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Microeconomics of Technology Adoption

Andrew D. Foster and Mark R. Rosenzweig

Abstract

There is an emerging consensus among macro-economists that differences in technology
across countries account for the major differences in per-capita GDP and the wages of workers
with similar skills across countries. Accounting for differences in technology levels across
countries thus can go a long way towards understanding global inequality. One mechanism by
which poorer countries can catch up with richer countries is through technological diffusion, the
adoption by low-income countries of the advanced technologies produced in high-income
countries. In this survey, we examine recent micro studies that focus on understanding the
adoption process. If technological diffusion is a major channel by which poor countries can
develop, it must be the case that technology adoption is incomplete or the inputs associated with
the technologies are under-utilized in poor, or slow-growing economies. Thus, obtaining a better
understanding of the constraints on adoption is useful in understanding a major component of

growth.
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1. Introduction

There is an emerging consensus among macro-economists that differences in
technology, or TFP, across countries accounts for the major differences in per-
capita GDP and the wages of workers with similar skills across countries of the
world (Caselli and Coleman, 2001; Comin and Hobijn, 2004; Rosenzweig,
forthcoming). Accounting for differences in technology levels across countries
thus can go a long way towards understanding global inequality. One mechanism
by which poorer countries can catch up with richer countries is through
technological diffusion, the adoption by low-income countries of the advanced
technologies produced in high-income countries (Nelson and Phelps, 1966). In this
survey, we examine recent micro studies that focus on understanding the adoption
process. By technology we mean the relationship between inputs and outputs, and
by adoption of new technologies we mean both the use of new mappings between
inputs and outputs and the corresponding allocations of inputs that exploit the new
mappings.

The last major survey of technology adoption focused on agriculture in low-
income countries (Feder et al., 1985). As most of the world’s poor work in
agricultural occupations and agriculture is an important industry in most poor
countries, this focus is well-placed. However, to understand fully the determinants
of technological adoption, it is useful to examine adoption behavior in a variety of
settings for a variety of technology types. We will thus look at studies examining
the adoption of new seeds, use of fertilizer, improved bed nets, pills, boats, water
purifiers, contraceptives, menstrual aids, and other innovations that are presumed
to either augment profits or human welfare directly. Most studies, however, still
focus on agriculture, in part because it is easier to measure inputs and outputs,
although this advantage is not always well-exploited, and partly because
agriculture continues to be important and there have been a flow of important
innovations in agriculture, including most prominently, new high-yielding variety
(HYV) seeds. And, as fertilizer is a key input for maximizing the potential of many
of these new seeds, there are many studies of this farm input.

If technological diffusion is a major channel by which poor countries can
develop, it must be the case that technology adoption is incomplete or the inputs
associated with the technologies are under-utilized in poor, or slow-growing
economies. Thus, obtaining a better understanding of the constraints on adoption
and input allocations are useful in understanding a major component of growth.
Documentation of such underutilization of existing technologies and inputs in, for
example, agriculture in the form of unusually high rates of returns outside of
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experimental plots and laboratories, however, is almost nonexistent, a topic we will
discuss in more detail below.'

What are the principal determinants of technology adoption? Table 1 reports
estimates from a simple, cross-sectional regression of the probability that farmers
in India in 2007 were using any HY'V seeds on any of their plots of land in terms
of variables that are typically looked at in studies of adoption.” And, the estimates
are also typical of the major descriptive findings in the literature: First, adoption
and schooling are positively correlated, net of wealth. Second, larger and wealthier
farmers are more likely to adopt new technologies than are poorer households, and
the effects may be non-linear. Third, the adoption by an individual farmer is
positively correlated with the extent of prior adoption by his “neighbors”, in this
case measured by the number of adopters in the village. What is not revealed by
these estimates is the underlying causes. Does the schooling relationship reflect the
fact that the more schooled have superior knowledge about the technology? Are the
poorer farmers less likely to adopt the new technologies because of credit
constraints, or are they more risk averse and less protected from risk than richer
farmers? Or are there important economies of scale in adoption? Or are wealthy
farmers wealthy because they have adopted HY V’s? Does the correlation with
neighbors’ prior adoption behavior reflect learning externalities, or is it simply a
reflection of common unobservables that make HY'V returns higher for the farmer
and his neighbors. Indeed, missing as a determinant in Table 1 is the return to
adoption, which may be correlated with all of the right-hand side variable.

Studies that have taken place since the 1985 survey have gone a long way
towards answering many of these questions, using new data, new empirical
methods, and new theoretical approaches. We will discuss those studies that have
advanced our understanding in this area, or that raise new questions about our
understanding. We begin with a discussion of measurement issues that pertain to
evaluating the returns to technology adoption, and then go on to discuss the role of
learning, individual and group, the role of education, and the roles of operational

'Such direct evidence for under-investment in schooling in poor countries is similarly
lacking, but given the possible complementarities between schooling and technology and its
change, understanding the barriers to technology adoption may provide insights into the

importance of schooling as a determinant of growth in low-income countries. We discuss this
link below.

*The data are from the sixth round of the Rural Economic and Development Survey
(REDS), which is a probability sample of rural households in the major states of India.
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scale, credit markets and insurance markets in explaining the wealth-adoption
relationship. We also discuss recent studies that explore non-standard models of
human behavior, and end with our conclusions about what we think we have
learned and where we need to learn more.

2. Returns, Input Use and Adoption
a. Measurement issues.

An important determinant of the adoption of a new technology is the net
gain to the agent from adoption, inclusive of all costs of using the new technology.
Under-adoption is defined as a situation in which there are substantial unrealized
gains to the use of a new technology or expansion of input use. It is thus generally
reflected in a high return to adoption or input use at the relevant margin. Measures
of the marginal return to input use or a marginal expansion in technology are thus
informative about whether there are market or other problems that constrain
adoption. Measurement of outcomes is also a prerequisite for assessing to what
extent agents are responsive to variation in the returns to the use of inputs or
technologies. Measurement of outcomes, however, is not straightforward.

In the case of technologies used by profit-maximizing entities, it is clear that
technology profitability is the key measure. For technologies that improve an
agent’s utility, such as those that improve health, measurement of returns is less
straightforward. Agents choose to use a technology based on the gain in welfare,
which cannot be directly measured. In the case of the adoption of contraceptive
technologies, for example, the return depends importantly on couples’ preferences
for family size (Rosenzweig and Schultz, 1989) or social norms about family size
(Munshi and Molyneaux, 2006). For medical technologies such as improved bed
nets, curative pills or water purifiers, adoption will depend on how agents value
health and other attributes of the technology (e.g., taste, side-effects, style), which
will depend on both preferences and on the returns to health in the economy. In
Miguel and Kremer’s (2004) study of the adoption of wormicide pills among
school-age children in Kenya, for example, school attendance and scholastic test
scores are used as indirect measures of the gains from pill use. However, these may
understate the utility gains. First, to the extent that the pills increase vigor, pill
adoption for a child will also raise the return to activities outside of school (like
working or playing) and thus may increase the opportunity cost of schooling. In
that case schooling may increase or decrease even when pill use improves health
and welfare. Second, schooling, even if it increases, may not be efficacious in
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increasing learning (or test scores measure learning poorly) and/or the returns to
schooling in the labor market may be low. In fact, while Miguel and Kremer do
find that schooling time is increased, test scores do not rise. More importantly,
Miguel and Kremer find in their follow-up study (2007) that use of the pill
declined with increased knowledge about it. Thus, although the pill clearly is
effective in reducing worm infection, the net private gain in utility to the children
was evidently not high.” What we cannot know, given the difficulty of measuring
outcomes, is why.

Even in the case of technology used by profit-maximizing entities, there are
few studies that carefully estimate the returns to profits arising from increased
input use or from the adoption of new technologies. There are two problems. The
first is that profits, while conceptually straightforward, are not easy to measure.
Information is needed on the costs of all inputs, but data on many inputs and the
relevant cost of these inputs is not easy to collect. Typically in studies of farms,
information is obtained on paid-out input costs, such as for seeds and fertilizer, but
there is rarely information on labor use, particularly use of family labor that
dominates labor inputs in many low-income countries. In Duflo et al. (2008), for
example, the “returns” to fertilizer use from field experiments in which farmers in
Kenya were randomly assigned fertilizer amounts were based solely on measures
of crop output, not farmer or plot-specific profits. Individual farmer or plot data on
labor inputs, for example, were incompletely collected. While the authors report
that there was no increase in weeding labor based on informant observation, it is
not possible to have increased crop output without at least some increase in harvest
labor, which was not measured. If fertilizer usage did increase harvest labor, the
returns to fertilizer use in terms of farm profits are biased upward by their output
measure.”

b. Optimal input use and the returns to inputs: heterogeneity and perfect input

*This finding may be due to the fact that the returns to health in either the labor market or
in school may be low in the specific context in which the field experiment was carried out.

*The increase in yields from the small-dosage fertilizer treatments was in fact small, and
the associated increments in complementary inputs may have been undetectable without more
resource-intensive survey methods. If, on the other hand, harvest labor in fact did not increase
because, say, of labor market barriers to the use of hired labor, then the returns to fertilizer use
measured in terms of crop output value may understate the returns to profitability if the labor
market were to be more efficient.



markets

The second problem in inferring the returns to technology adoption, or its
associated inputs, given correctly-measured outcomes, is that adoption and input
use are the outcomes of optimizing by heterogeneous agents. In particular, it
cannot be inferred from the observation that farmers using high levels of fertilizer
earn substantially higher profits than farmers who use little fertilizer that more
farmers should use more fertilizer. Consider first the farmer problem of optimal
input use for a given technology 8, which describes a concave mapping from
inputs of fertilizer (f), labor (/) into an output good y, at location i for crop season t
on land of quality u;

(1) yit:ge(falﬁuit)a

where u,, is a time (season)- and location-specific exogenous environmental
variable that affects output. We assume that markets are well-functioning in that
each farmer can purchase the amount of fertilizer or labor he wants at a given price
that is invariant to quantity.’

Equation (1) defines the technology-specific profit function, which pertains
to a setting in which agents maximize profits within “perfect” input markets and
access to credit at rate p —1 conditional on a technology with known u,,

max
1,1

Profit maximization yields the standard result that the marginal contribution of
both inputs to discounted output value is just equal to their marginal cost (price), or
the marginal returns to profits from increasing the value of each input is zero.
Thus, the marginal returns to profits from, say, fertilizer use will be the same
across all farmers. Fertilizer use and the average returns to fertilizer use, however,
will differ across farmers in a given season, varying in particular with the u, If u,
and fertilizer are complements (for each level of f'the marginal product of fertilizer
is higher on “better” land), for example, then there will be a positive correlation
between average profit returns and fertilizer use. But the cross-sectional variation
between fertilizer use and average profits does not identify the marginal returns to
fertilizer use and therefore whether fertilizer is under-used in a setting in which
prices do not vary. With little price variation and substantial farm heterogeneity it

(2) ”a(pﬁ’plt) = ga(falaun)_ppﬁf_ppztl’

>The price faced by the farmer may be subsidized. What is important for the implications
of the model is that he not be quantity constrained.
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is difficult to identify the returns to an input from cross-sectional variation in input
use and farm profits even though in such a setting there will be variation in input
use across farmers.

One natural solution to the problem of inferring returns in the presence of
farm heterogeneity is to exploit observations on farmers using different levels of
inputs at different points in time on the same land, say, as a result of changes in
input costs. There are two problems with using panel data to infer returns. First, the
environmental variable u, may vary over time. In particular, it is important to
recognize that a point estimate of the ex post profitability of input use, even if
profits and inputs are extraordinarily well measured, does not necessarily reflect
the information that was available to the farmer at the time that an adoption
decision was made. If the econometrician does not measure u, but the farmer
observes it and acts on it then again the profitability of inputs use will be mis-
measured.

The second problem in inferring profit returns using panel data arises if
credit markets (and insurance markets) are imperfect so that lagged shocks to
profits affect current input choices. We consider the issue of credit and insurance
markets in more detail below, but here we examine its implications for inferring
the returns to inputs from panel information. In particular, decompose u, into two
additive components: u;+ e,, where e, 1s the time varying component that is also
specific to the farmer or plot. Then, the relationship between the difference in
profits Az, over time for the same land (and farmer) and changes in input use is
given by:

(3) An—it - BPAfzt + Bpf Apft + BplPAplt + Aeit + Agit’

where ¢, is an additional shock to profits in period t that occurs ex post. If farmers
know e, and that affects the returns to the input then there will be covariation
between input use and the compound error term in the differenced equation,
causing bias in the coefficient measuring the effect of input use on profits ;. The
bias cannot be signed: if the contemporaneous ex ante shock observed by the
farmer in making his input allocation decision is complementary with (substitute
for) the input, then the bias will be positive (negative); the bias arising from credit
constraints - positive shocks to profits in the previous period increase input use in
the current period - is negative.

Given all of these problems in inference associated with estimating the
returns to input use, the field experiment carried out by Duflo et al. (2008) among
Kenyan farmers in which fertilizer was allocated randomly across farmers is of
interest because it creates variation in input use that is orthogonal to land and
farmer quality as well as to time-varying profit shocks. However, as noted, the
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measure of outcomes in this study is not profits, so it is difficult to know if the
correctly-measured returns (increases in output value minus all input costs) to
marginal increases in fertilizer are in fact high. Although it is possible in that study
that labor inputs did not detectably increase as a consequence of fertilizer adoption
because of the low yield increases, it is useful to consider the general question of
whether the neglect of input costs matter for inference about the returns to inputs?°
To answer this question requires either a repetition of the experiment with better
measures of inputs or a credible method of inferring returns using observational
data that deals with the inference problems discussed.

Foster and Rosenzweig (2009) exploit plot-specific data on crop yields and
inputs for each of three seasons for the farmers in the sixth round of the REDS. In
particular, they estimate the returns to fertilizer use by estimating the following
equation for a farmer j who farms multiple plots indexed by i across seasons
indexed by :

(4) An—ijt - z“foAfijxt + :ujz + Agijn

where Ar;, are per-acre outcome measures, including profits and the 4 )
dummy variables indicating intervals x of fertilizer use per-acre and the B, are the
associated interval-specific coefficients. More importantly, equation (4) also differs
from (3) because the dummy variable u;, - the interaction between a farmer fixed
effect and a season fixed effect - absorbs any differences over time in the farmer’s
lagged profits that may constrain input use, any differences in ex ante farm-level
shocks that may influence the choice of fertilizer, any differences in farm input
prices over time, including farmer-specific price differences. Of course the
differencing by plot eliminates the influence of heterogeneity in plot characteristics
for a given farmer on input choice. Essentially this method exploits the remaining
random variation in fertilizer use due to random mis-measurement of appropriate
inputs by the farmer - variation uninfluenced by profit variation, input choices or
ex ante shocks to profits.

The set of estimated coefficients describing the relationship between
fertilizer use per acre and per-acre farm outcomes at the plot level; measured by
“true” profits - output value minus all input costs inclusive of all labor costs,
family or hired; profits gross of all but family labor costs; profits gross of all labor
costs; and crop output value (no input costs); is displayed in Figure 1. As can be
seen evidently some farmers for some plots/seasons used too much fertilizer, as the

%It is also possible that the Kenyan farmers did not appropriately increase labor effort to
fully exploit the gains from fertilizer use.



estimates identify a profit maximum, at around 400 kilograms per acre. Most
farmers, however are using fertilizer below this level, at around 250 kilograms.’
The estimates also indicate, however, that the measures of outcomes that do not
completely account for labor costs, such as those used by Duflo et al. (2008)
indicate average and marginal returns and the optimal use of fertilizer (600 kg per
acre) that are much higher than those indicated by the outcome measure that nets
out all costs. Evidently in India, labor and fertilizer use are strong complements,
and labor costs are major component of profits.

c. Optimal technology choice, heterogeneity and the returns to technology
adoption.

Analogous and additional problems afflict inferences about the returns to
technology when there is heterogeneity in land across farmers. The choice of
technology for each given location is described by the problem:

arg max
) 91' = ﬂa(pfalf)

Consider a farmer with multiple plots of heterogeneous land deciding on how
much of each plot will be allocated to a new technology seeds. A convenient

specification is to assume for illustrative purposes assume there are two
technologies @ = {0,1} , technology is linear in u;, with coefficient a,,

g,(f.D)+ayu, ,
and that farm productivity is uniformly distribution over the interval [0,K] and
ordered such that for a farmer with total area A, u, =iK / 4. A profit-maximizing
farmer will use the same inputs on all plots using the same technology.
Furthermore if he plants technology in place i1 he will plant that technology at
place j>1 . Thus his profit maximization problem if he is unconstrained in terms of
access to fertilizer and we normalize a,=0 can be written

"These levels of fertilizer are substantially higher than current recommended levels of
Urea, for example, of around 100kg per acre for particular grain crops that come from
experimental studies. It is important to note, however, that the measure available in this data set
includes all types of fertilizer, not just Urea, and that Foster and Rosenzweig are looking at
overall profitability and thus internalizing the farmers decision with regard to what crop to
choose rather than determining the profit maximizing level of fertilizer for a given crop.
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A—h
max !

h,f,l J

A
(go(fo»lo)_pffo _pllo)dH' _[ (gl(fi’l_jl)-'_aliK/A_pffi _pll1)di
(6) 0 A-h

max

h2
= i (A_hl)ﬁo(pfapl)+hlﬂ-l(pf9pl)+alK(hl_;)
X 24

subject to the constraint that 4, €[0, 4]. Note that given these assumptions the

maximizing value of h, is proportional to area so all farmers would denote the
same fraction of acreage to the new technology if there was no farmer-specific
heterogeneity.

If there 1s heterogeneity across individuals in the returns to different
technologies and these returns are not be easily measured by the econometrician
then, for example, the finding that profits among those farmers who use a high
yielding variety of a crop are substantially higher than profits among those farmers
who use a traditional variety need not imply that the farmers planting traditional
varieties are acting in a manner inconsistent with profit maximization or are
otherwise constrained. It may simply be the case that some farmers have land (or
other attributes) that are well-suited to the new variety and other farmers have land
that is not well-suited to this variety. Thus in order to test whether technological
choice is importantly determined by the relative profitability of the different
varieties for a particular farmer it is necessary to know how profitable each
technology is for that farmer on a given plot of land. But this information is not, in
general, easy to obtain because at any given time farmers will only be using one
technology on a given plot of land.

The problem of inferring the returns to a new technology will thus depend
on how sensitive the returns to productivity are to difficult-to-measure variables
like weather and soil and how variable such conditions are in the setting studied.
Munshi (2004) shows that in the early stages of the green revolution in India, HYV
rice was more sensitive than HY'V wheat, and that rice regions were also more
heterogeneous in growing conditions. He also finds that HY'V rice was more
slowly adopted than HY'V wheat, presumably because of the difficulty that farmers
had 1n inferring returns. We discuss learning models in more detail below.

One natural solution to the problem of inferring returns in the presence of
farm heterogeneity is to observe farmers using different technologies at different
points in time on the same land, say, as a result of changes in the cost of or access
to the new technologies, as discussed for fertilizer. However, in the case of
technology, this approach creates a new problem because unless the technology
cost shocks are very large, only a small subset of farmers are likely to use different
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technologies at different points of time and these farmers are themselves an
importantly selected sample—the sample of those farmers for whom the differences
in profitability of the two technologies happen to not be very large. Without
imposing some additional structure it is thus impossible to assess whether those
farmers, for example, who never adopt the newer technology at all are not doing so
because for them the traditional technologies are more profitable.

In a recent paper, Suri (2009) tackles this problem using an approach
developed to examine the operation of comparative advantage in the labor market.
The basic idea is to use information on the relationship between differential
productivity and the productivity of a technology among those farmers who end up
using both technologies to project the differential productivity for those farmers
who use only one technology. Formally, it is helpful take our basic technological
model and assume that the land-specific characteristic u, has two possibly
correlated dimensions u,; and u,; determining productivity in the traditional and
modern technologies, respectively, and that profitability is additive in the
respective term:

(7 Vio =& ([ D) +uy

It is then straightforward to decompose the productivity terms into two additive
uncorrelated components

(8) U; =v; +vy

()] uy =1+ Pv, +v,,

where the second term reflects the common component of productivity and the first
term reflects the “comparative advantage” part. Thus if ¢ is positive, the
difference u,, —u,, will be positively correlated with productivity using the

traditional variety and thus those areas with higher traditional crop productivity
will also have a larger differential benefit of using the new technology than those
with low traditional crop productivity.®

Because by construction v,, and the difference u,; - u,; are uncorrelated, a
regression of u,, onu,, —u,, within the population of those using both technologies

yields a consistent estimate of @, it is possible to construct a noisy but unbiased
estimate of, for example, u,,, among those using only technology 1, as long as the
decomposition reasonably reflects the true underlying data generating process.
These differential productivity measures can then in principle be related to farmer

¥This ignores differences in input costs across the technologies, which we can do under
this structure because of the additive errors and the assumption of optimizing behavior.
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choices and to measures that may influence the cost of adoption to determine
whether in fact choices are consistent with a model of profit maximizing behavior.
Suri in fact concludes that there are three sets of farmers: a set of farmers for which
there are small differences in the profitability of traditional and modern varieties
who end up using both technologies, a set of farmers who have high returns to the
modern variety but who do not adopt due to the difficulty of accessing the new
technologies, and a third set with moderate returns to the new technology that
always adopt it.

While this approach is simple enough in principle, there are important
complications in practice. In particular, productivity shocks are not likely to be
additive with respect to inputs as assumed above. This means that the process of
extracting the u,, from profit data is not straightforward. Suri makes use of
information on fertilizer as an input but assumes that labor does not vary across
traditional and high-yielding varieties. But, as noted, at the very least harvest labor
must be higher if output is higher and this will create a wedge between yield
differentials and profitability differentials. Second, the approach ignores the
possibility that there are ex ante shocks, specifically in this case technology-
specific shocks to profits influencing technology choice. Third, the approach
assumes that the relationship between differential productivity and the level of
productivity is consistent across farmers. It is certainly restrictive to assume that
the joint distribution over the u,, and u,; is such that the v,; and v,;, will be
independent for any given ¢ in both the set of farmers who adopt both technologies
and those who adopt only one—though as a first-order approximation this may be
reasonable. Nonetheless, the paper makes an important advance on the existing
literature in terms addressing the problem of heterogeneity in returns in trying to
draw inferences about the process of technological adoption.

d. Do estimated returns indicate that farmer’s are under-investing?

We have seen that the experimental evidence of Duflo ef al. (2008) is
interpreted by the authors as suggesting that the returns to small quantities of
fertilizer are high in Kenya, although these returns may be over-estimated due to
the lack of cost data. Thus they conclude that in Kenya fertilizer use is too low.
Duflo et al. also find that there is variation in returns across farmers residing in
different regions, as they measure them, but they do not assess whether differences
in returns are related to actual input use. Suri’s data indicate that some farmers
with high returns to adopting hybrid seeds do not adopt, and her methods suggest
that some of this is due to supply constraints associated with poor infrastructure.

12



The Kenyan environment, from which both Suri’s and Duflo ef al.’s data are
from, is one in which the technology has been stable for some years, so that any
under-investment in technology or inputs is not likely to reflect lack of knowledge
about returns. And both studies find no evidence consistent with learning. Udry’s
examination of fertilizer use among Ghanaian pineapple farmers, which shows
farmers switching in and out of fertilizer use in response to new information about
profits, clearly shows that expected profitability also affects input use. However,
the estimated profitability of fertilizer in the Ghanaian environment net of costs is
low, suggesting that on average under-investment in fertilizer is not high, with
learning costs actually playing only a small role in constraining fertilizer use.

3. Learning and Technology Adoption
a. Definition of learning.

Under-investment in an input or a new technology could arise, when true
returns are high, because of ignorance about returns or about how to manage the
technology in order to receive high returns. This is more likely a cause of under-
investment in a setting in which a technology is new. We define learning as taking
place when new information affects behavior and results in outcomes for an
individual that are closer to the (private) optimum.’ Thus, in an environment where
there is no new information, learning is unlikely, while in a setting in which a new
technology or input is introduced, learning should be important. The finding of
Duflo et al. that farmers do not obtain information from their neighbors about
fertilizer use in Kenya is not evidence contradicting models in which agents learn
from their neighbors because it is an important assumption of learning models that
there be something new to learn, and the existing technology in Kenya at the time
of the study was not new. Thus, this evidence supports learning models! However,
the authors find that there is learning associated with own input use - farmers who
adopted fertilizer in the first round of the experiment were more likely to use
fertilizer in subsequent rounds. It is important to note that the definition of learning
does not imply that learning increases the use of an input or a new technology. It
may be that what is learned is that the new technology is in fact not efficacious.
Thus, if more experience with a new technology leads to less use, as in Miguel and

°It is possible that learning leads to a move away from a social optimum. Agents may
learn that free riding is optimal, as is consistent with the findings in Miguel and Kremer (2007),
described below.
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Kremer’s (2007) follow-up study of pill use, that is also evidence in favor of
learning."’

Learning may not be important for all new technologies - some technologies
are simple to learn, others not. The complexity of new technology matters as well.
Thus, technologies like the contraceptive pill, which simplified contraception
relative to traditional methods, were very rapidly adopted in the United States by
all couples with small family goals (Rosenzweig and Schultz, 1987). The salience
of learning, reflected in slower take up (or discarding) of a new technology is thus
very context-specific. Finally, learning may depend importantly how technological
returns vary with individual attributes and what is known about the structure of this
relationship by those considering adopting the technology. Thus the fact that some
individuals adopt a technology and others do not is not necessarily evidence that
learning effects are not important.

The “green revolution” produced new, high yielding variety (HYV) seeds
that were more sensitive to soil and water conditions in the initial years compared
with traditional seeds. Thus, farmers in the early stages of the green revolution
were faced with both a potentially more profitable but more complex technology
with an uncertain return. Moreover, new seeds, with different properties, are
marketed almost continuously in many areas of the world, so that learning may be
an important component of seed adoption in agriculture contemporaneously. Thus,
many investigators have studied the take-up of HY'V seeds both in the early stages
of the green revolution and subsequently using learning models. In the early stages
of the revolution, a farmer’s choice was essentially between HY'V or traditional
seeds. In the current period, many farmers choose among different vintages of
HYV seeds. The choice is whether to adopt the newest seed or one that has been
well-tested by actual farmers. Most studies, however, tend to look at seed adoption
choice as HY'V versus traditional, rather than the choice of seed vintage.

b. Individual learning

Learning about the returns to new technologies and their associated inputs
can be captured with the above specification with the additional assumption that
the u,, are generated by a distribution that is fixed up some unknown (to potential
adopters) parameters. Because realizations of u at time t can be used to draw

%Some of the learning may have been about the returns to free riding due to health
externalities.
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inferences about the unknown parameters, say through a process of Bayesian
updating, past use of the technology provides a basis on which to better forecast
the u at time t+1 and thus make more profitable choices with respect to technology
and/or input use at that time. Papers on learning differ in terms of how the u,, enter
the production function, the parametric structure of the underlying distribution, and
the extent to which information that is acquired is specific to a particular agent.

In a learning-about-productivity model it is assumed that individuals learn
about the overall profitability of a new technology and compare this to the
profitability of the existing technology that is well established. This is the approach
used, for example, by Munshi (2004) in his study of individual versus social
learning in the context of agriculture and by Besley and Case (1992) in their study
of HY'V cotton. Consider, for example, a profit function generated from the simple
quasi-linear production function applied to a given land area A,

(7, +ayu,)A ,with u, fixed and known to be drawn from a

distribution N(u, ) and a,~0. Under these assumptions, and if u; were known, the

new technology (6=1) would be chosen if
(10) u, >(my—m)/a.

In this simple model, one obtains the result that new technology will be
overutilized initially because of ignorance. Given that u; is not known the new
technology will be used, assuming expected profit maximization and that the priors
over u, reflect the true data generating process, only if # > (7, — z,) / a,. Thus for

all values of u, between (7, — 7,) / a, and u there will be a loss of profits associated

with the use of a technology that is in fact relatively unprofitable.
We now introduce learning. With learning, one again obtains the results that

a new technology may be adopted by too many farmers. Let 7, denote the

expected loss per unit of land in profit from not knowing the true value of u,. The
information technology is such that in the first period if the farmer plants the new
technology to at least h, units of land he will know u; for sure but that otherwise he
will not gain any new information about the new technology. Ignoring discounting
he will adopt the new technology if u > (7 ,h, — 7w h, —7,A)/ a,.

This expression has several implications. First, the presence of learning
means that some farmers may adopt the technology in the first period who would
have found it unprofitable to do so in the absence of the second period. In expected
value they lose money in the first period through the process of expectation more
than makes up for it in the second. Second, it is possible that some farmers for
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whom the new technology is profitable given u; will not plant the crop at all
because their priors are such that they do not expect to receive sufficiently “good
news” from their experience with the new technology. Third, there are likely to be
important scale effects associated with learning. A large farmer faces the same cost
of learning but, in the event he receives good news about the new technology he
can adopt that new technology on a larger scale and thus receive higher expected
profits. Thus, large farmers are more likely to adopt a new technology initially
independent of any relationship between landholding and costs of inputs.

But uncertainty about the profitability of a new technology is not the only
challenge overcome by learning. Learning may also involve acquiring information
about how to optimally manage the new technology. Foster and Rosenzweig
(1996) argue that in fact this idea has particular salience in the context of
agriculture. Agricultural research organization and extension agents carry out
controlled experiments on new seeds and can thus determine the maximal possible
yields and even, for given set of prices, maximal profitability. What they cannot
necessarily do is provide information on how best to achieve these yields given the
specific characteristics of the soil and climate of a particular farmer. They argue,
for example, that the optimal level of fertilizer use may depend on the nitrogen
content of the soil as well as permeability and rainfall that may be specific to a
particular plot. As such a farmer may have to experiment with a crop on his own
land in order to sort out how much fertilizer to use.

A simple and analytically convenient implementation of this idea used by
Foster and Rosenzweig is the target-input model in which the u; enters the
production function in the following fashion:

(1) ga(l)_ae(”[_fi)z
The basic point here is that maximal yields are achieved for given / if f, = u, .If the

u; is known then that presents no difficulty. But if u, is not known then the farmer
will on average tend to miss the target and thus receive less than optimal profits.
By learning about u, the farmer is able to better target fertilizer use to the
conditions on his particular land and thus receive better outcomes. Assuming that
the traditional technology does not use fertilizer or is sufficiently well established
so that it can be properly managed, this specification generates many of the same
predictions as the learning-about-productivity model. In particular, a farmer may
have incentive to try out the new technology using his best guess of u;even if he
loses money at first in doing so. He also may not experiment with the technology at
all even though he knows for sure that if he were to learn to properly manage the
new technology it would be more profitable than would the older technology: the
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short-term cost may outweigh the long term benefit.

The model is easily adapted to cases in which the ex post optimal u; varies
randomly over space and across time around some mean, so that the farmer will not
be able to fully determine the optimal use from a single realization of u; and thus
will need to aggregate information across space and/or time in order to determine
the optimal level of input use. It also creates a relatively straightforward way of
thinking about the process of learning from the experience of neighbors, which has
been a prominent focus of the empirical literature on learning as discussed below.

An attractive feature of the target-input model, at least in the special case
where the cost of the input is zero, is that future profits do not depend on the
revealed values of the farm-specific parameters.'' This means that a farmer will
know for sure the relationship between experimentation and his future profits.
Thus it is possible in the learning by doing model to write down formal testable
implications for the relationship between past experimentation and current
profitability. These propositions are formally tested in Foster and Rosenzweig. In
particular, they find evidence that the profitability of the new technology is
increasing but concave in past experience. Note that this need not be the case in a
learning about profitability model. Experimentation in that case may influence
adoption but it should not affect profitability given adoption. Similarly, the
learning by doing model provides predictions about how experimentation should
be related to adoption, but the learning about productivity model does not
necessarily do so. In the latter case experimentation may lead one to conclude that
a new technology is inferior and thus lead to lower adoption.

c. Learning from others

As noted, a primary focus of the learning literature has been on the issue of
whether and by how much agents learn from others. Although learning from others
clearly facilitates the acquisition of knowledge compared to a world in which one
has to learn only from own experience, such learning externalities can give rise to
sub-optimal adoption of new technologies. In Foster and Rosenzweig (1995) it is
assumed that the input target is the same on every farmer’s land but the actual
input decision of neighboring farmers is observed with error so that a given
neighbor’s experience contributes less information than does one’s own

"If inputs are costly then the realized value of u; does affect future profitability because it
affects the cost of achieving profit-maximizing input use.

17



experience. On the other hand it is recognized that very farmer has multiple
neighbors so that the overall effect of average neighbors’ experience could be
greater or less than own experience in terms of area planted to the new technology.
Using a data set collected in rural India starting from the time that high-yielding
variety seeds were first introduced into the country, they establish that, as with own
experience, the profitability of the new technology is increasing in neighbors’
experience at a decreasing rate. Consistent with the idea that own and neighbors’
experience are substitutable they further establish that the rate of decrease in
returns to experimentation is the same for oneself and one’s neighbors. They also
show that experimentation both by oneself and one’s neighbors increase adoption.
The fact that own and neighbors’ experience are substitutes creates the
potential for free riding behavior. In particular, a farmer who knows his neighbor is
likely to experiment with the new variety may have an incentive to reduce his own
experimentation and then benefit from the increased information. Obviously this
problem might be overcome if farmers can license or otherwise market their
information to others or if other institutions are in place to reward those farmers
who bear a disproportionate share of the cost of experimentation. But whether or
not this internalization of the potential externality takes place may be critical for
policy. If there is free-riding behavior there may be inefficient under-provision of
information and even, in the extreme case, non-adoption of a new technology that
would be profitable, inclusive of the cost of experimentation, from a social
perspective. To test for the presence of free riding behavior, Foster and
Rosenzweig make use of the idea suggested above that the returns to
experimentation are increasing in scale when this experimentation is not specific.
Given within-farmer heterogeneity in the suitability of the crop for the new
technology, these scale effects imply not only that farmers with large land area and
other fixed assets will experiment more but also that, from a social planner’s
perspective, those farmers with neighbors with larger operational scale should
experiment more. In the absence of coordination, however, a farmer will know that
his larger neighbor has a private incentive to experiment more. Thus as long as
costs of experimentation are sufficiently high, a farmer “close to” a larger farmer
will under-adopt a new technology, conditional on own and neighbors’ experience.
The empirical evidence presented by Foster and Rosenzweig confirms the
presence of free-riding behavior and thus may provide a case for socially optimal
subsidy of experimentation on new technologies at the level of the village.
However, it is important to point out that in fact the presence of learning spill-
overs, particularly in the case of heterogeneity in land ownership, also means that
the diffusion of a new technology once adopted by the largest farmers, can be quite
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rapid. In short, larger farmers with the highest incentive to experiment do so and
then this information is transferred to the smaller farmers who then adopt without
bearing the full cost of experimentation. In the particular case of the early stages of
the green revolution in India, the estimates from Foster and Rosenzweig suggest
that diffusion of information about the new technologies within a given village is
more or less complete in 3-4 years following the first adoption of that new
technology.

The Foster and Rosenzweig learning study focuses on a model in which
farmers benefit from the cumulative experience of all farmers in the village. The
key assumptions that deliver this result are that the optimal management of the new
technology does not vary much within the village; that information flow within the
village is not importantly constrained by networks based on kin or social status,
and that individual farmers have a good sense of the structure of the technology.
The first seems plausible to the extent that soil and moisture conditions typically
do not vary substantially within a village. The second seems more restrictive
particularly in the light of recent work showing the importance of caste networks in
determining, for example, access to credit (Munshi and Rosenzweig, 2009).
However, issues of trust and reciprocity that may be critical in the context of credit
provision would seem to be less important in the context of transferring
information about agricultural input use. Nonetheless it would be useful to know
whether learning about agricultural technology flows more effectively within caste
or other groups.

The third assumption about knowledge of the true structure would seem to
be of particular interest. A key assumption of the target-input model is that farmers
have a full understanding of the relationship between input use and profits given
the unobservable u,, and they can make use of this understanding to back out
estimates of u,, from their experience. A surprising implication of this model, taken
literally, is that the information that can be gleaned from the planting of the new
technology is the same regardless of the level of input actually used. Thus, one can
learn as much from acreage planted to the new technology with good information
as one can from farmers with relatively weak information. While this is
analytically convenient as noted, one might imagine a more complicated signal
extraction problem in which there is an unknown non-parametric relationship
between input use and profitability. This idea that farmers “know the structure”
may not seem particularly limiting in the context of inputs like pesticides or
fertilizer where one would expect to see a smooth relationship between inputs and
outputs. It may be quite unreasonable however in a case in which individuals are
choosing among a variety of high-yielding seeds with, say, differential resistance
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to different types of pests. In this case experience with one seed may have little
relevance for experience with other seeds. The key prediction of such a model is
that one is likely to try and replicate the input use of those who were relatively
successful and to not make the same choices as those who are not.

Udry and Conley (forthcoming) examines a model of this form in the
context of pineapple farmers in Ghana. The basic proposition that is tested is that
when learning about a new technology farmers will adopt the behavior of those
farmers who were unexpectedly successful, in the sense that they had high profits
given other observables that influence profitability. Despite the similarity of the
question being asked, it is notable that the data used for this study are quite
different in scope than the data used by Foster and Rosenzweig’s study of Indian
famers. Instead of being a large nationally representative survey in which the
village provides an important source of variation, Udry and Conley look at a small
number of villages and farmers in which there is more detailed information on the
network structure of the village that might influence information flows.
Nonetheless, Udry and Conley’s results are also supportive of the notion that
individuals are learning from the experience of their neighbors. Not only does one
see movement towards the fertilizer behavior of those who are successful and away
from those who are unsuccessful, but also, as expected, people move toward the
input use of more experienced neighbors and are more likely to move if they have
little experience of their own. Such patterns are not observed in the case of
traditional crops with which most farmers have a great deal of experience. It is
unclear, however, whether these results are inconsistent with a more parametric
approach to learning. In particular, one would expect in a parametric model for
those farmers who have more precise information about the proper management of
a technology given local characteristics (i.e., they know ;) to in fact be using
inputs that generate higher profits. Thus unless one can fully condition on the
information set of the farmers in question one would expect movement towards the
behavior of successful farmers under either model.

Bandiera and Rasul (2006) also make use of a data set involving the
adoption of a new technology, in this case sunflowers, in which there is more
detailed information available on social and other networks that may influence the
flow of information than was available for Foster and Rosenzweig. They explicitly
focus on the question of how adoption varies by network structure. Their work
highlights the point made above that, in the presence of free-riding effects, social
network effects on adoption may be positive as well as negative. In particular, they
conclude that when relatively few people in one’s network have adopted the
marginal effect of increased adoption by one’s neighbor is positive. However,
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when a large number of people in one’s network have adopted the marginal effects
may be negative as there is less incentive for an individual to undertake costly
experimentation on his own. The results from their analysis during the first-year
that the new technology was introduced do show this u-shaped effect. However, as
the authors recognize, there are significant problems of inference that arise given
that they cannot take advantage of dynamic effects. In particular, there may be
important unobservables that are common within network groups, and network
groups may themselves be importantly constructed with respect to willingness to
adopt new technologies. Arguably these effects contribute to the estimates of the
positive “effects” of adoption, but it is difficult to see how these effects could also
create the negative marginal effects at high levels.

While the models of Udry and Conley, Foster and Rosenzweig, and
Bandiera and Rasul assume that information about a new technology is largely
non-specific, at least within the village, Munshi considers the possibility that
different technologies have different degrees of specificity. In particular, if there is
variation across farmers in the u;, then the acquisition of information by one farmer
need not be useful to his neighbor. Of course to the extent that the differences can
be predicted by observable characteristics, this need not be too much of an
obstacle. A farmer may know, for example, that the yield of a new technology is
dependent on the porosity of the soil. As such in determining whether a neighbor’s
high yields of a new technology are likely to be obtainable, he will try in some way
to make adjustment for differences in porosity. But in cases where there are
importance unobservable differences in farm or farmer characteristics he may not
use that information at all and thus will have to rely disproportionately on his own
experimentation. As noted, Munshi (2004) shows, in particular, that rice and
wheat are quite different in this regard — yields of new wheat technologies are
similar across farmers while yields on new rice technologies tended to be quite
dependent on local conditions. As result one would expect stronger evidence of
learning from neighboring regions and/or farmers n the case of wheat relative to
rice. This contrast is in fact clearly evident in the data.

In an early draft of this paper Munshi addressed the issue raised above about
learning with and without a knowledge of the structural relationship between farm
attributes and profitability of the new technologies. In particular, he argued that
when farmers have a good sense of the underlying structure, the experience of
farmers who were quite different from them in terms of observable attributes could
be useful in terms of predicting yields of a new technology for that farmer. On the
other hand, if a farmer has little sense of the structure relating yields to these
attributes then he can only learn from those who share similar characteristics. For
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example, it may be possible to make some adjustment for the permeability of one’s
own soil by comparing the yields of farmers on permeable soil with those on soil
that is not permeable. But if one has red soil than it is not clear what can be learned
by comparing yields of those with black soil and those with sandy soil.

A common theme of this literature on learning from others is the difficulty
of inference that arises when predicting adoption behavior based on the adoption
decisions of one’s neighbors because of the presence of common unobservables
that jointly affect everyone’s decisions (Manski, 1993). Dynamic data can be quite
useful in this regard by allowing one to trace out a sequence of decisions over time.
Another way to meet this challenge, at least on a small scale, is to exogenously and
randomly induce some group of individuals to adopt a new technology and then
determine if others who in some way are connected to these individuals are
subsequently more likely to adopt this new technology. An early application in the
economics of a randomized intervention aimed at identifying social learning is
Duflo and Saez (2003), which examines the spillovers associated with attendance
at a meeting on a tax deferred pension account in the US.

The first application of a randomized design to look directly at technology
adoption in a development context is Kremer and Miguel (2007) based on a
follow-up to their original experimental intervention (Miguel and Kremer,

2003). In the later study the authors took advantage of the randomized treatment
used to evaluate the effects of a school-based de-worming intervention to assess
subsequent adoption among students with direct or indirect contact (though
attending a school where others have social ties). As discussed above they found
those students who had contacts exposed to the de-worming intervention were less
likely to use or to continue to use the pill, a result that appears consistent with the
presence of learning effects given that the private returns to de-worming, inclusive
of costs due to side effects, appear to have been small, particularly given
technological externalities, as discussed below. The reduction in pill use over time
also suggest that the population was initially overestimating the private returns to
pill use, perhaps because of NGO ideology.

A recent paper Dupas (2009) uses data from an experiment with a similar
design, describing the outcome of a field experiment in which households were
randomly assigned vouchers that allowed them to purchase a high quality bed net
at various subsidized rates (Cohen and Dupas, forthcoming). Dupas examined
whether households that did not receive the initial subsidy were more likely to
purchase the bed nets if they lived near other households that received relatively
favorable subsidies. The results show this effect quite clearly and, given the likely
sign of the technological externality, as discussed below, may provide the some of
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the most compelling evidence to date that learning plays an important role in the
adoption of health technologies in a low-income setting. Another example of a
similar randomized trial that provides evidence of social learning, by Oster and
Thornton (2009), studies the adoption of menstrual cups among school girls in
Nepal. Their results suggest that friends of those randomly given access to the cup
are more likely to adopt the cup subsequently. However, in this study the authors
were able to further show that the take-up effect was driven by communication
illuminating how to use the cup, consistent with the learning-by-doing hypothesis,
rather than by changes in the value attached to the cup.

d. Technological externalities and learning

As noted, learning externalities can in some cases inhibit individual adoption
and experimentation with new technologies, but the presence of learning spillovers
that create these externalities can also in the long-term help to ensure the adoption
of socially profitable technologies. A potentially more complex case is one in
which there are externalities that are technological. There can be either positive
externalities - the benefits to an individual of adopting a particular technology are
increasing in the fraction of the population using these technologies - or negative
externalities - the individual adoption of a technology may be less profitable if a
large fraction of people adopt this technology. Formally, given the above
structure, the production function might be

(12) Yoir = ge(f;t’litﬂuiﬂhe{—i})
where 7, denotes the average adoption of technology 6 by farmers other than 1.

Technological externalities of this type are uncommon in agriculture, though
one example might be in cases where widespread adoption of a particular type of
seed in a particular area increases exposure to pests or leads to depletion of local
common resources such as ground water. A more likely source of externalities
would be those that arise through the prices of inputs or outputs. An influential
example of the former comes from Griliches (1957), who argued that differences in
market density in different parts of the US lead to differences in the supply of
hybrid corn seed supply and thus to different rates of adoption in different regions.

But technological externalities may play an important role in the context of
health where certain types of intervention may create herd immunity. Miguel and
Kremer (2007) argue that such effects have reduced uptake of a de-worming
medicine in Kenya. In this case, while de-worming treatments help protect
individual students, it also tends to reduce the exposure of non-treated students in
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the same schools or classroom. The net benefits to the individual of the treatment
may be small-or even negative given possible unpleasant side effects—as long as
the fraction of other students accepting the treatment is reasonably high. Thus it is
likely that equilibrium adoption levels will be below a socially efficient levels.'?

When both technological externalities and learning spillovers are in place it
can be difficult to distinguish these two processes in practice, even in the presence
of experimental variation. In the Miguel and Kremer study of the consequences of
the distribution of de-worming pills (2004, 2007), while individuals learn from the
experience of their friends, they are also exposed to these friends physically and
this, in turn, should influence their chance of being infected and thus also the
incentive to use the medication. Thus the experience of one’s friends influences
one’s behavior directly through the technological externality as well as indirectly
through its effect on perceptions about private returns. To break apart these effects
would require a setting in which one learns based on the experience of people with
whom one does not have direct physical contact. It is thus important to distinguish
between studies of learning, particularly in the context of health, in which
technological externalities are likely to be small and those in which such
externalities may be large. In the case of the Dupas’ study of the adoption of higher
quality mosquito nets, for example, medical evidence suggests that the overall
likelihood that an infected mosquito will bite someone without a high quality net is
significantly affected by the fraction of households using a high quality net, so that
it is difficult to quantify the amount of learning in that context. However this
medical externality is likely to reduce adoption and thus is likely to offset a
positive learning effect if the technology is perceived to be advantageous by those
who use it. This result contrasts with MK in which the externality is negative but
the learning effect may also be negative due to there being unexpectedly low
private returns.

4. Education, Learning and Technology Adoption

As noted, a common finding in the adoption literature is that more educated

Externalities that influence adoption in both positive and negative directions may also
arise in the case of social preferences. Munshi and Molynaux (2006) show that values regarding
family limitation evolve differently within different networks as might be expected if the returns
to a given behavior (contraceptive use) are influenced by the faction of people within one’s
social network that adopt this behavior.
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agents are more likely to adopt new technologies. For example, Skinner and
Staiger (2005), who examine the adoption of new, effective technologies across US
states over the course of the Twentieth Century, including hybrid corn, beta-
blockers, tractors, and computers, find that education (measured by high-school
enrollments) and measures of social networks were the only variables positively
associated with the adoption rates for all four innovations. We also saw that
education is positively correlated with HY'V seed choice among Indian farmers in
2007 in Table 1. There are three mechanisms that have been hypothesized in the
literature to explain the education-adoption link: 1. More educated agents are
wealthier, and thus the education-adoption relationship represents an income
effect. Most of the descriptive studies linking schooling to adoption, however,
include controls for income or wealth, as in Table 1 and in the Skinner and Staiger
study. 2. More educated agents have better access to information. 3. More educated
agents are better able to learn - to decode new information faster and more
efficiently. The third mechanism has been the principal focus of economists. As
noted by Nelson and Phelps (1966), the income gap between rich and poor
countries could be attenuated if poor countries can catch up to rich countries by
adopting new technologies developed in rich countries faster and more
efficaciously. Thus, if schooling augments learning, increasing educational levels
can be an effective development policy in a world in which there is technological
diffusion.

There are a number of testable implications that arise from the hypothesis
that the more educated are superior learners. The first is that more educated agents
will have higher incomes where there are profitable and complex new technologies
to understand. We can modify the profit function (6) for a farmer deciding on how
much to plant of a new technology to allow profits under the different technologies
to be a function of the farmer’s schooling E:

(13) =z, max h’
) (A=h)zy(ps, P, E)+ i (py,p E)+a, K(hy —ﬂ)

If schooling augments profits more under the new technology than under the old

technology, then (a) more educated farmers will tend to adopt more of the new

technology,

(14) dh, | dE = (A] aK)[or, | OE — o, | OE]
and (b) more educated farmers will have higher earnings where there are
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advantageous newer technologies available.

The hypothesis that farmers with more schooling earn more under a new
technoloy regime was first tested by Finis Welch (1970), who found that the
relative earnings of more-educated US farmers were higher in areas where there
was more farm technology R&D. Foster and Rosenzweig (1996) directly estimated
the new- and old-technology profit functions, embedded in (13), to assess whether
the returns to profits were higher in areas of Indian in which advances in
agricultural technology were highest after the onset of the Indian green revolution.
Using panel data on the profits of farmers from a national probability sample of
rural households interviewed in 1971 and in 1982, they found that the differential
in profits between illiterate and primary school graduate farmers rose from about
10% prior to the green revolution to as high as 40% in those areas of India, such as
the Punjab, where the gains from agricultural technological progress were highest.
Both the Welch and Foster and Rosenzweig studies assumed, and found, that labor
was spatially immobile, so that it was possible to estimate a relationship between
area-specific technology change and wages. Bartel and Lichtenberg (1987), using a
three year decadal panel of US manufacturing industries, assume that industrial
wages are spatially equalized and instead look at the demand for educated workers
by industry. Specifically, they estimated a restricted translog cost function to assess
if the demand for more educated workers was higher in those industries using
newer technologies, as proxied by the average age of the capital stock. They find
that this is the case, although their estimation procedure does not take into account
that unobserved shock to the education of the labor force can affect the age of the
capital stock.

The finding that more educated workers (farmers) earn more or are greater
demand when there is new technology merely indicates that new technology and
schooling are complements. The evidence does not necessarily imply that the
reason for the higher return is due to the more educated having superior learning
skills. Rosenzweig and Foster (1996) use their profit-function estimates of the
returns to schooling across districts of India to test if schooling investment
responded to the increase in schooling returns. A key result is that school
enrollments increased in response to the higher returns to schooling in agriculture
only in households with land, thus suggesting that only those making allocative
decisions in agriculture benefit from schooling in the high technological change
areas.

A more direct way to assess if schooling enhances learning is to estimate the
relationship between profitability, education and experience with a technology. As
shown in Rosenzweig (1995) using an augmented version of the target-input
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Bayesian learning model used in Foster and Rosenzweig (1995) the returns to
experience with new technologies should be higher for the more schooled if
education enhances learning. However, experience and schooling will be
substitutes if schooling merely increases initial knowledge about a technology,
due, say, to superior access to external information sources. Using the same three-
year panel data on Indian farmers, Rosenzweig estimated how the cumulative
planting of HY'V seeds affected farm profits over time differentially for primary-
schooled and illiterate farmers. The results showed that an additional hectare of
prior HY'V planting increased per-hectare farm profits 18% more for the educated
farmers than for the illiterate farmers in the second round of the survey.

Lleras-Muney and Lichtenberg (1996) use data from a 1997 US sample of
individuals that contains information on specific drug purchases to assess the role
of education in medication choice. They find that, controlling for income and a
large variety of other characteristics, more educated patients are significantly more
likely to purchase newer drugs, as indicated by the date of FDA approval. More
importantly, they find that the education-newness relationship is significantly
greater among those with chronic conditions, as indicated by longer histories of
repeated drug purchases. That is, they find that experience with medications for an
illness and education are complements, consistent with the learning hypothesis.

A corollary of the assumption that schooling augments learning is that the
benefits or effects of schooling will be small in settings where either there are no
new technologies or the new technologies are not difficult to decipher, where the
returns to learning are low. The absence of an adoption or input use relationship
with schooling can thus be evidence in favor of the learning hypothesis. Duflo et
al. (2008), for example, do not find any effect of education on the use of fertilizer,
but this is in a setting in which the agricultural technology is relatively old; the
same setting in which they also find that farmers do not discuss fertilizer use with
neighbors. Rosenzweig and Schultz’s (1989) study of contraception adoption at the
onset of the contraceptive revolution shows that, controlling for desired family
size, college-educated women were no more likely to adopt the pill or IUD as
contraceptive methods than were high school students. They argue that the pill and
IUD are simple technologies that do not present a challenge to use effectively.
They indeed show that the measured efficaciousness of the new contraceptives also
did not differ by schooling. In contrast, the efficacy of the traditional rhythm
method was much higher for those women with a college education than who had
only completed high school. In this case, the traditional method was even more
complex than the new technology, so that the ability to decode information was
more advantageous.
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5. The Effects of Income on the Adoption of Profitable Innovations: Risk, Credit
Constraints and Scale

Although income may affect the demand for technologies that augment
health or well-being, the wealth of profit-maximizing enterprises should have no
effect on technology adoption if markets are perfect unless, as we have shown,
there are fixed costs to technology adoption (scale effects). Given that the costs of
many inputs associated with a technology must be paid up front and that the returns
to new technologies are uncertain (and may be riskier), imperfections in credit and
insurance markets may, however, lead to a result that wealthier agents or agents
with steadier alternative income streams are more likely to adopt new technologies,
at least initially. Disentangling the effects of scale, credit constraints and absent
insurance (combined with risk aversion) is not an easy task, yet it is relevant in
formulating policies that facilitate the diffusion of technologies. We discuss studies
that address the role of risk and credit constraints as they affect adoption and input
use and thus create a link between income and the adoption decision.

a. Risk and insurance

We have already discussed the role of variation in profitability in creating
difficulties for assessing the true returns to a new technology and thus its
profitability. But variability in the returns to new technologies has also been
thought to play an important role in terms of technological adoption because of
aversion to risk in contexts in which insurance markets are absent. In the context of
agriculture there are three reasons that one might expect new technologies to be
riskier. First, the yields of new seed varieties may be more sensitive to weather or
other forms of variation than are those of traditional crops. Certainly the first
generation of HY'V wheat crops were very dependent on having a reliable supply
of water over the crop cycle. Second, imperfect knowledge about the input
management, as discussed above, may not only lower yields but it may also
increase variability. Third, HY'V seeds often require more investment, such as in
fertilizer, prior to the full realization of uncertainty thus increasing overall risk.
Thus, if there is a crop-failure just before the realization of the harvest one can
reduce expenses by reducing the labor force used to harvest the crop. One cannot,
ex post, reduce one’s use of fertilizer.

To incorporate this idea into our overall notation, assume that u,, is a random
variable across space that has a known distribution that is realized after input
choices are made and that farmers have concave preferences over risk and no
insurance. Consider the linear in shocks technology above and utility V(.), so that
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the maximand is

(15) [Va=m)gy(p. p)+ g (py, p)+haw) f(u)du,

where integration is over the average shock on the land planted to technology 1.
Because technology 1 in this case has higher risk by assumption, the farmer faces a

tradeoff between risk and return. With quadratic utility and a mean zero shock this
may be written as

(16) Vo((A—hy)g, (p_f D)+ hg, (pf D))~ V1a12 var(hu).
One simple additional assumption is that the u,, are the same for all the land of a
given farmer, in which case var(hu) = A’ var(u, ), so an interior solution for the

adoption of the technology is a likely outcome. Alternatively if the u, are
sufficiently independent across space so that
var(hu) = h, var(u,, ) , farmers will specialize in either the old or new technology.

Despite the large empirical literature testing for and rejecting full insurance
in the context and low-income countries and the theoretical literature showing how
risk can in principle affect agricultural decision making, the literature evaluating
the role of risk as a constraint on adoption of new technologies is thin. The likely
reason for this is that the key thought experiment involves the question of whether
ceteris paribus an increase in the ex ante risk of adopting a new technology affects
adoption. Unless there is reason to believe that the distribution of risk is changing
over time or varies across people in the same area in some well-defined way, this
precludes the use of estimates of technological adoption rules that include village
fixed effects. But, given the inability to use fixed effects, any test of the effects of
risk on adoption are not robust to the presence of unobserved endowments (such as
land quality in the case of agriculture) that may be related to both risk and the
returns to the new technology. The best one can do, in general, is to determine
whether households with different abilities to accommodate risk (i.e., through
higher wealth) but otherwise similar endowment (i.e., quality of land) are
differentially likely to be influenced by risk.

An early example of this approach is Rosenzweig and Binswanger (1993).
While these authors do not specifically deal the question of technological adoption
per se, they do establish that poor farmers facing increased rainfall variability tend
to hold a portfolio that is less influenced by rainfall and as a consequence tend to
have lower profits. Wealthy farmers facing varying exposure to risk do not,
however, exhibit changing portfolios of investments. Thus to the extent that new
technologies are high mean and high variance these results would confirm the
presence of a risk-based barrier to technological adoption, with wealthier farmers
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more likely to adopt new, riskier (at least initially) technologies. Morduch (1990)
also showed, using the same data, that poorer farmers exposed to risk planted less
risky crops than wealthier farmers.

In more recent work, Dercon and Christiansen (2008) address directly the
question of fertilizer adoption using panel data from Tanzania. They are able to use
household fixed effects by constructing a measure of the level of consumption that
would obtain if rainfall would be at the 20% level. The idea is in essence that as a
household’s wealth changes from year to year the consequences of an adverse
weather shock changes and this, in turn, may affect willingness to absorb risk. One
can think of this as a model identified by an interaction between household wealth
and the underlying weather risk, with household wealth changing over time,
although of course changes in household wealth may themselves be responsive to
technological choices. Moser and Barrett (2008) examine a new rice production
technology (SRI) in Madagascar. They take advantage of individual-level variation
in exposure to risk by using a measure of whether the household has a stable
source of income. This measure significantly predicts adoption and continued use
of the new technology.

Given the challenges associated with using natural variation in exposure to
risk to look at this question it is natural to ask whether it is possible to look at
experimentally induced variation. For example, recent attempts to experimentally
induce better crop insurance mechanisms (Cole et al. 2008) may provide a useful
mechanisms for evaluating the role of risk in reducing technological adoption—in
principle one could establish whether farmers who are given access to a successful
measure for reducing exposure to weather risk are more likely to adopt new
technologies. Unfortunately, the major conclusion of that paper was that very few
farmers chose to make use of this mechanism even though it was designed to have
very attractive returns.

Foster and Rosenzweig (2009) attempt to test whether imperfect insurance
leads to sub-optimal use of fertilizer, exploiting their plot-specific data on Indian
farmers who have multiple plots and cultivate at least some of them across seasons.
Specifically, they test whether profit shocks for a given farmer prior to planting
affect his subsequent per-acre input use on a given plot of his land. If farmers are
fully insured, then variation in profits will be sterilized, and have no effect on input
decisions. In the absence of insurance, there will be a positive relationship between
lagged income or profits m; , for a farmer j on the use of inputs f;, on plot i in the
subsequent crop season ¢, as farmers with a positive income shock experience an
increase in wealth and thus can absorb more risk, or because credit markets are also
imperfect so self-financing of inputs is necessary. Expressed as a linear
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relationship:
(17) fijt = Snjt-l G T v+ eyt g

where (; 1s a plot-specific fixed effect (e.g., soil quality), v; is a farmer/farm fixed
effect, e, is an iid time-varying, plot-specific shock and g; an iid time-varying
shock that is common across all plots (e.g., farmer illness). If there is imperfect
insurance, and perhaps also if there are credit constraints 6>0. Estimation of this
equation by OLS would lead to a biased estimate of & because farm profits may be
correlated with the farmer and plot fixed effects, which reflect the ex ante return to
input use (profitability). Thus, one could find that higher lagged profits and current
fertilizer use are positively related simply because time-invariant land quality 1s
complementary with fertilizer.

Differencing (17) over time for the same plot eliminates all unmeasured plot
characteristics and time-invariant farmer characteristics:

(18) Afiy = A, | + Aey + Ag;,

However, there two problems: First, there will be a negative covariance between
the change in lagged farm profits Am, | and the difference in the plot-specific error.
This can be eliminated by taking out of the lagged difference farm profits that
component associated with plot i. Thus, farmers with more than one plot are
needed to identify 6. Second, the change in farm profits associated with the other
farmer plots will be correlated with any shock to fertilizer common to all plots. If
this is a shock common to all farmers in a village, then a village dummy can absorb
this effect. If the shock 1s common to the farmer, such as farmer illness that
prevents the use of optimal fertilizer and other inputs that affect profits, there will
be a negative covariance between the change in lagged profits and this farmer-
specific shock. Thus, the estimate of d, the effect of lagged farm profits on current
input use, will be biased negatively. The finding that 6 is positive, however, would
certainly reject full-insurance; a coefficient of zero or negative would lead to an
uncertain conclusion. Estimated over 4,045 farmers cultivating more than one plot
in at least two of three seasons, Foster and Rosenzweig find that o is indeed
positive and statistically significant, but only for farmers whose land size puts them
in the bottom quartile of the land distribution. Consistent with other studies, the
problem of lack of insurance appears to afflict the poorest farmers.

b. Credit constraints
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Any input or technology that entails paying up-front costs requires that the
agent have funds available prior to the realization of the gains from using the input
or adopting the technology. If all agents can borrow, then whether a new
technology is adopted will only depend on net returns and not on the timing of
costs and benefits and therefore not on the characteristics of the agent, net of
returns. If the ability to borrow, however, depends on the agent having assets that
can be used as collateral or if borrowing is not an option so that the agent must
supply his own funds, then such agent characteristics as wealth or the history of
prior income realizations will affect current input and technology choices that have
an investment element (assuming imperfect insurance). But, as we have seen,
income and wealth may be correlated with the scale of operation, which affects
returns, and with the ability to cope with ex post risk when formal insurance is
unavailable. Identifying the role of credit market imperfections is thus difficult.

There are two methods used in the literature to quantify the role of credit
constraints. The first is to ask agents (farmers) the primary reason(s) why they did
not adopt a technology. This method was used by Miyata and Sawada (2007) in
their study of the adoption of floating net aquaculture (FNA). The “reasons” can
then be correlated with wealth or income to draw inferences about the importance
of the credit “constraint” by income. This was done by Bhalla (1979) for farmers at
the onset of the Indian green revolution; he found that 48% of large farmers and
only 6% of large farmers reported that lack of access to credit was a reason for not
purchasing fertilizer. The problem, of course, is that if the returns to adoption of
HYV (which is fertilizer intensive) vary by farm scale, then even if all farmers
faced the same credit price, small farmers would find it unprofitable to adopt while
large farmers would find it profitable at the going interest rate. Small farmers
would optimally adopt at lower interest rates, and thus may report that they are
credit constrained in that context. Or, lenders may be unwilling to make loans to
small farmers because the returns, given fixed costs, are low. Subjectively-reported
credit constraints and returns may thus be highly correlated.

The second method for identifying the role or existence of credit constraints
1s to look for income effects that are net of returns, scale effects and insurance.
Gine and Klonner (2005) attempt to isolate the role of credit with an intensive
examination of the adoption of a new technology whose returns do not depend on
scale. In particular, they look at the timing of the adoption of plastic reinforced
fiber (FRP) boats in a fishing village in Tamil Nadu. Purchase of the boats requires
up-front payments, and given that labor markets were well-functioning the new,
larger-scale boats do not depend on the size of the fisherman’s household. The
authors also argue that the fisherman have a well-functioning informal risk-sharing
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scheme and that, because of moral hazard, boat rental was not an option. Gine and
Klonner also estimate the gains from adopting the new boat. They find that
household’s with a higher-value house, for given returns, were more likely to
purchase the boat earlier. The problem is that the variation in house value across
the fisherman may reflect unobservables that affect investment returns, which are
only imperfectly measured - fishermen with big houses may be more capable
fishermen, and we must accept that the fishermen are fully insured, which seems
unlikely. If not, then the wealth effect may again reflect risk aversion. The authors
show, however, that whatever the reasons for the differential timing of adoption,
the new technology was fully diffused within five years.

6. Behavioral Economics and Adoption Behavior

Given increased evidence from experimental laboratories, in the United
States and increasingly in low-income countries, that individual behavior appears
at times to be at variance with standard economic models it is natural to ask the
question of whether behavioral models can be useful in understanding rates of
technological adoption and input use in low-income countries. Of course, given the
complexity of the adoption process and the difficulties associated with
measurement that have been highlighted, it may be that the resolution to some of
the puzzles of the technology adoption literature lies in more careful measurement
and theorizing rather than taking significant steps away from the standard
economic paradigm. However, to the extent that governments and NGOs are
resistant to adopting insights from more conventional economic models, a finding
that a behavioral mechanism is absent or of limited importance may have a
constructive effect on policy design. On the other hand, if departures from standard
optimizing models are salient, standard policy prescriptions based on such models
should be modified or reversed.

Two recent papers that set out to test an explicit behavioral model do in the
end seem to support a more conventional approach. Ashraf, Berry, and Shapiro
(2007) used a randomized field experiment to study the adoption of packaged
chlorine to purify drinking water. The intervention was designed to explore the
idea that raising the cost of a technological device may increase the actual use of
the device because agents are loss aversive, so that sunk costs affect behavior,
which should not be the case if agents are purely rational. Of course, in this
experiment it is important to distinguish between a sunk cost effect and selection,
arising from then fact that individuals who are more likely to use a device place a
higher value on the device and thus are less sensitive to price. This problem is
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addressed by randomly assigning a discount for an item after individuals had
already agreed to purchase it at a given price. Because the discount does not
introduce any additional selection into the process, response in terms of use to the
discount variation captures any sunk cost effect. While the results show clear
evidence of a selection effect, there is not clear evidence of the sunk cost effect.

Dupas’s (2009) analysis of the field experiment randomizing the selling
prices of bed nets among individuals in groups (Cohen and Dupas, forthcoming)
was also initially conceived as a shedding light on behavioral hypotheses. In
particular, the question asked was whether people who knew that a good was sold
to neighbors at a subsidized price would, ceteris paribus, be less likely to purchase
the good at a given price. The difficulty with this experiment is that, as noted
above, those people who have neighbors who faced a favorable price in the early
period may also be influenced by a learning effect — they will know more people
who used the technology and thus will be more likely to adopt the technology if it
is considered (by the previous adopters) to be valuable. It is clear from the results
that the learning effects are far larger than any reference price effect as the
reduced-form effect of neighbor prices on own adoption is negative, while the
behavioral effect predicts a positive relationship. Note that if the price paid by a
neighbor does in fact directly affect one’s own behavior, that would invalidate the
use of neighbors’ prices as instruments to predict bed net adoption and thus prevent
identification of pure learning effects from the experiment.

Duflo, Kremer and Robinson (2009) examine the efficacy of a commitment
device designed to increase fertilizer adoption among Kenyan farmers by offering
them small discounts on fertilizer when farmers are relatively liquid due to a recent
harvest season that is then delivered at the time the fertilizer is used. The
predictions of a standard exponential model of discounting with effective credit
markets is, of course, that a farmer who is given the opportunity to purchase an
investment item that will not be used until at time t+1 will prefer to purchase that
item at time t+1 at a given price than to purchase that item at time t at the same
price. To test whether the standard model is relevant in their context, the authors
employ a randomized design, that offers three main treatments: 1. At the time of
harvest the farmer is offered a contract for the free delivery of fertilizer when it is
needed in the subsequent season. 2. At the top-dressing period of the subsequent
season the farmer is offered free delivery of fertilizer at that time. 3. At the time of
harvest the farmer is offered a choice between contracts 1 and 2.

In all of these cases, the price of fertilizer inclusive of delivery costs is the
same. Thus, one would have expected that no farmer would choose to take up
contract 1 if offered contract 2 and that more farmers would take up contract 2 than
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would take up contract 1. However, the authors find that more farmers take up the
delayed contract 1 than contract 2 (although the difference is marginally
statistically significant), and half of the farmers offered contracts 1 and 2 actually
chose contract 1. Therefore, the authors conclude that farmers value a commitment
device, which could be due to hyperbolic discounting. One alternative explanation
for these results is that cash payments up front have a negative return - loss due to
sharing obligations, theft or inflation. Therefore, the authors overlaid randomly on
the other treatments the subsidized sale of maize. Those receiving the subsidy had
more cash and thus should have under this alternative explanation differentially
preferred contract 1. They did not. These results suggest that the deadweight loss
from subsidizing fertilizer can be reduced by offering subsidies along with
commitment contracts if at least some farmers exhibit behavior consistent with
hyperbolic discounting. However, in the absence of well-documented information
on the profitability of fertilizer use (as discussed above) or of the different
treatments in this setting it is difficult at this point to evaluate the full
consequences for welfare of a behaviorally-enlightened subsidy program.

7. Conclusion

The adoption and efficient use of new technologies is an important feature of
the development process. It is thus not surprising that there is a lively and growing
literature attempting to understand whether or not there is substantial under-
adoption or sub-optimal application of profitable or otherwise socially beneficial
technologies, and if so why or why not. There is considerable variation, however,
in what is known about different aspects of the process.

A particular strength of the recent literature has been its focus on the role of
learning in the adoption of new technologies. It is evident that as a whole learning
is quite sophisticated and a key element in at least the early stages of adoption
when information acquisition has large payoffs. Information about technologies
that are generally beneficial tends to diffuse quite rapidly and this process appears
to be well-captured by standard models of Bayesian learning. There is also
evidence of active and strategic experimentation, however, which provide insights
into how interventions could facilitate the adoption process. The literature also
suggests that education plays an important role in facilitating the acquisition and
processing of new information, which appears to account for the pervasive finding
that more educated agents adopt new technologies first, and helps explain the
variation in returns to schooling over time and across areas. However, although the
learning literature as a whole is quite well-developed, we find the relationship

35



between learning and technological externalities to be complex and in need of
further study. Technological externalities may be particularly important in the
arena of health and therefore studies of learning behavior in the context of health
may be especially difficult to conduct and interpret."

There is also suggestive evidence that risk, due to the incompleteness of
insurance, and credit availability play an important role in delaying the adoption of
profitable new technologies and constraining the levels of inputs necessary to
exploit the new technologies, particularly among the relatively poor. That wealth
and income are advantageous in adoption and input use because of these
institutional failures is of particular concern both because it suggests that poor
countries may have difficulty developing via technology catch-up but also because
it suggests that possibilities for upward mobility for poorest households are
limited. However, although there is an ample literature documenting that poor
households are not well protected from risk and that they may have limited access
to credit, very few studies examine directly how these factors affect the process of
technological adoption itself.

Perhaps a surprising gap in the literature is the paucity of studies carefully
documenting the returns to inputs and technologies that are alleged to be
underutilized. In some cases this is due to absent data characterizing input costs for
enterprises, the remedy for which is obvious, but in others, new thinking about
how to measure gains for individuals, such as from medical interventions, are
needed. The salience of behavioral oddities and of particular market imperfections
in observed adoption behavior may be quite different in settings where returns to
input mis-allocations and distance from the technological frontier are small
compared to settings where there are large gains from alternative choices. Because
the same technology may have different returns for different people in different
places one cannot assume that because a technology is profitable in one time or
place it is also profitable in another or that the important constraints to adoption in
one area generalize.

A new and promising area of research involves testing models of choice in
the field that go beyond simple rationality and that are consistent with laboratory
evidence on these behavioral departures. However, it is not likely that differences
in technological adoption or input use across different settings are primarily the
result of differences in the fundamental nature of human behavior across countries.

BThe medical literature contains studies that are designed to illuminate externailities,
such as in the case of bed nets (e.g., Hawley et al., 2003).
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Ultimately the interplay between behavior, market settings, traditional institutions
and technology payoffs need to be addressed to more fully understand the variety
of experiences over time and across countries in utilizing productive resources and
adopting new technologies. A strength of micro studies of adoption is that some of
these details can be incorporated into the analysis and rigorous methods of
evidence adducement can be applied. However, a better understanding of
differences in findings across studies requires particular attention to differences in
specific conditions inclusive of those related to climate and soil coupled with
difference in specific market imperfections and traditional institutions.
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Figure 1: Estimated Relationship betweenFertilizer Use (kg. per Acre) and Four Outcome Measures,
Indian Farmers in Crop Year 2006-2007 (N=6,273 plots)
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Table 1
Determinants of the Adoption of HY'V Seeds: Indian Farmers, 2007

Determinants (1) (2)
Maximum schooling of household .0074 .00589
(years) (2.03) (1.62)
Value of landholdings (Rs. x10™) .000627 .000447
(2.10) (1.44)
Low wealth (< Rs.250,000) - -.126
(3.26)
Low wealth*value of landholdings - .00429
(2.15)
Total number of farmers using HYV .000425 .000408
in prior season (2.50) (2.40)
Number of farmers 4,045 4,045

Absolute value of t-statistics in parentheses.
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