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Abstract

Bargaining under uncertainty is modeled by the assumption that there
are several possible states of nature, each of which is identified with a
bargaining problem. We characterize bargaining solutions which gen-
erate ex ante efficient combinations of outcomes under the assumption
that the bargainers have minimax regret preferences. For the case of
two bargainers a class of monotone utopia-path solutions is character-
ized by the efficiency criterion, but for more than two bargainers only
dictatorial solutions are efficient. By incorporating scale covariance
into the minimax regret preferences a possibility result is obtained for
the general case.
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1 Introduction

An n-person bargaining problem is a set of feasible utility n-tuples together
with a prespecified n-tuple, the disagreement outcome (cf. Nash, 1950). The
utilities represent the preferences of the bargainers. These may vary from
preferences over lottery sets, represented by von Neumann-Morgenstern util-
ity functions, to profit functions of firms in an oligopoly situation. Depending
on the situation, there may be uncertainty concerning the exact shape of the
bargaining problem. For instance, demand functions in an oligopoly situa-
tion may be subject to stochastic influences. A common way to model such
uncertainty is to assume that there are several states of nature, exactly one
of which will be realized as the true state. In the present context, a state of
nature can be identified with a specific bargaining problem.

A bargaining solution (Nash, 1950) assigns a feasible utility n-tuple to
every bargaining problem. Thus, implicitly, a bargaining solution aggregates
the individual preferences of the bargainers into a collective outcome. In the
case of uncertainty, a bargaining solution assigns a utility n-tuple to each
possible bargaining problem, i.e., to each possible state of nature. Given a
specific bargaining solution to be employed, each bargainer ex ante faces a list
of possible outcomes, exactly one of which will be realised. We assume that,
in order to evaluate different lists of possible outcomes, each bargainer has a
preference relation over such lists. In more economic terms, each bargainer
has a criterion to decide between several contingent contracts. Although
most bargaining solutions in the literature are ex post efficient, this does
not imply that they are also ex ante efficient. This raises the following
questions. For a given criterion for decision making under uncertainty, which
bargaining solution(s) lead(s) to ex ante efficient contingent contracts and,
conversely, for a given bargaining solution, does there exist a criterion for
decision making under uncertainty according to which a contingent contract
prescribed by that bargaining solution is ex ante efficient?

By answering these questions, we obtain a new view on bargaining solu-
tions, as aggregators of individual preferences under uncertainty. Further-
more, the approach leads to characterizations of bargaining solutions that
are different from the usual axiomatizations and from noncooperative imple-
mentations, both of which were initiated by Nash (1950, 1953).

The first paper concerned with this approach is Bossert et al. (1996)
in which—as the main result—a class of strictly monotone path solutions
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is characterized by imposing ex ante efficiency with respect to the maximin
criterion. According to this criterion the minimal gains with respect to the
disagreement point should be maximized.

In the present paper we consider the minimax regret criterion, where
regret is measured with respect to the utopia payoffs, i.e., the maximal at-
tainable payoffs. In particular, we study solutions that are ex ante efficient
with respect to this criterion. For the two-person case, we show that this
criterion determines a class of monotone paths, originating from the utopia
point, of which the intersection with the Pareto optimal boundary is the
solution point. For the n-person case (n > 2) it turns out that only the
dictatorial solutions are ex ante efficient with respect to the minimax regret
criterion. Modifying the criterion such that it is compatible with scale co-
variance, however, leads to a characterization of solutions determined by a
monotone path between the normalized utopia and disagreement points. As
will be indicated, these solutions can alternatively be characterized by ex ante
efficiency with respect to a version of the maximin criterion that is compatible
with scale covariance. They include the Raiffa-Kalai-Smorodinsky solution
(Raiffa, 1953; Kalai and Smorodinsky, 1975).

The organization of the paper is as follows. Section 2 introduces the
model and main definitions. Section 3 deals with the minimax regret criterion
and presents the positive result for n = 2 and the negative one for n > 2. In
Section 4 the minimax regret criterion is normalized in a way compatible with
scale covariance, leading to the characterization announced earlier. Section
5 concludes.

2 Model and main definitions

An n-person (bargaining) problem is a set S ⊂ IRn such that there is a point
d̄ ∈ S with S ⊂ d̄ + IRn

+, S is compact, contains a vector x > d̄, and is
strictly comprehensive, that is, for all x ∈ S and y ∈ IRn, if d̄ ≤ y ≤ x
with y 6= x, then y ∈ S and there is a z ∈ S with z > y.1 Elements of

1The set of all nonnegative vectors in IRn is denoted by IRn+, and IRn− is the set of all
nonpositive vectors. The set of all strictly positive vectors in IRn is denoted by IRn++. A
sum like d̄+ IRn+ denotes the usual vector addition, that is, d̄+ IRn+ := {d̄+ x | x ∈ IRn+}.
For any two vectors x, y ∈ IRn, x > (≥) y means xi > (≥) yi for all i = 1, . . . , n. The
inequalities < and ≤ are defined analogously.
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S are called feasible outcomes, while d̄ is called the disagreement outcome.
The interpretation is that d̄ results if the bargainers fail to reach some other
outcome x ∈ S. Note that d̄ is uniquely determined by S, so that we can
write d̄ = d(S). The i-th coordinate of an outcome represents the utility
to bargainer i. Throughout, we assume n ≥ 2 to be fixed. The set of
bargainers is denoted by N := {1, . . . , n}, and B denotes the class of all
n-person bargaining problems.

Compactness is a standard condition in bargaining theory. By the re-
quirement S ⊂ d(S) + IRn

+ we exclude nonindividually rational outcomes
from consideration. Comprehensiveness can be interpreted as disposability
of utility. Strict comprehensiveness additionally implies that every weakly
Pareto optimal outcome is also strongly Pareto optimal, so that it suffices to
define, for a bargaining problem S,

P (S) := {x ∈ S | ∀y ∈ S [y ≥ x⇒ y = x]},

the Pareto set of S. Restricting attention to strictly comprehensive problems
facilitates the exposition, see also Section 5.2

A (bargaining) solution is a mapping F : B → IRn with F (S) ∈ S for all
S ∈ B. A solution F is called Pareto optimal if F (S) ∈ P (S) for all S ∈ B.3

In order to introduce uncertainty into the model we assume that there
are a finite number of states of nature, exactly one of which will be realised.
It is without loss of generality and easier for the exposition of the results
to assume that there are only two states. A (bargaining) problem under
uncertainty is, thus, defined by a pair (S, S ′) ∈ B × B.

For each problem under uncertainty (S, S ′), we assume that each bar-
gainer i has a preference relation (i.e., a complete and transitive binary
relation) �i over pairs (x, x′) ∈ S × S ′ which depends only on the i-th
coordinates (xi, x′i) and which is weakly monotonic. The latter means that
(x, x′) �i (y, y′) whenever xi > yi and x′i > y′i, where �i denotes the asym-
metric part of�i. A preference relation with these properties is called regular.
Note that, by definition, such a preference relation depends on the problem
under uncertainty (S, S ′). We will, however, also use a notation like �i to

2Observe that we do not impose the usual convexity assumption on the bargaining prob-
lem. All our results, however, would go through without modification if this assumption
were added.

3We use the expression “Pareto optimal” rather than “efficient” to distinguish this
property from the efficiency condition related to uncertainty, to be introduced below.
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denote bargainer i’s preferences for every problem in B×B; if all these pref-
erences are regular, then also �i is called regular.

Let F be a bargaining solution, and let � = (�1, . . . ,�n), where �i
is regular for every i ∈ N . We call F efficient with respect to � if for
all (S, S ′) ∈ B × B and all (x, x′) ∈ S × S ′ there is a bargainer i with
(F (S), F (S ′)) �i (x, x′). In other words, there is no “contingent contract”
which is strictly preferred by all bargainers to the contract assigned by F .
The following lemma shows that efficiency with respect to a profile of regular
preferences implies Pareto optimality.

Lemma 1 Let F be a bargaining solution, and let � = (�1, . . . ,�n), with
�i regular for every i ∈ N . Let F be efficient with respect to �. Then F is
Pareto optimal.

Proof Let S ∈ B and x ∈ S\P (S). By the strict comprehensiveness of
S, there is a y ∈ S with y > x. It follows that F (S) 6= x, for otherwise
(y, y) �i (F (S), F (S)) in (S, S) by regularity of �i for all i, violating effi-
ciency of F with respect to �. This completes the proof. 2

In this paper we only consider regular preferences. In particular, we exclude
(possibly interesting) preferences which do not only depend on a bargainer
i’s own coordinates.

3 Minimax regret

The utopia point u(S) of a problem S ∈ B is defined by

ui(S) := max
x∈S

xi

for every i ∈ N . Bargainer i’s minimax regret preference �ui is defined as
follows. For all (S, S ′) ∈ B×B and all (x, x′), (y, y′) ∈ S×S ′, (x, x′) �ui (y, y′)
if

max{ui(S)− xi, ui(S ′)− x′i} ≤ max{ui(S)− yi, ui(S ′)− y′i}.
Note that �ui is regular for every bargainer i.

In order to study bargaining solutions that are efficient with respect to
minimax regret preferences we first show that this condition implies a mono-
tonicity condition, as specified by the following lemma. The lemma is an
adaptation of Lemma 2 in Bossert et al. (1996).
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Lemma 2 Let the bargaining solution F be efficient with respect to �u =
(�u1 , . . . ,�un). Let S, T ∈ B. Let x = F (S) and y = F (T ). Then u(S)− x ≥
u(T )− y or u(S)− x ≤ u(T )− y.

Proof Suppose not. Then there are i, j ∈ N with ui(S) − xi > ui(T )− yi
whereas uj(S)−xj < uj(T )−yj. Let I := {k ∈ N | uk(S)−xk > uk(T )−yk}
and J := {k ∈ N | uk(S) − xk < uk(T )− yk}. Note that I, J 6= ∅ and that
uk(S) − xk > 0 for all k ∈ I and uk(T )− yk > 0 for all k ∈ J . By this and
strict comprehensiveness we can find x′ ∈ S and y′ ∈ T with

∀k ∈ I : uk(S)− xk > uk(S)− x′k > uk(T )− yk
∀k ∈ N\I : uk(S)− xk < uk(S)− x′k
∀k ∈ J : uk(T )− yk > uk(T )− y′k > uk(S)− xk

∀k ∈ N\J : uk(T )− yk < uk(T )− y′k.

By construction, (x′, y′) �uk (x, y) for all k ∈ N , which is a violation of effi-
ciency of F with respect to �u. 2

Note that Lemmas 1 and 2 in particular imply translation covariance of the
solution F under consideration, i.e., F (S) + b = F (S + b) for all S ∈ B and
b ∈ IRn (this follows from taking T = S + b in Lemma 2).

For every i ∈ N let Di denote the dictatorial solution for player i. This
solution assigns to every S ∈ B the point with i-th coordinate equal to ui(S)
and every other coordinate j equal to dj(S). A solution F is a dictatorial
solution if there exists i ∈ N such that F = Di. Our first theorem is an
impossibility result: if n > 2, there exists no efficient and nondictatorial
solution.

Theorem 1 Let n > 2, and let F be a bargaining solution. Then F is
efficient with respect to �u = (�u1 , . . . ,�un) if, and only if, F is a dictatorial
solution.

Proof The if-part is left to the reader. For the only-if part it is, in view
of Lemma 2, sufficient to prove that for every S ∈ B there is an i ∈ N
with F (S) = Di(S). Suppose this is not true, and let S ∈ B be such that
x := F (S) < u(S). By translation covariance (see the remark following the
proof of Lemma 2) we may assume without loss of generality that u(S) =
(1, 1, . . . , 1). Choose λ ∈ IR with λ < x1 + x2− 1, hence x1 + x2 > λ+ 1 and
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λ < 1. Choose µ ∈ IR with x3 < µ < 1, and let

L := convex hull of {(λ, λ, µ, λ, . . . , λ), (λ, λ, 1, λ, . . . , λ), zi | i ∈ N\{3}},

where zi has i-th coordinate equal to 1, third coordinate equal to µ, and
all other coordinates equal to λ. Observe that u(L) = (1, 1, . . . , 1) = u(S).
In view of Lemma 2, x3 < µ, and the fact that every point in L has third
coordinate at least equal to µ, it follows that F (L) ≥ x. This, however, is
impossible because x1 + x2 > λ + 1 > y1 + y2 for every y ∈ L by the choice
of λ. Thus, we have a contradiction, and the proof is complete. 2

This impossibility result does not extend to the case n = 2: there, we can
find nondictatorial solutions that are efficient with respect to maximin regret
preferences. We start the analysis by defining a monotone u-path.4 A mono-
tone u-path is a function w : (−∞, 0] → IR2

− satisfying for all s, t ∈ (−∞, 0]
with s ≤ t:

(i) w1(s) + w2(s) = s

(ii) w(s) ≤ w(t).

Let W denote the collection of all monotone u-paths. With each w ∈W we
associate a monotone u-path bargaining solution Fw, defined as follows. For
a two-person bargaining problem S,

{Fw(S)} = P (S) ∩ {u(S) + w(s) | s ∈ (−∞, 0]}.

It is easy to see that Fw is well-defined. Observe that this definition cannot
straightforwardly be extended to more than two players: the set on the right-
hand side of the equation could be empty. We have the following result.

Theorem 2 Let n = 2, and let F be a bargaining solution. Then F is
efficient with respect to �u = (�u1 , . . . ,�un) if, and only if, F is a monotone
u-path solution.

Proof We leave verification of the if-part to the reader. For the only-if part,
let F be a bargaining solution that is efficient with respect to �u.

4See Thomson and Myerson (1980) for a study of solutions defined with the aid of
monotone paths.
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First, for every −∞ < t < 0 define the set Vt := {x ∈ IR2
− | x1 + x2 ≤

t, x1 ≥ t, x2 ≥ t}. Define w : (−∞, 0]→ IR2
− by w(0) := 0 and w(t) := F (Vt)

for every t < 0. By Lemma 1, w satisfies property (i), and by Lemma 2, w
satisfies property (ii) of a monotone u-path. Hence, w is a monotone u-path.

The proof is completed by showing that F = Fw. By construction,
F (Vt) = Fw(Vt) for every t < 0. Let S ∈ B with u(S) = 0, and let
t := Fw

1 (S)+Fw
2 (S). Then Fw(S) = Fw(Vt) = F (Vt). Because F (Vt) ∈ P (S),

Lemma 2 implies F (S) = F (Vt), hence F (S) = Fw(S).
Finally, consider S ∈ B arbitrary. Then F (S) = Fw(S) by the previous

part of the proof and translation covariance of F , see the remark following
the proof of Lemma 2. This completes the proof. 2

A well-known example of a monotone u-path solution is the equal-loss solu-
tion, described by the monotone u-path w with wi(t) = wj(t) for all t < 0
and all i, j ∈ N . This may be singled out by adding an axiom of anonymity
or symmetry. See also Chun (1988).

4 Minimax regret and scale covariance

In this section we modify the minimax regret preference relation in order to
accommodate the scale covariance property. At the same time an impossi-
bility result as in the previous section will be avoided.

A solution F is called scale covariant if aF (S) + b = F (aS + b) for all
a ∈ IRn

++ and b ∈ IRn.5 Bargainer i’s minimax regret preference may be

normalized to a preference �̃ui as follows. For all (S, S ′) ∈ B × B and all
(x, x′), (y, y′) ∈ S × S ′, we have (x, x′)�̃ui (y, y′) if

max

{
ui(S)− xi

ui(S)− di(S)
,

ui(S ′)− x′i
ui(S ′) − di(S ′)

}
≤ max

{
ui(S)− yi

ui(S)− di(S)
,

ui(S ′)− y′i
ui(S ′)− di(S ′)

}
.

Observe that this preference—called normalized minimax regret preference—
is regular, so that Lemma 1 still applies. Instead of Lemma 2 we have the
following lemma, which we state without proof.

5Here we use the notation ax := (a1x1, . . . , anxn) and aS := {y ∈ IRn | y =
ax for some x ∈ S}, for all a, x ∈ IRn and S ⊆ IRn.
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Lemma 3 Let the bargaining solution F be efficient with respect to �̃u =
(�̃u1 , . . . , �̃

u

n). Let S, T ∈ B. Let x = F (S) and y = F (T ). Then

ui(S)− xi
ui(S)− di(S)

≥ ui(T )− yi
ui(T )− di(T )

for every i ∈ N

or
ui(S)− xi

ui(S)− di(S)
≤ ui(T )− yi
ui(T )− di(T )

for every i ∈ N .

Together with Lemma 1, Lemma 3 implies in particular that such an F is
scale covariant: take T = aS + b with a and b as in the definition of scale
covariance.

We will characterize all solutions that are efficient with respect to the
normalized minimax regret preferences by considering normalized monotone
u-paths. Such a normalized monotone u-path is a function z : [1, n] → IRn

+

satisfying for all 1 ≤ s ≤ t ≤ n:

(a)
∑n
i=1 zi(s) = s

(b) z(s) ≤ z(t)

(c) z(s) ≤ (1, 1, . . . , 1).

Let Z denote the collection of all normalized monotone u-paths. With each
z ∈ Z we associate a normalized montone u-path bargaining solution F z,
defined as follows. For a bargaining problem S ∈ B with d(S) = (0, 0, . . . , 0)
and u(S) = (1, 1, . . . , 1) let

{F z(S)} = P (S) ∩ {z(s) | s ∈ [1, n]}.

For an arbitrary S define F z(S) = aF z(a′(S − d(S))) + d(S), where a :=
u(S)− d(S) and a′ ∈ IRn is defined by a′i := (ui(S)− di(S))−1. Observe that
F z is well defined in particular by strict comprehensiveness of S, and that
F z is scale covariant by definition.

Theorem 3 Let n ≥ 2, and let F be a bargaining solution. Then F is
efficient with respect to �̃u = (�̃u1 , . . . , �̃

u

n) if, and only if, F is a normalized
monotone u-path solution.
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Proof The if-part is left to the reader. For the only-if part, let F be a
bargaining solution that is efficient with respect to �̃u.

Let V1 := {x ∈ IRn
+ |

∑n
i=1 xi = 1} and for every 1 < t < n and 0 < ε <

(n− t)/n let

V ε
t := convex hull of V1 ∪ {x ∈ IRn

+ |
n∑
i=1

xi = t, xi ≤ ε for all i ∈ N}.

Observe that every such V ε
t is a well-defined bargaining problem, that is,

V ε
t ∈ B. Define z : [1, n] → IRn

+ as follows. Let z(1) := F (V1) and z(n) :=
(1, 1, . . . , 1). Take 1 < t < n. If there is an ε such that

∑n
i=1 Fi(V

ε
t ) = t

then let z(t) be equal to this point F (V ε
t ). This construction is independent

of ε in view of the dominance property established in Lemma 3. The same
lemma also implies that, if such an ε exists for t then it also exists for all
1 < t′ < t. Let t̄ ≤ n be the supremum of all t for which such an ε exists.
Define z(t̄) := limt→t̄ z(t), and for t̄ < t ≤ n let z(t) be the point on the line
segment connecting z(t̄) and z(n) with sum of the coordinates equal to t. It
is easily seen that z is a normalized monotone u-path.

Let S ∈ B. It is sufficient to show that F (S) = F z(S). In view of
scale covariance of F z and F we may assume without loss of generality
that d(S) = (0, 0, . . . , 0) and u(S) = (1, 1, . . . , 1). Let 1 ≤ t < n with
t =

∑n
i=1 Fi(S). There is an ε with F z(S) = F z(V ε

t ) = F (V ε
t ) by construc-

tion of z and definition of F z. Because F (V ε
t ) ∈ P (S), Lemma 3 implies

F (S) = F (V t
ε ), hence F (S) = F z(S). This completes the proof. 2

A well-known example of a normalized monotone u-path solution is the
Raiffa-Kalai-Smorodinsky solution (Raiffa, 1953; Kalai and Smorodinsky,
1975), described by the path z with zi(t) = zj(t) for all i, j ∈ N and
1 ≤ t ≤ n. This solution may be characterized by adding an axiom of
anonymity or symmetry.

Normalized monotone u-path solutions may be characterized, alterna-
tively, by requiring efficiency with respect to a (normalized version of) the

maximin criterion, namely the preference �̃di for bargainer i defined as fol-
lows. For all (S, S ′) ∈ B × B and all (x, x′), (y, y′) ∈ S × S ′, we have

(x, x′)�̃di (y, y′) if

min

{
xi − di(S)

ui(S)− di(S)
,

x′i − di(S ′)
ui(S ′)− di(S ′)

}
≥ min

{
yi − di(S)

ui(S)− di(S)
,

y′i − di(S ′)
ui(S ′)− di(S ′)

}
.

10



A proof of the suggested characterization is left to the reader. It should
be noted that such a “dual” characterization does not hold for the non-
normalized, non-scale-covariant versions, as follows from comparing our re-
sults with those in Bossert et al. (1996). In the latter paper strict compre-
hensiveness is not imposed. This leads to some technical complications and
the necessity to impose an additional axiom of continuity on the bargaining
solutions. For (non-normalized) maximin preferences, however, Bossert et al.
(1996) obtain a class of monotone path solutions, and this result can easily
be adapted to our framework. In contrast, for (non-normalized) minimax
regret preferences, we have an impossibility result in the case of more than
two players (see Theorem 1).

5 Concluding remarks

The approach followed in Bossert et al. (1996) and in this paper is essentially
based on the idea that a rich underlying structure with respect to individual
decision making may be used to derive implications for collective decision
making while only imposing relatively mild additional requirements. The
individual decision criteria used in this paper are minimax regret and a nor-
malized version thereof. In Bossert and Peters (1998), this idea is applied
to multi-attribute individual and collective decision making in an expected-
utility framework. Interpreted in a bargaining context, the results obtained
there lead to generalized (nonsymmetric) Nash and utilitarian solutions.
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