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Efficient Tests of the Seasonal Unit Root Hypothesis∗

Paulo M.M. Rodriguesa and A.M. Robert Taylorb

aFaculty of Economics, University of the Algarve
bSchool of Economics, University of Nottingham

Abstract

In this paper we derive, under the assumption of Gaussian errors with known error
covariance matrix, asymptotic local power bounds for seasonal unit root tests for both
known and unknown deterministic scenarios and for an arbitrary seasonal aspect. We
demonstrate that the optimal test of a unit root at a given spectral frequency behaves
asymptotically independently of whether unit roots exist at other frequencies or not.
We also develop modified versions of the optimal tests which attain the asymptotic
Gaussian power bounds under much weaker conditions. We further propose near-
efficient regression-based seasonal unit root tests using pseudo-GLS de-trending and
show that these have limiting null distributions and asymptotic local power functions
of a known form. Monte Carlo experiments indicate that the regression-based tests
perform well in finite samples.

Keywords: Point optimal invariant (seasonal) unit root tests; asymptotic local power
bounds; near seasonal integration.

JEL Classifications: C22.

1 Introduction

Since the introduction of formal unit root tests by Dickey and Fuller [DF] (1979,1981),
a large literature, both theoretical and applied, has grown on the analysis of unit root
time-series data. Much of this has been dedicated to developing and refining unit root test
procedures. In particular, what has motivated researchers to search for new procedures
is the characteristically low power of most unit root tests, particularly when deterministic
trend variables are introduced into the test regression. A distinct aspect of several recently
proposed procedures lies in the criterion used to estimate the parameters on deterministic
variables; that is, the method of de-trending employed. While DF use ordinary least squares
(OLS) de-trending, Elliott, Rothenberg and Stock [ERS] (1996) and Schmidt and Phillips

∗Address for Correspondence: Robert Taylor, The Sir Clive Granger Building, School of Economics, Uni-
versity of Nottingham, Nottingham NG7 2RD, UK. The first author thanks the Portuguese Science Founda-
tion for financial support through the POCTI program and FEDER (grant ref. POCTI/ECO/49266/2002).
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(1992), use generalised least squares (GLS) and first-difference (FD) based de-trending,
respectively. These approaches have been shown to yield more powerful unit root tests
than those based on OLS de-trending. Most notably though, ERS have demonstrated that
DF-type tests based on GLS de-trended data have asymptotic local power functions which
lie arbitrarily close to the Gaussian power envelope.

Similar concerns arise in the seasonal context where DF-type tests (with OLS de-
trending) for unit roots at the zero and seasonal frequencies have been developed by Hylle-
berg, Engle, Granger and Yoo (1990) [HEGY] for quarterly data and generalised to the
case of monthly data by Beaulieu and Miron (1993) and Taylor (1998), and to an arbitrary
seasonal periodicity, say S, by Smith and Taylor (1999a,b). A detailed discussion of the the-
oretical and empirical importance of testing for seasonal unit roots is provided in Rodrigues
and Taylor (2004a). Seasonal patterns in economic time-series tend to evolve slowly over
time (see, inter alia, Hylleberg et al., 1993), a characteristic shared by seasonal unit root
processes. However, as Ghysels and Osborn (2001,p.90) note, most empirical applications
of the aforementioned seasonal unit root tests have lead to non-rejection of the non-seasonal
unit root but to rejections of the unit root hypothesis at some, but rarely all, of the seasonal
frequencies, implying the inappropriateness of either taking annual differences of the data
or of commonly used seasonal adjustment procedures which assume the presence of unit
roots at all of the seasonal frequencies (Ghysels and Osborn, 2001,Ch.4). The fact that unit
roots cannot be rejected at all of the seasonal frequencies might be attributable to the low
power of the OLS de-trended HEGY tests. This suggests that the need to develop more
powerful seasonal unit root tests is arguably more compelling than for the non-seasonal case
in order to better establish whether or not seasonal unit roots constitute an appropriate
mechanism for modelling the seasonal patterns in economic series.

Developing FD-de-trended variants of the HEGY testing procedure is a relatively simple
exercise and has already been undertaken in Breitung and Franses (1998) and Rodrigues
(2002) who both find evidence of non-trivial power gains over the standard OLS de-trended
HEGY tests. However, GLS de-trending in the context of the HEGY testing procedure
is complicated by the fact that the power surface of the testing problem is S-dimensional
and has yet to be developed. For this reason, asymptotic power bounds have also not been
derived for autoregressive unit root tests in seasonal time series. Both of these deficiencies
in the literature are rectified in this paper. Gregoir (2004) has developed GLS de-trended
versions of the tests of Ahtola and Tiao (1987) for the null hypothesis of the presence of
a pair of complex conjugate unit roots at a fixed spectral frequency ωk ∈ (0, π). These
tests assume that unit roots are not present at any other spectral frequency, and so are
not appropriate to the seasonal unit roots testing scenario considered in HEGY. However,
Gregoir (2004) contains a number of technical results which prove useful in the development
of this paper, as does ERS which assumes that a unit root exists only at frequency zero.

The paper is organised as follows. In Section 2 we review the standard seasonal au-
toregressive model framework, highlighting the typology of seasonal deterministic trend
functions extant in the seasonal unit root literature and outline the parameter restrictions
on this model which yield (near) unit roots at the zero and seasonal frequencies. In Section
3 we develop point optimal invariant test procedures for unit roots at each of the zero and
seasonal frequencies and derive expressions for their limiting power envelopes using local-
to-unity asymptotics. We show that the optimal test of a unit root at a given frequency
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behaves asymptotically independently of whether unit roots exist at other frequencies or
not. Moreover, these expressions are shown to coincide with existing representations in the
literature. Feasible tests which weaken the assumptions underpinning the point optimal
tests are introduced in Section 4 and are shown to have identical limiting power envelopes
as the corresponding point optimal tests. In Section 5 we propose further tests, which like
the modified augmented DF tests proposed in ERS, are based on a method of pseudo-GLS
de-trending of the familiar HEGY autoregressive-based testing procedure for unit roots at
the zero and seasonal frequencies. Where our modified HEGY tests are performed on a
single unit root parameter they lie very close to the relevant power envelopes pertaining to
that parameter from Section 3. Monte Carlo evidence provided in Section 6 indicates that
the modified HEGY tests display vastly improved finite sample power properties over the
standard HEGY tests, especially so in the case of the joint F -type tests, yet display equally
good finite sample size properties in the presence of serially correlated errors. Section 7
concludes. Appendices A, B and C contain the proofs of Propositions 3.1-3.2, Theorems
3.1-3.2, and Theorem 5.1, respectively.

2 The Seasonal Unit Root Framework

2.1 The Seasonal Model

Using the set-up of Smith and Taylor (1999a,b), consider the process {xSn+s}, observed with
constant seasonal periodicity S, which can be written as the sum of a purely deterministic
component, µSn+s, and a purely stochastic process; viz.,

xSn+s = ySn+s + µSn+s, s = 1− S, ..., 0, n = 1, 2, . . . , N, (2.1)

α(L)ySn+s = vSn+s (2.2)

where α(L) ≡ 1 −
∑S

j=1 α
∗
jL

j in (2.2) is an Sth order polynomial in the conventional
lag operator, L. The disturbance process {vSn+s} is a mean-zero covariance stationary
process which admits the moving average representation vSn+s = ψ(L)uSn+s where {uSn+s}
is IID(0, σ2) with finite fourth moments and the lag polynomial ψ(z) ≡ 1 +

∑∞
i=1 ψiz

i

satisfies the following conditions: (i) ψ(exp{±i2πk/S}) 6= 0, k = 0, ..., bS/2c, b·c denoting
the integer part of its argument, and (ii)

∑∞
j=1 j|ψj| <∞. These conditions ensure that the

spectral density function of vSn+s is bounded and is strictly positive at both the zero and
seasonal spectral frequencies, ωk ≡ 2πk/S, k = 0, ..., bS/2c. For notational convenience we
define S∗ ≡ (S/2)− 1 (if S is even) or bS/2c (if S is odd).

In (2.1), µSn+s is modelled as a linear combination of a set of deterministic regressors;
that is, µSn+s = β′zSn+s. Following Smith and Taylor (1998,1999a,b), we consider six cases
of interest:
Case 1: no deterministics.
Case 2: zero frequency intercept: zSn+s ≡ zSn+s,2 = 1, s = 1 − S, ..., 0, n = 1, 2, . . . , N ,
with β ≡ γ0.
Case 3: zero and seasonal frequency intercepts: zSn+s ≡ zSn+s,3 = [1, cos(2π (Sn+ s) /S),
sin(2π (Sn+ s) /S), ..., cos(2πS∗(Sn+s)/S), sin(2πS∗(Sn+s)/S), (−1)Sn+s]′, s = 1−S, ..., 0,
n = 1, 2, . . . , N , with β ≡ (γ0, γ

′
1, ..., γ

′
S∗ , γS/2)

′, and where γk = (γk,α, γk,β)′, k = 1, ..., S∗.
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Case 4: zero-frequency intercept, zero-frequency trend: zSn+s ≡ zSn+s,4 = (1, Sn + s)′,
s = 1− S, ..., 0, n = 1, 2, . . . , N , with β ≡ (γ0, δ0)

′.
Case 5: zero and seasonal frequency intercepts, zero-frequency trend: zSn+s ≡ zSn+s,5 =
(z′Sn+s,3, Sn+ s)′, s = 1− S, ..., 0, n = 1, 2, . . . , N , with β ≡ (γ0, γ1, ..., γS∗ , γS/2, δ0)

′.
Case 6: zero and seasonal frequency intercepts and trends: zSn+s ≡ zSn+s,6 = (z′Sn+s,3, (Sn+
s)z′Sn+s,3)

′, s = 1−S, ..., 0, n = 1, 2, . . . , N , with β ≡ (γ0, γ1, ..., γS∗ , γS/2, δ0, δ1, ..., δS∗ , δS/2)
′,

where δk = (δk,α, δk,β)′, k = 1, ..., S∗,

omitting (−1)Sn+s from zSn+s,3, γS/2 from β in Cases 3, 5 and 6, and δS/2 from β in Case
6, when S is odd.

2.2 The Seasonal Unit Root Hypotheses

Denoting i ≡
√

(−1), we may factorise the polynomial α(L) at the seasonal spectral fre-
quencies, ωk ≡ 2πk/S, k = 1, ..., bS/2c as:

α(L) =
∏ bS/2c

k=0 ωk(L) (2.3)

where the lag polynomial ω0(L) ≡ (1−α0L) associates the parameter α0 with the zero fre-
quency ω0 ≡ 0, the lag polynomial ωk(L) corresponds to the conjugate (harmonic) seasonal
frequencies (ωk, 2π − ωk), and is defined by

ωk(L) ≡ [1− (αk + βki) exp (iωk)L] [1− (αk − βki) exp (−iωk)L]

=
[
1− 2 (αk cosωk − βk sinωk)L+ (α2

k + β2
k)L

2
]
,

with associated parameters αk and βk, k = 1, ..., S∗, together with ωS/2(L) ≡ (1 + αS/2L),
with parameter αS/2 corresponding to the Nyquist frequency ωS/2 ≡ π, when S is even.

Consequently, following HEGY (S = 4) and Smith and Taylor (1999a) we consider
testing the (bS/2c+ 1) unit root null hypotheses

H0,0 : α0 = 1, H0,S/2 : αS/2 = 1 (S even), (2.4)

and
H0,k : αk = 1, βk = 0, k = 1, ..., S∗. (2.5)

The hypothesis H0,0 : α0 = 1 corresponds to a unit root at the zero-frequency while, for
S even, H0,S/2 : αS/2 = 1 yields a unit root at the Nyquist frequency. A pair of complex
conjugate unit roots at the harmonic seasonal frequencies (ωk, 2π − ωk) is obtained under
H0,k : αk = 1 ∩ βk = 0, k = 1, ..., S∗.

The alternative hypotheses of near-integration at the zero and Nyquist (S even) fre-
quencies may be stated as,

H1,c0 : α0 =
(
1 +

c0
T

)
, H1,cS/2

: αS/2 =
(
1 +

cS/2

T

)
(2.6)

where T ≡ SN , and at the harmonic seasonal frequencies as

H1,ck
: αk =

(
1 +

ck
T

)
, βk = 0, k = 1, ..., S∗. (2.7)
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Cf Phillips (1987), Rodrigues (2001), Rodrigues and Taylor (2004b) and Gregoir (2004),
inter alia. Under H1,ck

, the process {xSn+s} admits either a single root [k = 0, S/2] or a pair
of complex conjugate roots [k = 1, ..., S∗] with modulus in the neighbourhood of unity at
frequency ωk. These roots are stable where ck < 0 and explosive where ck > 0. By allowing
βk 6= 0, one might also allow for the possibility of complex roots lying in the neighbourhood
of the harmonic seasonal frequencies ωk, k = 1, ..., S∗. However, and following Gregoir
(2004), we do not permit this. This seems entirely natural given that the seasonal aspect
of our data governs the spectral frequencies of interest which can therefore be reasonably
assumed fixed. Finally, notice that H1,ck

reduces to H0,k if ck = 0, k = 0, ..., bS/2c.
In what follows, let c ≡ (c0, c1, ..., c[S/2])

′ be the (bS/2c + 1)-vector of non-centrality

parameters and denote the lag polynomial α(L) under H1,c ≡ ∩bS/2c
k=0 H1,ck

as ∆c ≡ 1 −∑S
j=1 α

c
jL

j. Finally, notice that under H0 ≡ ∩bS/2c
k=0 H0,k, c = 0 and ∆0 ≡ 1 − LS, so that

{xSn+s} evolves as a seasonal random walk process.

3 Efficient Seasonal Unit Root Tests

In what follows we will use a similar framework of analysis to that adopted by ERS and
Gregoir (2004). Consequently, we will need to make the following assumption:

Assumption 3.1 (i) ys = 0, s = 1 − S, . . . , 0; (ii) the parameters characterising the lag
polynomial ψ(z) are known; (iii) {uSn+s} is NIID(0, σ2) with σ2 known.

Assumption 3.1 is necessarily unrealistic. It is made so that we may construct most
powerful tests against a given point alternative, and hence develop theoretical power bounds
for seasonal unit root tests in both the known and unknown deterministic scenarios. We will
subsequently drop Assumption 3.1 in Sections 4 and 5 where we discuss testing procedures
which can be used in practice.

3.1 Known Deterministic Component

Where µSn+s of (2.1) is known it is observationally equivalent to Case 1 of µSn+s outlined
in Section 2.1, and so ySn+s is observable. Denoting by L(c), minus twice the log-likelihood
and ignoring the additive constant we have that

L(c) = ∆cy
′Ω−1∆cy, (3.1)

where Ω is the (known) non-singular covariance matrix of the vector v ≡ (v1, ..., vT )′ and
∆cy ≡ (∆cy1, ...,∆cyT )′.

Suppose, for the present, that we wish to test the null hypothesis H0,k : ck = 0 of
(2.4) and (2.5) against the alternative H1,ck

: ck = c̄k of (2.6) and (2.7), c̄k 6= 0, k ∈
{0, . . . , bS/2c}, under the maintained hypothesis that the remaining elements of c are all
equal to zero. That is, we wish to test H0 : c = 0 against H1,c̄k

: c = c̄k, where c̄k is an
(bS/2c + 1)-vector whose (k + 1)th element is equal to ck and all other elements equal to
zero. In this case, appealing to the Neyman-Pearson Lemma (see, e.g. Lehmann,1986,Ch.
3.2), the most powerful test ofH0 againstH1,c̄k

rejects for small values of the (log-)likelihood
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ratio statistic Lk(c̄k,0) ≡ L(ck) − L(0). Proposition 3.1 provides explicit representations
for these statistics.

Proposition 3.1 The Neyman-Pearson statistics Lk(c̄k,0), k = 0, ..., bS/2c, are of the
form

Lk(c̄k,0) =
−2c̄k
T

(yk,−1)
′ Ω−1∆Sy +

( c̄k
T

)2

(yk,−1)
′ Ω−1yk,−1 (3.2)

=
−2c̄k

T (2πfk)
(yk,−1)

′ ∆Sy +
1

(2πfk)

( c̄k
T

)2

(yk,−1)
′ yk,−1 + op(1) (3.3)

where fk ≡ σ2

2π
[ψ(e−iωk)] [ψ(eiωk)] is the spectral density function of {vSn+s} at frequency

2πk/S, ∆Sy ≡ (∆Sy1,∆Sy2, ...,∆SyT )′ , yk,−1 ≡ (yk,0, yk,1, ..., yk,T−1)
′ , k = 0, ..., [S/2] and

where, corresponding to the zero and seasonal frequencies ωk = 2πk/S, k = 0, ..., bS/2c,

y0,Sn+s =
S−1∑
i=0

ySn+s−i, yS/2,Sn+s =
S−1∑
i=0

cos[(i+ 1)π]ySn+s−i

yj,Sn+s =
S−1∑
i=0

cos[(i+ 1)ωj]ySn+s−i, j = 1, ..., S∗,

together with ∆SySn+s ≡ ySn+s − yS(n−1)+s.

We now show in Theorem 3.1 that the most powerful test of H0 : c = 0 against
H1,c̄k

: c = c̄k from Proposition 3.1 has precisely the same local asymptotic power function
as given in Equation (4) of ERS, p.816, for k = 0 and k = S/2 (S even), and as given in
the first part of Theorem 3.1 of Gregoir (2004,p.17) for k = 1, ..., S∗, and that these results
pertain regardless of whether or not the maintained hypothesis, outlined above, holds.
Consequently, the envelope power functions for these tests are available in the literature.
Although the test is constructed under the maintained hypothesis that the non-centrality
parameters at all frequencies not under test are equal to zero, we also demonstrate that the
most powerful test which obtains on relaxing this assumption has the same local asymptotic
power function.

Theorem 3.1 Let {xSn+s} be generated by (2.1)-(2.2) under Assumption 3.1 and α(L) =
∆c with c = (c0, c1, ...., cbS/2c)

′,

L(c̄k,0) ⇒



−2c̄k
∫ 1

0
Jk,ck

(r)dJk,0(r) + c̄2k
∫ 1

0
[Jk,ck

(r)]2 dr, k = 0, S/2 (S even)

−c̄k
∫ 1

0

[
Jα

k,ck
(r)dJα

k,0(r) + Jβ
k,ck

(r)dJβ
k,0(r)

]
+

c̄2k
2

∫ 1

0

{[
Jα

k,ck
(r)
]2

+
[
Jβ

k,ck
(r)
]2}

dr,

k = 1, ..., S∗

≡ Fk(ck, c̄k), k = 0, ..., [S/2]

where “⇒” denotes weak convergence of the associated probability measures, the Jk,ck
(r),

k = 0, k = S/2 (S even), Jα
k,ck

(r) and Jβ
k,ck

(r), k = 1, ..., S∗, are independent standard
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Ornstein-Uhlenbeck [OU] processes (see Proposition B.1 in Appendix B for details). Con-
sequently, the local asymptotic power function for the α-level test indexed by c̄k is given
by

πk(ck, c̄k)
0 ≡ Pr [Fk(ck, c̄k) < `k(α)] (3.4)

where `k(α) satisfies πk(0, c̄k)
0 = α. Since the test indexed by c̄k is optimal against the

alternative c̄k, the envelope power function for frequency ωk for this family of point-optimal
tests is Πk(ck)

0 ≡ πk(ck, ck)
0, k = 0, ..., bS/2c.

Remark 3.1: Notice that the local limiting distributions, and hence local asymptotic
power functions, given for L(c̄k,0), k = 0, ..., bS/2c, in Theorem 3.1, depend only on ck and
c̄k; that is, the same representations hold regardless of the elements (other than ck) of the
vector of true non-centrality parameters, c. This powerful result is due to the asymptotic
orthogonality results in (B.1) and (B.2). Of course, if the elements of c (other than ck) are
not all equal to zero then rejecting for small values of L(c̄k,0) will no longer yield the exact
most powerful test of ck = 0 against ck = c̄k. However, as we show in Remark 3.5 below,
in such cases L(c̄k,0) differs from the statistic upon which the exact most powerful test is
based only by an asymptotically negligible term.
Remark 3.2: From Theorem 3.1, the statistics L(c̄0,0) and L(c̄S/2,0) (S even) possess
identical and independent limiting representations. These are also identical to the repre-
sentation given in Equation (4) of ERS p.816. Consequently, the limiting power envelopes
for tests at the zero and Nyquist frequencies in a seasonally observed process, regardless of
its seasonal period, both coincide with the function Π(c) of ERS p.816, which is graphed
on p.822 of ERS.
Remark 3.3: From Theorem 3.1, the L(c̄k,0) statistics possess independent and identical
limiting representations across k = 1, ..., S∗, which are independent of those for L(c̄0,0)
and L(c̄S/2,0) (S even). Moreover, these are identical to the representation given in the
first part of Gregoir (2004, Theorem 3.1, p.17). The limiting power envelopes for tests at
each harmonic seasonal frequencies therefore coincide with the function graphed in Gregoir
(2004,Figure 4,p.45).
Remark 3.4: Useful computational formulae for Πk(ck), k = 0, ..., bS/2c, are given in
Tanaka (1996,pp.344-345), which can also be used to evaluate the power functions πk(ck, c̄k)

0,
k = 0, ..., bS/2c, of (3.4); see also Tanaka (1996, Table 9.3, p.348) for some relevant tabu-
lations. These formulae can also be used to compute the corresponding quantities for the
optimal tests when the deterministic component is unknown, developed in Section 3.2.
Remark 3.5: Suppose now that we wished to testH0,c∗ : c = c∗, where c∗ ≡ (c∗0, c

∗
1, ..., c

∗
bS/2c)

′

has c∗k = 0, versus H1,c∗+c̄k
: c = c∗ + c̄k, c̄k defined as above. Our maintained hypothesis

is now that the elements (other than ck) of c are known (finite) constants, not necessarily
equal to zero. Then, as shown in Appendix A.1, the most powerful test rejects for small
values of the statistic

Lk(c
∗ + c̄k, c

∗) = Lk(c̄k,0) +

bS/2c∑
j=0
j 6=k

c̄kc
∗
j

T 2
(yk,−1)

′ Ω−1yj,−1,

k = 0, ..., bS/2c. However, the asymptotic orthogonality results (B.1)-(B.2) ensure that
the additional (scaled) cross product terms introduced are each of op(1). This then implies
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that the structure of the Neyman-Pearson test of H0,k : ck = 0 against H1,ck
: ck = c̄k, is

asymptotically invariant to the elements (other than c∗k) of c∗. Consequently, the results
of Theorem 3.1 apply equally to Lk(c

∗ + c̄k, c
∗). In particular Lk(c

∗ + c̄k, c
∗) and L(c̄k,0)

have identical local asymptotic power functions which depend only on ck and c̄k.
Remark 3.6: For completeness, it is interesting to note that if the deterministic component
µSn+s were to behave as a slowly evolving trend, as defined in Condition B of ERS, p.816,
then replacing ySn+s by xSn+s in the foregoing expressions will change neither the asymp-
totic size nor power of the Neyman-Pearson test. Indeed, there is no loss in (asymptotic)
efficiency from µSn+s being unknown in such cases. This occurs because the stochastic
component of xSn+s dominates the deterministic component in such cases when n is large;
see ERS for further discussion on this point.

3.2 Unknown Deterministic Component

We now consider each of Cases 2-6 of µSn+s outlined in Section 2.1, dropping the assumption
that β is known. We restrict attention to the class of β-invariant tests; that is, tests which
for a given value of i, i = 2, ..., 6, are (exact) invariant to the group of transformations
xSn+s 7→ xSn+s + β̄′zSn+s,i, for arbitrary β̄. To that end, we define the T -dimensional vector
xc and the matrix Zi,c, the index i ∈ {2, ..., 6} indicating which of Cases 2 to 6 holds, by:

xc = (x1, x2 − αc
1x1, x3 − αc

1x2 − αc
2x1, ..., xS − αc

1xS−1 − · · · − αc
Sx1,∆cxS+1, ...∆cxT )′

Zi,c = (z1,i, z2,i − αc
1z1,i, z3,i − αc

1z2,i − αc
2z1,i, ..., zS,i − αc

1zS−1,i − · · ·
−αc

Sz1,i,∆czS+1,i, ...,∆czT,i)
′ (3.5)

where the zSn+s,i, i = 2, ..., 6, and ∆c are as defined in Sections 2.1 and Section 2.2 respec-
tively. Using (3.5), we can re-write (3.1) as

L(c, β)i = (xc − Zi,cβ)′Ω−1(xc − Zi,cβ) (3.6)

the subscript i ∈ {2, ..., 6} again indicates which of Cases 2-6 is being considered.
In order to develop an optimal test suppose first, as in the known deterministic case,

that we wish to test H0 : c = 0 against H1,c̄k
: c = c̄k. We may then appeal directly to the

results in Lehmann (1986, Ch.6.2-6.3) to obtain that, in the case of our normal likelihood,
the most powerful invariant (MPI) test of H0 against H1,c̄k

rejects for small values of the
statistic,

Li
k,T = min

β
L(c̄k, β)i −min

β
L(0, β)i, k = 0, 1, ..., bS/2c, i = 2, ..., 6. (3.7)

Notice that the test statistic Li
k,T is then the difference in (weighted) sum of squared

residuals from two constrained GLS regressions, both appropriate to Case i, i ∈ {2, ..., 6},
one imposing H1,c̄k

and the other, H0. In Proposition 3.2 we now give a more convenient
representation for the MPI statistic.

Proposition 3.2 The MPI statistics Li
k,T , k = 0, ..., bS/2c, i = 2, ..., 6, are of the form

Li
k,T = −2

( c̄k
T

yk,−1

)′
Ω−1∆Sy +

( c̄k
T

yk,−1

)′
Ω−1 c̄k

T
yk,−1 +QM(0)i −QM(c̄k)i

= L(c̄k,0) +QM(0)i −QM(c̄k)i (3.8)
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where ∆Sy and yk,−1, k = 0, ..., bS/2c, are as defined in Proposition 3.1, and where

QM(a)i = (∆ay)′ Ω−1Zi,a

[
Z′

i,aΩ
−1Zi,a

]−1
Z′

i,aΩ
−1 (∆ay), with a = 0, c̄k.

Remark 3.7: Notice that under Case 1 the minimisation in (3.7) yields precisely the
Neyman-Pearson statistic, L(c̄k,0) of (3.2), as should be expected.

We now show in Theorem 3.2 that the MPI test of H0 : c = 0 against H1,c̄k
: c = c̄k

has the same local asymptotic power function as given in Equations (4) and (8) of ERS
(pp.416,418) for k = 0 and k = S/2 (S even), and as given in Theorem 3.1 of Gregoir
(2004,p.17) for k = 1, ..., S∗, and that again these results hold regardless of whether or not
the maintained hypothesis holds. In what follows we introduce the index ξ whose value is
determined by i (the deterministic case of interest, i = 1, ..., 6) and the frequency under
test. Precisely, for the zero frequency ω0 tests: Case 1: ξ = 0; Cases 2 and 3: ξ = 1; Cases
4, 5 and 6: ξ = 2. For the seasonal frequency ωk tests, k = 1, ..., bS/2c: Cases 1, 2 and
4: ξ = 0; Cases 3 and 5: ξ = 1; Case 6: ξ = 2. The nomenclature ξ has this meaning
throughout the paper.

Theorem 3.2 Let {xSn+s} be generated by (2.1)-(2.2) under Assumption 3.1 with β un-
known. Then under H1,c : c = (c0, c1, ...., cbS/2c)

′,

Li
k,T ⇒ Fk(ck, c̄k) +Qξ,k(ck, c̄k) ≡ ηξ,k(ck, c̄k) (3.9)

where Fk(ck, c̄k) is as defined in Theorem 3.1, and where Qξ,k(ck, c̄k) = 0 if ξ = 0 or ξ = 1,
k = 0, . . . , bS/2c, and

Q2,k(ck, c̄k) ≡



[Jk,ck
(1)]2 −

(
1− c̄k +

c̄2k
3

)−1 [
(1− c̄k)Jk,ck

(1) + c̄2k
∫ 1

0
rJk,ck

(r)dr
]2
, k = 0, S/2

{[
Jα

k,ck
(1)
]2

+
[
Jβ

k,ck
(1)
]2}

−
[(

1− c̄k +
c̄2k
3

)]−1 {
(1− c̄k)

[
Jβ

k,ck
(1) + Jα

k,ck
(1)
]

+c̄2k
∫ 1

0
r
[
Jβ

k,ck
(r) + Jα

k,ck
(r)
]
dr
}2

, k = 1, ..., S∗,

where J0,c0(r), JS/2,cS/2
(r), Jα

k,ck
(r) and Jβ

k,ck
(r), k = 1, ..., S∗ are as given in Theroem 3.1.

Consequently, the local asymptotic power function for the α-level test indexed by c̄k is given
by

πk(ck, c̄k)
ξ ≡ Pr [ηξ,k(ck, c̄k) < `ξ,k(α)] (3.10)

where `ξ,k(α) satisfies πk(0, c̄k)
ξ = α. Notice, therefore, that πk(ck, c̄k)

1 = πk(ck, c̄k)
0, k =

0, ..., bS/2c. Since the test indexed by c̄k is optimal against the alternative c̄k, for a given
value of ξ, the envelope power function for frequency ωk for this family of point-optimal
tests is Πk(ck)

ξ ≡ πk(ck, ck)
ξ, k = 0, ..., bS/2c.

Remark 3.8: As was observed in Remark 3.1 for the known deterministic case (Case 1),
the local limiting distributions, and hence local asymptotic power functions, of the Lξ

k,T ,
k = 0, ..., bS/2c statistics, for given ξ, depend only on ck and c̄k. That is, the stated

9



results hold regardless of the elements (other than ck) of the vector of true non-centrality
parameters, c. As in Remark 3.5 it is also possible, but tedious, to demonstrate that the
MPI test of H0,c∗ : c = c∗ against H1,c∗+c̄k

: c = c∗ + c̄k, c̄k (both as defined in Remark

3.5) differs from Lξ
k,T by an asymptotically negligible term.

Remark 3.9: From Theorem 3.2, for a given value of ξ, the statistics Lξ
0,T and Lξ

S/2,T

(S even) possess identical and independent limiting representations. For ξ = 1 these are
identical to the representations given in Theorem 3.1 and hence have identical local power
functions as for the known deterministic case. For ξ = 2 these are identical to the represen-
tation given in part (c) of Theorem 1 of ERS page 818. Consequently, the limiting power
envelopes for tests at the zero and Nyquist frequencies in a seasonally observed process,
regardless of its seasonal period, for ξ = 2 coincides with Π(c)τ of ERS page 818, graphed
on page 823 of ERS.
Remark 3.10: For a given value of ξ, it is seen from the results in Theorem 3.2 that
the harmonic seasonal frequency statistics Lξ

k,T possess identical and independent limiting

representations across k = 1, ..., S∗, which are independent of those for Lξ
0,T and Lξ

S/2,T

(S even). For ξ = 1 these are identical to those of Theorem 3.1 and hence have identical
local power functions as for the known deterministic case. For ξ = 2 these are identical to
the representation given in the second part of Theorem 3.1 of Gregoir (2004,p.17). Conse-
quently, the limiting power envelopes for tests at the harmonic frequencies in a seasonally
observed process, regardless of its seasonal period, for ξ = 2 coincides with πtr(c, c) of
Gregoir (2004,pp.17,46).

4 Feasible Point-Optimal Tests

We now drop the assumption that the variance matrix Ω is known and replace the condition
of zero initial values on the ySn+s process with the following weaker assumption:

Assumption 4.1 The initial conditions {ys}0
s=1−S are each of Op(T

ν), ν < 0.5.

Remark 4.1: Assumption 4.1 still requires that the initial conditions of the process are
asymptotically negligible. In the non-seasonal case Elliott (1999) and Müller and Elliott
(2003) have relaxed this to allow for a wider range of possible assumptions on the initial
value. The results in this paper provide a keystone for further analysis under weaker
assumptions, of the form considered in Elliott (1999) and Müller and Elliott (2003), on the
intial values. Such extensions are beyond the scope of the present paper but are currently
being considered by the authors.
Remark 4.2: For the purposes of this Section, the linear process structure placed on
{vSn+s} in Section 2 could be supplanted by a seasonal modification of Condition C of ERS
(p.818) without altering the results in this Section. However, our ultimate focus in this
paper is on the GLS-detrended HEGY tests which we introduce in Section 5 and so we
have deliberately maintained a parametric structure for modelling the weak dependence in
{vSn+s}. Of course, both the parameters characterising the lag polynomial ψ(z) and σ2

are no longer assumed known and the assumption of normality on {uSn+s} has also been
dropped.
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Assuming that the initial conditions, y1−S, ..., y0 are all zero and that vSn+s ∼ NIID(0, 1),
the likelihood ratio statistics Li

k,T , k = 0, ..., bS/2c, i = 1, ..., 6, take very simple forms.
Specifically, under these conditions Li

k,T = S(c̄k, k)i − S(0, k)i, where

S(a, k)i = (∆ay)′ (∆ay)−Q(a)ξ

a = 0, c̄k, and where Q(a)ξ is as defined below (B.23) of Appendix B, are the residual sum
of squares obtained from regressing xc on Zi,c under H1,c̄k

and H0, respectively. Under Case
1, the terms Q(c̄k)ξ and Q(0)ξ are simply omitted from the foregoing expressions. Under
the weaker conditions outlined at the start of this Section these statistics can be modified
to produce asymptotically pivotal statistics. Precisely, for k = 0 and k = S/2 (S even), the
statistics

Pk,T (c̄k)i = ω̂−2
k

[
S(c̄k, k)i −

(
1 +

c̄k
T

)
S(0, k)i

]
and for k = 1, ..., S∗,

Pk,T (c̄k)i = ω̂−2
k

[
S(c̄k, k)i −

(
1 +

c̄k
T

)2

S(0, k)i

]
where ω̂k ≡ 2πf̂k with f̂k a consistent estimator1 of fk, k = 0, ..., bS/2c, can be straightfor-
wardly shown to attain the same asymptotic power envelope functions as the corresponding
tests from Theorems 3.1 and 3.2. The results in Theorems 3.1 and 3.2 required the assump-
tions that Ω was known and that the errors uSn+s were normally distributed. Consequently,
the family of modified tests above can attain these Gaussian limiting power envelopes under
the considerably weaker conditions of this Section.

The foregoing results show that, under the conditions stated above, the tests which
reject for small values of the Pk,T (c̄k)i, k = 0, ..., bS/2c, statistics have asymptotic local
power functions which are tangential to the Gaussian power envelope (for the given value
of ξ) at the single point ck = c̄k, and, hence, no asymptotically uniformly most powerful
test exists. In practice, therefore, and as is typical in this literature, we follow King (1988)
and select from this family of tests that which is associated with the value of ck whose
power function is tangential to the asymptotic local power envelope in the vicinity of power
one-half, when run at a given nominal level. The values of ck appropriate for 5% level tests
are readily obtainable from ERS and Gregoir (2004) [these values are replicated in Section
5], who demonstrate that the resultant tests have asymptoptic local power functions which
lie arbitrarily close to the Gaussian envelope over a broad range of values of ck.

5 Regression-based Nearly Efficient Tests

By far the most popularly applied non-seasonal (S = 1) unit root tests from ERS are their
pseudo-GLS versions of the familiar ADF t-tests; see ERS p.824. These are computed
from the OLS regression of ∆1x

i
n on xi

n−1 and lags of ∆1x
i
n, where xi

n ≡ xn − β̃′c̄,izn, is the
pseudo-GLS de-trended xn. ERS choose c̄0 to be that alternative where maximal power

1See, inter alia, Breitung and Franses (1998), Chambers and McGarry (2002) and Gregoir (2004) for
detailed discussions of suitable estimators.
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is approximately one-half; viz., −7 for the case of a constant mean (i = 2) and −13.5 for
the constant plus linear trend case (i = 4), for 5% level tests. These tests are shown to
have asymptotic local power functions which are virtually indistinguishable from the power
envelope in both cases. In contrast, the asymptotic local functions of the standard ADF
tests, based on OLS de-trended data, lie well below the envelope in each case. Gregoir
(2004) proposes pseudo-GLS versions of the ADF-type complex conjugate unit root tests
of Ahtola and Tiao (1987).

Given the success of the modified ADF-based procedure suggested by ERS we now gen-
eralise that approach to the seasonal case. Precisely, our suggested approach to testing for
seasonal unit roots in α(L) consists of two stages. First we use a (pseudo-) GLS estimator,
rather than the OLS estimator of HEGY, Beaulieu and Miron (1993) and Smith and Taylor
(1999a), inter alia, to de-trend the data, as detailed in Section 3. Provided µSn+s is not
estimated under an overly restrictive case, standard GLS regression theory tells us that the
resulting unit root tests will yield exact invariant inference with respect to β.

As in ERS and Gregoir (2004), we must use a pseudo-GLS estimator of β in our de-
trending regression. The problem is at first sight more involved than the situations covered
by these authors since they focused only on tests of a single non-centrality parameter while
in our setting we have a vector of non-centrality parameters of order bS/2c+1, the elements
of which are considered simultaneously. In the foregoing analysis we have established the
maximal power for tests on each element of this vector in isolation for each of Cases 2-6.
Establishing an appropriate pseudo-GLS trend estimator might therefore seem complicated.
However, from the asymptotic orthogonality of the power envelope functions across spectral
frequencies we may use the pseudo-GLS estimator, β̃†i obtained from regressing xc on Zi,c

for c = c† ≡ (c†0,ξ, c
†
1,ξ, ..., c

†
bS/2c,ξ)

′, where c†j,ξ are the 50 % points off the power envelopes
for a given i, i = 2, ..., 6, for each spectral frequency, in all cases for tests run at the
100 α % level. Consequently, we have from ERS (pp.821,823) that for 5% level tests,
c†k,1 = −7 and c†k,2 = −13.5 for k = 0, S/2, while from Gregoir (2004,p.19) c†j,1 = −3.75

and c†j,2 = −8.65 for j = 1, ..., S∗. The general pseudo-GLS estimator (of which β̃†i is
a special case) obtained from regressing xc on Zi,c for c = c̄ ≡ (c̄0, c̄1, ..., c̄bS/2c)

′ will be

denoted as β̃i(c̄). We will denote the pseudo-GLS de-trended data from this regression as

x̂i
Sn+s ≡ xSn+s − [β̃i(c̄)]

′zSn+s,i. Notice that, for Case 1, x̂1
Sn+s = xSn+s, by definition, since

no de-trending is performed.
Consider again (2.1)-(2.2) under Assumption 4.1, and further assume that ψ(z) is in-

vertible with (unique) inverse φ(z), such that an autoregressive approximation is valid.
Following Smith and Taylor (1999a, Equation (2.11), page 6), our second stage consists of
expanding α(L) in (2.1) around the seasonal unit roots exp (±i2πk/S), k = 0, ..., bS/2c, to
yield the auxiliary regression equation,

∆Sx̂
i
Sn+s = π0x̂

i
0,Sn+s−1 +

S∗∑
j=1

(
πkx̂

i
j,Sn+s−1 + πβ

k x̂
β,i
j,Sn+s−1

)

+ πS/2x̂S/2,Sn+s−1 +

p∗∑
p=1

φp∆Sx̂
i
Sn+s−p + error, (5.1)

omitting the term πS/2x̂
i
S/2,Sn+s−1 if S is odd, and where corresponding to the zero and
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seasonal frequencies ωk = 2πk/S, k = 0, ..., bS/2c,

x̂i
0,Sn+s ≡

S−1∑
j=0

x̂i
Sn+s−j, x̂i

S/2,Sn+s ≡
S−1∑
j=0

cos[(j + 1)π]x̂i
Sn+s−j,

x̂i
k,Sn+s ≡

S−1∑
j=0

cos[(j + 1)ωk]x̂
i
Sn+s−j, x̂β,i

k,Sn+s ≡ −
S−1∑
j=0

sin[(j + 1)ωk]x̂
i
Sn+s−j, (5.2)

k = 1, ..., S∗, together with ∆Sx̂
i
Sn+s ≡ x̂i

Sn+s − x̂i
S(n−1)+s. For quarterly, S = 4, data the

relevant transformations are

x̂i
0,Sn+s ≡ (1 + L+ L2 + L3)x̂i

Sn+s, x̂i
2,Sn+s ≡ −

(
1− L+ L2 − L3

)
x̂i

Sn+s,

x̂i
1,Sn+s ≡ −L(1− L2)x̂i

Sn+s, x̂β,i
1,Sn+s ≡ −(1− L2)x̂i

Sn+s.

The existence of unit roots at the zero, Nyquist and harmonic seasonal frequencies
imply that π0 = 0, πS/2 = 0 (S even) and πk = πβ

k = 0, k = 1, ..., S∗, in (5.1) respectively;
see Smith and Taylor (1999a). Consequently, and in order to test H0,k against H1,k, k =
0, ..., bS/2c, we follow HEGY, Beaulieu and Miron (1993) and Smith and Taylor (1999a),
inter alia, and suggest the following regression statistics in (5.1): t̂0 (left-sided) for the
exclusion of x̂i

0,Sn+s−1; t̂S/2 (left-sided) for the exclusion of x̂i
S/2,Sn+s−1 (S even); t̂k (left-

sided) and t̂βk (two-sided) for the exclusion of x̂i
k,Sn+s−1 and x̂β,i

k,Sn+s−1 respectively, and

F̂k for the exclusion of both x̂i
k,Sn+s−1 and x̂β,i

k,Sn+s−1, k = 1, ..., S∗. Following GLN, Taylor
(1998), and Smith and Taylor (1998,1999a) we also consider the joint frequency F -statistics,

F̂1...bS/2c, for the exclusion of {x̂i
j,Sn+s−1}

bS/2c
j=1 and {x̂β,i

j,Sn+s−1}S∗
j=1, and F̂0...bS/2c, for H0, the

exclusion of {x̂i
j,Sn+s−1}

bS/2c
j=0 and {x̂β,i

j,Sn+s−1}S∗
j=1.

We now detail the limiting distribution of these tests under the general local alternative
H1,c : c = (c0, c1, ..., cbS/2c)

′. The parameter ξ is as defined in Section 3.2, while δξ is a
dummy variable such that δξ = 0 if ξ = 0, 1 and δξ = 1 if ξ = 2.

Theorem 5.1 Let {xSn+s} be generated by (2.1)-(2.2) under Assumption 4.1, with φ(z) =
1. Then under H1,c : c = (c0, c1, ..., cbS/2c)

′,

t̂j ⇒ cj

{∫ 1

0

[
Jj,cj

(r, δξ c̄j)
]2
dr

}1/2

+

{∫ 1

0

Jj,cj
(r)dJj,0(r)− δξDcj

(r, c̄j)

∫ 1

0

rdJj,0(r)

}
×{∫ 1

0

[
Jj,cj

(r, δξ c̄j)
]2
dr

}−1/2

, j = 0, S/2, (5.3)

t̂k ⇒ ck
2

{∫ 1

0

[
Jα,β

k,ck
(r, δξ c̄k)

]2
dr

}1/2

+

{[∫ 1

0

Jα
k,ck

(r)dJα
k,0(r) +

∫ 1

0

Jβ
k,ck

(r)dJβ
k,0(r)

]
− 2δξ

[
Dck

(r, c̄k)
Dβ

ck
(r, c̄k)

]′
Λ1,k

[ ∫ 1

0
rdJα

k,0(r)∫ 1

0
rdJβ

k,0(r)

]}{∫ 1

0

[
Jα,β

k,ck
(r, δξ c̄k)

]2
dr

}−1/2

(5.4)
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t̂βk ⇒
{[∫ 1

0

Jα
k,ck

(r)dJβ
k,0(r)−

∫ 1

0

Jβ
k,ck

(r)dJα
k,0(r)

]
− 2δξ

[
Dck

(r, c̄k)
Dβ

ck
(r, c̄k)

]′
Λ2,k

[ ∫ 1

0
rdJα

k,0(r)∫ 1

0
rdJβ

k,0(r)

]}{∫ 1

0

[
J̄α,β

k,ck
(r, δξ c̄k)

]2
dr

}−1/2

(5.5)

F̂k − 1

2

{
[t̂k]

2 + [t̂βk ]2
}

= op(1), k = 1, . . . , S∗, (5.6)

F̂1...bS/2c − 1

S − 1

{
[t̂S/2]

2 +
S∗∑

k=1

(
[t̂k]

2 + [t̂βk ]2
)}

= op(1), (5.7)

F̂0...bS/2c − 1

S

{
[t̂0]

2 + [t̂S/2]
2 +

S∗∑
k=1

(
[t̂k]

2 + [t̂βk ]2
)}

= op(1) (5.8)

omitting terms involving τS/2,ξ(cS/2, δξ) if S is odd. The limiting processes Jj,cj
(r), j =

0, S/2, Jα
k,ck

(r) and Jβ
k,ck

(r), k = 1, ..., S∗ are defined in Proposition B.1 of Appendix B,

while Jj,cj
(r, δξ c̄j) and Dcj

(r, c̄j), j = 0, S/2, and Jα,β
k,ck

(r, δξ c̄k), J̄
α,β
k,ck

(r, δξ c̄k), Λ1,k, Λ2,k,

Dck
(r, c̄k) and Dβ

ck
(r, c̄k), k = 1, ..., S∗, are defined in the proof of Theorem 5.1 in Appendix

C.

Remark 5.1: Setting c̄ ≡ c† the representations given in Theorem 5.1 delineate the
asymptotic local power functions (for nominal 100 α % level tests) of the pseudo-GLS de-
trended seasonal unit root tests from (5.1) using the values for ck where maximal power is
approximately one-half, as discussed in the paragraph preceding Theorem 5.1. For k = 0
and k = S/2 (S even), these representations are equivalent to those given for theDF−GLSµ

and DF −GLSτ statistics in ERS (pp.824-825) for ξ = 0, 1 and ξ = 2, respectively. Graphs
of these limiting power functions for 5% significance level tests are therefore as given in
Figures 2 and 3 of ERS, pp.823-824. For k = 1, ..., S∗, the limiting power functions of the
5% level t̂k and F̂k tests are as graphed in Figures 2 and 3 of Gregoir (2004,p.20) for ξ = 0, 1
and ξ = 2, respectively.
Remark 5.2: Theorem 5.1 was derived under the assumption that {uSn+s} ∼ IID(0, σ2).
It is straightforward but incredibly tedious to show that the results for all but the t̂k and
t̂βk , k = 1, ..., S∗, statistics also hold under the more general condition that {uSn+s} follows
a stationary AR(p), 0 ≤ p < ∞, process; i.e., φ(L)vSn+s = uSn+s ∼ IID(0, σ2), provided
p∗ ≥ p in (5.1); cf. Burridge and Taylor (2001), Rodrigues (2002) and Rodrigues and
Taylor (2004b). More generally, where uSn+s satisfies the linear process conditions detailed
in Section 2, we conjecture that these results will also continue to hold provided p∗ is
of op(T

1/3); cf. Said and Dickey (1984). Moreover, under the linear process conditions
an alternative estimation approach based on frequency domain regression might also be
considered which will deliver statistics with pivotal asymptotic null distributions. This
method is outlined in Chambers and McGarry (2002) for Case 1 (no deterministics) but
could be readily extended to the case of pseudo-GLS de-trended data.
Remark 5.3: It can be seen from (5.3) of Theorem 5.1 that for both ξ = 0 and ξ = 1, t̂0 and
t̂S/2 have identical standard Dickey-Fuller (1979) limiting distributions underH0. Moreover,

for ξ = 2 the limiting null representations of t̂0 for c̄0 = c†0,ξ and t̂S/2 for c̄S/2 = c†S/2,ξ are
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also identical and coincide with the representation given in ERS p.824 evaluated for c = 0.
The t̂0 and t̂S/2 statistics are also asymptotically independent under both H0 and H1,c.
Remark 5.4: Representations (5.4)-(5.5) of Theorem 5.1 demonstrate that, under both H0

and H1,c, t̂k and t̂l, k 6= l, and t̂βk and t̂βl , k 6= l, k, l = 1, . . . , S∗, possess identical limiting
distributions, and hence asymptotic local power functions, and are mutually asymptotically
independent and are also asymptotically independent of t̂0 and t̂S/2.
Remark 5.5: The representations given in Theorem 5.1 allow an explanation for the
similarity between critical values which occurs in different scenarios and between different
statistics; cf. Table 5.1. E.g., from (5.3) it is seen that t̂S/2 has an identical limiting null
distribution under Cases 3 and 4, which coincides with that of t̂0 under Cases 2 and 3.
Moreover, for any given statistic, the limiting distributions of the statistic for ξ = 0 and
ξ = 1 coincide.
Remark 5.6: The F -statistics, F̂k, k = 1, ..., S∗, are asymptotically mutually independent
and are asymptotically independent of t̂0 and t̂S/2 under both H0 and H1,c. Moreover, the

F -statistic F̂1...bS/2c is asymptotically independent of t̂0 under both H0 and H1,c.

Table 5.1 about here

Selected finite sample and asymptotic critical values for the quarterly GLS-HEGY t̂0,
t̂2, F̂1, F̂0...2 and F̂1...2 tests for α = 0.05 are provided in Table 5.1. The finite sample
critical values were based on the DGP ∆4x4n+s = u4n+s ∼ IN(0, 1), s = −3, . . . , 0, n =
1, . . . , N , with u4j+s = x4j+s = 0, j ≤ 0, with results reported for the sample sizes T =
48, 100, 136, 200 and 400, for the statistics computed from Cases 3 (seasonal de-meaning),
5 (seasonal de-meaning and non-seasonal de-trending) and 6 (seasonal de-meaning and
seasonal de-trending) of (5.1) with p∗ = 0.2 The asymptpotic critical values were obtained
by direct simulation of the appropriate limiting functionals from Theorem 5.1 with ck = 0,
k = 0, 1, 2, using a sample size of T = 3, 000. The asymptotic critical values given for the
t̂0, t̂2 and F̂1 tests are also appropriate3 for the t̂0, t̂S/2 (S even) and F̂k, k = 1, ..., S∗, tests,
respectively, for other values of S; cf. Remarks 5.3-5.5. Notice from Theorem 5.1 that the
asymptotic critical values for Case 3 also apply to Cases 1 and 2 for all tests and also to
Case 4 for the seasonal frequency tests. All reported simulations were computed using the
RNDN function of Gauss 3.1 over 100, 000 replications.

6 Numerical Results

In this Section we use Monte Carlo simulation methods to investigate the small sample
properties (size under autocorrelated errors and power under stationary alternatives) of

2Cases 1, 2 and 4 do not yield tests which are exact similar with respect to the initial conditions and
hence we recommend against their use; cf. Smith and Taylor (1998). However, finite sample critical values
for these cases and for the t̂1 and t̂β1 tests are available from the authors on request.

3The 1%, 2.5%, 5% and 10% lower-tail asymptotic critical values for the (t̂k, t̂
β
k), k = 1, ..., S∗, tests are re-

spectively (−2.57,−2.37), (−2.23,−1.99), (−1.93,−1.67), and (−1.60,−1.30) for ξ = 1 and (−3.92,−2.63),
(−3.62,−2.24), (−3.37,−1.90), and (−3.08,−1.48) for ξ = 2. The upper-tail asymptotic critical values
for the t̂βk , k = 1, ..., S∗ tests are the negative of those above due to the symmetry of the limiting null
distribution.
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the GLS-HEGY t̂0, t̂1, t̂2, F̂1, F̂1,...,2 and F̂0,...,2 tests of Section 5 (α = 0.05) for quarterly
data, S = 4, comparing these with the conventional quarterly OLS-HEGY tests: t̃0, t̃1,
t̃2, F̃1, F̃1,...,2 and F̃0,...,2.

4 The OLS-HEGY tests are based on the corresponding statistic
from (5.1) replacing the (pseudo-)GLS-detrended data x̂i

Sn+s by the OLS-detrended data,

x̃i
Sn+s = xSn+s − [β̃i]

′zSn+s, where β̃i is obtained from regressing xSn+s on zSn+s,i, Sn+ s =
1, ..., T , i = 2, ..., 6. In assessing the finite-sample size and power properties of these tests we
have focused on N = 25 and N = 50 (which correspond to samples of T = 100 and T = 200
observations, respectively), and on Cases 3 and 6 of (5.1), where ξ = 1 and ξ = 2 respectively
for all reported tests. All tests were run at the nominal 0.05 level using finite sample critical
values generated under the quarterly seasonal random walk null. The remaining cases of
(5.1) and other nominal levels were also considered, as were the corresponding tests for
other values of S, but in each case yielded qualitatively similar results to those reported. In
all experiments, the lag truncation order p∗ in (5.1) was chosen via a data-dependent rule.
As is commonly done in practice, we followed the general-to-specific approach outlined in
Beaulieu and Miron (1993,pp.318-19), starting with an initial four lags of the dependent
variable (pmax = 4) and progressively deleting lags found to be insignificant at the 0.10
level.

The simulation results reported in this section were programmed using the RNDN func-
tion of Gauss 3.1 and, unless otherwise stated, were based on 50, 000 replications for each
experiment. These programs (together with those used to compute the critical values in
Table 5.1) are available from the authors on request and can replicate all experiments re-
ported in this paper for arbitrary S and N and also allow for other methods of selecting
p∗, the lag truncation order, (including deterministic) in (5.1).

6.1 Size Properties

Table 6.1 reports empirical rejection frequencies for the above tests (nominal 0.05 level)
when the true DGP for {x4n+s} is:

∆4x4n+s = u4n+s, s = −3, . . . , 0, n = 2, . . . , N, (6.1)

(1− φL)u4n+s = (1 + θL2)v4n+s ∼ IN(0, 1), s = −3, . . . , 0, n = −100, . . . , N, (6.2)

with xj = 0, j = 1, . . . , S. We consider the effects of φ = 0.9, holding θ = 0, and θ = ±0.6,
holding φ = 0.5 The first case allows for a large peak in the spectrum of {u4n+s} at the
zero frequency, while the second induces a near cancellation of roots at both the zero and
Nyquist frequencies for θ = −0.6, and at the harmonic seasonal frequency for θ = 0.6.

Tables 6.1− 6.4 about here

Consider first the case where φ = 0.9 and θ = 0. One would hope that all of the reported
tests would lie approximately on their nominal levels, given the choice of pmax = 4. While

4We also considered the weighted and simple symmetric variants of the HEGY tests of Rodrigues and
Taylor (2004a) together with the FD de-trended HEGY tests of Rodrigues (2002). These tests were all
somewhat more powerful than the OLS-HEGY tests but less powerful than the GLS-HEGY tests reported
here. Since these tests are not based on any optimality principle nor have they, to the best of our knowledge,
been used in the applied literature we do not report these results. They are, however, available on request.

5Other parameter values were considered but qualitatively do not add to or contradict what is reported.
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this is largely the case, some undersizing is seen, particularly in the case of the t̂1 and t̃1
tests. However, it is known from results in Burridge and Taylor (2001) that these statistics
have limiting distributions which depend on the serial correlation nuisance parameters so
these results are not surprising. For N = 25 some under-sizing is seen in certain of the other
OLS-HEGY and GLS-HEGY tests, especially in the case of ξ = 2, with these distortions
largely ameliorated for N = 50.

Moving to the case where φ = 0 and θ = ±0.6, we see from Table 6.1 that similar
patterns of size distortion are seen across the OLS-HEGY and GLS-HEGY variants of each
test. However, the GLS-HEGY tests do appear to display the smallest size distortions
overall, with the differences in performance between the OLS-HEGY and GLS-HEGY tests
greatest for ξ = 1. Both variants of both the zero and π frequency t-tests distort above
the nominal level for θ = −0.6, while the π/2 frequency F -tests distort above the nominal
level for θ = 0.6, as expected from the induced near-cancellation of roots problem in each
of these cases outlined above. These patterns are transmitted into the joint frequency tests
in both cases, as would be expected. As with the case of pure AR shocks discussed above,
size distortions tend to decrease somewhat between N = 25 and N = 50.

6.2 Empirical Power

This sub-section compares the empirical finite sample power properties of the OLS-HEGY
and GLS-HEGY tests against near-seasonal unit root processes; that is, we investigate
the relative finite sample local power of the tests. To that end, Tables 6.2-6.3 report the
empirical power (nominal 0.05 level) of the above tests when the true DGP for {x4n+s} is
the near-seasonally integrated AR model:[

1−
(
1 +

c0
T

)
L
] [

1 +
(
1 +

c2
T

)
L
] [

1 +
(
1 +

c1
T

)2

L2

]
x4n+s = v4n+s ∼ IN(0, 1), (6.3)

with s = −3, . . . , 0, n = 1, . . . , N, xj = vj = 0, j ≤ 0. We investigate the effects of
varying the non-centrality parameter ck among ck ∈ {−1,−5,−7,−11,−15,−19} in our
experiments. Results for N = 25 are reported in Table 6.2 and for N = 50 in Table
6.3. Recall that the corresponding results for N → ∞ are discussed in Section 5. For
completeness, and to facilitate comparison, we have also simulated the limiting powers of
the OLS-HEGY and GLS-HEGY tests and these are reported in Table 6.4. These were
obtained by direct simulation methods, in the same manner as the results in Table 5.1, but
for the appropriate value of ck, k = 0, 1, 2, using 100, 000 replications and a sample size of
1, 000. Results are not reported for the tests based on either the t̂β1 or t̃β1 statistics since
under (6.3) both of these statistics converge in probability to zero; cf. Rodrigues (2001).

The results reported in Tables 6.2-6.3 pertain to the case where, when moving a partic-
ular non-centrality parameter ck, k = 0, 1, 2, away from unity, the remaining non-centrality
parameters were all held at zero.6 For example, the entries for t̂0 and t̃0 tests for ck = −5
relate to (c0, c1, c2) = (−5, 0, 0). As for the joint frequency tests, for ck = −5, for example,
the entries for the joint seasonal frequencies tests pertain to (c0, c1, c2) = (0,−5,−5) while

6Allowing the other non-centrality parameters to deviate from zero at the same time had no discernable
effect.
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those for the joint test across the zero and seasonal frequencies pertain to (c0, c1, c2) =
(−5,−5,−5).

It is quite clear from the results in Tables 6.2-6.3 that the GLS-HEGY seasonal unit
root tests proposed in this paper enjoy considerable finite-sample power advantages over the
corresponding conventional OLS-HEGY tests, although the power differentials between the
OLS-HEGY and GLS-HEGY tests are generally smaller for ξ = 2, vis-à-vis ξ = 1, echoing
the observations of ERS and Gregoir (2004). In fact, there is not one single example in
either Table 6.2 or Table 6.3 where an OLS-HEGY test displays superior power to the
corresponding GLS-HEGY test. In the mid-power range of the power functions for ξ = 1,
as a general rule of thumb, the GLS-HEGY tests appear to have roughly double the power
of the corresponding OLS-HEGY test, although in many cases the difference can be even
higher. For example, for ξ = 1 and c1 = −5 the GLS-HEGY t̂1 test has power of 61
%, while the corresponding OLS-HEGY t̃1 test has power of only 20 %. Finally, as N is
increased the reported quantities for both the OLS-HEGY and GLS-HEGY tests appear to
be converging towards the asymptotic local power levels reported in Table 6.4, as should
be expected.

7 Conclusions

In this paper we have derived asymptotic local power bounds for seasonal unit root tests
for both known and unknown deterministic scenarios and for an arbitrary seasonal aspect.
Moreover, we have shown that the optimal test of a unit root at a given spectral frequency
behaves asymptotically independently of whether unit roots exist at other frequencies or
not. The point optimal tests were derived under stringent assumptions (Gaussian innova-
tions, a known error covariance matrix and zero initial conditions). We have demonstrated
that these conditions can be relaxed and that modified versions of the tests can achieve the
same asymptotic local power functions as the Gaussian point optimal tests. We have also
proposed near-efficient regression-based (HEGY) seasonal unit root tests using pseudo-GLS
de-trending and shown that these have well-known limiting null distributions and asymp-
totic local power functions. Our Monte Carlo results suggest that the pseudo-GLS de-
trended versions, with data-dependent lag selection, display much improved finite-sample
power properties over the original OLS de-trended HEGY tests, yet display very similar size
properties against seasonal unit root processes driven by weakly dependent innovations.
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Appendix A
A.1 Proof of Proposition 3.1
As in section 5, expanding α(L) in (2.1) around the seasonal unit roots exp (±i2πk/S), k =
0, ..., bS/2c, yields the auxiliary regression which is an unrestricted re-parameterisation of (2.1)-
(2.2):

∆SySn+s = π0y0,Sn+s−1 +
S∗∑
j=1

(
πkyk,Sn+s−1 + πβ

k y
β
k,Sn+s−1

)
+ πS/2yS/2,Sn+s−1 + vSn+s, (A.1)

omitting the term πS/2yS/2,Sn+s−1 if S is odd, and where, yj,Sn+s, j = 0, S/2, yk,Sn+s, k =
1, ..., S∗, and ∆SySn+s are as defined in Proposition 3.1, together with yβ

j,Sn+s = −
∑S−1

i=0 sin[(i+
1)ωj ]ySn+s−i, k = 1, ..., S∗. The exact (linear) relationship between the α∗j , j = 1, ..., S, parameters
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of (2.1) and the πk, k = 0, ..., bS/2c and πβ
j , j = 1, ..., S∗, parameters of (A.1) is detailed in

the Proposition given in HEGY, pp.221-222. Consequently, using (A.1), L(c) in (3.1) can be
equivalently re-written as

L(c) =

∆Sy −
[S/2]∑
j=0

πjyj,−1 −
S∗∑
r=1

πβ
r yβ

r,−1

′

Ω−1

∆Sy −
[S/2]∑
j=0

πjyj,−1 −
S∗∑
r=1

πβ
r yβ

r,−1


where ∆Sy and yj,−1, j = 0, ..., bS/2c, are as defined in Proposition 3.1, and yβ

j,−1 ≡
(
yβ

j,0, y
β
j,1, ..., y

β
j,T−1

)′
j = 1, ..., S∗. Expanding terms, and noting from the Proposition in HEGY that in the near-
integrated model the regression parameters of (A.1) reduce to πk ≡ ck

T , k = 0, 1, ..., [S/2] and
πβ

j = 0, j = 1, ..., S∗, we obtain that

L(c) = (∆Sy)′ Ω−1∆Sy − 2
[S/2]∑
j=0

cj
T

y′j,−1Ω
−1∆Sy +

[S/2]∑
i=0

[S/2]∑
j=0

cjci
T 2

y′j,−1Ω
−1yi,−1.

It is then straightforward to show that under the assumptions of Remark 3.5,

Lk(c∗ + c̄k, c∗) = Lk(c̄k,0) +
bS/2c∑
j=0
j 6=k

c̄kc
∗
j

T 2
y′k,−1Ω

−1yj,−1 (A.2)

where
Lk(c̄k,0) = −2

c̄k
T

y′k,−1Ω
−1∆Sy +

( c̄k
T

)2

y′k,−1Ω
−1yk,−1, (A.3)

k = 0, ..., [S/2]. The decomposition in (3.3) then follows from (3.2) using ERS (Lemma A2,p.831),
for k = 0 and k = S/2 (S even), and Gregoir (2004, Lemma A.5,p.37) for k = 1, ..., S∗.

A.2 Proof of Proposition 3.2
Notice first that under both H0 : c = 0 and H1,c̄k

: c = c̄k, (2.1)-(2.2) can be written in matrix
form as

∆Sx− π̄kxk,−1 = Zi,cβ
∗ + v, k = 0, ..., bS/2c, i = 2, ..., 6, (A.4)

where β∗ and β are linear in a vector of parameters, π̄k = 0 under H0 and π̄k = c̄k
T under H1,c̄k

;
and where ∆Sx ≡ (∆Sx1,∆Sx2, ...,∆SxT )′ and xj,−1 ≡ (xj,0, xj,1, ..., xj,T−1)

′ , j = 0, ..., [S/2],
with xj,Sn+s, j = 0, ..., bS/2c, as defined in Proposition 3.1 replacing ySn+s by xSn+s throughout.
Consequently, defining β̃c̄k,i to be the GLS estimator,

β̃c̄k,i =
[
Z′

i,ck
Ω−1Zi,ck

]−1 Z′
i,ck

Ω−1
(
∆Sx− c̄k

T
xk,−1

)
, i = 2, ..., 6,

we observe from standard GLS projection theory (cf. ERS, p.834) that,

min
β
L(c̄k, β)i =

(
∆Sy − c̄k

T
yk,−1

)′
Ω−1

(
∆Sy − c̄k

T
yk,−1

)
−QM (c̄k)i,

i = 2, ..., 6, where QM (c̄k)i is as defined in Proposition 3.2. Consequently,

Li
k,T = min

β
L(c̄k, β)i −min

β
L(0, β)i

=
(
∆Sy − c̄k

T
yk,−1

)′
Ω−1

(
∆Sy − c̄k

T
yk,−1

)
− (∆Sy)′ Ω−1∆Sy +QM (0)i −QM (c̄k)i,
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i = 2, ..., 6, from which the stated result follows immediately using Proposition 3.1.

Appendix B
For the purposes of Appendices B and C all references to results for the Nyquist frequency,
ωS/2 = π, are taken to apply only where S is even.
B.1 Proof of Theorem 3.1
In order to prove Theorem 3.1 we first reproduce the following proposition due to Rodrigues and
Taylor (2004b) which details the large sample properties of the regressors from (A.1):

Proposition B.1 Under the conditions of Theorem 3.1,

1√
T
y0,SbrNc+s ⇒ σψ(1)J0,c0(r)

1√
T
yS/2,SbrNc+s ⇒ σψ(−1)(−1)iJS/2,cS/2

(r), i = (SbrNc+ s) mod 2

1√
T
yk,SbrNc+s ⇒ σ

{
e′s%

∗
α,k

[
akJ

β
k,ck

(r) + bkJ
α
k,ck

(r)
]

+ e′s%
∗
β,k

[
−akJ

α
k,ck

(r) + bkJ
β
k,ck

(r)
]}

1√
T
yβ

k,SbrNc+s ⇒ σ
{
e′s%

∗
β,k

[
akJ

β
k,ck

(r) + bkJ
α
k,ck

(r)
]
− e′s%

∗
α,k

[
−akJ

α
k,ck

(r) + bkJ
β
k,ck

(r)
]}

,

r ∈ [0, 1], s = 1−S, ..., 0, and where es is an S×1 seasonal selection vector with (S−s)th element
equal to unity and all other elements equal to zero, s = 1−S, ..., 0, %∗α,k = [cos(ωk), cos(0), ..., cos((2−
S)ωk)]′, %∗β,k = [sin(ωk), sin(0), ..., sin((2−S)ωk)]′, ak = Im [ψ(exp(−iωk)] , bk = Re [ψ(exp(−iωk)] ,

k = 1, ..., S∗, and J0,c0(r), J
α
k,ck

(r) and Jβ
k,ck

(r), k = 1, ..., S∗, and, for S even, JS/2,cS/2
(r) are

mutually independent standard OU processes. Moreover, the following asymptotic orthogonality
results hold between the regressors in (A.1) (see also Jeganathan, 1991):

T−2
0∑

s=1−S

N∑
n=1

yj,Sn+s−1yk,Sn+s−1 →p 0, j, k = 0, ..., bS/2c, j 6= k (B.1)

T−2
0∑

s=1−S

N∑
n=1

yj,Sn+s−1y
β
k,Sn+s−1 →

p 0, j = 0, ..., bS/2c, k = 1, ..., S∗, j 6= k. (B.2)

The proof of Theorem 3.1 then follows from the results in Proposition B.1 and applications of the
continuous mapping theorem [CMT].

B.2 Proof of Theorem 3.2
B.2.1 Preliminary Results
In order to establish the large sample distributions of the MPI statistics from Proposition 3.2
under H1,c we first, for notational convenience, write the scaled deterministic components for
each of Cases 2-6, Z̄i,c̄ = Zi,c̄Ni,T , i = 2, ..., 6, where Zi,c̄ is as defined in Section 3.2, and the
scaling matrices Ni,T , i = 2, ..., 6, are such that: N2,T = N1/2, N3,T = diag(N1/2, ..., N1/2),
N4,T = diag(N1/2, 1), N5,T = diag(N1/2, ..., N1/2, 1) and N6,T = diag(N1/2, ..., N1/2, 1, ..., 1).
These are now stated in Proposition B.2 which may be readily verified by direct calculation.
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Proposition B.2 The scaled deterministic matrices, Z̄i,c̄, i = 2, ..., 6, take the form:

Z̄2,c̄ = Z̄2,c̄0

Z̄3,c̄ =
(
Z̄2,c̄0 , Z̄

α
3,c̄1 , Z̄

β
3,c̄1

, ..., Z̄α
3,c̄S∗

, Z̄β
3,c̄S∗

, Z̄3,c̄S/2

)
Z̄4,c̄ =

(
Z̄2,c̄0 , t̄0,c̄0

)
Z̄5,c̄ =

(
Z̄3,c̄, t̄0,c̄0

)
;

Z̄6,c̄ =
(
Z̄3,c̄, t̄0,c̄0 , t̄

α
1,c̄1 , t̄

β
1,c̄1

, ..., t̄α
S∗,c̄S∗

, t̄β
S∗,c̄S∗

, t̄bS/2c,c̄[S/2]

)
where Z̄2,c̄0 =

√
T10 + c̄0√

T
e0 − c̄0√

T
S1, Z̄3,c̄S/2

=
√
T1S/2 + c̄S/2√

T
eS/2 −

c̄S/2√
T
S1bS/2c, Z̄α

3,c̄k
=

√
T11,k + c̄k√

T
e1k − c̄k√

T
(S/2)1α

k , Z̄β
3,c̄1

=
√
T12,k + c̄k√

T
e2k − c̄k√

T
(S/2)1β

k , t̄0,c̄0 = S1 − e0 −

c̄0
T

[
St0 −

(
S−1∑
i=1

i

)
1
]

+ o(1), t̄bS/2c,c̄[S/2]
= S1bS/2c − eS/2 −

c̄S/2

T

[
StbS/2c −

(
S∑

i=1
i

)
1bS/2c

]
+ o(1),

t̄α
k,c̄k

= S
2

(
1α

k −
c̄k
T tα

k

)
+ o(1), t̄β

k,c̄k
= S

2

(
1β

k −
c̄k
T tβ

k

)
+ o(1), and where 1 =(1, ..., 1)′, 1bS/2c =[

(−1)1, ..., (−1)T
]′
, t0 = (1, 2, ..., T )′, tbS/2c =

[
(−1)1, ..., T (−1)T

]′, together with 1α
k = [cos(wk), ...,

cos(Twk)]′, 1β
k = [sin(wk), ..., sin(Twk)]

′ , tα
k = [cos(wk), ..., T cos(Twk)]

′ and tβ
k = [sin(wk), ...,

T sin(wkT )]′, wk = 2πk
S , k = 1, ..., S∗, while 10 = (1, ..., 1, 0, ..., 0)′ is a T × 1 vector with first

S elements equal to one and all other elements equal to zero; e0 is a T × 1 vector such that
e0 = (S, ..., 1, 0, ..., 0)′; 1S/2 = (−1, 1,−1, ..., 1, 0, ..., 0)′ is a T × 1 vector with first S elements
equal to the first S elements of 1bS/2c and all other elements equal to zero, eS/2 = e0 � 1S/2,
where � denotes the Hadamard (elementwise) product; 11,k and 12,k are T × 1 vectors with first
S elements equal to the first S elements of 1α

k and 1β
k , respectively, and all other elements equal

to zero; e1k = e0 � 1α
k and e2k = e0 � 1β

k , k = 1, ..., S∗;

The proof of Theorem 3.2 is greatly simplified by using the well-known result that deterministic
components only affect the large sample distributions of statistics at the same spectral frequency;
see, inter alia, Chan (1989) and Smith and Taylor (1999b). Hence, of the six cases considered in
Section 2, Cases 2 and 3, and Cases 4, 5 and 6 coincide asymptotically for zero frequency statis-
tics, while Cases 2 and 4, and Cases 3 and 5 will coincide asymptotically for seasonal frequency
statistics. Consequently, and making use of the results in Propositions B.1 and B.2, the following
Lemma may be stated.

Lemma B.1 Under the conditions of Theorem 3.2, defining ξc̄k
≡ ∆Sy− c̄k

T yk,−1, k = 0, ..., bS/2c,
and Z̄αβ

3,c̄k
≡ (Z̄α

3,c̄k
Z̄β

3,c̄k
), k = 1, ..., S∗, and as N →∞:

Case 2:

T−1Z̄′
2,c̄0Z̄2,c̄0 → S (B.3)

T−1/2Z̄′
2,c̄0ξc̄0 → σψ(1)y0,S ; (B.4)

Case 3: The results in (B.3)-(B.4) remain valid. Additionally:

T−1Z̄′
3,c̄Z̄3,c̄ → diag{S, S/2, S/2, ..., S/2, S/2, S} (B.5)

T−1/2Z̄′
3,c̄S/2

ξc̄S/2
→ σψ(−1)yS/2,S . (B.6)

T−1/2
(
Z̄αβ

3,c̄k

)′
ξc̄k

→ σψ(e−iωk)[yk,S , yβ
k,S ], k = 1, ..., S∗; (B.7)
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Case 4: The results in (B.3)-(B.4) remain valid. Additionally:

T−1Z̄′
4,c̄Z̄4,c̄ → diag

{
S,

(
1− c̄0 +

c̄20
3

)
S2

}
(B.8)

(T )−1/2 (t̄0,c̄0)
′ ξc̄0 → Sσψ(1)

[
(1− c̄0)J0,c0(1) + c̄20

∫ 1

0
rJ0,c0(r)dr

]
; (B.9)

Case 5: The results in (B.3)-(B.9) remain valid. Additionally:

T−1Z̄′
5,c̄Z̄5,c̄ → diag

{
S, S/2, ..., S/2, S,

(
1− c̄0 +

c̄20
3

)
S2

}
; (B.10)

Case 6: The results in (B.3)-(B.9) remain valid. Additionally:

T−1Z̄′
6,c̄Z̄6,c̄ → diag

{
S,
S

2
, ...,

S

2
, S,

(
1− c̄0 +

c̄20
3

)
S2,

(
1− c̄1 +

c̄21
3

)(
S

2

)2 1
2
,

(
1− c̄1 +

c̄21
3

)(
S

2

)2 1
2
, ...,

(
1− c̄S∗ +

c̄2S∗

3

)(
S

2

)2 1
2
,

(
1− c̄S∗ +

c̄2S∗

3

)(
S

2

)2 1
2
,

(
1− c̄S/2 +

c̄2S/2

3

)
S2

}
(B.11)

(T )−1/2
(
t̄S/2,c̄S/2

)′
ξc̄S/2

→ Sσψ(−1)
[
(1− c̄S/2)JS/2,cS/2

(1) + c̄2S/2

∫ 1

0
rJS/2,cS/2

(r)dr
]
(B.12)

T−1/2
(
t̄α
k,c̄k

)′
ξc̄k

⇒ σS

2
√

2

{
(1− c̄k)

[
akJ

β
k,ck

(1) + bkJ
α
k,ck

(1)
]

+c̄2k

∫ 1

0
r
[
akJ

β
k,ck

(r) + bkJ
α
k,ck

(r)
]
dr

}
, k = 1, ..., S∗ (B.13)

T−1/2
(
t̄β
k,c̄k

)′
ξc̄k

⇒ σS

2
√

2

{
(1− c̄k)

[
−akJ

α
k,ck

(1) + bkJ
β
k,ck

(1)
]

+c̄2k

∫ 1

0
r
[
−akJ

α
k,ck

(r) + bkJ
β
k,ck

(r)
]
dr

}
, k = 1, ..., S∗ (B.14)

where ak and bk, k = 1, ..., S∗, and J0,c0(r), JS/2,cS/2
(r), Jα

k,ck
(r) and Jβ

k,ck
(r), k = 1, ..., S∗, are as

defined in Proposition B.1.

Proof of Lemma B.1
Case 2:
Under Case 2, Z̄2,c̄ = Z̄2,c̄0 . Consequently from Proposition B.2 it is straightforward to establish
that

T−1Z̄′
2,c̄0Z̄2,c̄0 = T−1

(√
T10 +

c̄0√
T

e0 −
c̄0√
T
S1
)′(√

T10 +
c̄0√
T

e0 −
c̄0√
T
S1
)

= 1′010 + o(1) → S.

Recalling that ys = 0, s = 1− S, ..., 0, the result in (B.4) follows from the fact that

T−1/2Z̄′
2,c̄0ξc̄0 = T−1/2

(√
T10 +

c̄0√
T

e0 −
c̄0√
T
S1
)′ (

∆Sy − c̄0
T

y0,−1

)
= 1′0∆Sy + op(1) = σψ(1)y0,S + op(1).
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Case 3:
The diagonality of the matrix in the left member of (B.5) follows immediately from the asymptotic
orthogonality of the columns of T−1/2Z̄3,c̄. The result for the zero frequency component is as given
in the proof of Case 3, while the result for the Nyquist frequency follows in exactly the same way.
For the remaining diagonal elements of the matrix, we have from Proposition B.2 that

T−1
(
Z̄α

3,c̄k

)′ Z̄α
3,c̄k

= T−1

(√
T11,k +

c̄k√
T

e1k −
c̄k√
T

(S/2)1α
k

)′(√
T11,k +

c̄k√
T

e1k −
c̄k√
T

(S/2)1α
k

)
= 1′1,k11,k + o(1) → S/2

and, similarly,

T−1
(
Z̄β

3,c̄k

)′
Z̄β

3,c̄k
= T−1

(√
T12,k +

c̄k√
T

e2k −
c̄k√
T

(S/2)1β
k

)′(√
T12,k +

c̄k√
T

e2k −
c̄k√
T

(S/2)1β
k

)
= T−1T1′2,k12,k + o(1) → S/2.

Turning to the results in (B.6) and (B.7), we have that

T−1/2Z̄′
3,c̄S/2

ξc̄S/2
= σψ(−1)

S∑
i=1

(−1)iyi + op(1) ≡ σψ(−1)yS/2,S + op(1)

and, for k = 1, ..., S∗,

T−1/2
(
Z̄αβ

3,c̄k

)′
ξc̄k

= T−1/2

[(
Z̄α

3,c̄k

)′
ξc̄k

,
(
Z̄β

3,c̄k

)′
ξc̄k

]
=

[
1′1,k∆Sy + op(1) , 1′2,k∆Sy + op(1)

]
= σψ(e−iωk)[yk,S , yβ

k,S ] + op(1).

Finally, the result for the zero frequency was established in the proof of Case 2.
Case 4:
In addition to the results proved in Case 2, we have that

T−1Z̄′
2,c̄0 t̄0,c̄0 = T−1

(√
T10 +

c̄0√
T

e0 −
c̄0√
T
S1
)′(

S1− e0 −
c̄0
T

[
St0 −

(
S−1∑
i=1

i

)
1

])
+ o(1) → 0

and

T−1 (t̄0,c̄0)
′ t̄0,c̄0 = T−1

(
S1− e0 −

c̄0
T

[
St0 −

(
S−1∑
i=1

i

)
1

])′

×

(
S1− e0 −

c̄0
T

[
St0 −

(
S−1∑
i=1

i

)
1

])
+ o(1)

= T−1S21′1− 2c̄0
T 2

S2t′01 + T−1
( c̄0
T

)2

S2t′0t0 + o(1)

→
(

1− c̄0 +
c̄20
3

)
S2.
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To prove the result in (B.9), observe that

T−1/2 (t̄0,c̄0)
′ ξc̄0 = S{T−1/21′∆Sy − T−3/2(c̄0t0)′∆Sy

− T−3/2c̄01′y0,−1 + T−5/2c̄20t
′
0y0,−1}+ op(1).

Using the following results which follow directly from Phillips (1987):

T−1/21′∆Sy = T−1/2
T∑

Sn+s=1

e(T−(Sn+s))c0/T vSn+s + op(1) ⇒ σψ(1)J0,c0(1)

T−3/2t′0∆Sy = T−3/2
T∑

Sn+s=1

(Sn+ s) e(T−(Sn+s))c0/T vSn+s + op(1) ⇒ σψ(1)
∫ 1

0
rdJ0,c0(r)

T−3/21′y0,−1 =
T∑

Sn+s=1

Sn+s∑
j=1

e(Sn+s−j)c0/T vSn+s + op(1) ⇒ σψ(1)
∫ 1

0
J0,c0(r)dr

T−5/2t′0y0,−1 = T−5/2
T∑

Sn+s=1

(Sn+ s)
Sn+s∑
j=1

e(Sn+s−j)c0/T vSn+s + op(1) ⇒ σψ(1)
∫ 1

0
rJ0,c0(r)dr

we then obtain immediately from applications of the CMT that

T−1/2 (t̄0,c̄0)
′ ξc̄0 ⇒ Sσψ(1){J0,c0(1)− c̄0

(∫ 1

0
rdJ0,c0(r) +

∫ 1

0
J0,c0(r)dr

)
+ c̄20

∫ 1

0
rJ0,c0dr}

from which the stated result follows using the well-known identity
∫ 1
0 rdJ0,0(r) +

∫ 1
0 J0,c0(r)dr ≡

J0,c0(1).
Case 5:
The proof of the results stated in Case 5 follows from the relevant proofs in Cases 2-4, again
appealing to the asymptotic orthogonality result.
Case 6:
The diagonality of the matrix in the left member of (B.11) again follows immediately from the
asymptotic orthogonality of the columns of T−1/2Z̄6,c̄. The result for the zero frequency diagonal
element is as given in the proof of Case 4. The result for the Nyquist frequency follows in an
entirely analogous fashion and is therefore omitted. For the remaining diagonal elements of the
matrix, we have from Proposition B.2 that for k = 1, ..., S∗,

1
T

[(
S

2

)2

(1α
k )′ 1α

k

]
=

(
S

2

)2 1
T

T∑
j=1

[cos(jωk)] [cos(jωk)]

=
(
S

2

)2 1
T

T∑
j=1

(
1
2
e−iωkj +

1
2
eiωkj

)2

=
(
S

2

)2 1
T

T∑
j=1

e2iωkj

(
1
4
e−4iωkj +

1
2
e−2iωkj +

1
4

)

=
(
S

2

)2 1
T

T∑
j=1

1
2

+ o(1) →
(
S

2

)2 1
2
, (B.15)
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1
T

[
−2

c̄k
T

(
S

2

)2

(1α
k )′ tα

k

]
= −2c̄k

(
S

2

)2 1
T 2

T∑
j=1

(cos(jωk))(j cos(jωk))

= −2c̄k

(
S

2

)2 1
T 2

T∑
j=1

j

(
1
2
e−iωkj +

1
2
eiωkj

)2

= −2c̄k

(
S

2

)2 1
T 2

T∑
j=1

e2iωkj

(
1
4
j +

1
4
je−4iωkj +

1
2
je−2iωkj

)

= −2c̄k

(
S

2

)2 1
T 2

T∑
j=1

1
2
j + o(1) → −c̄k

(
S

2

)2 1
2

(B.16)

and

1
T

[( c̄k
T

)2
(
S

2

)2

(tα
k )′ tα

k

]
= c̄2k

(
S

2

)2 1
T 3

T∑
j=1

(j cos(jωk))(j cos(jωk))

= c̄2k

(
S

2

)2 1
T 3

T∑
j=1

j2
(

1
2
e−iωkj +

1
2
eiωkj

)2

= c̄2k

(
S

2

)2 1
T 3

T∑
j=1

e2iωkj

(
1
4
j2 +

1
4
j2e−4iωkj +

1
2
j2e−2iωkj

)

= c̄2k

(
S

2

)2 1
T 3

T∑
j=1

1
2
j2 + o(1) → c̄2k

(
S

2

)2 1
6
. (B.17)

Combining (B.15) - (B.17) yields the required results, k = 1, ..., S∗. Identical asymptotic limits to

those given in (B.15), (B.16) and (B.17) are obtained for 1
T

[(
S
2

)2 (
1β

k

)′
1β

k

]
, 1

T

[
−2 c̄k

T

(
S
2

)2 (
1β

k

)′
tβ
k

]
and 1

T

[(
c̄k

T

)2 (S
2

)2 (
tβ
k

)′
tβ
k

]
, respectively. Since the proof follows along similar lines, it is omit-

ted.
The proof of (B.9) is as given under Case 3, while the proof of the result in (B.12) is very

similar and, hence, is omitted. Turning to the proof of (B.13), observe from Proposition B.2 that

T−1/2
(
t̄α
k,c̄k

)′
ξc̄k

= T−1/2

[
S

2

(
1α

k −
c̄k
T

tα
k

)
+ o(1)

]′
ξc̄k

= T−1/2 (1α
k )′ ∆Sy − T−3/2c̄k (1α

k )′ yk,−1 − T−3/2c̄k (tα
k )′ ∆Sy

+ T−5/2c̄2k (tα
k )′ yk,−1 + op(1). (B.18)

For the following four results, the weak convergence result in each case following from Proposition
B.1 and applications of the CMT, establish the large sample behaviour of the four non-vanishing
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elements constituting the right member of (B.18):

T−1/2 (1α
k )′ ∆Sy = T−1/2

0∑
s=1−S

N∑
n=1

cos [(Sn+ s)ωk]∆SySn+s

= T−1/2
0∑

s=1−S

cos(sωk)
N∑

n=1

∆SySn+s

= T−1/2
0∑

s=1−S

cos(sωk)
N∑

n=1

[
−
(
1− 2 cos(ωk)L+ L2

)]
yk,Sn+s+1

⇒ σ√
2

[
akJ

β
k,ck

(1) + bkJ
α
k,ck

(1)
]

(B.19)

T−3/2c̄k (1α
k )′ yk,−1 = T−3/2c̄k

0∑
s=1−S

N∑
n=1

cos [(Sn+ s)ωk] yk,Sn+s−1

= T−3/2c̄k

0∑
s=1−S

cos(sωk)
N∑

n=1

yk,Sn+s−1

⇒ σc̄k√
2

∫ 1

0

[
akJ

β
k,ck

(r) + bkJ
α
k,ck

(r)
]
dr (B.20)

and

T−3/2c̄k (tα
k )′ ∆Sy = T−3/2c̄k

0∑
s=1−S

N∑
n=1

(Sn+ s) cos [(Sn+ s)ωk]∆SySn+s

⇒ σc̄k√
2

∫ 1

0
rd
[
akJ

β
k,ck

(r) + bkJ
α
k,ck

(r)
]

(B.21)

and, along similar lines, that

T−5/2c̄2k (tα
k )′ yk,−1 ⇒

σc̄2k√
2

∫ 1

0
r
[
akJ

β
k,ck

(r) + bkJ
α
k,ck

(r)
]
dr. (B.22)

We then obtain the result in (B.13) immediately from (B.19)-(B.22) and further applications of
the CMT. Correspondingly, for the result in (B.14), we obtain from Proposition B.2 that

T−1/2
(
t̄β
k,c̄k

)′
ξc̄k

= T−1/2

{
S

2

(
1β

k −
c̄k
T

tβ
k

)
+ op(1)

}′
ξc̄k

= T−1/2
(
1β

k

)′
∆Sy − T−3/2c̄k

(
1β

k

)′
yk,−1

−T−3/2c̄k

(
tβ
k

)′
∆Sy + T−5/2c̄2k

(
tβ
k

)′
yk,−1

28



then using the following results, which are proved in a similar manner to (B.19)-(B.22),

T−1/2
(
1β

k

)′
∆Sy ⇒ σ√

2

[
−akJ

α
k,ck

(1) + bkJ
β
k,ck

(1)
]

T−3/2c̄k

(
1β

k

)′
yk,−1 ⇒ σc̄k√

2

∫ 1

0

[
−akJ

α
k,ck

(r) + bkJ
β
k,ck

(r)
]
dr

T−3/2c̄k

(
tβ
k

)′
∆Sy ⇒ σc̄k√

2

∫ 1

0
rd
[
−akJ

α
k,ck

(1) + bkJ
β
k,ck

(1)
]

T−5/2c̄2k

(
tβ
k

)′
yk,−1 ⇒

σc̄2k√
2

∫ 1

0
r
[
−akJ

α
k,ck

(r) + bkJ
β
k,ck

(r)
]
dr

the stated result, (B.14), obtains immediately from the CMT.
B.2.2 Proof of Theorem 3.2
Using ERS (p.833, Eq. A8) and Gregoir (2004, Lemma A.5,p.37) we have that for i = 2, ..., 6,[

QM (c̄k)i −QM (0)i

]
− g−1

k [Q(c̄k)ξ −Q(0)ξ] = op(1) (B.23)

where

Q(c̄k)ξ =
(

∆Sy − c̄k

T
yk,−1

)′
Zi,c̄k

[
Z′

i,c̄k
Zi,c̄k

]−1 Z′
i,c̄k

(
∆Sy − c̄k

T
yk,−1

)
Q(0)ξ = (∆Sy)′ Zi,0

[
Z′

i,0Zi,0

]−1 Z′
i,0 (∆Sy)

and gk ≡ 2πfk, fk the spectral density of {vSn+s} evaluated at frequency 2πk/S, k = 0, ..., bS/2c.
In order to establish the limit distributions of Theorem 3.2, we must therefore establish conver-

gence results for g−1
k [Q(c̄k)ξ −Q(0)ξ], k = 0, ..., bS/2c. This is straightforward given the results

derived in Lemma B.1. Precisely, under Cases 1, 2 and 3, where ξ = 0 or 1 for all frequencies,
we observe that g−1

k [Q(c̄k)ξ −Q(0)ξ] are all of op(1), k = 0, ..., bS/2c, and hence the limiting
distributions reduce to the corresponding results in Theorem 3.1. For the zero frequency tests
when a zero frequency time trend is included (Cases 4, 5 and 6) and for the Nyquist frequency
test when a Nyquist frequency trend is included (Case 6) we have from Lemma B.1 and the CMT
that,

Q(c̄j)2 − σ2 [ψ(j)]2 y2
j,S ⇒ σ2 [ψ(j)]2


[
(1− c̄j)Jj,cj (1) + c̄2j

∫ 1
0 rJj,cj (r)dr

]2(
1− c̄j +

c̄2j
3

)


and, setting c̄j = 0, Q(0)2 − σ2 [ψ(j)]2 y2
j,S ⇒ σ2 [ψ(j)]2 Jj,cj (1), for j = 0, bS/2c. Consequently,

again by the CMT,

g−1
j [Q(c̄j)2 −Q(0)2] ⇒

[
(1− c̄j)Jj,cj (1) + c̄2j

∫ 1
0 rJj,cj (r)dr

]2(
1− c̄j +

c̄2j
3

) −
[
Jj,cj (1)

]2
,

which, coupled with Theorem 3.1, and applications of the CMT completes the proof for the zero
(j = 0) and Nyquist (j = S/2) frequency statistics.

Consider now the statistic at the kth harmonic frequency pair when a time trend at the
harmonic frequencies is included (Case 6), and define Q(ak)∗2 ≡ Q(ak)2 − σ2[ψ(e−iωk)]2[(yk,S)2 +
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(yβ
k,S)2], where either ak = c̄k or ak = 0. We then obtain from Lemma B.1 and the CMT that,

for k = 1, ..., S∗,

Q(c̄k)∗2 ⇒ σ2(
1− c̄k + c̄2k

3

) {[(1− c̄k)
[
akJ

β
k,ck

(1) + bkJ
α
k,ck

(1)
]

+ c̄2k

∫ 1

0
r
[
akJ

β
k,ck

(r) + bkJ
α
k,ck

(r)
]
dr

]2

+
[
(1− c̄k)

[
−akJ

α
k,ck

(1) + bkJ
β
k,ck

(1)
]

+ c̄2k

∫ 1

0
r
[
−akJ

α
k,ck

(r) + bkJ
β
k,ck

(r)
]
dr

]2
}
.

After simple but tedious manipulations we obtain that

Q(c̄k)∗2 ⇒
σ2
(
a2

k + b2k
)(

1− c̄k + c̄2k
3

) {(1− c̄k)
[
Jβ

k,ck
(1) + Jα

k,ck
(1)
]

+ c̄2k

∫ 1

0
r
[
Jβ

k,ck
(r) + Jα

k,ck
(r)
]
dr

}2

,

k = 1, ..., S∗. Moreover,

Q(0)∗2 ⇒ σ2
[
akJ

β
k,ck

(1) + bkJ
α
k,ck

(1)
]2

+ σ2
[
−akJ

α
k,ck

(1) + bkJ
β
k,ck

(1)
]2

≡ σ2
(
a2

k + b2k
){[

Jα
k,ck

(1)
]2 +

[
Jβ

k,ck
(1)
]2}

, k = 1, ..., S∗.

Consequently, appealing to the CMT, we obtain that

g−1
k [Q(c̄k)2 −Q(0)2] ⇒

σ2
(
a2

k + b2k
)

gk

(
1− c̄k + c̄2k

3

) {(1− c̄k)
[
Jβ

k,ck
(1) + Jα

k,ck
(1)
]

+c̄2k

∫ 1

0
r
[
Jβ

k,ck
(r) + Jα

k,ck
(r)
]
dr

}2

−
σ2
(
a2

k + b2k
)

gk

{[
Jα

k,ck
(1)
]2 +

[
Jβ

k,ck
(1)
]2}

, k = 1, ..., S∗

and, noting that gk = σ2
[
ψ(e−iωk)

] [
ψ(eiωk)

]
= σ2

(
a2

k + b2k
)
, k = 1, ..., S∗, this simplifies to

g−1
k [Q(c̄k)2 −Q(0)2] ⇒ 1(

1− c̄k + c̄2k
3

) {(1− c̄k)
[
Jβ

k,ck
(1) + Jα

k,ck
(1)
]

+c̄2k

∫ 1

0
r
[
Jβ

k,ck
(r) + Jα

k,ck
(r)
]
dr

}2

−
{[
Jα

k,ck
(1)
]2 +

[
Jβ

k,ck
(1)
]2}

, k = 1, ..., S∗

which, coupled with Theorem 3.1, and applications of the CMT completes the proof.

Appendix C
Proof of Theorem 5.1
Proofs for Case 1 (where no de-trending occurs) are already established in the literature, see
Rodrigues and Taylor (2004b), and are not reproduced here. For each of Cases 2-6, the pseudo-
GLS estimator β̃i(c̄) is obtained from regressing xc on Zi,c for c = c̄ ≡ (c̄0, c̄1, ..., c̄bS/2c)′, to obtain
the pseudo-GLS de-trended data,

x̂i
Sn+s ≡ xSn+s −

[
β̃i(c̄)

]′
zSn+s,i,
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i = 2, ..., 6. After considerable algebraic manipulation (using standard trigonometric identities) it
can be shown that the transformed level variables entering into (5.1) take the form,

x̂i
0,Sn+s ≡


y0,Sn+s − S (γ̃0(c̄0)− γ0) , i = 2, 3

y0,Sn+s −
[
S +

(
S−1∑
i=1

i

)]
(γ̃0(c̄0)− γ0)− S

(
δ̃0(c̄0)− δ0

)
(Sn+ s), i = 4, 5, 6

x̂i
S/2,Sn+s ≡



yS/2,Sn+s, i = 2, 4
yS/2,Sn+s − S

(
γ̃S/2(c̄S/2)− γS/2

)
(−1)Sn+s, i = 3, 5

yS/2,Sn+s −
[
S +

(
S−1∑
i=1

i

)] (
γ̃S/2(c̄S/2)− γS/2

)
(−1)Sn+s

−S
(
δ̃S/2(c̄S/2)− δS/2

)
(Sn+ s)(−1)Sn+s, i = 6

x̂i
k,Sn+s ≡


yk,Sn+s, i = 2, 4
yk,Sn+s − S

2 (γ̃k,α(c̄k)− γk,α)′ z
∗µωk
Sn+s, i = 3, 5

yk,Sn+s − [S/2 + k∗] (γ̃k,α(c̄k)− γk,α)′ z
∗µωk
Sn+s −

S
2

(
δ̃k,α(c̄k)− δk,α

)′
Λ1,kz

τωk
Sn+s, i = 6

x̂β,i
k,Sn+s ≡


yβ

k,Sn+s, i = 2, 4
yβ

k,Sn+s −
S
2 (γ̃k,β(c̄k)− γk,β)′ z̄

∗µωk
Sn+s, i = 3, 5

yβ
k,Sn+s − [S/2 + k∗] (γ̃k,β(c̄k)− γk,β)′ z̄

∗µωk
Sn+s −

S
2

(
δ̃k,β(c̄k)− δk,β

)′
Λ2,kz

τωk
Sn+s, i = 6

where the spectral intercept and time-trend parameters, γj and δj , j = 0, ..., S∗, S/2, are as
defined in Section 2.1 with γ̃j(c̄j) and δ̃j(c̄j), j = 0, ..., S∗, S/2, the pseudo-GLS estimators of
these parameters for each of i = 2, ..., 6. The notation k∗ denotes an asymptotically irrelevant
term which results from the filtering of the seasonal trends, while

Λ1,k =
[

cos(ωk) − sin(ωk)
sin(ωk) cos(ωk)

]
, Λ2,k = −

[
sin(ωk) cos(ωk)
− cos(ωk) sin(ωk)

]
and z

∗µωk
Sn+s = (cos [(s+ 1)ωk] , sin [(s+ 1)ωk])

′, z̄
∗µωk
Sn+s = (− sin [(s+ 1)ωk] , cos [(s+ 1)ωk])

′, and
z

τωk
Sn+s = ((Sn+ s) cos (sωk) , (Sn+ s) sin (sωk))

′.
Before continuing, it will prove useful to state the following proposition whose proof follows

directly from results presented in Appendix B and applications of the CMT. The results stated
in the proposition are understood to apply only in those of Cases 2-6 where the parameter being
studied features in the parameter vector β.

31



Proposition C.1 Under the conditions of Theorem 5.1, as N →∞,
√
T (γ̃k(c̄k)− γk) = op(1), k = 0, ..., bS/2c

√
T
(
δ̃k(c̄k)− δk

)
⇒ σ

[
(1− c̄k)Jk,ck

(1) + c̄2k
∫ 1
0 rJk,ck

(r)dr
]

S
(
1− c̄k + c̄2k

3

) ≡ σ

S
Dck

(r, c̄k), k = 0, S/2

√
T
(
δ̃k,α(c̄k)− δk,α

)
⇒ 2

√
2σ
S

[
(1− c̄k) Jα

k,ck
(1) + c̄2k

∫ 1
0 rJ

α
k,ck

(r)dr
]

(
1− c̄k + c̄2k

3

)
≡ 2

√
2σ
S

Dk,ck
(r, c̄k), k = 1, ...., S∗

√
T
(
δ̃k,β(c̄k)− δk,β

)
⇒ 2

√
2σ
S

[
(1− c̄k) J

β
k,ck

(1) + c̄2k
∫ 1
0 rJ

β
k,ck

(r)dr
]

(
1− c̄k + c̄2k

3

)
≡ 2

√
2σ
S

Dβ
k,ck

(r, c̄k), k = 1, ..., S∗

where J0,c0(r), JS/2,cS/2
(r), Jα

k,ck
(r) and Jβ

k,ck
(r) are as defined in Proposition B.1.

Remark C.1: Representations for the limiting distributions of the elements of the scaled pseudo-
GLS estimator, β̃†i , obtain setting c̄k = c†k, k = 0, ..., bS/2c, in the foregoing expressions.

Using Proposition C.1, we may state the following lemma which details the large sample
behaviour of the scaled regressors from (5.1).

Lemma C.1 Under the conditions of Theorem 5.1, and defining δξ such that δξ = 0 if ξ = 0, 1
and δξ = 1 if ξ = 2, then as N →∞,

1√
T
x̂i

0,SbrNc+s ⇒ σ

{
J0,c0(r), i = 2, 3
J0,c0(r)− rDc0(r, c̄0), i = 4, 5, 6

= σ [J0,c0(r)− rδξDc0(r, c̄0)] ≡ σJ0,c0(r, δξ c̄0)

1√
T
x̂i

S/2,SbrNc+s ⇒ σ

{
(−1)jJS/2,cS/2

(r), i = 2, 3, 4, 5
(−1)jJS/2,cS/2

(r)− r(−1)jDcS/2
(r, c̄S/2) i = 6

= σ
[
(−1)jJS/2,cS/2

(r)− rδξ(−1)jDcS/2
(r, c̄S/2)

]
≡ σ(−1)jJS/2,cS/2

(r, δξ c̄S/2)

where j = (SbrNc+ s) mod 2, and

1√
T
x̂i

k,SbrNc+s ⇒ σ√
2



cos [(s+ 1)ωk] Jα
k,ck

(r) + sin [(s+ 1)ωk] J
β
k,ck

(r), i = 2, 3, 4, 5

cos [(s+ 1)ωk] Jα
k,ck

(r) + sin [(s+ 1)ωk] J
β
k,ck

(r)

−
√

2S
2

[
2
√

2
S Dk,ck

(r, c̄k)
2
√

2
S Dβ

k,ck
(r, c̄k)

]′
Λ1,k

[
r cos (sωk)
r sin (sωk)

]
, i = 6

=
σ√
2

{
cos [(s+ 1)ωk] Jα

k,ck
(r) + sin [(s+ 1)ωk] J

β
k,ck

(r)

−2δξ

[
Dk,ck

(r, c̄k)
Dβ

k,ck
(r, c̄k)

]′
Λ1,k

[
r cos (sωk)
r sin (sωk)

]}
≡ σ√

2
Jα,β

k,ck
(r, δξ c̄k)
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1√
T
x̂β,i

k,SbrNc+s ⇒ σ√
2



cos [(s+ 1)ωk] J
β
k,ck

(r)− sin [(s+ 1)ωk] Jα
k,ck

(r), i = 2, 3, 4, 5

cos [(s+ 1)ωk] J
β
k,ck

(r)− sin [(s+ 1)ωk] Jα
k,ck

(r)

−
√

2S
2

[
2
√

2
S Dk,ck

(r, c̄k)
2
√

2
S Dβ

k,ck
(r, c̄k)

]′
Λ2,k

[
r cos (sωk)
r sin (sωk)

]
, i = 6

=
σ√
2

{
cos [(s+ 1)ωk] J

β
k,ck

(r)− sin [(s+ 1)ωk] Jα
k,ck

(r)

−2δξ

[
Dk,ck

(r, c̄k)
Dβ

k,ck
(r, c̄k)

]′
Λ2,k

[
r cos (sωk)
r sin (sωk)

]}
≡ σ√

2
J̄α,β

k,ck
(r, δξ c̄k).

where: J0,c0(r), JS/2,cS/2
(r), Jα

k,ck
(r) and Jβ

k,ck
(r), k = 1, ..., S∗ are as defined in Proposition B.1;

Dc0(r, c̄0), DcS/2
(r, c̄

0S/2), Dk,ck
(r, c̄k) and Dβ

k,ck
(r, c̄k) are as defined in Proposition C.1.

Proof: The results for Cases 2 and 3 for the zero frequency, and Cases 2,3,4 and 5 for the seasonal
frequencies are well established in the literature and are not reproduced here; see Rodrigues and
Taylor (2004b) for full details. For the zero frequency under Cases 4,5 and 6, observe that

1√
T
x̂i

0,SbrNc+s =
1√
T

y0,SbrNc+s −

S +

S−1∑
j=1

j

 (γ̃0(c̄0)− γ0)− S (SbrNc+ s)
(
δ̃0(c̄0)− δ0

)
=

1√
T

[
y0,SbrNc+s − S (SbrNc+ s)

(
δ̃0(c̄0)− δ0

)]
+ op(1)

⇒ σ {J0,c0(r)− rDc0(r, c̄0)} , i = 4, 5, 6.

Turning to the Nyquist frequency for Case 6, observe that

1√
T
x̂6

S/2,SbrNc+s =
1√
T

yS/2,SbrNc+s −

S +

S−1∑
j=1

j

 (−1)SbrNc+s (γ̃S/2(c̄S/2)− γS/2

)
−S (SbrNc+ s) (−1)SbrNc+s

(
δ̃S/2(c̄S/2)− δS/2

)}
=

1√
T

[
yS/2,SbrNc+s − S (SbrNc+ s) (−1)SbrNc+s

(
δ̃S/2(c̄S/2)− δS/2

)]
+ op(1)

⇒ σ
{

(−1)jJS/2,c(r)− r(−1)jDcS/2
(r, c̄S/2)

}
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where j = (SbrNc+ s) mod 2. Finally, for the seasonal harmonic frequencies in Case 6, for
k = 1, ..., S∗, observe that

1√
T
x̂6

k,SbrNc+s =
1√
T

{
yk,SbrNc+s − [S/2 + k∗] (γ̃k,α(c̄k)− γk,α)′ z

∗µωk
Sn+s

− S

2

(
δ̃k,α(c̄k)− δk,α

)′
Λ1,kz

τωk

SbrNc+s

}
=

1√
T

{
yk,SbrNc+s −

S

2

(
δ̃k,α(c̄k)− δk,α

)′
Λ1,kz

τωk

SbrNc+s

}
+ op(1)

=
1√
T

{
yk,SbrNc+s −

S

2

(
δ̃k,α(c̄k)− δk,α

)′
Λ1,k

[
(SbrNc+ s) cos (sωk)
(SbrNc+ s) sin (sωk)

]}
+ op(1)

⇒ σ√
2

{
cos [(s+ 1)ωk] Jα

k,ck
(r) + sin [(s+ 1)ωk] J

β
k,ck

(r)

−2

[
Dk,ck

(r, c̄k)
Dβ

k,ck
(r, c̄k)

]′
Λ1,k

[
r cos (sωk)
r sin (sωk)

]}
, k = 1, ..., S∗,

and

1√
T
x̂β,6

k,SbrNc+s =
1√
T

{
yβ

k,SbrNc+s − [S/2 + k∗] (γ̃k,β(c̄k)− γk,β)′ z̄
∗µωk

SbrNc+s

− S

2

(
δ̃k,β(c̄k)− δk,β

)′
Λ2,kz

τωk

SbrNc+s

}
=

1√
T

{
yβ

k,SbrNc+s −
S

2

(
δ̃k,β(c̄k)− δk,β

)′
Λ2,kz

τωk

SbrNc+s

}
+ op(1)

=
1√
T

{
yk,SbrNc+s −

S

2

(
δ̃k,β(c̄k)− δk,β

)′
Λ2,k

[
(SbrNc+ s) cos (sωk)
(SbrNc+ s) sin (sωk)

]}
+ op(1)

⇒ σ√
2

{
cos [(s+ 1)ωk] J

β
k,ck

(r)− sin [(s+ 1)ωk] Jα
k,ck

(r)

−2

[
Dk,ck

(r, c̄k)
Dβ

k,ck
(r, c̄k)

]′
Λ2,k

[
r cos (sωk)
r sin (sωk)

]}
, k = 1, ..., S∗.

In Lemma C.2 we now establish the large sample behaviour of various objects involving the
transformed regressors from (5.1), which will feature in the definitions of our statistics.

Lemma C.2 Under the conditions of Lemma C.1, as N →∞,

i) T−2
T∑

Sn+s=1

(
x̂i

j,Sn+s−1

)2 ⇒ σ2

∫ 1

0

[
Jj,cj (r, δξ c̄j)

]2
dr, j = 0, S/2

ii) T−2
T∑

Sn+s=1

(
x̂i

k,Sn+s−1

)2 ⇒ σ2

4

∫ 1

0

[
Jα,β

k,ck
(r, δξ c̄k)

]2
dr, k = 1, ..., S∗

iii) T−2
T∑

Sn+s=1

(
x̂β,i

k,Sn+s−1

)2
⇒ σ2

4

∫ 1

0

[
J̄α,β

k,ck
(r, δξ c̄k)

]2
dr, k = 1, ..., S∗
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iv) T−1
T∑

Sn+s=1

x̂i
j,Sn+s−1vSn+s ⇒ σ2

{∫ 1

0
Jj,cj (r)dJj,0(r)− δξDcj (r, c̄j)

∫ 1

0
rdJj,0(r)

}
, j = 0, S/2

v) T−1
T∑

Sn+s=1

x̂i
k,Sn+s−1vSn+s ⇒ σ2

2

{[∫ 1

0
Jα

k,ck
(r)dJα

k,0(r) +
∫ 1

0
Jβ

k,ck
(r)dJβ

k,0(r)
]

− 2δξ

[
Dck

(r, c̄k)
Dβ

ck(r, c̄k)

]′
Λ1,k

[ ∫ 1
0 rdJ

α
k,0(r)∫ 1

0 rdJ
β
k,0(r)

]}
, k = 1, ..., S∗

vi) T−1
T∑

Sn+s=1

x̂β,i
k,Sn+s−1vSn+s ⇒ σ2

2

{[∫ 1

0
Jα

k,ck
(r)dJβ

k,0(r)−
∫ 1

0
Jβ

k,ck
(r)dJα

k,0(r)
]

− 2δξ

[
Dck

(r, c̄k)
Dβ

ck(r, c̄k)

]′
Λ2,k

[ ∫ 1
0 rdJ

α
k,0(r)∫ 1

0 rdJ
β
k,0(r)

]}
, k = 1, ..., S∗.

in each case for i = 2, ..., 6, where δξ is as defined in Lemma C.1.

Proof : The proof of parts (i)-(iii) follows straightforwardly from Lemma C.1 and applications of
the CMT. To prove part (iv), let zτj

Sn+s−1 denote the (Sn+ s− 1)th element of tj , then since

T−1
T∑

Sn+s=1

x̂i
j,Sn+s−1vSn+s = T−1

T∑
Sn+s=1

[
xj,Sn+s−1 − Sδξz

τj

Sn+s−1

(
δ̃j(c̄j)− δj

)]
vSn+s + op(1)

= T−1
T∑

Sn+s=1

xj,Sn+s−1vSn+s −
S

T
δξ

(
δ̃j(c̄j)− δj

) T∑
Sn+s=1

z
τj

Sn+s−1vSn+s + op(1)

the stated result follows immediately. Turning to parts (v) and (vi), observing that

T−1
T∑

Sn+s=1

x̂i
k,Sn+s−1vSn+s = T−1

T∑
Sn+s=1

xk,Sn+s−1vSn+s

−
δξS

2T

(
δ̃k,α(c̄k)− δk,α

)′
Λ1,k

T∑
Sn+s=1

[
(Sn+ s) cos (sωk)
(Sn+ s) sin (sωk)

]
vSn+s + op(1)

and that

T−1
T∑

Sn+s=1

x̂β,i
k,Sn+s−1vSn+s = T−1

T∑
Sn+s=1

xβ
k,Sn+svSn+s

−
δξS

2T

(
δ̃k,β(c̄k)− δk,β

)′
Λ2,k

T∑
Sn+s=1

[
(Sn+ s) cos (sωk)
(Sn+ s) sin (sωk)

]
vSn+s + op(1)

the stated results follow immediately.
Making use of the asymptotic orthogonality of the regressors, which follows directly from

(B.1)-(B.2), the following proposition, whose proof is given in Rodrigues and Taylor (2004b),
provides a convenient form for the t̂0, t̂S/2, t̂k and t̂βk , k = 1, ..., S∗, statistics from (5.1).
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Proposition C.2 The t-statistics from (5.1) are given by

t̂j =
T

σ̂
πj

[
T−2

T∑
Sn+s=1

(
x̂i

j,Sn+s−1

)2]1/2

+
T−1

T∑
Sn+s=1

x̂i
j,Sn+s−1vSn+s

σ̂

[
T−2

T∑
Sn+s=1

(
x̂i

j,Sn+s−1

)2
]1/2

+ op(1), j = 0, S/2

t̂k =
T

σ̂
πα,k

[
T−2

T∑
Sn+s=1

(
x̂i

k,Sn+s−1

)2]1/2

+
T−1

T∑
Sn+s=1

x̂α,i
k,Sn+s−1vSn+s

σ̂

[
T−2

T∑
Sn+s=1

(
x̂i

k,Sn+s−1

)2
]1/2

+ op(1)

t̂βk =
T

σ̂
πβ,k

[
T−2

T∑
Sn+s=1

(
x̂β,i

k,Sn+s−1

)2
]1/2

+
T−1

T∑
Sn+s=1

xβ
k,Sn+s−1vSn+s

σ̂

[
T−2

T∑
Sn+s=1

(
x̂β,i

k,Sn+s−1

)2
]1/2

+ op(1),

k = 1, . . . S∗, i = 2, ..., 6, where σ̂2 denotes the usual OLS estimator of σ2 from (5.1).

The results stated for the t-statistics in (5.3), (5.4) and (5.5) then follow directly from Propo-
sition C.2, Lemma C.2 and applications of the CMT. The representations for the F̂k, k = 1, ..., S∗,
F̂1...bS/2c and F̂0...bS/2c statistics then follow directly from the asymptotic orthogonality result and
applications of the CMT.
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Table 5.1: Critical Values for GLS-Detrended Seasonal Unit Root Tests.

t̂0 t̂2 F̂1 F̂1...2 F̂0...2

T .010 .025 .050 .100 .010 .025 .050 .100 .900 .950 .975 .990 .900 .950 .975 .990 .900 .950 .975 .990
(a) Case 3

48 -3.22 -2.90 -2.63 -2.34 -3.22 -2.89 -2.63 -2.34 3.81 4.65 5.47 6.60 3.89 4.60 5.32 6.23 3.88 4.52 5.14 5.95
100 -2.99 -2.66 -2.40 -2.11 -2.97 -2.66 -2.40 -2.11 3.14 3.91 4.66 5.71 3.09 3.71 4.32 5.11 3.04 3.56 4.08 4.76
136 -2.90 -2.58 -2.32 -2.03 -2.92 -2.59 -2.32 -2.03 2.97 3.72 4.46 5.50 2.89 3.50 4.07 4.84 2.81 3.31 3.81 4.48
200 -2.83 -2.51 -2.23 -1.93 -2.83 -2.51 -2.23 -1.94 2.80 3.54 4.28 5.26 2.66 3.24 3.81 4.54 2.57 3.05 3.51 4.13
400 -2.71 -2.38 -2.10 -1.80 -2.71 -2.38 -2.11 -1.80 2.59 3.32 4.04 4.98 2.43 2.97 3.53 4.22 2.31 2.77 3.21 3.76
1 -2.59 -2.25 -1.97 -1.64 -2.59 -2.25 -1.97 -1.64 2.44 3.15 3.84 4.78 2.24 2.78 3.31 3.98 2.11 2.55 2.99 3.53

(b) Case 5
48 -4.02 -3.66 -3.39 -3.09 -3.29 -2.94 -2.67 -2.37 3.85 4.71 5.57 6.79 3.97 4.71 5.45 6.44 4.89 5.66 6.40 7.34
100 -3.78 -3.48 -3.21 -2.92 -3.01 -2.69 -2.42 -2.13 3.15 3.93 4.72 5.76 3.14 3.79 4.40 5.17 3.98 4.59 5.18 5.93
136 -3.70 -3.39 -3.14 -2.86 -2.92 -2.61 -2.34 -2.04 2.97 3.71 4.48 5.49 2.90 3.51 4.09 4.84 3.71 4.29 4.82 5.53
200 -3.62 -3.31 -3.06 -2.78 -2.83 -2.51 -2.24 -1.95 2.80 3.54 4.29 5.24 2.68 3.25 3.81 4.57 3.44 3.98 4.51 5.18
400 -3.52 -3.22 -2.97 -2.70 -2.73 -2.38 -2.11 -1.81 2.59 3.27 3.99 4.97 2.41 2.97 3.50 4.21 3.13 3.64 4.14 4.79
1 -3.42 -3.12 -2.87 -2.58 -2.59 -2.25 -1.97 -1.64 2.44 3.15 3.84 4.78 2.24 2.78 3.31 3.98 2.86 3.36 3.82 4.39

(c) Case 6
48 -4.25 -3.87 -3.57 -3.24 -4.23 -3.86 -3.57 -3.24 8.51 9.86 11.23 13.00 8.56 9.78 10.96 12.54 8.50 9.61 10.67 12.04
100 -3.86 -3.54 -3.28 -2.99 -3.85 -3.54 -3.28 -2.99 7.18 8.31 9.40 10.77 7.04 7.95 8.83 9.90 6.88 7.69 8.45 9.39
136 -3.74 -3.45 -3.20 -2.91 -3.76 -3.44 -3.18 -2.91 6.82 7.86 8.88 10.20 6.59 7.43 8.25 9.31 6.42 7.16 7.86 8.75
200 -3.67 -3.36 -3.11 -2.82 -3.68 -3.36 -3.11 -2.83 6.47 7.45 8.43 9.69 6.19 7.02 7.78 8.77 6.01 6.70 7.35 8.18
400 -3.55 -3.25 -2.98 -2.71 -3.55 -3.24 -2.99 -2.70 6.04 7.06 8.01 9.33 5.70 6.50 7.25 8.23 5.48 6.15 6.78 7.56
1 -3.42 -3.12 -2.87 -2.58 -3.42 -3.12 -2.87 -2.58 5.68 6.66 7.57 8.76 5.26 6.01 6.72 7.57 5.00 5.64 6.21 6.89



Table 6.1: Empirical Size of Seasonal Unit Root Tests (Nominal 0.05 level)
DGP (6.1)-(6.2). Auxiliary Regression (5.1) with pmax = 4

ξ = 1 indicates Case 3 of (5.1), ξ = 2 indicates Case 6 of (5.1)
N φ θ t0 t2 t1 F1 F[1...2] F[0. ..2]

ξ = 1 ξ = 2 ξ = 1 ξ = 2 ξ = 1 ξ = 2 ξ = 1 ξ = 2 ξ = 1 ξ = 2 ξ = 1 ξ = 2
25 .9 .0 GLS .05 .04 .04 .02 .05 .02 .05 .02 .04 .02 .05 .03

OLS .06 .04 .04 .03 .04 .03 .03 .02 .04 .04 .05 .04
.0 -.6 GLS .28 .44 .28 .43 .05 .04 .06 .04 .22 .38 .29 .51

OLS .28 .49 .28 .48 .05 .04 .06 .04 .22 .39 .29 .55
.0 .6 GLS .06 .05 .06 .05 .26 .34 .19 .31 .18 .36 .18 .39

OLS .05 .05 .05 .05 .24 .43 .27 .44 .24 .47 .24 .48
50 .9 .0 GLS .05 .05 .05 .03 .05 .02 .05 .03 .05 .03 .05 .04

OLS .06 .05 .05 .04 .03 .01 .05 .04 .04 .04 .05 .04
.0 -.6 GLS .22 .37 .22 .36 .04 .04 .05 .04 .16 .26 .22 .35

OLS .22 .38 .22 .38 .03 .04 .05 .04 .15 .27 .20 .37
.0 .6 GLS .04 .05 .04 .04 .22 .38 .14 .33 .11 .28 .09 .26

OLS .04 .05 .04 .04 .23 .40 .19 .37 .16 .34 .15 .33

Note: The notation GLS and OLS in the fourth column indicates the method of de-trending used.

Table 6.2: Empirical Power of Seasonal Unit Root Tests (Nominal 0.05 level).
DGP (6.3), N = 25. Auxiliary Regression (5.1) with pmax = 4.
ξ = 1 indicates Case 3 of (5.1), ξ = 2 indicates Case 6 of (5.1).

ck = ¡3 ck = ¡5 ck = ¡7 ck = ¡11 ck = ¡15 ck = ¡19
Test ξ = 1 ξ = 2 ξ = 1 ξ = 2 ξ = 1 ξ = 2 ξ = 1 ξ = 2 ξ = 1 ξ = 2 ξ = 1 ξ = 2
t0 GLS .16 .07 .25 .11 .38 .15 .63 .29 .82 .45 .91 .65

OLS .09 .06 .13 .08 .18 .11 .35 .20 .54 .34 .73 .48

t2 GLS .15 .07 .25 .11 .37 .15 .62 .29 .82 .46 .92 .65
OLS .08 .06 .12 .08 .17 .11 .34 .20 .54 .33 .73 .48

t1 GLS .33 .09 .61 .17 .82 .28 .97 .56 .99 .80 1.00 .91
OLS .12 .07 .20 .10 .33 .16 .64 .34 .87 .56 .95 .77

F1 GLS .24 .09 .46 .15 .67 .25 .92 .52 .98 .76 .99 .89
OLS .11 .07 .17 .09 .28 .15 .56 .31 .81 .52 .93 .73

F1...2 GLS .31 .10 .57 .18 .79 .31 .97 .62 1.00 .86 1.00 .96
OLS .13 .08 .23 .12 .38 .19 .71 .38 .92 .63 .98 .83

F0...2 GLS .37 .11 .67 .21 .88 .37 .99 .72 1.00 .93 1.00 .99
OLS .15 .08 .27 .13 .45 .20 .81 .45 .96 .72 .99 .90

Note: The notation GLS and OLS in the second column indicates the method of de-trending used.
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Table 6.3: Empirical Power of Seasonal Unit Root Tests (Nominal 0.05 level).
DGP (6.3), N = 50. Auxiliary Regression (5.1) with pmax = 4.
ξ = 1 indicates Case 3 of (5.1), ξ = 2 indicates Case 6 of (5.1).

ck = ¡3 ck = ¡5 ck = ¡7 ck = ¡11 ck = ¡15 ck = ¡19
Test ξ = 1 ξ = 2 ξ = 1 ξ = 2 ξ = 1 ξ = 2 ξ = 1 ξ = 2 ξ = 1 ξ = 2 ξ = 1 ξ = 2

t0 GLS .17 .07 .29 .11 .44 .17 .73 .33 .90 .53 .97 .72
OLS .09 .06 .13 .08 .19 .12 .36 .21 .58 .35 .77 .52

t2 GLS .17 .08 .28 .11 .44 .17 .73 .33 .90 .54 .97 .73
OLS .09 .06 .12 .08 .19 .11 .36 .21 .58 .35 .77 .52

t1 GLS .37 .09 .68 .18 .89 .30 .99 .64 1.00 .88 1.00 .96
OLS .12 .07 .21 .12 .34 .18 .68 .38 .91 .64 .98 .84

F1 GLS .23 .09 .47 .16 .71 .27 .96 .57 1.00 .83 1.00 .95
OLS .11 .07 .17 .11 .28 .16 .58 .34 .84 .58 .96 .79

F1...2 GLS .32 .10 .63 .19 .86 .34 .99 .71 1.00 .93 1.00 .99
OLS .13 .08 .23 .12 .39 .20 .76 .44 .95 .72 .99 .91

F0...2 GLS .40 .11 .74 .23 .93 .42 1.00 .82 1.00 .97 1.00 1.00
OLS .15 .08 .27 .13 .45 .20 .81 .45 .96 .72 .99 .90

Note: See Note for Table 6.2.

Table 6.4: Asymptotic Local Power of Seasonal Unit Root Tests (Nominal 0.05 level).
ck = ¡3 ck = ¡5 ck = ¡7 ck = ¡11 ck = ¡15 ck = ¡19

Test ξ = 1 ξ = 2 ξ = 1 ξ = 2 ξ = 1 ξ = 2 ξ = 1 ξ = 2 ξ = 1 ξ = 2 ξ = 1 ξ = 2

tk GLS .17 .08 .32 .12 .50 .18 .82 .37 .96 .61 1.00 .81
k = 0, S/2 OLS .08 .06 .12 .08 .18 .11 .36 .22 .60 .37 .80 .57
tk GLS .38 .10 .72 .19 .92 .34 1.00 .72 1.00 .95 1.00 1.00
k = 1, ..., S¤ OLS .11 .07 .19 .11 .34 .18 .71 .41 .94 .69 1.00 .90

Fk GLS .23 .09 .48 .16 .74 .28 .98 .62 1.00 .89 1.00 .99
k = 1, ..., S¤ OLS .10 .07 .17 .10 .28 .16 .62 .35 .88 .62 1.00 .85
F1...2 GLS .31 .12 .64 .22 .89 .40 1.00 .81 1.00 .98 1.00 1.00

OLS .13 .08 .23 .13 .40 .22 .80 .50 .98 .81 1.00 .96
F0...2 GLS .37 .12 .76 .27 .96 .50 1.00 .91 1.00 1.00 1.00 1.00

OLS .14 .09 .29 .15 .51 .26 .91 .61 .99 .91 1.00 .99

Note: See Note for Table 6.2.
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