxDNEi > 0

qi(1) Initial propensity ($/D) for GenCo i (learning) qi(1) ∝ MaxDNEi

Ti Temperature parameter for GenCo i (learning) Ti > 0

ri Recency parameter for GenCo i (learning) 0 ≤ ri ≤ 1

ei Experimentation parameter for GenCo i (learning) 0 ≤ ei < 1

PCap Price cap ($/MWh) imposed on GenCo supply offers by ISO PCap > 0
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TABLE II
ENDOGENOUS VARIABLES

Variable Description

pS
Lj Real-power price-sensitive demand (MW) by LSE j=1,...,J

aR
i ,bR

i Cost coefficients ($/MWh,$/MW2h) reported by GenCo i=1,...,I

CapRU
i Real-power upper operating capacity limit (MW) reported by GenCo i=1,...,I

pGi Real-power generation (MW) supplied by GenCo i=1,...,I

TGS Total gross surpus ($/h) of LSEs corresponding to their price-sensitive demands

TVCR Reported total avoidable cost ($/h) of GenCos

TNSR Reported total net surplus (TGS - TVCR)

TNCR Reported total net avoidable cost (-1 × TNSR)

δk Voltage angle (in radians) at bus k = 2,...,K

Pkm Real power (MW) flowing in branch km ∈ BR

LMPk Locational marginal price ($/MWh) at bus k=1,...,K

TABLE III
NUMERICAL INPUT SPECIFICATIONS FOR THE BENCHMARK DYNAMIC 5-BUS TEST CASE:

NO GENCO LEARNING, 100% FIXED DEMAND, AND NO SUPPLY-OFFER PRICE CAP

Base Valuesa

So Vo

100 10

Kb µc

5 0.05

Branch
From To MaxCapd xe

1 2 250.0 0.0281
1 4 150.0 0.0304
1 5 400.0 0.0064
2 3 350.0 0.0108
3 4 240.0 0.0297
4 5 240.0 0.0297

GenCo i at bus SCosti ai bi CapL
i CapU

i InitMoneyi

1 1 56.90 14.0 0.005 0.0 110.0 $1M
2 1 0.11 15.0 0.006 0.0 100.0 $1M
3 3 2267.53 25.0 0.010 0.0 520.0 $1M
4 4 5.19 30.0 0.012 0.0 200.0 $1M
5 5 1391.16 10.0 0.007 0.0 600.0 $1M

LSE j at bus BPF (00)f BPF (01) BPF (02) BPF (03) BPF (04) BPF (05) BPF (06) BPF (07)
1 2 350.00 322.93 305.04 296.02 287.16 291.59 296.02 314.07
2 3 300.00 276.80 261.47 253.73 246.13 249.93 253.73 269.20
3 4 250.00 230.66 217.89 211.44 205.11 208.28 211.44 224.33

LSE j at bus BPF (08) BPF (09) BPF (10) BPF (11) BPF (12) BPF (13) BPF (14) BPF (15)
1 2 358.86 394.80 403.82 408.25 403.82 394.80 390.37 390.37
2 3 307.60 338.40 346.13 349.93 346.13 338.40 334.60 334.60
3 4 256.33 282.00 288.44 291.61 288.44 282.00 278.83 278.83

LSE j at bus BPF (16) BPF (17) BPF (18) BPF (19) BPF (20)0 BPF (21) BPF (22) BPF (23)
1 2 408.25 448.62 430.73 426.14 421.71 412.69 390.37 363.46
2 3 349.93 384.53 369.20 365.26 361.47 353.73 334.60 311.53
3 4 291.61 320.44 307.67 304.39 301.22 294.78 278.83 259.61

aFor simplicity, the base apparent power So (MVA) and base voltage Vo (kV) are chosen so base impedance Zo satisfies Zo = V2
o/So = 1.

bTotal number of buses
cPenalty weight µ ($/h·radian) for voltage angle differences in DC-OPF objective function
dUpper limit PU

km (MW) on the magnitude of real power flow in branch km
eReactance xkm (ohm) for branch km
fBPF (H) for LSE j: The benchmark-case fixed demand (MW) for LSE j for each hour H from 00 to 23
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TABLE IV
ADDITIONAL NUMERICAL INPUT SPECIFICATIONS FOR THE BENCHMARK DYNAMIC 5-BUS TEST CASE EXTENDED TO INCLUDE GENCO

LEARNING: ACTION DOMAIN PARAMETER VALUES, LEARNING PARAMETER VALUES, AND RANDOM SEEDS FOR MULTIPLE RUNS

Action Domain Parameters

GenCo i M1i M2i M3i RIMaxL
i RIMaxU

i RIMinC
i SSi

1 10 10 1 0.75 0.75 1.00 0.001
2 10 10 1 0.75 0.75 1.00 0.001
3 10 10 1 0.75 0.75 1.00 0.001
4 10 10 1 0.75 0.75 1.00 0.001
5 10 10 1 0.75 0.75 1.00 0.001

Learning Parameters

GenCo i ri ei MaxDNEi α = [qi(1)/MaxDNEi] β = [qi(1)/Ti]
1 0.04 0.96 552,949.06 (1, 1/2, 1/4, 1/10, 1/24) (100, 50, 10, 2, 1, 1/2)
2 0.04 0.96 538,560.96 (1, 1/2, 1/4, 1/10, 1/24) (100, 50, 10, 2, 1, 1/2)
3 0.04 0.96 4,615,108.99 (1, 1/2, 1/4, 1/10, 1/24) (100, 50, 10, 2, 1, 1/2)
4 0.04 0.96 2,148,481.92 (1, 1/2, 1/4, 1/10, 1/24) (100, 50, 10, 2, 1, 1/2)
5 0.04 0.96 2,099,525.76 (1, 1/2, 1/4, 1/10, 1/24) (100, 50, 10, 2, 1, 1/2)

Random Seeds for All 30 Runs

RunID InitialSeed RunID InitialSeed RunID InitialSeed
01 2096966936 11 736815417 21 1831032783
02 2131965672 12 132292439 22 493464018
03 1235967177 13 207226519 23 930068517
04 511529502 14 1522886012 24 856336506
05 1063330821 15 2000909491 25 1205573239
06 870295371 16 808958575 26 794414294
07 1815184757 17 1150478587 27 1183491260
08 1880683622 18 173232596 28 1846539650
09 122209384 19 999975840 29 437363834
10 220366820 20 1616038132 30 2013640491

TABLE V
ADDITIONAL NUMERICAL SPECIFICATIONS FOR THE BENCHMARK DYNAMIC 5-BUS TEST CASE EXTENDED TO INCLUDE LSE PRICE-SENSITIVE DEMAND

FUNCTIONS. THE COLUMN FOR EACH LSE j GIVES THE ORDINATE AND SLOPE VALUES (C,D) FOR LSE j FOR EACH HOUR.

Hour LSE 1 LSE 2 LSE 3
00 (35.50, 0.40) (31.65, 0.40) (21.05, 0.40)
01 (33.95, 0.40) (30.39, 0.40) (20.60, 0.40)
02 (32.92, 0.40) (29.55, 0.40) (20.30, 0.40)
03 (32.40, 0.40) (29.13, 0.40) (20.15, 0.40)
04 (31.89, 0.40) (28.72, 0.40) (20.00, 0.40)
05 (32.15, 0.40) (28.93, 0.40) (20.07, 0.40)
06 (32.40, 0.40) (29.13, 0.40) (20.15, 0.40)
07 (33.44, 0.40) (29.97, 0.40) (20.45, 0.40)
08 (36.01, 0.40) (32.06, 0.40) (21.20, 0.40)
09 (38.08, 0.40) (33.74, 0.40) (21.81, 0.40)
10 (38.60, 0.40) (34.16, 0.40) (21.96, 0.40)
11 (38.85, 0.40) (34.37, 0.40) (22.03, 0.40)
12 (38.60, 0.40) (34.16, 0.40) (21.96, 0.40)
13 (38.08, 0.40) (33.74, 0.40) (21.81, 0.40)
14 (37.82, 0.40) (33.53, 0.40) (21.73, 0.40)
15 (37.82, 0.40) (33.53, 0.40) (21.73, 0.40)
16 (38.85, 0.40) (34.37, 0.40) (22.03, 0.40)
17 (78.24, 0.40) (66.07, 0.40) (32.61, 0.40)
18 (45.55, 0.40) (39.78, 0.40) (23.90, 0.40)
19 (39.88, 0.40) (35.20, 0.40) (22.33, 0.40)
20 (39.63, 0.40) (35.00, 0.40) (22.26, 0.40)
21 (39.11, 0.40) (34.57, 0.40) (22.11, 0.40)
22 (37.82, 0.40) (33.53, 0.40) (21.73, 0.40)
23 (36.28, 0.40) (32.28, 0.40) (21.28, 0.40)
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TABLE VI
HOURLY BUS LMPS DURING A TYPICAL DAY FOR THE BENCHMARK DYNAMIC 5-BUS TEST CASE. LMP K DENOTES THE LMP AT BUS K.

Hour LMP 1 LMP 2 LMP 3 LMP 4 LMP 5

00 15.17 35.50 31.65 21.05 16.21
01 15.16 33.95 30.39 20.60 16.13
02 15.16 32.92 29.55 20.30 16.07
03 15.16 32.40 29.13 20.15 16.04
04 15.15 31.89 28.72 20.00 16.01
05 15.16 32.15 28.93 20.07 16.03
06 15.16 32.40 29.13 20.15 16.04
07 15.16 33.44 29.98 20.45 16.10
08 15.17 36.01 32.06 21.20 16.24
09 15.18 38.08 33.74 21.81 16.35
10 15.18 38.60 34.16 21.96 16.38
11 15.18 38.85 34.37 22.03 16.39
12 15.18 38.60 34.16 21.96 16.38
13 15.18 38.08 33.74 21.81 16.35
14 15.17 37.82 33.53 21.73 16.34
15 15.17 37.82 33.53 21.73 16.34
16 15.18 38.85 34.37 22.03 16.39
17 14.02 78.24 66.07 32.61 17.32
18 15.07 45.56 39.78 23.90 16.64
19 15.18 39.88 35.20 22.33 16.45
20 15.18 39.63 35.00 22.26 16.43
21 15.18 39.11 34.57 22.11 16.41
22 15.17 37.82 33.53 21.73 16.34
23 15.17 36.28 32.28 21.28 16.25

TABLE VII
HOURLY BUS LMPS DURING DAY 1000 FOR A TYPICAL RUN (ID=03) OF THE BENCHMARK DYNAMIC 5-BUS TEST CASE

EXTENDED TO INCLUDE GENCO LEARNING.

Hour LMP 1 LMP 2 LMP 3 LMP 4 LMP 5

00 24.65 222.89 185.33 82.04 34.83
01 25.65 202.76 169.20 76.92 34.74
02 26.31 189.45 158.54 73.54 34.68
03 26.64 182.74 153.17 71.83 34.65
04 26.97 176.15 147.89 70.16 34.62
05 26.80 179.45 150.53 71.00 34.64
06 26.64 182.74 153.17 71.83 34.65
07 25.98 196.17 163.92 75.25 34.71
08 24.32 229.48 190.61 83.72 34.85
09 23.00 256.21 212.03 90.52 34.97
10 22.67 262.92 217.40 92.22 35.00
11 22.50 266.22 220.04 93.06 35.01
12 22.67 262.92 217.40 92.22 35.00
13 23.00 256.21 212.03 90.52 34.97
14 23.16 252.92 209.39 89.68 34.95
15 23.16 252.92 209.39 89.68 34.95
16 22.50 266.22 220.04 93.06 35.01
17 15.65 396.16 324.07 125.81 35.18
18 21.67 282.94 233.44 97.31 35.08
19 21.84 279.52 230.70 96.44 35.07
20 22.01 276.23 228.06 95.61 35.05
21 22.34 269.52 222.69 93.90 35.02
22 23.16 252.92 209.39 89.68 34.95
23 24.15 232.90 193.35 84.59 34.87
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TABLE VIII
HOURLY GENCO DISPATCH LEVELS DURING A TYPICAL DAY FOR THE BENCHMARK DYNAMIC 5-BUS TEST CASE.

Hour GenCo 1 GenCo 2 GenCo 3 GenCo 4 GenCo 5

00 110.00 13.87 332.53 0.00 443.59
01 110.00 13.44 269.45 0.00 437.54
02 110.00 13.16 227.71 0.00 433.54
03 110.00 13.02 206.66 0.00 431.52
04 110.00 12.87 185.99 0.00 429.54
05 110.00 12.94 196.39 0.00 430.53
06 110.00 13.02 206.66 0.00 431.52
07 110.00 13.30 248.77 0.00 435.55
08 110.00 14.01 353.20 0.00 445.58
09 110.00 14.60 437.02 0.00 453.63
10 110.00 14.73 458.06 0.00 455.64
11 110.00 14.80 468.39 0.00 456.63
12 110.00 14.73 458.06 0.00 455.64
13 110.00 14.60 437.02 0.00 453.63
14 110.00 14.51 426.67 0.00 452.62
15 110.00 14.51 426.67 0.00 452.62
16 110.00 14.80 468.39 0.00 456.63
17 2.07 0.00 520.00 108.88 522.63
18 107.34 6.11 520.00 0.00 474.15
19 110.00 15.08 510.08 0.00 460.63
20 110.00 15.01 499.83 0.00 459.64
21 110.00 14.88 478.75 0.00 457.63
22 110.00 14.51 426.67 0.00 452.62
23 110.00 14.08 363.95 0.00 446.60

CapU 110.00 100.00 520.00 200.00 600.00

TABLE IX
HOURLY GENCO DISPATCH LEVELS DURING DAY 1000 FOR A TYPICAL RUN (ID=03) OF THE BENCHMARK DYNAMIC 5-BUS TEST CASE

EXTENDED TO INCLUDE GENCO LEARNING.

Hour GenCo 1 GenCo 2 GenCo 3 GenCo 4 GenCo 5

00 37.43 26.39 316.95 36.74 482.50
01 40.94 30.35 257.04 28.21 473.86
02 43.26 32.97 217.45 22.57 468.16
03 44.42 34.29 197.48 19.72 465.28
04 45.57 35.59 177.86 16.93 462.45
05 45.00 34.94 187.67 18.33 463.87
06 44.42 34.29 197.48 19.72 465.28
07 42.09 31.65 237.42 25.41 471.03
08 36.28 25.09 336.56 39.53 485.32
09 31.62 19.83 416.10 50.86 496.78
10 30.45 18.51 436.06 53.70 499.66
11 29.88 17.86 445.87 55.10 501.07
12 30.45 18.51 436.06 53.70 499.66
13 31.62 19.83 416.10 50.86 496.78
14 32.20 20.48 406.29 49.46 495.37
15 32.20 20.48 406.29 49.46 495.37
16 29.88 17.86 445.87 55.10 501.07
17 5.80 0.00 520.00 109.69 518.10
18 26.97 14.57 495.63 62.19 508.25
19 27.56 15.25 485.46 60.74 506.78
20 28.13 15.89 475.66 59.34 505.36
21 29.30 17.22 455.69 56.50 502.49
22 32.20 20.48 406.29 49.46 495.37
23 35.68 24.42 346.73 40.98 486.79

CapU 110.00 100.00 520.00 200.00 600.00
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TABLE X
HOURLY BRANCH POWER FLOWS DURING A TYPICAL DAY FOR THE BENCHMARK DYNAMIC 5-BUS TEST CASE.

Hour 1–2 1–4 1–5 2–3 3–4 4–5

00 250.00 129.65 -255.77 -100.00 -67.47 -187.82
01 250.00 126.71 -253.27 -72.95 -80.31 -184.27
02 250.00 124.77 -251.61 -55.05 -88.81 -181.93
03 250.00 123.79 -250.77 -46.02 -93.09 -180.75
04 250.00 122.83 -249.95 -37.16 -97.30 -179.58
05 250.00 123.30 -250.37 -41.62 -95.19 -180.16
06 250.00 123.79 -250.77 -46.02 -93.09 -180.75
07 250.00 125.74 -252.45 -64.09 -84.52 -183.11
08 250.00 130.61 -256.60 -108.86 -63.26 -188.98
09 250.00 134.52 -259.92 -144.80 -46.18 -193.70
10 250.00 135.49 -260.76 -153.83 -41.90 -194.88
11 250.00 135.97 -261.17 -158.25 -39.81 -195.45
12 250.00 135.49 -260.76 -153.83 -41.90 -194.88
13 250.00 134.52 -259.92 -144.80 -46.18 -193.70
14 250.00 134.03 -259.51 -140.37 -48.30 -193.11
15 250.00 134.03 -259.51 -140.37 -48.30 -193.11
16 250.00 135.97 -261.17 -158.25 -39.81 -195.45
17 250.00 98.83 -346.76 -198.62 -63.15 -175.88
18 250.00 137.64 -274.19 -180.73 -29.93 -199.97
19 250.00 137.91 -262.83 -176.14 -31.32 -197.80
20 250.00 137.43 -262.42 -171.73 -33.41 -197.22
21 250.00 136.46 -261.58 -162.70 -37.69 -196.05
22 250.00 134.03 -259.51 -140.37 -48.30 -193.11
23 250.00 131.10 -257.02 -113.48 -61.07 -189.58

Max Cap 250.00 150.00 400.00 350.00 240.00 240.00

TABLE XI
HOURLY BRANCH POWER FLOWS DURING DAY 1000 FOR A TYPICAL RUN (ID=03) OF THE BENCHMARK DYNAMIC 5-BUS TEST CASE

EXTENDED TO INCLUDE GENCO LEARNING.

Hour 1–2 1–4 1–5 2–3 3–4 4–5

00 250.00 114.42 -300.66 -100.00 -83.05 -181.91
01 250.00 114.62 -293.38 -72.93 -92.69 -180.54
02 250.00 114.75 -288.57 -55.04 -99.06 -179.64
03 250.00 114.82 -286.15 -46.02 -102.27 -179.18
04 250.00 114.88 -283.77 -37.16 -105.43 -178.74
05 250.00 114.85 -284.96 -41.59 -103.85 -178.96
06 250.00 114.82 -286.15 -46.02 -102.27 -179.18
07 250.00 114.68 -291.00 -64.07 -95.85 -180.09
08 250.00 114.35 -303.04 -108.86 -79.90 -182.35
09 250.00 114.09 -312.70 -144.80 -67.10 -184.16
10 250.00 114.02 -315.12 -153.82 -63.89 -184.62
11 250.00 113.99 -316.32 -158.25 -62.31 -184.84
12 250.00 114.02 -315.12 -153.82 -63.89 -184.62
13 250.00 114.09 -312.70 -144.80 -67.10 -184.16
14 250.00 114.12 -311.51 -140.37 -68.68 -183.94
15 250.00 114.12 -311.51 -140.37 -68.68 -183.94
16 250.00 113.99 -316.32 -158.25 -62.31 -184.84
17 250.00 98.83 -343.09 -198.62 -63.15 -175.09
18 250.00 113.83 -322.36 -180.73 -54.30 -185.97
19 250.00 113.86 -321.12 -176.14 -55.94 -185.74
20 250.00 113.89 -319.93 -171.71 -57.52 -185.52
21 250.00 113.96 -317.51 -162.69 -60.73 -185.06
22 250.00 114.12 -311.51 -140.37 -68.68 -183.94
23 250.00 114.32 -304.27 -113.46 -78.26 -182.58

Max Cap 250.00 150.00 400.00 350.00 240.00 240.00
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TABLE XII
AVERAGE HOURLY LMP, TOTAL DEMAND, TRUE TOTAL AVOIDABLE COSTS, AND THE GENCO LERNER INDEX DURING A TYPICAL DAY FOR THE

BENCHMARK DYNAMIC 5-BUS TEST CASE EXTENDED TO INCLUDE DEMAND VARYING FROM R=0.0 (100% FIXED) TO R=1.0 (100% PRICE SENSITIVE).

R Avg LMP Avg Total Demand Avg TrueTVCost Avg LI

0.0 25.18 318.21 3,779.17 0.0056

0.1 24.51 299.19 3,439.32 0.0042

0.2 23.92 279.69 3,100.91 0.0036

0.3 23.33 259.85 2,765.58 0.0032

0.4 22.72 240.18 2,446.54 0.0029

0.5 22.10 220.88 2,143.65 0.0026

0.6 21.35 204.09 1,888.46 0.0022

0.7 20.49 188.67 1,662.19 0.0013

0.8 19.49 175.74 1,481.15 0.0000

0.9 18.27 169.68 1,408.55 0.0000

1.0 17.04 163.87 1,349.49 0.0000

TABLE XIII
MEAN OUTCOMES (WITH STANDARD DEVIATIONS) FOR AVERAGE HOURLY LMP, TOTAL DEMAND, TRUE TOTAL AVOIDABLE COSTS, REPORTED TOTAL
AVOIDABLE COSTS, AND THE GENCO LERNER INDEX DURING DAY 1000 FOR THE BENCHMARK DYNAMIC 5-BUS TEST CASE EXTENDED TO INCLUDE

GENCO LEARNING AND DEMAND VARYING FROM R=0.0 (100% FIXED) TO R=1.0 (100% PRICE SENSITIVE).

R Avg LMP Avg Total Demand Avg TrueTVCost Avg RepTVCost Avg LI

0.0 140.30 318.21 4,154.01 16,045.20 0.6347
(106.03) (0.00) (3,751.36) (23,126.74) (0.25)

0.1 128.32 286.39 3,519.94 12,492.44 0.6092
(94.79) (0.00) (3,163.41) (17,189.76) (0.27)

0.2 58.67 256.23 2,820.88 5,641.99 0.3792
(53.06) (8.81) (3,095.78) (7,797.29) (0.26)

0.3 42.29 227.52 2,313.91 3,895.22 0.3485
(25.55) (15.86) (2,770.51) (4,787.31) (0.23)

0.4 37.54 202.89 1,913.74 3,056.16 0.3231
(20.08) (24.90) (2,503.89) (4,015.67) (0.23)

0.5 32.11 180.25 1,570.93 2,469.80 0.3054
(10.80) (32.85) (2,343.13) (3,740.36) (0.22)

0.6 29.37 164.55 1,389.99 2,133.67 0.2769
(7.69) (42.32) (2,196.00) (3,365.10) (0.21)

0.7 28.13 148.94 1,232.78 1,857.35 0.2654
(7.31) (52.25) (2,012.96) (2,987.34) (0.22)

0.8 26.35 135.30 1,097.52 1,604.06 0.2425
(6.42) (62.95) (1,897.99) (2,700.79) (0.22)

0.9 24.90 120.56 962.60 1,368.97 0.2274
(5.95) (73.11) (1,753.26) (2,399.95) (0.21)

1.0 23.34 106.13 832.18 1,147.94 0.2098
(5.53) (82.63) (1,595.86) (2,099.49) (0.20)
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TABLE XIV
TOTAL GENCO DAILY NET EARNINGS, TOTAL GENCO DAILY REVENUES, TOTAL LSE DAILY PAYMENTS, AND ISO DAILY NET SURPLUS

ON A TYPICAL DAY FOR THE BENCHMARK DYNAMIC 5-BUS TEST CASE EXTENDED TO PERMIT DEMAND VARYING
FROM R=0.0 (100% FIXED) TO R=1.0 (100% PRICE SENSITIVE).

R=0.0 R=0.2 R=0.4 R=0.6 R=0.8 R=1.0

GenCo 1 DNE 1,556.41 1,412.41 1,316.90 1,239.14 1,193.74 1,145.06

GenCo 2 DNE 26.58 10.93 4.30 1.42 1.21 0.43

GenCo 3 DNE 56,016.09 35,651.85 21,354.23 11,479.86 2,874.96 2,493.13

GenCo 4 DNE 142.27 13.91 0.00 0.00 0.00 0.00

GenCo 5 DNE 34,266.94 32,253.34 30,460.22 28,531.08 26,246.37 23,364.36

Total Gen DNE 92,008.30 69,342.45 53,135.65 41,251.49 30,316.28 27,002.99

GenCo 1 DRev 38,356.90 38,599.53 37,574.43 36,411.03 35,826.48 34,932.06

GenCo 2 DRev 4,801.54 3,082.31 1,912.43 990.22 617.12 303.06

GenCo 3 DRev 321,967.71 229,151.51 144,201.72 74,559.64 24,303.90 17,528.99

GenCo 4 DRev 3,551.07 1,049.37 0.00 0.00 0.00 0.00

GenCo 5 DRev 176,831.32 169,568.69 163,032.42 155,905.91 147,307.23 136,178.18

Total Gen DRev 545,508.54 441,451.41 346,721.00 267,866.80 208,054.73 188,942.29

Total LSE DPay 754,919.61 625,704.76 506,698.47 399,806.50 301,537.97 231,945.71

ISO DNetSurplus 209,411.07 184,253.35 159,977.47 131,939.70 93,483.24 43,003.42
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TABLE XV
MEAN OUTCOMES (WITH STANDARD DEVIATIONS) FOR TOTAL GENCO DAILY NET EARNINGS, TOTAL GENCO DAILY REVENUES, TOTAL LSE DAILY

PAYMENTS, AND ISO DAILY NET SURPLUS ON DAY 1000 FOR THE BENCHMARK DYNAMIC 5-BUS TEST CASE EXTENDED TO INCLUDE GENCO LEARNING
AND DEMAND VARYING FROM R=0.0 (100% FIXED) TO R=1.0 (100% PRICE SENSITIVE).

R=0.0 R=0.2 R=0.4 R=0.6 R=0.8 R=1.0

GenCo 1 DNE 69,219.61 21,950.82 18,028.37 15,317.64 11,460.38 6,075.72
(64,055.42) (32,888.20) (20,401.49) (17,342.48) (13,341.31) (8,585.60)

GenCo 2 DNE 54,548.72 18,919.31 13,271.49 11,141.69 8,368.95 5,061.87
(57,868.92) (30,102.78) (19,648.72) (15,916.37) (13,528.49) (9,487.15)

GenCo 3 DNE 1,725,216.72 293,743.16 41,122.50 8,213.84 4,059.61 2,316.01
(389,906.14) (269,901.79) (20,776.25) (7,847.69) (3,343.84) (1,775.20)

GenCo 4 DNE 321,907.08 38,678.95 5,589.68 66.32 14.11 3.38
(153,782.17) (73,333.88) (14,969.93) (161.70) (51.51) (18.22)

GenCo 5 DNE 270,754.58 167,938.19 149,920.04 118,535.14 83,774.92 54,920.77
(124,835.20) (113,128.59) (85,701.22) (50,853.37) (32,392.38) (20,700.86)

Total Gen DNE 2,441,646.71 541,230.41 227,932.07 153,274.62 107,677.99 68,377.76
(153,782.17) (73,333.88) (14,969.93) (161.70) (51.51) (18.22)

GenCo 1 DRev 93,976.61 39,069.66 34,172.46 30,876.22 25,992.32 16,407.69
(78,884.69) (46,553.23) (35,411.75) (31,825.48) (27,100.83) (20,871.22)

GenCo 2 DRev 74,751.32 32,167.61 25,385.25 22,521.81 18,284.43 12,934.50
(72,682.55) (44,047.41) (34,607.65) (30,244.82) (27,425.88) (22,709.95)

GenCo 3 DRev 1,952,910.84 432,137.00 97,834.40 27,830.78 13,671.15 7,337.80
(386,964.13) (257,439.64) (37,540.80) (27,309.84) (14,680.47) (6,473.61)

GenCo 4 DRev 449,051.68 70,968.73 14,705.64 296.48 77.98 16.88
(195,313.53) (122,983.56) (36,263.17) (575.30) (231.84) (90.88)

GenCo 5 DRev 372,219.49 305,520.62 285,483.62 238,548.54 181,354.58 131,542.33
(102,726.38) (106,382.80) (79,412.59) (44,763.65) (47,182.98) (46,882.23)

Total Gen DRev 2,942,909.93 879,863.63 457,581.36 320,073.84 239,380.46 168,239.20
(558,938.79) (385,241.09) (113,573.45) (52,131.79) (24,347.08) (25,679.71)

Total LSE DPay 5,040,530.89 1,526,994.60 663,801.01 377,524.06 271,061.40 183,118.99
(1,043,543.03) (975,375.28) (209,686.70) (11,366.32) (26,241.77) (33,324.23)

ISO DNetSurplus 2,097,620.96 647,130.97 206,219.65 57,450.22 31,680.94 14,879.79
(632,303.71) (633,129.12) (197,896.93) (48,696.64) (30,789.07) (11,016.23)

TABLE XVI
MEAN OUTCOMES (WITH STANDARD DEVIATIONS) FOR AVERAGE HOURLY LMP AND AVERAGE HOURLY INADEQUACY EVENT (IE) FREQUENCY DURING

DAY 1000 FOR THE BENCHMARK DYNAMIC 5-BUS TEST CASE EXTENDED TO INCLUDE GENCO LEARNING AND A SUPPLY-OFFER PRICE CAP VARYING
FROM INFINITELY HIGH (NONE) TO LOW (80), BOTH WITH AND WITHOUT IE RESERVE CHARGES.

No PCap PCap=160 PCap=140 PCap=120 PCap=100 PCap=80

Avg LMP (w/o learning) 25.18 25.18 25.18 25.18 25.18 25.18

Avg LMP 140.30 126.31 161.77 153.74 238.99 342.05
with learning and IE (106.03) (193.79) (273.70) (296.70) (381.46) (442.94)

Avg LMP 140.30 89.65 86.95 50.92 48.31 44.91
with learning and w/o IE (106.03) (75.76) (115.17) (33.45) (28.90) (30.54)

Avg IE with learning 0.0% 4.0% 8.2% 7.5% 17.8% 31.1%
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TABLE XVII
MEAN OUTCOMES (WITH STANDARD DEVIATIONS) FOR HOURLY BUS LMPS DURING DAY 1000 FOR THE BENCHMARK DYNAMIC 5-BUS TEST CASE

EXTENDED TO INCLUDE GENCO LEARNING.

Hour LMP 1 LMP 2 LMP 3 LMP 4 LMP 5

00 41.72 248.42 209.25 101.56 52.33
(25.27) (52.52) (41.67) (20.52) (23.46)

01 43.09 216.75 183.85 93.37 52.01
(25.19) (41.20) (32.56) (18.93) (23.47)

02 44.05 195.93 167.16 88.02 51.85
(25.24) (34.02) (26.82) (18.25) (23.58)

03 44.55 185.43 158.74 85.34 51.78
(25.29) (30.52) (24.04) (18.01) (23.66)

04 45.03 175.14 150.49 82.70 51.71
(25.36) (27.35) (21.53) (17.86) (23.76)

05 44.79 180.29 154.62 84.02 51.74
(25.32) (28.92) (22.76) (17.92) (23.71)

06 44.55 185.43 158.74 85.34 51.78
(25.29) (30.52) (24.04) (18.01) (23.66)

07 43.57 206.43 175.58 90.72 51.93
(25.21) (37.60) (29.68) (18.56) (23.52)

08 41.36 258.93 217.71 104.35 52.53
(25.41) (56.28) (44.70) (21.19) (23.58)

09 39.90 301.37 251.83 115.60 53.32
(25.27) (70.80) (56.70) (24.63) (23.57)

10 39.52 311.91 260.30 118.38 53.50
(25.41) (74.57) (59.75) (25.51) (23.71)

11 39.33 317.10 264.47 119.75 53.59
(25.48) (76.45) (61.28) (25.95) (23.78)

12 39.52 311.91 260.30 118.38 53.50
(25.41) (74.57) (59.75) (25.51) (23.71)

13 39.90 301.37 251.83 115.60 53.32
(25.27) (70.80) (56.70) (24.63) (23.57)

14 40.08 296.20 247.67 114.23 53.23
(25.20) (68.97) (55.21) (24.21) (23.51)

15 40.08 296.20 247.67 114.23 53.23
(25.20) (68.97) (55.21) (24.21) (23.51)

16 39.33 317.10 264.47 119.75 53.59
(25.48) (76.45) (61.28) (25.95) (23.78)

17 35.99 395.18 327.12 139.98 54.42
(23.13) (95.80) (76.66) (28.45) (21.24)

18 38.28 346.50 288.10 127.51 54.10
(25.10) (84.16) (67.71) (28.09) (23.59)

19 38.59 338.62 281.77 125.45 53.99
(24.99) (83.24) (67.02) (28.04) (23.54)

20 38.77 333.28 277.48 124.03 53.89
(24.93) (81.38) (65.54) (27.65) (23.49)

21 39.15 322.39 268.73 121.15 53.68
(25.55) (78.32) (62.79) (26.35) (23.84)

22 40.08 296.20 247.67 114.23 53.23
(25.20) (68.97) (55.21) (24.21) (23.51)

23 41.17 264.39 222.10 105.80 52.63
(25.49) (58.24) (46.27) (21.55) (23.63)
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TABLE XVIII
PAIRWISE CROSS-CORRELATIONS BETWEEN GENCO REPORTED MARGINAL COSTS AT THE PEAK-DEMAND HOUR 17 OF DAY 1000 FOR THE BENCHMARK

DYNAMIC 5-BUS TEST CASE EXTENDED TO INCLUDE GENCO LEARNING.

GenCo 1 GenCo 2 GenCo 3 GenCo 4 GenCo 5

GenCo 1 1.0000 0.1254 -0.3412 -0.0588 0.2879

GenCo 2 1.0000 -0.0355 0.1131 0.5042

GenCo 3 1.0000 -0.3518 0.0163

GenCo 4 1.0000 -0.1718

GenCo 5 1.0000
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TABLE XIX
PAIRWISE CROSS-CORRELATIONS BETWEEN GENCO REPORTED MARGINAL COSTS AND BUS LMPS AT THE PEAK-DEMAND HOUR 17 OF DAY 1000 FOR

THE BENCHMARK DYNAMIC 5-BUS TEST CASE EXTENDED TO INCLUDE GENCO LEARNING.

LMP 1 LMP 2 LMP 3 LMP 4 LMP 5

GenCo 1 0.3136 -0.2244 -0.2143 -0.0718 0.2879

GenCo 2 0.4150 0.1344 0.1591 0.4148 0.5042

GenCo 3 -0.1164 0.5147 0.5222 0.5363 0.0163

GenCo 4 -0.2711 0.4641 0.4625 0.3811 -0.1718

GenCo 5 0.9704 -0.3125 -0.2712 0.2293 1.0000

TABLE XX
FREQUENCY OF GENCO MARGINALITY ACROSS 30 RUNS MEASURED AT FOUR DIFFERENT HOURS ON DAY 1000 FOR THE BENCHMARK DYNAMIC 5-BUS

TEST CASE EXTENDED TO INCLUDE GENCO LEARNING.

GenCo 1 GenCo 2 GenCo 3 GenCo 4 GenCo 5

H04 13% 37% 100% 37% 100%

H11 10% 30% 100% 20% 100%

H17 10% 23% 87% 20% 100%

H20 10% 30% 100% 13% 100%

TABLE XXI
PAIRWISE CROSS-CORRELATIONS BETWEEN BUS LMPS AT THE PEAK-DEMAND HOUR 17 OF DAY 1000 FOR THE BENCHMARK DYNAMIC 5-BUS TEST

CASE EXTENDED TO INCLUDE GENCO LEARNING.

LMP 1 LMP 2 LMP 3 LMP 4 LMP 5

LMP 1 1.0000 -0.5328 -0.4957 -0.0127 0.9704

LMP 2 1.0000 0.9991 0.8530 -0.3125

LMP 3 1.0000 0.8747 -0.2712

LMP 4 1.0000 0.2293

LMP 5 1.0000

TABLE XXII
PAIRWISE CROSS-CORRELATIONS BETWEEN REAL-TIME AND DAY-AHEAD MARKET LMPS FOR THE MIDAMERICAN ENERGY CORPORATION

(MEC) AND FOUR NEIGHBORING BALANCING AUTHORITIES.

DA (8/1/08) DA (8/2/08) DA (8/3/08) DA (9/1/08) RT (8/1/08) RT (8/2/08) RT (8/3/08) RT (9/1/08)

MEC–ALTW 0.998 0.997 0.999 1.000 0.994 0.971 0.974 1.000

MEC–MPW 0.996 0.994 0.998 1.000 0.996 0.970 0.973 1.000

MEC–OPPD 1.000 1.000 0.999 1.000 0.996 0.986 0.973 1.000

MEC–NPPD 0.998 0.998 0.995 0.998 0.983 0.930 0.824 1.000
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