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Abstract

This paper provides an axiomatic approach to the problem of measuring the information

contained in opportunity sets. In many choice situations, the items that can be selected

from an opportunity set (the objects of choice) do not coincide with the consequences

they induce (the objects a decision-maker ultimately cares about). An informational is-

sue arises because uncertainty regarding the consequences of the choices may be present.

An ordinal index of information with a plausible interpretation in this framework is char-

acterized by means of two sets of axioms.
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1 Introduction

The problem of ranking opportunity sets in terms of their desirability with respect to

certain individual and social criteria has been the subject of investigation of a growing

body of literature. An opportunity set (or a menu) is defined as a set of options from

which an individual can make choices. In addition to the indirect-utility criterion, which

postulates that an agent ranks opportunity sets on the basis of their respective best

elements according to her or his preferences on the universal set of options, other criteria

have recently been introduced as possible determinants of the desirability of a menu.

For instance, the freedom of choice offered by opportunity sets has been used as a cri-

terion to rank these menus. See, for example, Gravel (1994), Gravel, Laslier, and Trannoy

(1998), Klemisch-Ahlert (1993), Pattanaik and Xu (1990), Puppe (1995, 1996, 1998), Sen

(1988, 1991) for discussions and axiomatic analyses of freedom of choice. The assessment

of distributions of opportunities has been analyzed in Kranich (1996). Pattanaik and Xu

(1997) discuss the importance of diversity as a ranking criterion. Rankings of opportu-

nity sets in terms of the overall well-being of an agent rather than in terms of one specific

criterion are analyzed in Bossert (1997a), Bossert, Pattanaik, and Xu (1994), and Dutta

and Sen (1996). Kreps (1979) provides an approach in terms of preference for flexibility.

The purpose of this paper is to propose and explore a new avenue of research within

this context. In particular, the ranking of opportunity sets is analyzed from an angle

which is quite different from those mentioned above—namely, the informational contents

of opportunity sets are the subject of investigation. To illustrate why informational issues

may be of importance in this framework, consider the following example, taken from Sen

(1993). There are two alternative choice situations faced by an individual decision-maker.

Suppose first the decision-maker is offered a choice between accepting the invitation of

a distant acquaintance for a cup of tea at the acquaintance’s place or staying at home.

That is, the decision-maker can choose an option from the opportunity set consisting

of the two alternatives ‘having tea at the acquaintance’s place’ and ‘staying at home.’

Alternatively, suppose the acquaintance offers having some cocaine at her or his place

as a further option, in which case the decision-maker faces the larger opportunity set

which contains, in addition to the two above-mentioned options, the element ‘having

cocaine at the acquaintance’s place.’ Sen (1993) argues that it is quite plausible that

many decision-makers would accepted the invitation to tea in the first choice situation

but select ‘staying at home’ when faced with the second, and he uses this example to

argue against the traditional rational-choice model based on what he refers to as internal
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consistency requirements imposed on choice behaviour.

An alternative interpretation of this example seems to be to view the objects that ap-

pear as menu items in an opportunity set as being different from the objects the decision-

maker ultimately cares about—the consequences of his or her choices. For example, it

would seem natural to think of the consequences ‘having tea at a place where cocaine is

being consumed’ and ‘having tea at a cocaine-free place’ as being distinct alternatives, and

the choice behaviour outlined above can be explained quite straightforwardly once it is

recognized that if ‘having tea’ and ‘staying at home’ are the only menu items available for

choice, the decision-maker lacks crucial information regarding the possible consequences

of her or his actions. In this case, the agent does not know with certainty whether the

consequence of choosing tea will be ‘having tea at a cocaine-free place’ or ‘having tea

at a place where cocaine is being consumed.’ On the other hand, if ‘having cocaine’ is

offered as an additional menu item, the agent can be sure that choosing ‘tea’ will lead to

the latter of those two consequences. Thus, a menu can convey crucial information about

the consequences of possible choices. See also Sen’s (1993) discussion of the epistemic

value of a menu, and Bossert (1995b) for alternative definitions and characterizations of

rationality in situations where possible consequences do not coincide with menu items.

It is clear that the distinction between choices and consequences is of importance in a

variety of decision situations and is, therefore, not restricted to the above example. This

observation raises an interesting measurement issue, namely, how the informational con-

tents of opportunity sets should be measured. Basically, the reason why the informational

contents may vary considerably across different opportunity sets is that, in many situa-

tions, uncertainty concerning the possible consequences of choosing particular menu items

is present. This measurement problem is addressed in the present paper. In particular, the

objective is to establish an index that can be applied to measure the informational con-

tents of opportunity sets. Given an ordinal interpretation of such a measure, this amounts

to the construction of an ordering on the set of possible menus with the above-mentioned

interpretation.

The following is a brief outline of the model employed in this paper in order to illustrate

the methodology being used; a more detailed description follows after introducing the req-

uisite formal definitions. For any given menu, the set of possible consequences is specified

for each menu item. A plausible interpretation of these sets of possible consequences is

that they contain all those outcomes that cannot be excluded as possible consequences

of the choice of a particular menu item. Based on this mapping from choices into con-

sequences, an ordering defined on the set of possible menus is to be established. The
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approach employed to do so is axiomatic, and two characterizations of a specific rank-

ing of opportunity sets are provided. This ordering compares two menus on the basis of

the total number of possible consequences from all possible choices minus the number of

elements of the menu.

The above-described index can be defined on the basis of the sets of possible con-

sequences alone. No information regarding, for example, how an agent ranks different

outcomes is required, which is a plausible property, given that what is to be measured

is the information contained in menus rather than, for example, the quality of the best

possible choice or the overall desirability of these menus. Furthermore, there is no need

to assume the existence of a probability distribution over the set of possible outcomes

that can arise from the choice of a given menu item. In that regard, the model used in

this paper is analogous to a class of nonprobabilistic models of choice under uncertainty.

See, for example, Bandyopadhyay (1988), Bossert (1989a,b, 1997b), Barberà, Barrett, and

Pattanaik (1984), Barberà and Pattanaik (1984), Fishburn (1984), Heiner and Packard

(1984), Holzman (1984a,b), Kannai and Peleg (1984), Nitzan and Pattanaik (1984), Pat-

tanaik and Peleg (1984), and some of the contributions to the literature on choice under

ignorance—for instance, Arrow and Hurwicz (1972) and Maskin (1979). An approach to

the ranking of sets of alternatives based on signed orders is discussed in Fishburn (1992),

and Bossert (1995a) analyzes the ranking of sets of outcomes with a fixed number of

elements.

However, it should be pointed out that the problem addressed in this paper differs from

the standard approach to the ranking sets of possible outcomes in terms of uncertainty.

Instead of simply ranking sets of possible outcomes as is the case in nonprobabilisitc

decision models, the approach in this paper establishes a ranking of non-ordered n-tuples

of sets of consequences (where n is not fixed), due to the fact that each menu item in a

given opportunity set induces a set of possible outcomes. As a consequence, the axioms

employed in this paper and the resulting ranking rules are quite different from those that

can be found in the standard decision-theoretic literature on nonprobabilistic choice under

uncertainty.

In Section 2, the basic concepts and definitions used in this paper are introduced. The

consequences of some basic axioms on the comparison of menus with a fixed number of

elements are analyzed in Section 3. Section 4 provides two characterizations of the index

proposed in this paper, and Section 5 establishes the independence of the axioms used in

the axiomatizations. Concluding remarks are collected in Section 6.
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2 Definitions

The set of real numbers is denoted by <. Let Z+ (resp. Z++) be the set of nonnegative

(resp. positive) integers, and let Zn+ (resp. Zn++) denote the n-fold Cartesian product of

Z+ (resp. Z++). For n ∈ Z++, 1n is the vector consisting of n ones. The notation for

vector inequalities is as follows. For all n ∈ Z++ and all x, y ∈ Zn+, x ≥ y if and only if

xi ≥ yi for all i ∈ {1, . . . , n}, and x > y if and only if x ≥ y and x 6= y. For n ∈ Z++,

x ∈ Zn++, and j ∈ {1, . . . , n}, define x̂j by letting

x̂ji :=

 xi + 1 if i = j;

xi if i ∈ {1, . . . , n} \ {j}.

Consider an infinite set of items that could appear on a menu, denoted by Σ. Π(Σ)

is the set of all nonempty and finite subsets of Σ. That is, a menu S available to an

agent is an element of Π(Σ). The cardinality of S is denoted by |S| and, for notational

convenience, the elements of S are labelled s1, . . . , s|S|, that is, S = {s1, . . . , s|S|}.
The set of possible consequences that are of relevance for a decision-maker is Ω. Again,

Ω is assumed to have infinitely many elements. Π(Ω) is the set of all nonempty and finite

subsets of Ω. For n ∈ Z++, Γn(Ω) is the set of all non-ordered n-tuples of nonempty and

finite subsets of Ω.

To establish a link between choices of menu items and consequences, a mapping

F : Π(Σ) → ⋃
n∈Z++

Γn(Ω) is used, where, for all S ∈ Π(Σ), F (S) ∈ Γ|S|(Ω). There-

fore, F (S) can be written as F (S) = < F1(S), . . . , F|S|(S) > with Fi(S) ∈ Π(Ω) for all

i ∈ {1, . . . , |S|}. For all i ∈ {1, . . . , |S|}, Fi(S) is the set of possible consequences of choos-

ing menu item si from the menu S. Note that F (S) is a non-ordered n-tuple because the

numbering of elements in S is arbitrary.

It is assumed that F is surjective, that is, F (Π(Σ)) =
⋃
n∈Z++

Γn(Ω). The surjectivity

of F ensures that any non-ordered n-tuple of sets of possible consequences can be gener-

ated by some menu. This assumption is required in order to rule out degenerate cases.

See Section 5 for a more detailed discussion.

The measurement issue addressed in this paper is that of finding an index of the

information contained in a menu S. Given an ordinal interpretation of such an index, this

amounts to establishing an ordering R on Π(Σ) where, for all S, T ∈ Π(Σ), S RT if and

only if S contains at least as much information about consequences as T . The indifference

relation and the strict preference relation corresponding to R are denoted by I and P ,

respectively.
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The ordering R∗ that is of particular interest in this paper is defined as follows. For

all S, T ∈ Π(Σ),

S R∗ T :⇔
|S|∑
i=1

|Fi(S)| − |S| ≤
|T |∑
i=1

|Fi(T )| − |T |.

R∗ ranks two opportunity sets on the basis of the total number of possible consequences

generated by the respective menu, corrected by the number of elements appearing in the

menu. This ordering has considerable intuitive appeal. The total number of possible

consequences appears to be an adequate measure of the uncertainty involved in the choice

to be made. Because a menu item the choice of which unambiguously leads to one specific

consequence does not introduce any uncertainty, this total number of consequences should

be modified by subtracting the number of menu items. It turns out that, in addition

to conforming to the intuition behind this measurement issue, R∗ can be given strong

axiomatic support. In particular, R∗ turns out to be the only information-measurement

ordering satisfying two sets of plausible axioms.

3 A Fixed Number of Menu Items

As a first step in the characterizations of R∗, the consequences of some axioms imposing

restrictions on the comparison of menus of the same cardinality are examined.

The first axiom is a certainty indifference condition. It requires that if each menu item

in two opportunity sets of the same cardinality leads to a single possible outcome, then

the two menus should be declared indifferent. This is a plausible assumption: if there is

no uncertainty regarding the consequences of all possible choices in two opportunity sets,

the two menus are indistinguishable in terms of their informational contents.

Certainty Indifference: For all S, T ∈ Π(Σ) such that |S| = |T |, if |Fi(S)| = 1 for all

i ∈ {1, . . . , |S|} and |Fi(T )| = 1 for all i ∈ {1, . . . , |T |}, then S I T .

The next axiom is an independence condition. It requires that if two menus S and

T with the same cardinality are replaced by S ′ and T ′, respectively, where the only

difference between the former pair and the latter is that one outcome is added as a

possible consequence of a choice sj and a choice tj for some j ∈ {1, . . . , |S|}, then the

relative ranking of S and T is the same as the relative ranking of S ′ and T ′. This type

of condition is standard in the literature on the ranking of opportunity sets in terms

of freedom of choice and the ranking of sets of uncertain outcomes (see, for example,

Barberà, Barrett, and Pattanaik (1984), Barberà and Pattanaik (1984), Bossert (1989a,b),
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Bossert, Pattanaik, and Xu (1994), Fishburn (1984), Heiner and Packard (1984), Kannai

and Peleg (1984), and Pattanaik and Xu (1990)). The following axiom is an adaptation

of this principle to the problem investigated in the present paper.

Independence: For all S, T, S ′, T ′ ∈ Π(Σ) such that |S| = |S ′| = |T | = |T ′|, for all

j ∈ {1, . . . , |S|}, for all ω ∈ Ω \ (Fj(S) ∪ Fj(T )), if

Fj(S ′) = Fj(S) ∪ {ω} and Fj(T ′) = Fj(T )∪ {ω} and

Fi(S ′) = Fi(S) for all i ∈ {1, . . . , |S|} \ {j} and

Fi(T
′) = Fi(T ) for all i ∈ {1, . . . , |T |} \ {j},

then

S RT ⇔ S ′RT ′.

In the presence of the above axioms, the task of comparing any two opportunity sets

S and T on the basis of their informational contents can be simplified considerably. Cer-

tainty indifference and independence imply the existence of an ordering � on
⋃
n∈Z++

Zn++

(with indifference relation ∼ and strict preference relation �) such that the relative rank-

ing of S and T according to R is determined by the ranking of the vectors consisting of

the cardinalities of the Fi(S) and Fi(T ) according to �. In addition, the ordering � must

possess certain properties and, in turn, the existence of an ordering of vectors of positive

integers with these properties guarantees that the corresponding ordering R satisfies cer-

tainty indifference and independence. The above-mentioned properties of the ordering �
are the following.

Anonymity: For all n ∈ Z++, for all x, y ∈ Zn++, for all bijections ρ: {1, . . . , n} →
{1, . . . , n}, if yi = xρ(i) for all i ∈ {1, . . . , n}, then x ∼ y.

Additivity: For all n ∈ Z++, for all x, y ∈ Zn++, for all j ∈ {1, . . . , n},

x � y ⇔ x̂j � ŷj.

By repeated application of this property, additivity is easily seen to be equivalent to the

following axiom.

Additivity′: For all n ∈ Z++, for all x, y ∈ Zn++, for all z ∈ Zn+,

x � y ⇔ (x+ z) � (y + z).

The above-described result establishing the consequences of certainty indifference and

independence is stated in the following theorem.
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Theorem 1 Suppose F is surjective. R satisfies certainty indifference and independence

if and only if there exists an anonymous and additive ordering � on
⋃
n∈Z++

Zn++ such

that, for all S, T ∈ Π(Σ),

S RT ⇔ (|F1(S)|, . . . , |F|S|(S)|) � (|F1(T )|, . . . , |F|T |(T )|). (1)

The following lemma will be of use in the proof of this theorem.

Lemma 1 Suppose F is surjective, and R satisfies certainty indifference and indepen-

dence. Let S, T ∈ Π(Σ) be such that |S| = |T |. If, for all i ∈ {1, . . . , |S|}, there exists

j(i) ∈ {1, . . . , |T |} such that |Fi(S)| = |Fj(i)(T )|, then S I T .

Proof: Let S, T ∈ Π(Σ) be such that |S| = |T |, and suppose that, for all i ∈ {1, . . . , |S|},
there exists j(i) ∈ {1, . . . , |T |} such that |Fi(S)| = |Fj(i)(T )|. Without loss of gener-

ality, we can assume that j(i) = i for all i ∈ {1, . . . , |S|} because the labelling of the

elements in S and T is irrelevant. We proceed by induction over
∑|S|
i=1 |Fi(S)|. Note that∑|S|

i=1 |Fi(S)| = ∑|T |
i=1 |Fi(T )| by assumption. The methodology employed in this proof is

analogous to the one used in Pattanaik and Xu’s (1990) characterization of the simple

cardinality-based ordering for opportunity sets.

The smallest possible value of the above sum is |S| because each Fi(S) contains at least

one element. In that case, Fi(S) and Fi(T ) must be singletons for all i ∈ {1, . . . , |S|} =

{1, . . . , |T |}. By certainty indifference, S I T .

Now suppose the claim is true for
∑|S|
i=1 |Fi(S)| = m ≥ |S|. Let

∑|S|
i=1 |Fi(S)| = m+ 1

and |Fi(S)| = |Fi(T )| for all i ∈ {1, . . . , |S|}. Choose j ∈ {1, . . . , |S|} such that |Fj(S)| =
|Fj(T )| > 1. Such a j must exist because m+ 1 > |S|. Pick any ω ∈ Fj(S) and let S ′ be

such that |S ′| = |S|, Fj(S ′) = Fj(S) \ {ω} and Fi(S ′) = Fi(S) for all i ∈ {1, . . . , |S|} \ {j}
(note that the surjectivity of F guarantees that such a menu S′ exists). There are two

possible cases.

(i) ω ∈ Fj(T );

(ii) ω 6∈ Fj(T ).

In case (i), let T ′ be such that |T ′| = |T |, Fj(T ′) = Fj(T ) \ {ω}, and Fi(T ′) = Fi(T )

for all i ∈ {1, . . . , |T |}. We have

|Fi(S ′)| = |Fi(T ′)| = |Fi(S)| = |Fi(T )| for all i ∈ {1, . . . , |S ′|} \ {j}

and

|Fj(S ′)| = |Fj(T ′)| = |Fj(S)| − 1 = |Fj(T )| − 1.
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Hence,
∑|S′|
i=1 |Fi(S ′)| =

∑|T ′|
i=1 |Fi(T ′)| = m. By the induction hypothesis, S′ I T ′, and

independence implies S I T .

Now consider case (ii). Because ω 6∈ Fj(T ) and |Fj(S)| = |Fj(T )|, it follows that

Fj(T ) \ Fj(S) 6= ∅. Let ω′ ∈ Fj(T ) \ Fj(S). Let T 1 be such that |T 1| = |T |, Fj(T 1) =

Fj(T ) \ {ω′}, and Fi(T
1) = Fi(T ) for all j ∈ {1, . . . , |T 1|} \ {j}. It follows that |Fj(S ′)| =

|Fj(T 1)| = |Fj(S)| − 1 = |Fj(T )| − 1 and
∑|S′|
i=1 |Fi(S ′)| =

∑|T 1|
i=1 |Fi(T 1)| = m. By the

induction hypothesis,

S ′ I T 1. (2)

Letting T 2 be such that |T 2| = |T |, Fj(T 2) = Fj(T 1) ∪ {ω} = (Fj(T ) \ {ω′}) ∪ {ω}, and

Fi(T 2) = Fi(T 1) = Fi(T ) for all i ∈ {1, . . . , |T 2|}, (2) and independence imply

S I T 2. (3)

Consider any ω′′ ∈ Fj(T 1), and define T 3 such that |T 3| = |T |, Fj(T 3) = Fj(T 2) \ {ω′′},
and Fi(T 3) = Fi(T ) for all i ∈ {1, . . . , |T 3|}. Furthermore, let T 4 be such that |T 4| =

|T |, Fj(T 4) = Fj(T ) \ {ω′′}, and Fi(T 4) = Fi(T ) for all i ∈ {1, . . . , |T 4|} \ {j}. By

definition, Fj(T 3) = (Fj(T 1)∪{ω})\{ω′′}. Furthermore, |Fj(T 3)| = |Fj(T 4)| = |Fj(T 1)| =
|Fj(T )| − 1, |Fi(T 3)| = |Fi(T 4)| = |Fi(T )| for all i ∈ {1, . . . , |T |}, and

∑|T 3|
i=1 |Fi(T 3)| =∑|T 4|

i=1 |Fi(T 4)| = m. By the induction hypothesis, T 3 I T 4, and independence implies

T 2 I T . Together with (3), the transitivity of R implies S I T .

Proof of Theorem 1: It is straightforward to verify that any ordering R that can be

expressed in terms of an anonymous and additive ordering � as in the theorem statement

satisfies certainty indifference and independence.

Conversely, suppose R satisfies these two axioms. Using Lemma 1, an ordering �
on

⋃
n∈Z++

Zn++ with the desired properties is constructed. Let {ωi | i ∈ Z++} be a

countably infinite set of pairwise distinct elements of Ω. For all n,m ∈ Z++, x ∈ Zn++,

and y ∈ Zm++, let Sx, Ty ∈ Π(Σ) be such that |Sx| = n, |Ty| = m, Fi(Sx) = {ω1, . . . , ωxi}
for all i ∈ {1, . . . , n}, and Fi(Ty) = {ω1, . . . , ωyi} for all i ∈ {1, . . . ,m} (the existence

of menus Sx and Ty with these properties is guaranteed by the surjectivity of F ). Now

define � by letting, for all n,m ∈ Z++, x ∈ Zn++, and y ∈ Zm++,

x � y :⇔ SxRTy.

� is an ordering because R is. For all S, T ∈ Π(Σ), let xS := (|F1(S)|, . . . , |F|S|(S)|) ∈ Z |S|++

and yT := (|F1(T )|, . . . , |F|T |(T )|) ∈ Z |T |++. By Lemma 1 and the definition of �,

S RT ⇔ SxS RTyT ⇔ xS � yT ⇔ (|F1(S)|, . . . , |F|S|(S)|) � (|F1(T )|, . . . , |F|T |(T )|).
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That � is anonymous follows from the observation that the labelling of the elements

in a menu is arbitrary.

It remains to be shown that � is additive. Let n ∈ Z++, x, y ∈ Zn++, and j ∈
{1, . . . , n}. Choose S, T ∈ Π(Σ) such that |S| = |T | = n, |Fi(S)| = xi for all i ∈
{1, . . . , n}, and |Fi(T )| = yi for all i ∈ {1, . . . , n}. Pick any ω ∈ Ω \ (Fj(S) ∪ Fj(T )), and

let S ′, T ′ ∈ Π(Σ) be such that |S ′| = |T ′| = n, Fj(S ′) = Fj(S)∪{ω}, Fj(T ′) = Fj(T )∪{ω},
Fi(S ′) = Fi(S) for all i ∈ {1, . . . , n} \ {j}, and Fi(T ′) = Fi(T ) for all i ∈ {1, . . . , n} \ {j}.
By independence and the definition of �,

x � y ⇔ S RT ⇔ S ′RT ′ ⇔ x̂j � ŷj.

Theorem 1 implies that, in the presence of certainty indifference and independence, we

can simplify matters by considering the ordering � instead of R without loss of generality.

In particular, the ordering �∗ on
⋃
n∈Z++

Zn++ corresponding to R∗ is defined by letting,

for all n,m ∈ Z++, x ∈ Zn++, and y ∈ Zm++,

x �∗ y :⇔
n∑
i=1

xi − n ≤
m∑
i=1

yi −m.

For each of the axioms imposed on R in this paper (in addition to certainty indifference

and independence), an equivalent formulation in terms of � can be defined, and charac-

terizations of an ordering R can be provided by characterizing the corresponding ordering

�.

To conclude this section, a plausible expansion monotonicity property is introduced,

and the class of orderings satisfying this axiom in addition to certainty indifference and

independence is characterized. Expansion monotonicity requires that if a menu T differs

from a menu S only in that some Fj(T ) contains all elements in Fj(S) and one further

element ω (all other sets of possible consequences being the same for S and T ), then T

must be worse than S. This is a very weak requirement and is motivated by the argument

that the additional possible consequence that is present in T leads to a higher degree of

uncertainty and, thus, to a lower degree of information about consequences.

Expansion Monotonicity: For all S, T ∈ Π(Σ) such that |S| = |T |, if there exist

j ∈ {1, . . . , |S|} and ω ∈ Ω \Fj(S) such that Fj(T ) = Fj(S)∪ {ω} and Fi(T ) = Fi(S) for

all i ∈ {1, . . . , |S|} \ {j}, then

S P T.

As is the case for certainty indifference and independence, expansion monotonicity only

imposes a restriction on the ranking of menus with a fixed number of elements.
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Adding expansion monotonicity to certainty indifference and independence, we obtain

a characterization of the class of orderings R that rank any two menus of fixed cardinality

on the basis of the total number of possible consequences. Before stating and proving this

result, the property of � corresponding to expansion monotonicity is defined.

Monotonicity: For all n ∈ Z++, for all x, y ∈ Zn++, if x < y, then x � y.

The proof of the following lemma is straightforward and omitted.

Lemma 2 Suppose F is surjective, and R satisfies certainty indifference and indepen-

dence. Let � be the corresponding ordering introduced in Theorem 1. R satisfies expansion

monotonicity if and only if � satisfies monotonicity.

We obtain

Theorem 2 Suppose F is surjective. R satisfies certainty indifference, independence, and

expansion monotonicity if and only if there exists an anonymous and additive ordering

� on
⋃
n∈Z++

Zn++ such that (1) is satisfied for all S, T ∈ Π(Σ) and, for all S, T ∈ Π(Σ)

such that |S| = |T |,

S RT ⇔
|S|∑
i=1

|Fi(S)| ≤
|T |∑
i=1

|Fi(T )|. (4)

Proof: That any ordering R satisfying (4) satisfies certainty indifference, independence,

and expansion monotonicity can be verified easily (note that none of these properties

imposes any restriction on the comparison of menus of different cardinalities).

Now suppose R satisfies these axioms. By Theorem 1 and Lemma 2, it follows that

� is well-defined and satisfies anonymity, additivity, and monotonicity. It is sufficient to

show that, for all n ∈ Z++, x, y ∈ Zn++,

n∑
i=1

xi =
n∑
i=1

yi ⇒ x ∼ y (5)

and
n∑
i=1

xi <
n∑
i=1

yi ⇒ x � y. (6)

If n = 1, (5) follows from reflexivity and (6) follows from monotonicity. Now suppose

n ≥ 2.

To prove (5), let x, y ∈ Zn++ be such that
∑n
i=1 xi =

∑n
i=1 yi. Define zn := n

∑n
i=1 xi,

z1 := xn−y1 + zn and, if n ≥ 3, zk := xk−1−yk+ zk−1 for all k ∈ {2, . . . , n−1}. It follows

that z ∈ Zn++, xn + zn = y1 + z1, and xk + zk = yk+1 + zk+1 for all k ∈ {1, . . . , n − 1}.
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Therefore, because � is anonymous, (x + z) ∼ (y + z) and, by additivity′ (which is

equivalent to additivity), we obtain x ∼ y.

To show that (6) is true, suppose x, y ∈ Zn++ are such that
∑n
i=1 xi <

∑n
i=1 yi. Let

x′ := (
∑n
i=1 xi − (n − 1),1n−1) and y′ := (

∑n
i=1 yi − (n − 1),1n−1). By (5), x′ ∼ x and

y′ ∼ y. Monotonicity implies x′ � y′ and, hence, x � y.

An interesting feature of Theorem 2 is that the independence property implies that

the restriction of R to menus of a fixed cardinality can be represented by the sum of the

cardinalities of the sets of possible consequences generated by a menu. Note that this is a

quite strong conclusion—not only an additively separable representation is implied but full

additivity. Furthermore, unlike in the usual characterizations of additive functions, the

domain of a representation of R is a discrete set, which explains why the proof technique

employed in the above theorem differs from the usual separability arguments that are

commonly used when characterizing representations with Euclidean spaces as domains.

4 Two Characterizations of R∗

Theorem 2 can be extended to obtain a characterization of R∗ by strengthening certainty

indifference and independence appropriately. All that is needed is to require the conclu-

sions of these axioms to be satisfied not only for comparisons involving menus with a fixed

number of items but for menus of arbitrary cardinality. Accordingly, extended certainty

indifference is defined as follows.

Extended certainty indifference: For all S, T ∈ Π(Σ), if |Fi(S)| = 1 for all i ∈
{1, . . . , |S|} and |Fi(T )| = 1 for all i ∈ {1, . . . , |T |}, then S I T .

Extended certainty indifference is as plausible an axiom as certainty indifference. If there

is no uncertainty associated with any of the choices that can be made in two menus, the

informational contents of these menus should be the same. Note that, in conjunction with

expansion monotonicity, this also implies that the informational contents are maximal for

menus that only generate singletons of possible consequences which, again, is a very

natural property for an index of information.

Analogously, extended independence requires the relative ranking of any two menus

to be invariant with respect to additions of a possible consequence to the set of possible

consequences of choosing one specific menu item in each.
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Extended independence: For all S, T, S′, T ′ ∈ Π(Σ) such that |S| = |S ′| and |T | = |T ′|,
for all j ∈ {1, . . . ,min{|S|, |T |}}, for all ω ∈ Ω \ (Fj(S) ∪ Fj(T )), if

Fj(S ′) = Fj(S) ∪ {ω} and Fj(T ′) = Fj(T )∪ {ω} and

Fi(S ′) = Fi(S) for all i ∈ {1, . . . , |S|} \ {j} and

Fi(T ′) = Fi(T ) for all i ∈ {1, . . . , |T |} \ {j},

then

S RT ⇔ S ′RT ′.

The corresponding properties of the ordering � are the following.

Unity Indifference: For all n,m ∈ Z++, 1n ∼ 1m.

Extended additivity: For all n,m ∈ Z++, for all x ∈ Zn++, for all y ∈ Zm++, for all

j ∈ {1, . . . ,min{n,m}},
x � y ⇔ x̂j � ŷj.

The following lemma is immediate and is stated without a proof.

Lemma 3 Suppose F is surjective, and R satisfies certainty indifference and indepen-

dence. Let � be the corresponding ordering introduced in Theorem 1.

(a) R satisfies extended certainty indifference if and only if � satisfies unity indifference.

(b) R satisfies extended independence if and only if � satisfies extended additivity.

The following theorem provides the first characterization of R∗.

Theorem 3 Suppose F is surjective. R satisfies expansion monotonicity, extended cer-

tainty indifference, and extended independence if and only if R = R∗.

Proof: It is straighforward to verify that R∗ satisfies the required axioms. Conversely,

suppose R is an ordering satisfying the axioms in the theorem statement. Again, � is

well-defined and must satisfy anonymity, monotonicity, unity indifference, and extended

additivity, and it is sufficient to show that �=�∗. Let n,m ∈ Z++, x ∈ Zn++ and y ∈ Zm++.

If n = 1, x = (
∑n
i=1 xi) = (

∑n
i=1 xi − (n− 1)) and, by reflexivity,(

n∑
i=1

xi − (n− 1)

)
∼ x. (7)

Now suppose n ≥ 2. By unity indifference, 11 ∼ 1n. Repeated application of extended

additivity yields (
∑n
i=1 xi− (n− 1)) ∼ (

∑n
i=1 xi− (n− 1),1n−1). By the fixed-cardinality
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result of Theorem 2, (
∑n
i=1 xi − (n − 1),1n−1) ∼ x. Hence, by transitivity, (

∑n
i=1 xi −

(n− 1)) ∼ x. Therefore, (7) must be true for any value of n.

Analogously, it follows that (
∑m
i=1 yi − (m− 1)) ∼ y. Therefore, using monotonicity,

x � y ⇔
(

n∑
i=1

xi − (n− 1)

)
�
(

m∑
i=1

yi − (m− 1)

)

⇔
n∑
i=1

xi − (n− 1) ≤
m∑
i=1

yi − (m− 1)

⇔
n∑
i=1

xi − n ≤
m∑
i=1

yi −m

and, therefore, �=�∗.

There is an interesting alternative to strengthening independence in order to arrive

at a characterization of R∗. Consider the following situation involving two menus S and

T . Suppose S and T are such that T contains one more element than S, the sets of

possible consequences generated by the first |S| items are identical in S and in T , and the

additional element in T generates an outcome with certainty. In that case, the additional

element in T does not introduce any further uncertainty as compared to S and, from an

informational viewpoint, it seems natural to consider S and T to be indifferent. This is

captured in the following certainty extension condition.

Certainty extension: For all S, T ∈ Π(Σ) such that |T | = |S|+ 1, if Fi(T ) = Fi(S) for

all i ∈ {1, . . . , |S|} and |F|T |(T )| = 1, then S I T .

The corresponding property of � is the following extension axiom.

Extension: For all n ∈ Z++, for all x ∈ Zn++, x ∼ (x, 1).

Certainty extension is a strengthening of extended certainty indifference. This is shown

in the following lemma.

Lemma 4 Suppose F is surjective. If R satisfies certainty extension, then R satisfies

extended certainty indifference.

Proof: Suppose S, T ∈ Π(Σ) are such that |Fi(S)| = 1 for all i ∈ {1, . . . , |S|} and

|Fi(T )| = 1 for all i ∈ {1, . . . , |T |}. Let S0, S ′, T ′ ∈ Π(Σ) be such that |S0| = 2, |S ′| =
|T ′| = 1, F (S0) = < F1(S), F1(T ) >, F (S ′) = < F1(S) >, and F (T ′) = < F1(T ) >.

By certainty extension, S0 I S ′ and S0 I T ′. Therefore, S ′ I T ′. Repeated application of

certainty extension yields S I S′ and T I T ′. Therefore, by transitivity, S I T .

It is straightforward to verify that extension is the property of� corresponding to certainty

extension. This observation is stated in the following lemma, the proof of which is omitted.
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Lemma 5 Suppose F is surjective, and R satisfies certainty indifference and indepen-

dence. Let � be the corresponding ordering introduced in Theorem 1. R satisfies certainty

extension if and only if � satisfies extension.

The following result provides an alternative characterization of R∗.

Theorem 4 Suppose F is surjective. R satisfies independence, expansion monotonicity,

and certainty extension if and only if R = R∗.

Proof: That R∗ satisfies the axioms is straightforward. Again, we can consider � instead

of R in order to simplify exposition. Suppose � satisfies anonymity, additivity, mono-

tonicity, and extension. Let n,m ∈ Z++, x ∈ Zn++, and y ∈ Zm++. The case n = m is

taken care of in Theorem 2. Suppose n 6= m. Without loss of generality, let n > m. By

repeated application of extension, y ∼ (y,1n−m). Therefore,

x � y ⇔ x � (y,1n−m). (8)

Using Theorem 2,

x � (y,1n−m) ⇔
n∑
i=1

xi ≤
m∑
i=1

yi + (n−m) ⇔
n∑
i=1

xi − n ≤
m∑
i=1

yi −m

and, using (8), it follows that �=�∗.

5 Independence of the Axioms

Before establishing the independence of the axioms imposed on R in the above charac-

terization results, it is shown that the surjectivity of F is essential. Suppose F is such

that, for all S ∈ Π(Σ) and all i ∈ {1, . . . , |S|}, |Fi(S)| = 2. In that case, the universal

indifference relation (the relation that declares all elements of Π(Σ) pairwise indifferent)

satisfies all of the axioms introduced in this paper. Note that the only axiom that requires

a strict preference to be established between any two menus is expansion monotonicity,

which is vacuously satisfied if F only generates non-ordered n-tuples of sets of possible

outcomes with cardinality two.

To establish the independence of the axioms used in Theorem 2, consider the following

examples.

Choose an arbitrary ω̄ ∈ Ω, and define the function f : Π(Ω)→ < by

f(A) :=

 |A| if ω̄ 6∈ A;

|A|+ 1 if ω̄ ∈ A
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for all A ∈ Π(Ω). Now define the ordering R1 on Π(Σ) by letting, for all S, T ∈ Π(Σ),

S R1 T :⇔
|S|∑
i=1

f(Fi(S)) ≤
|T |∑
i=1

f(Fi(T )).

R1 satisfies independence and expansion monotonicity but violates certainty indifference.

Now let, for all S, T ∈ Π(Σ),

S R2 T :⇔
|S|∑
i=1

|Fi(S)|2 − |S| ≤
|T |∑
i=1

|Fi(T )|2 − |T |.

This ordering satisfies certainty indifference and expansion monotonicity but violates in-

dependence.

The universal indifference relation on Π(Σ) satisfies certainty indifference and inde-

pendence but violates expansion monotonicity.

Now consider Theorem 3.

Define, for all S, T ∈ Π(Σ),

S R3 T :⇔
|S|∑
i=1

|Fi(S)| ≤
|T |∑
i=1

|Fi(T )|.

This ordering satisfies expansion monotonicity and extended independence but violates

extended certainty indifference (note that certainty indifference is satisfied by this exam-

ple).

Define, for all S, T ∈ Π(Σ),

S R4 T :⇔ 1

|S|

|S|∑
i=1

|Fi(S)| ≤ 1

|T |

|T |∑
i=1

|Fi(T )|.

R4 satisfies extended certainty indifference and expansion monotonicity but violates ex-

tended independence. Independence is satisfied.

Again, the universal indifference relation can be used to establish that expansion

monotonicity is not implied by the other axioms used in Theorem 3.

Finally, the independence of the axioms used in Theorem 4 is established.

The relation R2 satisfies expansion monotonicity and certainty extension but violates

independence.

The universal indifference relation satisfies independence and certainty extension but

violates expansion monotonicity.

The relation R4 satisfies independence and expansion monotonicity but violates cer-

tainty extension (note that extended certainty indifference is satisfied).

15



6 Concluding Remarks

There is an interesting formal connection between the relation R∗ and critical-level util-

itarian social-evaluation principles that can be used to assess policies with population

consequences. Critical-level utilitarianism declares a state of the world Ā at least as good

as a state Â from a social viewpoint if and only if

∑
i∈N̄

[ūi − α] ≥
∑
i∈N̂

[ûi − α] (9)

where N̄ (resp. N̂ ) is the set of individuals alive in Ā (resp. Â), the ūi and ûi are the

individual lifetime utilities of those alive in the respective state, and α ∈ < is a critical

level of lifetime utility. The critical level is interpreted as that level of utility which, if

experienced by an additional individual, leads to a state that is indifferent to the inital

state, provided none of the existing individuals are affected by this population augmen-

tation. See, for example, Blackorby, Bossert, and Donaldson (1995) and Blackorby and

Donaldson (1984) for discussions of critical-level utilitarian social-evaluation principles.

(9) can be rewritten as ∑
i∈N̄

ūi − |N̄ |α ≥
∑
i∈N̂

ûi − |N̂ |α

and, therefore, the inverse relation of R∗ has the same formal structure as critical-level

utilitarianism with a critical level of α = 1. Despite this formal similarity, there are

important differences between these criteria that should be pointed out. Whereas the

critical level in (9) is an ethical parameter the choice of which is by no means an obvious

task, the corresponding value of one in the definition of R∗ comes about very naturally

by considering the interpretation of R∗ as a ranking of non-ordered n-tuples of sets of

possible outcomes in a choice situation. Furthermore, the set of possible utility values

is usually assumed to be the set <, whereas the set of objects to be ranked by R∗ is

a discrete set, which makes the proof techniques employed in axiomatizations of these

rankings very different. In addition, the standard axiomatizations in population ethics

usually provide characterizations of a more general class of orderings, namely, critical-level

generalized utilitarian rules, which allow for an increasing and continuous transformation

to be applied to all utility numbers. In contrast, the independence condition used in the

characterizations of R∗ generate additivity rather than merely additive separability. As a

technical note, the extension axiom used in the proof of Theorem 4 is akin to Blackorby

and Donaldson’s (1984) critical-level population principle.

The above-described relationship between the ordering characterized in this paper and
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the critical-level utilitarian population principles suggests that there is further scope for

connections to be made across those different areas of research.
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