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Abstract
In practice a degree of uncertainty will always exist concerning what specification
to adopt for the deterministic trend function when running unit root tests. While
most macroeconomic time series appear to display an underlying trend, it is often
far from clear whether this component is best modelled as a simple linear trend
(so that long-run growth rates are constant) or by a more complicated non-linear
trend function which may, for instance, allow the deterministic trend component
to evolve gradually over time. In this paper we consider the effects on unit
root testing of allowing for a local quadratic trend, a simple yet very flexible
example of the latter. Where a local quadratic trend is present but not modelled
we show that the quasi-differenced detrended Dickey-Fuller-type test of Elliott
et al. (1996) has both size and power which tend to zero asymptotically. An
extension of the Elliott et al. (1996) approach to allow for a quadratic trend
resolves this problem but is shown to result in large power losses relative to the
standard detrended test when no quadratic trend is present. We consequently
propose a simple and practical approach to dealing with this form of uncertainty
based on a union of rejections-based decision rule whereby the unit root null is
rejected whenever either of the detrended or quadratic detrended unit root tests
rejects. A modification of this basic strategy is also suggested which further
improves on the properties of the procedure. An application to relative primary
commodity price data highlights the empirical relevance of the methods outlined
in this paper. A by-product of our analysis is the development of a test for the
presence of a quadratic trend which is robust to whether or not the data admit
a unit root.
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1 Introduction

Testing for the presence of an autoregressive unit root has been an issue at the core
of applied time series analysis for almost thirty years, since the publication of the
seminal article by Dickey and Fuller (1979). Where economic data are concerned, the
stochastic autoregressive time series process of interest is generally not considered to
be observed directly, but is instead assumed to be observed subject to some additive
deterministic component of unknown form, and legitimate inference on the properties
of the underlying stochastic process cannot be made until the confounding effects of
such deterministic components are removed. It is therefore common practice to apply
unit root test procedures that are invariant to certain forms of deterministics and this
is typically carried out by including a deterministic specification that is felt appropriate
in the fitted regression from which the unit root test is calculated. Two considerations
then arise. On the one hand, underfitting the deterministic component will almost
always result in the unit root test procedure possessing little or no power to detect
a stationary autoregressive root. On the other hand, overfitting the deterministic
component will inevitably compromise the power of the procedure relative to that
obtainable if the correct deterministic component were specified.

In the macroeconomic context, taking a constant term as given, the deterministic
component open to question is often a linear trend term and in a recent paper, Harvey
et al. (2008) (HLT) consider unit root testing under uncertainty regarding this deter-
ministic component in the data. It is well-known that under certain conditions, the
quasi-differenced (QD) demeaned and detrended augmented Dickey-Fuller (ADF) unit
root tests of Elliott et al. (1996) are efficient relative to their ordinary least squares
(OLS) demeaned and detrended counterparts. HLT therefore examine a strategy based
on the union of rejections of the QD demeaned and detrended tests. The union prin-
ciple exploits the fact that when a trend is absent, both QD tests are correctly sized
under the unit root null but under the (locally) stationary alternative the demeaned
test is the more likely of the two to signal a rejection of the unit root null in favour
of stationarity (around a mean) since its power is not compromised by the inclusion
of an irrelevant trend term. When a linear trend is present, the demeaned test be-
comes undersized and has trivially low power, to the extent that it is unlikely ever to
reject the unit root null. Unit root inference then essentially becomes contingent on
the detrended test alone, whose size and power to reject the unit root null in favour
of stationarity (around a trend) are unchanged due to its invariance to a linear trend.
Despite its simplicity, this union of rejections procedure was shown to be generally
at least as powerful as competing procedures involving some form of pre-testing for
the presence of the linear trend as a method to select between the QD demeaned or
detrended unit root tests.

Of course, for many macroeconomic time series, a linear trend, rather than a con-
stant, deterministic component might be considered appropriate as the default speci-
fication. This would be case for series such as, for example, real GDP, industrial pro-
duction, money supply and consumer or commodity prices, where trending (or drift)
behaviour appears evident. The question then arises as to whether the linear trend
is sufficiently general to capture the actual deterministic behaviour or whether some
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more flexible specification for the trend function ought to be considered.
Once we entertain this possibility and move outside the linear trend environment,

however, the range of choice is virtually endless. Polynomial trend functions, trigono-
metric functions and single or multiple structural breaks in level or trend represent
just some of the nonlinear deterministic specifications that have been suggested; see,
inter alia, Ouliaris et al. (1989), Bierens (1997), Lee et al. (2008), Perron (1989) and
Perron and Rodŕıguez (2003).1 There is, however, little in the way of consensus as to
which approach is the most appropriate and, since all such approaches are capable of
mimicking each other to a reasonable degree of approximation, this issue is unlikely
to be resolved either quickly or easily. There is also a matter of interpretation here; if
we allow a stochastic component of a series to evolve around a deterministic compo-
nent of almost unlimited flexibility, exactly what pertinent information does a rejection
(or non-rejection) of the unit root hypothesis then actually convey to a practitioner?
This information would seem really rather inadequate, and the subsequent implica-
tions for any forecasting exercise are even less attractive. Intuition also suggests that
it becomes more and more difficult to identify any (non-) stationarity present in the
stochastic component of a time series if we continually increase the generality of the
allowable deterministic specification; see, in particular, Phillips (1998).

For these reasons, in this paper we generalize the linear trend specification along
the direction of allowing for a local quadratic trend term. This is arguably the sim-
plest departure from trend linearity that is able to model a reasonable degree of local
nonlinearity in the deterministic trend function. In particular, as noted in Ayat and
Burridge (2000), a quadratic trend provides a simple means of proxying a linear trend
which undergoes a break at some unknown point, or even repeated shifts in the de-
terministic level of the process. We first demonstrate theoretically the effects of an
unattended local quadratic trend term on the Elliott et al. (1996) unit root test that
allows for a linear trend, denoted DF-QD τ . We show that this test has size and local
power which rapidly converge towards zero as the magnitude of the local quadratic
trend increases. Secondly, we consider an Elliott et al. (1996)-based unit root test that
allows for a quadratic trend, which we denote by DF-QD q. By construction, DF-QD q

is invariant to the magnitude of the quadratic trend. We derive its asymptotic local
power function and tabulate its asymptotic null distribution. This allows us to charac-
terize the sacrifices in asymptotic local power that arise from application of DF-QD q

instead of DF-QD τ when no quadratic term is present.
On the basis of these results, when uncertainty exists over the presence or otherwise

of a quadratic trend, so that one is uncertain over which of DF-QD τ and DF-QD q to
apply, we parallel the approach of HLT and suggest a test procedure based on a simple
conservative union of rejections decision rule: reject the unit root null if either of the
individual tests DF-QD τ and DF-QD q rejects. Such an approach capitalizes on both
the far superior size and power properties of DF-QD q when a local quadratic trend
does exist, and the relatively higher power of DF-QD τ otherwise. Our asymptotic and
finite sample simulation results show that this simple procedure works rather well in

1For a wider discussion of the possibility of nonlinear deterministics in the macroeconomic context
see, for example, Murray and Nelson (2000) and Stock and Watson (1999).
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practice.
We subsequently show that it is possible to modify the simple (conservative) union

of rejections procedure to improve its power when a quadratic trend is present. The
modification is based on using information from auxiliary test statistics designed to
detect the presence of a quadratic trend. Tests based on these statistics represent ex-
tensions of the Harvey et al. (2007) linear trend analysis to the quadratic trend case,
and are constructed so as to yield robust inference on the quadratic term; that is,
they provide inference which (asymptotically) does not depend on whether the autore-
gressive unit root is present or not. In our context, these auxiliary statistics are not
deployed as traditional pre-tests; that is, their outcome is not used to decide whether
to apply DF-QD τ or DF-QD q, because these pre-tests can have relatively low power to
detect quadratic trends which are small in magnitude, but are nonetheless sufficiently
large to seriously bias DF-QD τ towards non-rejection. Rather, their outcome is simply
used to select between conservative and non-conservative critical values for the union of
rejections of DF-QD τ and DF-QD q. Asymptotic and finite sample simulation evidence
shows very worthwhile power gains arise from using the modified approach.

We apply the unit root test procedures developed above to a set of 24 relative
primary commodity annual price series, covering the period 1900–2003. This is an
updated version of the well-known Grilli and Yang (1988) dataset. These data are
usually studied for evidence of the Prebisch-Singer hypothesis which specifies a down-
ward linear trend in relative commodity prices. In contrast, we focus our attention on
identifying the order of integration of the series allowing for the possibility of quadratic
deterministic trends via the union of rejections approach. In brief, almost without ex-
ception, whenever either or both DF-QD τ and DF-QD q reject the unit root, so does
the union of rejections strategy, rejecting the unit root in almost two-thirds of the series
considered. Importantly, almost half of these rejections arise by virtue of the quadratic
trend unit root test in the union, but not its linear trend counterpart, thereby rather
transparently demonstrating the genuine practical potential of allowing for quadratic
trend deterministics when examining economic series for unit roots.

The plan of the paper is as follows. Section 2 sets out the model and underlying
assumptions and defines DF-QD τ and DF-QD q. In Section 3 we establish the asymp-
totic properties of DF-QD τ and DF-QD q in the local quadratic trend model. The
union of rejections strategy is introduced in section 4, while its modified variant, based
on the auxiliary quadratic trend tests, is discussed and compared in section 5. Finite
sample simulations are presented in section 6. Our application to primary commodity
prices is given in section 7, while some conclusions are offered in section 8. Proofs of
the main technical results in this paper are given in an appendix. In the sequel we
use the following notation: ‘x := y’ (‘x =: y’) to indicate that x is defined by y (y is

defined by x); b·c to denote the integer part of its argument, and ‘
d→’ to denote weak

convergence.
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2 The Model and Unit Root Tests

Consider the case where we have a sample of T observations generated according to
the data generating process (DGP):

yt = µ+ βt+ γt2 + ut, t = 1, ..., T (1)

ut = ρTut−1 + εt, t = 2, ..., T. (2)

Within (2), we assume that the initial condition u1 satisfies T−1/2u1
p→ 0, and we set

ρT = 1 − c/T for 0 ≤ c < ∞. Here c = 0 corresponds to the unit root, or I(1), case;
and c > 0 the local alternative.

The innovation process {εt} of (2) is taken to satisfy the following conventional (cf.
Chang and Park, 2002, and Phillips and Solo, 1992, inter alia) stable and invertible
linear process-type assumption:

Assumption 1 The stochastic process {εt} is such that

εt = C(L)et, C(L) :=
∞∑
i=0

CiL
i, C0 := 1

with C(z) 6= 0 for all |z| ≤ 1 and
∑∞

i=0 i|Ci| < ∞, and where {et} is a martingale
difference sequence with conditional variance σ2 and suptE(e4t ) < ∞. We also define
σ2

ε := E(ε2
t ) and ω2

ε := limT→∞ T−1E(
∑T

t=1 εt)
2 = σ2C(1)2.

Any process which satisfies Assumption 1 will be referred to as I(0) in what follows.
Our focus is on testing the null hypothesis of a unit root, H0 : ρT = 1, against

the local alternative H1 : ρT = 1 − c/T , 0 < c < ∞, in situations where uncertainty
surrounds whether or not a quadratic trend should be included in the deterministic
component of the model. We assume that in these scenarios, it is unlikely that there is
also doubt as to whether or not to include a linear trend, thus we restrict our attention
to models where the decision for the deterministic component is between µ + βt and
µ+ βt+ γt2.

If it is known that a linear, but not quadratic, trend is present in the data (i.e.
γ = 0), the near efficient unit root test is the Dickey and Fuller (1979)-type test
proposed by Elliott et al. (1996) based on QD linear detrending. This test, DF-QD τ ,
rejects for large negative values of the t-statistic for ρ = 1 in the fitted regression
equation

ũt = ρũt−1 +

p∑
j=1

φj∆ũt−j + et, t = p+ 2, ..., T (3)

where, on setting ρ̄ := 1− c̄τ/T , ũt := yt− z′tθ̃, with θ̃ obtained from the QD regression
of yc̄ := (y1, y2 − ρ̄y1, ..., yT − ρ̄yT−1)

′ on Zc̄ := (z1, z2 − ρ̄z1, ..., zT − ρ̄zT−1)
′, where

zt := (1, t)′. Elliott et al. (1996) suggest the value c̄ = 13.5, based on the fact that
when c̄τ = 13.5, the asymptotic Gaussian power envelope is at 0.50. It is assumed that
p is chosen according to some consistent model selection procedure, such as the MAIC
procedure of Ng and Perron (2001) and Perron and Qu (2007).
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If, on the other hand, a quadratic trend is present (i.e. γ 6= 0), the near efficient
test, DF-QD q, takes the same form as DF-QD τ , but with zt := (1, t, t2)′, thereby
incorporating a quadratic trend component in the QD detrending function. In un-
reported simulations, we found that the Gaussian power envelope for this case is at
0.50 for a value of c = 18.5, thus we advocate the use of c̄q = 18.5 (in place of c̄τ )
in the implementation of DF-QD q. This coincides with the recommendation of Ayat
and Burridge (2000), who conducted large sample simulations of DF-QD q directly for
different c̄q.

3 Asymptotic Behaviour Under Quadratic Trends

In this section we consider the asymptotic behaviour of the unit root tests in the situa-
tion of uncertainty over the presence of a quadratic trend. We consider the magnitude
of the quadratic trend to be a decreasing function of the sample size (i.e. local to zero),
so as to prevent the deterministic quadratic from completely dominating the stochastic
component of the series in the limit. This approach provides a sensible asymptotic
model of possible quadratic trend behaviour in economic time series, and also accords
well with our focus on cases where it is uncertain whether or not a quadratic trend
actually exists in the model for yt.

Under the local-to-unity alternative H1 : ρT = 1 − c/T , the relevant Pitman drift
on the quadratic trend coefficient, γ, is given by γ = κT−3/2, thus in this subsection
we consider the impact of such quadratic trends on the unit root tests DF-QD τ and
DF-QD q introduced in the previous section. The asymptotic behaviour of the unit root
tests are summarized in the following lemma.

Lemma 1 Let {yt} be generated according to (1)-(2) and Assumption 1, with ρT =
1− c/T , 0 ≤ c <∞ and γ = κT−3/2. Then

DF-QD τ d→ Jτ,c̄τ
c (1)2 − 1

2
√∫ 1

0
Jτ,c̄τ

c (r)2dr
=: τ τ (4)

DF-QD q d→ J
q,c̄q
c (1)2 − 1

2
√∫ 1

0
J

q,c̄q
c (r)2dr

=: τ q (5)

where

Jτ,c̄τ
c (r) := Wc(r)− π−1

1,c̄τ
M1,c̄τ r + κ∗(r2 − π−1

1,c̄τ
π2,c̄τ r)

Jq,c̄q
c (r) := Wc(r)− d−1

c̄q
(π3,c̄qM1,c̄q − π2,c̄qM2,c̄q)r − d−1

c̄q
(π1,c̄qM2,c̄q − π2,c̄qM1,c̄q)r

2

Wc(r) :=

∫ r

0

e−(r−s)cdW (s)

6



with κ∗ := κ/ωε, W (r) a standard Brownian motion process, and

π1,c̄i
:= 1 + c̄i + c̄2i /3, i = τ , q

π2,c̄i
:= 1 + c̄i + c̄2i /4, i = τ , q

π3,c̄q := 4/3 + c̄q + c̄2q/5,

dc̄q := π1,c̄qπ3,c̄q − π2
2,c̄q

M1,c̄i
:= (1 + c̄i)Wc(1) + c̄2i

∫ 1

0

sWc(s)ds, i = τ , q

M2,c̄q := (2 + c̄q)Wc(1)− 2

∫ 1

0

Wc(s)ds+ c̄2q

∫ 1

0

s2Wc(s)ds.

Remark 1 Due to the neglected quadratic trend, the asymptotic distribution of DF-
QD τ depends on the magnitude of κ∗, while the limit of DF-QD q does not due to
its invariance to the quadratic trend component. Note also that neither of the limit
distributions depend on the parameters σ2 and σ2

ε; in the case of DF-QD τ this arises
since the implied estimators of these quantities remain consistent in the presence of a
neglected local-to-zero quadratic trend.

Figure 1 shows the asymptotic power functions of the two tests across c = {0, 1, 2, ...,
40}, for the local quadratic trend parameter values κ∗ = {0, 1, 2, 3, 4, 5}.2 The results
were obtained by direct simulation of the limiting distributions in Lemma 1, approxi-
mating the Wiener processes using NIID(0, 1) random variates, and with the integrals
approximated by normalized sums of 1000 steps. The tests are conducted using asymp-
totic critical values appropriate for the nominal 0.05 significance level for a correctly
specified model, i.e. κ∗ = 0 for DF-QD τ .3 Here and throughout the paper, the reported
simulations were programmed in Gauss 7.0 using 50,000 Monte Carlo replications.

Figure 1(a) shows the results for the case where κ∗ = 0, and clearly highlights
the asymptotic power gains that can be achieved by excluding a quadratic trend term
when none is present in the data. Indeed, DF-QD τ displays rejection frequencies up
to 0.28 higher than that associated with DF-QD q. The preferred test in this context
is obviously DF-QD τ , in line with its aforementioned property of near-efficiency for
this DGP. In contrast, Figures 1(b)-1(f) show that when κ∗ 6= 0, DF-QD q dominates
DF-QD τ in terms of power. Indeed, while the power of DF-QD q is unaffected by the
presence of a local quadratic trend, it is only for the smallest (non-zero) value of the
quadratic trend (κ∗ = 1) that DF-QD τ has asymptotic power greater than size. As κ∗

increases, both the size and power of DF-QD τ converge to zero, so that by the time
κ∗ = 5, DF-QD τ records almost no rejections of the unit root null.

These results highlight that while DF-QD τ is the near efficient test when κ∗ = 0,
severe power losses arise relative to DF-QD q when a local quadratic trend is present;

2Observing that W (r) and −W (r) are equal in distribution it is straightforwardly seen from (4)
that the asymptotic size and local power function of DF-QD τ are invariant to the sign of κ∗. As a
consequence, we only report results for κ∗ ≥ 0.

3The asymptotic 0.10, 0.05 and 0.01 level critical values for DF-QD τ are, respectively, −2.56,
−2.85 and −3.41; those for DF-QD q are, respectively, −3.15, −3.43 and −3.97.
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conversely, DF-QD q is near efficient in the case of κ∗ 6= 0, but lacks power relative
to DF-QD τ when the DGP contains only a linear trend. Thus, we would wish to
employ DF-QD τ to test the unit root hypothesis when κ∗ = 0, but to base inference
instead on DF-QD q when κ∗ 6= 0. However, given that the value of κ∗ is in practice
unknown, such a procedure would be infeasible. Instead, in the next section we consider
a feasible testing strategy that attempts to capture both the relatively superior power
performance of DF-QD q when a local quadratic trend is present, and the power gains
of DF-QD τ otherwise.

4 A Union of Rejections Strategy

The results of the previous section demonstrate that when a quadratic trend is present,
one would most certainly want to conduct a unit root test that accounts for a quadratic
term in the deterministics; on the other hand, if only a linear trend exists, applying
such a quadratic trend-based unit root test would involve a substantial loss of power
relative to the efficient test that assumes a linear deterministic trend alone. We now
turn our attention to the practical situation where a lack of knowledge pertains as to
the presence or otherwise of a quadratic trend component, so that one is uncertain over
which of DF-QD τ and DF-QD q should be applied. Given this uncertainty over the
presence of a quadratic trend, it is worthwhile to consider procedures which attempt to
capitalize on both the relatively high power of DF-QD q when a local quadratic trend
does exist, and the relatively high power of DF-QD τ otherwise.

HLT consider a parallel problem where testing for a unit root is conducted in the
presence of uncertainty surrounding whether or not a linear trend exists in the data.
The efficient testing approach in this context is to apply DF-QD τ if a trend is present,
and the equivalent test that excludes a deterministic trend (denoted DF-QD µ) if no
trend in fact exists. Of a number of methods that could be employed to choose between
these tests when the presence of the trend is uncertain, these authors find that a simple
union of rejections decision rule performs very well, rejecting the null if either of the
individual tests DF-QD µ and DF-QD τ reject. This approach was found to outperform
pre-testing for the presence of a trend, in part because, particularly in a local-to-unit
root setting, the pre-tests have low power for trends of small to moderate magnitude,
while at the same time such trends are still large enough to cause the power of DF-
QD µ to fall towards zero. In the present situation of testing for a unit root when
uncertain over a quadratic trend, one possible approach would be to pre-test for the
presence of a quadratic trend component, and then apply either DF-QD τ or DF-QD q

conditional on the outcome. However, it is of course to be fully expected that the
inherent problems with the pre-testing approach observed in the linear trend context
would also apply here, and some evidence of this is observed in the application to
relative primary commodity prices presented in section 7. As a consequence, following
HLT, we consider the performance of a unit root testing strategy based on a union of
rejections of the individual tests DF-QD τ and DF-QD q.

Denoting the asymptotic ξ level critical values of DF-QD τ and DF-QD q by cvτ
ξ
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and cvq
ξ , respectively, we define the simple union of rejections strategy, UR, as

UR: Reject H0 if {DF-QD τ < cvτ
ξ or DF-QD q < cvq

ξ}.

Following the rejoinder to HLT, an alternative way of representing this decision rule
makes use of a single test statistic tUR as follows

UR: Reject H0 if

{
tUR = min

(
DF-QD τ ,

cvτ
ξ

cvq
ξ

DF-QD q

)
< cvτ

ξ

}
.

An application of the continuous mapping theorem (CMT) coupled with the results in
Lemma 1 allows us to immediately obtain the asymptotic distribution of tUR as

tUR
d→ min

(
τ τ ,

cvτ
ξ

cvq
ξ

τ q

)
.

The asymptotic behaviour of this simple testing strategy at the 0.05 significance
level can be seen in Figure 1. Since the strategy simply involves rejection of the null
when either of the individual tests reject, the power curve lies on or outside that of
DF-QD τ when κ∗ = 0, and that of DF-QD q when κ∗ 6= 0. While this strategy clearly
achieves the desired aim of capitalizing on both the high power of DF-QD q when a
local quadratic trend is present, and the high power of DF-QD τ in the absence of a
quadratic component, it clearly lacks asymptotic size control across all values of κ∗.
The size of the procedure is at a maximum when κ∗ = 0, where asymptotic size at the
nominal 0.05 significance level is 0.080 (though somewhat below the Bonferroni upper
bound of 0.10 for this union of rejections).

If this degree of size distortion is deemed unacceptable, a simple correction can be
applied to ensure that UR is conservative in the limit. Consider adjusting the critical
values of the individual unit root tests through multiplication by a common constant,
ψξ, chosen so that the resulting decision rule yields asymptotic size of ξ when κ∗ = 0
for tests run at the ξ significance level. Such a modified decision rule will then be
correctly sized in the limit for κ∗ = 0, and conservative for κ∗ 6= 0. This conservative
UR decision rule, now denoted URc to distinguish it from uncorrected UR, can be
written as

URc: Reject H0 if {DF-QD τ < ψξcv
τ
ξ or DF-QD q < ψξcv

q
ξ}

or, alternatively,

URc: Reject H0 if

{
tUR = min

(
DF-QD τ ,

cvτ
ξ

cvq
ξ

DF-QD q

)
< ψξcv

τ
ξ

}
.

The appropriate constant ψξ can be determined by simulating the limit distribution of
tUR, calculating the ξ-level critical value for this empirical distribution, say cvm

ξ , and
then computing ψξ := cvm

ξ /cv
τ
ξ .4

4The asymptotic 0.10, 0.05 and 0.01 level ψξ values are, respectively, 1.069, 1.058 and 1.043.
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Figure 1 also shows the asymptotic performance of the URc strategy. In com-
parison with the individual tests DF-QD τ and DF-QD q, the robust nature of this
size-controlled procedure can be clearly seen. When κ∗ 6= 0, URc avoids the severe
power losses associated with DF-QD τ , exhibiting power a little below that of DF-
QD q. When κ∗ = 0, URc then considerably outperforms DF-QD q in terms of local
asymptotic power, capturing most of the relative power gains displayed by DF-QD τ .
The union of rejections approach therefore leads to a unit root testing strategy that
has very attractive asymptotic size and local power behaviour, and should prove very
useful in practical applications when there is uncertainty regarding the presence of a
quadratic component in the deterministic time path of the series.

5 A Modified Union of Rejections Strategy

The results of the previous section show that the URc strategy achieves correct asymp-
totic size and good overall power, both in cases where a local quadratic trend is present
and also when the trend specification is simply linear. However, for large magnitudes of
the local quadratic trend, Figure 1 shows that the uncorrected UR strategy is approx-
imately correctly sized in the limit (since the size of DF-QD τ converges to zero) and
has superior power performance in comparison with URc; one would therefore wish to
apply UR in these circumstances rather than the conservative URc. It is consequently
worthwhile considering a modified strategy that makes use of auxiliary information re-
garding the presence or otherwise of a quadratic trend to decide between the application
of either UR or URc, following the approach advocated in Breitung’s commentary on
HLT and the latter authors’ rejoinder, for the parallel problem of unit root testing in
the presence of uncertainty over the presence of a linear trend.

Let |tγ| denote generically a statistic for testing the null hypothesis that γ = 0,
i.e. no quadratic trend, against a two-sided alternative γ 6= 0, with the corresponding
asymptotic ξ level critical value denoted by cvγ

ξ . Given a suitable choice of quadratic
trend test statistic, we can then define the modified union of rejections testing strategy
UR(|tγ|) as follows.

If |tγ| > cvγ
ξ : UR(|tγ|) := UR

If |tγ| ≤ cvγ
ξ : UR(|tγ|) := URc.

Notice that this strategy is quite different from one that applies either DF-QD τ or DF-
QD q according to the outcome of a pre-test, since here a union of rejections is always
conducted. The potential pitfalls of a pre-testing strategy discussed in the previous
section (namely the erroneous application of DF-QD τ when a local quadratic trend is
present, due to low pre-test power) are therefore avoided.

As regards testing for a quadratic trend, it is desirable to employ a test that is
robust to the order of integration of the series, since otherwise an ex ante assumption
would be required, specifying whether or not a unit root is present in the series; such
an assumption would be wholly inappropriate, given the ultimate purpose of testing
for a unit root. Harvey et al. (2007) develop powerful tests for a linear trend that are
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robust to the order of integration, and here we adapt these procedures to the current
problem of testing for a quadratic deterministic trend component.

The quadratic trend test equivalents of the procedures recommended by Harvey et
al. (2007) take the following form. First, define by t0 the autocorrelation-corrected
OLS-based t-ratio for testing γ = 0 in the regression (1), i.e.

t0 :=
γ̂√

ω̂2
u[(
∑T

t=1 ztz′t)
−1]33

where γ̂ denotes the OLS estimator of γ in (1), ω̂2
u is a long run variance estimator

formed using ût := yt− µ̂− β̂t− γ̂t2, [.]33 denotes the (3, 3) element of [.], and zt := (1, t,
t2)′. Now consider applying first differences to (1). This yields the regression equation

∆yt = δ1 + δ2t+ vt, t = 2, ..., T (6)

where δ1 := β − γ, δ2 := 2γ and vt := ∆ut. Define by t1 the autocorrelation-corrected
OLS-based t-ratio for testing δ2 = 0 in (6), i.e.

t1 :=
δ̂2√

ω̂2
v[(
∑T

t=1 ztz′t)
−1]22

where δ̂2 denotes the OLS estimator of δ2 in (6), ω̂2
v is a long run variance estimator

based on v̂t := ∆yt − δ̂1 − δ̂2t, [.]22 denotes the (2, 2) element of [.], and where now
zt := (1, t)′. The long run variance estimators ω̂2

u and ω̂2
v are computed using the

quadratic spectral kernel with Newey and West (1994) automatic bandwidth selection
adopting a non-stochastic prior bandwidth of b4(T/100)2/25c. The individual tests
based on t0, and t1, attain the Gaussian asymptotic local power envelope for testing
γ = 0 when ut in (1) is I(0), and I(1), respectively, and both are asymptotically
standard normal under the null hypothesis γ = 0.

The Harvey et al. (2007) robust testing approach then involves taking a weighted
average of the two statistics t0 and t1, with the weight specified such that the hybrid
statistic reduces to t0 when ut is I(0), and t1 when ut is I(1); i.e.

tλ := (1− λ)t0 + λt1

with

λ := exp

(
−g
(

DF-QD q

KPSS q

)2
)

(7)

where g is some positive constant and KPSS q is a quadratic trend-based version of the
Kwiatkowski et al. (1992) stationarity test statistic, i.e.

KPSS q :=

∑T
t=1

(∑t
i=1 ûi

)2
T 2ω̂2

u

.

It is straightforward to show that the weight function λ possesses the properties that
λ

p→ 0 when ut is I(0), and λ
p→ 1 when ut is I(1).

11



We also consider a quadratic trend test equivalent of the tm2
λ test of Harvey et al.

(2007), which would be expected to provide more power when ut is a local-to-unit root
process. This involves replacing t1 with tm 2

1 := ηξR2t1 where

R2 :=

(
ω̂2

v

T−1σ̂2
u

)2

and σ̂2
u := (T − 3)−1

∑T
t=1 û

2
t . Here, ηξ is a constant chosen so that, at a given sig-

nificance level ξ, tm2
λ has an asymptotic standard normal critical value regardless of

whether ut is I(1) or I(0).5

The asymptotic behaviour of the quadratic trend tests tλ and tm2
λ is given in the

following lemma.

Lemma 2 Let {yt} be generated according to (1)-(2) and Assumption 1, with ρT =
1− c/T , 0 ≤ c <∞ and γ = κT−3/2. Then

tλ
d→ κ∗√

3
+
√

12

{
1
2
Wc(1)−

∫ 1

0

Wc(r)dr

}
tm2
λ

d→ ηξ

{∫ 1

0

Nc(r)
2dr

}−2 [
κ∗√
3

+
√

12

{
1
2
Wc(1)−

∫ 1

0

Wc(r)dr

}]
where Nc(r) denotes the continuous time projection of Wc(r) onto the space spanned
by {1, r, r2}, and where Wc(r) is as defined in Lemma 1.

Note that the constant g in (7) has no impact in the limit, and as in Harvey et al.
(2007) we calibrated its value on the basis of unreported finite sample size and power
simulations. We found that g = 0.00001 for tλ, and g = 0.00015 for tm2

λ , gave an ap-
pealing finite sample size/power trade-off, and thus we employ these values throughout
the remainder of the paper.

We denote the modified union of rejections strategies that make use of tλ and tm2
λ

by UR(|tλ|) and UR(|tm2
λ |) respectively. These modified strategies do not guarantee

asymptotic size control, since they select between the conservative strategy URc and
the potentially over-sized strategy UR. However, simulations of the limit distributions
show that the maximum asymptotic sizes of UR(|tλ|) and UR(|tm2

λ |) are, respectively,
0.051 and 0.057 (both occurring when κ∗ = 0), thus the size distortions are almost
inconsequential, particularly so in the case of UR(|tλ|).

The asymptotic behaviour of UR(|tλ|) and UR(|tm2
λ |) is shown in Figure 1. When

κ∗ = 0, the quadratic trend tests do not reject the null of γ = 0 (aside from the usual
Type I error), and so UR(|tλ|) and UR(|tm2

λ |) are almost identical to URc. However,
when κ∗ 6= 0, relative power gains over URc can be observed. Specifically, when κ∗ = 1
and κ∗ = 2, the UR(|tm2

λ |) strategy begins to select UR rather than URc, resulting
in power improvements; indeed, in the case of κ∗ = 2, power gains of up to 0.10 are

5For two-tailed tm2
λ tests conducted at the 0.10, 0.05 and 0.01 levels, the ηξ values are, respectively,

0.000801, 0.000647 and 0.000427.
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observed over URc, markedly closing the gap between URc and the best performing
test in this setting, DF-QD q. For κ∗ = 3, UR(|tm2

λ |) has power almost equal to that
of DF-QD q, while the power curve of UR(|tλ|) also now begins to move away from
URc towards UR. By the time κ∗ ≥ 4, little difference is observed between UR(|tλ|),
UR(|tm2

λ |) and DF-QD q, with the modified union of rejections strategies displaying
decent power gains over the relatively simple conservative strategy, URc. Thus, for
the modest additional computational requirement involved in calculating a robust test
statistic for a quadratic trend, a modified union of rejections testing strategy can be
employed, which delivers worthwhile power gains in certain circumstances.

6 Finite Sample Simulations

We now consider a set of finite sample simulations based on the DGP (1)-(2) with
εt ∼ NIID(0, 1), such that κ∗ = κ, and a sample size of T = 150. We set µ = β = 0
without loss of generality and consider γ = κT−3/2 with κ = κ∗ = {0, 1, 2, 3, 4, 5},
so that the values of γ correspond to the local quadratic trend settings considered
in the asymptotic analysis. Similarly, we set ρT = 1 − c/T with c = {0, 1, 2, ..., 40}
for comparability with the asymptotic simulations. The individual unit root tests
and the union of rejections strategies are conducted at the nominal (asymptotic) 0.05
significance level, using the asymptotic critical values and scaling constants reported in
previous sections. The number of lagged difference terms included in the Dickey-Fuller
regressions, p, is determined by application of the MAIC procedure of Ng and Perron
(2001) with maximum lag length set at pmax = b12(T/100)1/4c, using the modification
suggested by Perron and Qu (2007).

Figure 2 reports the finite sample sizes and powers of DF-QD q, DF-QD τ , UR,
URc, UR(|tλ|) and UR(|tm2

λ |) for these settings. Turning first to empirical size, it can
be seen that, with the exception of UR, all three union of rejections strategies have
almost no discernible finite sample over-size. Across the values of γ considered, the
conservative strategy URc has size in the range 0.025–0.044, while the sizes of the
modified strategies UR(|tλ|) and UR(|tm2

λ |) are in the ranges 0.042–0.047 and 0.043–
0.052, respectively. That the robust size behaviour observed in the limit also carries
over to good finite sample size control is encouraging and adds to the value of these
unit root testing strategies for practical applications.

The relative finite sample power performance of the unit root testing strategies
largely mirrors that observed in the limit. The URc strategy is again seen to capture
most of the power gains of DF-QD τ over DF-QD q when γ = 0, but avoids the very low
power associated with DF-QD τ when γ 6= 0, instead displaying a power curve relatively
close to that of DF-QD q. The modified union of rejections strategies UR(|tλ|) and
UR(|tm2

λ |) have even more attractive power profiles, being closer to the DF-QD q power
curve when a quadratic trend is present, and almost identical to URc when only a linear
trend is present in the DGP. Of the two procedures, UR(|tm2

λ |) has the marginally better
power, moving above the URc curve for smaller values of γ than occurs for UR(|tλ|). It
is interesting to note, however, that for moderate non-zero quadratic trend magnitudes
(i.e. κ = 2 and κ = 3 in Figure 2), UR(|tλ|) has relatively better power performance
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than is predicted by the asymptotic results, with tλ detecting the quadratic trend at
smaller magnitudes than would be expected. This result parallels the finding in the
rejoinder to HLT in the context of uncertainty regarding the presence of a linear trend,
and might be expected given the local-to-unity results of Harvey et al. (2007) where
the tλ-type linear trend test is found to perform relatively better (in comparison to the
corresponding tm2

λ -type test) in finite samples than was observed in the limit.
The asymptotic and finite sample results taken together show that the union of

rejections strategies proposed in this paper, and in particular UR(|tλ|) and UR(|tm2
λ |),

provide robust, size controlled and powerful procedures for testing for a unit root when
uncertainty exists regarding the presence of a quadratic component in the deterministic
trend. The strategies are relatively easy to implement and we hope should appeal to
practitioners.

7 Application to Primary Commodity Prices

In this section we apply the individual unit root tests DF-QD τ and DF-QD q, and the
union of rejections strategies URc, UR(|tλ|) and UR(|tm2

λ |), to a set of 24 relative pri-
mary commodity price series. The data are indices of primary commodity prices relative
to the price of manufactures, observed annually over the period 1900–2003 (104 obser-
vations) and measured in logarithms. Plots of the series are presented in Figures 3a
and 3b. The dataset is that compiled by Pfaffenzeller et al. (2007), which updated the
widely used dataset of Grilli and Yang (1988). These data have been studied extensively
to assess the Prebisch-Singer hypothesis (Prebisch, 1950, and Singer, 1950), examin-
ing evidence for downward trends in the relative commodity prices; our main interest
here, however, concerns the integration properties of the series, and thus complements
studies whose primary focus is on underlying trend behaviour. The unit root tests are
conducted at the nominal asymptotic 0.10, 0.05 and 0.01 significance levels, and, as in
the previous section, lag augmentation was performed using the MAIC approach of Ng
and Perron (2001) and Perron and Qu (2007), with pmax = b12(T/100)1/4c.

The results are reported in Table 1. We find that for four of the commodities
considered (aluminium, rubber, timber and zinc), the null hypothesis of a unit root is
rejected (at least at the 0.10 level) by both DF-QD τ and DF-QD q; moreover, in each
of these four cases, the three union of rejections strategies also indicate rejection of
the null. For eight commodity price series (banana, cocoa, cotton, hides, jute, silver,
tea and tin), no rejections are found at conventional significance levels by either of the
individual tests DF-QD τ and DF-QD q, thus no evidence against a unit root appears
to be present for these commodities. The inferences from URc, UR(|tλ|) and UR(|tm2

λ |)
are again consistent with those obtained from DF-QD τ and DF-QD q for these series,
which obviously follows since if neither of the individual unit root tests reject, the union
of rejections strategies cannot generate rejections of the null.

Of particular interest are the commodity series for which one, but not both, of
the individual tests DF-QD τ and DF-QD q results in rejection of the null. For the
beef, copper, lamb and sugar series, rejections are only obtained by the DF-QD τ test.
Given the analytical and simulation results, this pattern of rejections is suggestive of
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these series being stationary around a linear trend, with the non-rejections of DF-
QD q arising due to a lack of relative power. With the exception of sugar, rejections
of the null are also obtained through application of the union of rejections strategies,
again confirming the robust performance of these approaches. For the remaining eight
commodities (coffee, lead, maize, palmoil, rice, tobacco, wheat and wool), the DF-QD q

test results in rejection of the unit root null, in direct contrast to inference gleaned
from DF-QD τ . Recalling again the results of previous sections, it appears that these
series are best modelled by a stationary process around a quadratic trend, with the
test based on only a linear trend specification lacking power to reject the unit root null.
Turning to the union of rejections strategies for these eight commodities, we find that
rejections of the null are indicated in every case.

Figures 3a and 3b also present plots of the fitted deterministic components appro-
priate for series where rejections of the unit root null were obtained. Specifically, if
the DF-QD τ and/or DF-QD q tests reject for a given series, we super-impose the cor-
responding fitted linear and quadratic trends, obtained from the QD estimates of the
trend parameters so as to be consistent with the QD procedure involved in the unit
root tests. In the cases where only DF-QD q rejects, the fitted linear trends are clearly
seen to be insufficiently rich deterministic specifications, with the fitted quadratic trend
components displaying substantial nonlinearity. The quadratic specification allows for
a smooth evolution of the deterministic component from an upward (nonlinear) trend
at the beginning of the time series to a downward trend later in the sample period. One
possible interpretation is that the quadratic trends in these cases are acting as a local
approximation to one or more breaks in level or linear trend for these series, as stud-
ied by, for example, Leon and Soto (1997) and Kellard and Wohar (2006). However,
it should be stressed that the underlying DGP is unknown, and the quadratic trend
could be acting as a proxy for a variety of different deterministic generating processes,
as indeed a segmented trend function might. For the series where both DF-QD τ and
DF-QD q reject, the nonlinearity in the fitted quadratic trend is markedly less pro-
nounced, with the quadratic fit generally being close to that obtained from estimating
a linear trend alone, as might be expected in these cases. This pattern is even more
apparent for series where only DF-QD τ rejects, where the quadratic fits very closely
approximate the fitted linear trends in most cases.

It is also of interest to consider how a unit root testing approach based on pre-testing
for a quadratic trend would perform for these series. Table 1 also records rejections
of the null of no quadratic trend, against a two-sided alternative, by the two trend
tests introduced in section 4: |tλ| and |tm2

λ |. Consider then a strategy of conducting
tests for a quadratic trend using either |tλ| or |tm2

λ |, and then applying DF-QD q upon
rejection of the null of no quadratic trend, and DF-QD τ otherwise. Of course, pre-
testing can only affect the unit root test outcome when the individual unit root tests
differ in the conclusions they imply, hence we focus on the twelve series discussed in the
previous paragraph. We find that on the occasions where only DF-QD τ rejects (beef,
copper, lamb and sugar), neither of the pre-tests reject, thus both pre-test strategies
would result in rejections of the unit root null. However, of the eight series where
rejections are only obtained by DF-QD q (coffee, lead, maize, palmoil, rice, tobacco,
wheat and wool), pre-testing on the basis of tλ would result in using DF-QD q for just
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five series, thereby resulting in non-rejections of the unit root null in the remaining
three cases (coffee, palmoil and wool). Similarly, pre-testing on the basis of tm2

λ would
give rise to non-rejection of the unit root for four series (coffee, lead, rice and wheat).
These results are consistent with the anticipated problems associated with pre-testing
discussed in section 4, namely that for quadratic trends of small magnitude, the pre-
tests would be expected to have low power, but the quadratic trend (or the nonlinear
trend effect which it proxies) could still be large enough to drastically reduce the power
of DF-QD τ . Given the more robust results of URc, UR(|tλ|) and UR(|tm2

λ |), evidence
appears to exist in this dataset in favour of union of rejections strategies in preference
to pre-testing approaches. Moreover, unit root testing strategies based on pre-tests
conducted in this rudimentary manner lack proper asymptotic size control, and size
correction will further reduce the power of the overall strategies.

In summary, the attractive performance of the union of rejections strategies dis-
played in the Monte Carlo simulations is borne out in this empirical application, high-
lighting the potential advantages of such a unit root testing approach. With only one
exception (sugar), whenever either or both of the individual unit root tests reject, the
union of rejections strategies also suggest rejection of the null. If reliance was placed
purely on the DF-QD τ test, rejections of the null would be obtained for a total of
only eight series, due to the neglected quadratic trend component that appears to be
important in several cases, at least as a local approximation for the determinstic com-
ponent of those series. On the other hand, application of DF-QD q alone would lead
to a greater total number of rejections (twelve), but would fail to detect stationarity
for four of the commodities for which the linear trend-based test rejected. In contrast,
the union of rejections strategies detect departures from the unit root null for a total
of fifteen relative commodity price series, capturing all but one (0.10 level) rejection
implied by the two individual unit root tests taken together. We can also note that
in this application, the three different union of rejections strategies URc, UR(|tλ|) and
UR(|tm2

λ |) give almost identical inference to each other across the different series consid-
ered. Only for tobacco do the results differ, where we find that UR(|tλ|) and UR(|tm2

λ |)
indicate rejections at the 0.01 level, whereas URc implies rejection at only the 0.05
level. The more emphatic rejections suggested by UR(|tλ|) and UR(|tm2

λ |) are in line
with our theoretical results, and this result supports our recommendation to use either
UR(|tλ|) or UR(|tm2

λ |) in practice.
Finally, then, it appears that for roughly two-thirds of the relative price commod-

ity series considered, evidence of stationarity about some deterministic component is
detected. However, for many of these series, such evidence is only forthcoming when
allowance is made for a more flexible deterministic specification than is admitted by
a purely linear trend. Of course, a quadratic trend in these series may be unlikely to
persist into the long run, but it nonetheless appears to act well as a local approximation
to whatever (nonlinear) deterministic component is actually present in the unknown
data generating process, and does so without recourse to highly involved procedures
for estimating and dating complex models of deterministic structural change, as would
be required with, for example, multiple level or trend break models.
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8 Conclusions

In this paper we have investigated the impact that uncertainty over the presence or
otherwise of a local quadratic trend in the underlying data generating process has on
the quasi-differenced detrended Dickey-Fuller-type tests of Elliott et al. (1996), and
investigated new procedures which attempt to retain good power properties in the
presence of such uncertainty. We found that the quadratic detrended test, DF-QD q,
was much less powerful than the corresponding quasi-differenced linear detrended test,
DF-QD τ , in the absence of a quadratic trend, as would be expected. However, where
a non-trivial local quadratic trend was present, the DF-QD τ test was shown to have
negligible power. We consequently investigated a simple union of rejections based
decision rule whereby the unit root null is rejected if either DF-QD q or DF-QD τ yields
a rejection. For individual tests each run at a given significance level, this simple union
test was shown to be somewhat over-sized for small values of the local quadratic trend
parameter, and consequently we also developed a conservative version of this test using
a modified decision rule. We then showed that the power of the conservative procedure
could be further improved upon by using auxiliary information from a test statistic
for the presence of a quadratic trend to choose between the conservative and original
critical values when forming a decision rule for the union of rejections procedure. We
reported asymptotic and finite sample evidence which suggested that our simple union
of rejections decision rule performs very well in practice. It has the added advantage of
being very easy for practitioners to compute, and, with only a little extra computational
effort, can be further improved upon.

We subsequently employed the unit root tests and union of rejections strategies to
examine the integration properties of a set of relative primary commodity price series.
The additional flexibility afforded by the quadratic trend formulation was shown to
allow considerably more rejections of the unit root hypothesis than were obtained under
a simpler linear trend formulation, highlighting the potential value of local quadratic
trend models as approximations to the unknown, potentially nonlinear, deterministic
component. Further, with only one exception, when either or both of DF-QD τ and DF-
QD q rejected the unit root null, so did the recommended union of rejections strategies,
illustrating the usefulness of these new robust procedures. Overall, we find evidence of
stationarity about a possibly nonlinear trend for about two-thirds of the commodities
considered.

Appendix

Proof of Lemma 1

In what follows, we may set µ = β = 0 in the DGP due to invariance of DF-QD τ and
DF-QD q to these parameters, i.e. yt = κT−3/2t2 +ut. In the following algebra, nothing
of asymptotic consequence is lost if we make the simplifying assumption that εt = et,
so that ω2

ε = σ2
ε = σ2, allowing us to impose p = 0 in the Dickey-Fuller regressions.
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Limit distribution of DF-QD τ

First observe that the scaled limit of the QD-detrended residuals, ũt := yt − µ̃ − β̃t
satisfy

T−1/2ũbrT c = T−1/2ubrT c + κr2 − T−1/2µ̃− T 1/2β̃r.

In order to establish the large sample of T−1/2µ̃ and T 1/2β̃ notice that[
µ̃

β̃

]
:=

[
1 + (1− ρ̄)2(T − 1) 1 + (1− ρ̄)

∑T
t=2{t− ρ̄(t− 1)}

1 + (1− ρ̄)
∑T

t=2{t− ρ̄(t− 1)} 1 +
∑T

t=2{t− ρ̄(t− 1)}2

1 + (1− ρ̄)
∑T

t=2{t2 − ρ̄(t− 1)2}
1 +

∑T
t=2{t− ρ̄(t− 1)}2

]−1 [
y1 + (1− ρ̄)

∑T
t=2(yt − ρ̄yt−1)

y1 +
∑T

t=2(yt − ρ̄yt−1){t− ρ̄(t− 1)}

]
.

Denote the right hand side of the above expression by A−1B, with aij denoting the
(i, j) element of A, and bi the ith element of B. The asymptotic behaviour of the terms
comprising A are as follows:

a11 = 1 + c̄2τT
−2(T − 1) → 1

a12 = 1 + c̄τT
−1(T − 1) + c̄2τT

−2
∑T

t=2 t+ o(1) → 1 + c̄τ + c̄2τ/2

a22 = T + 2c̄τT
−1
∑T

t=2 t+ c̄2τT
−2
∑T

t=2 t
2 + o(T )

so that T−1a22 → 1 + c̄τ + c̄2τ/3 =: π1,c̄τ . The corresponding results for the elements of
B are as follows:

b1 = y1 + c̄τT
−1(yT − y1) + c̄2τT

−2
∑T

t=2 yt−1 = u1 + op(1)

so that T−1/2b1
p→ 0; next, since b2 = yT + c̄τT

−1
∑T

t=2 yt−1 + c̄τT
−1
∑T

t=2 t∆yt +

c̄2τT
−2
∑T

t=2 tyt−1 + op(T
1/2), we have that

T−1/2b2 = κ+ T−1/2uT + c̄τT
−3/2

∑T
t=2 ut−1 + 3c̄τκT

−3
∑T

t=2 t
2 + c̄τT

−3/2
∑T

t=2 t∆ut

+c̄2τT
−5/2

∑T
t=2 tut−1 + c̄2τκT

−4
∑T

t=2 t
3 + op(1)

d→ κ+ σWc(1) + c̄τσ
1∫
0

Wc(s)ds+ c̄τκ+ c̄τσ

{
Wc(1)−

1∫
0

Wc(s)ds

}
+c̄2τσ

1∫
0

sWc(s)ds+ c̄2τκ/4

= σ

{
(1 + c̄τ )Wc(1) + c̄2τ

1∫
0

sWc(s)ds+ κ∗(1 + c̄+ c̄2/4)

}
= σ{M1,c̄τ + κ∗π2,c̄τ}.

Consequently we obtain that[
T−1/2µ̃

T 1/2β̃

]
=

[
a11 T−1a12

a12 T−1a22

]−1 [
T−1/2b1
T−1/2b2

]
d→
[

1 0
1 + c̄τ + c̄2τ/2 π1,c̄τ

]−1 [
0

σ{M1,c̄τ + κ∗π2,c̄τ}

]
=

[
0

σπ−1
1,c̄τ

{M1,c̄τ + κ∗π2,c̄τ}

]
.
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Using the foregoing results and applications of the CMT we therefore obtain that

T−1/2ũbrT c
d→ σWc(r) + κr2 − σπ−1

1,c̄τ
{M1,c̄τ + κ∗π2,c̄τ}r

= σ{Wc(r)− π−1
1,c̄τ

M1,c̄τ r + κ∗(r2 − π−1
1,c̄τ

π2,c̄τ r)} =: σJτ,c̄τ
c (r).

Noting that Jτ,c̄τ
c (0) = 0, together with the fact that the error variance estimator from

(3) converges in probability to σ2, the stated result for DF-QD τ in (4) then follows
using standard arguments.

Limit distribution of DF-QD q

The theoretical results presented by Elliott et al. (1996) allow for polynomial trends
in the deterministic component, and a generic limit distribution for the point-optimal
likelihood ratio unit root test is provided in their appendix. Here, we explicitly derive
the limit distribution of the QD-detrended Dickey-Fuller-type test statistic for the
specific case of a quadratic trend. Due to the invariance of DF-QD q to γ, we can
additionally set γ = 0 in the DGP without loss of generality, so that yt = ut. The
proof then follows along similar lines as that for DF-QD τ . The QD-detrended residuals
are in this case given by ũt = yt − µ̃− β̃t− γ̃t2, so that

T−1/2ũbrT c = T−1/2ubrT c − T−1/2µ̃− T 1/2β̃r − T 3/2γ̃r2.

The large sample behaviour of T−1/2µ̃, T 1/2β̃ and T 3/2γ̃ can be obtained as follows µ̃

β̃
γ̃

 :=

 1 + (1− ρ̄)2(T − 1) 1 + (1− ρ̄)
∑T

t=2{t− ρ̄(t− 1)}
1 + (1− ρ̄)

∑T
t=2{t− ρ̄(t− 1)} 1 +

∑T
t=2{t− ρ̄(t− 1)}2

1 + (1− ρ̄)
∑T

t=2{t2 − ρ̄(t− 1)2} 1 +
∑T

t=2{t− ρ̄(t− 1)}{t2 − ρ̄(t− 1)2}

1 + (1− ρ̄)
∑T

t=2{t2 − ρ̄(t− 1)2}
1 +

∑T
t=2{t− ρ̄(t− 1)}{t2 − ρ̄(t− 1)2}
1 +

∑T
t=2{t2 − ρ̄(t− 1)2}2

−1  y1 + (1− ρ̄)
∑T

t=2(yt − ρ̄yt−1)

y1 +
∑T

t=2(yt − ρ̄yt−1){t− ρ̄(t− 1)}
y1 +

∑T
t=2(yt − ρ̄yt−1){t2 − ρ̄(t− 1)2}


As before, denote the right hand side of the above expression by A−1B. The limits of
a11, a12 and a22 are as for the DF-QD τ proof above, but with c̄τ replaced by c̄q. The
limits of the remaining terms in A are

a13 = 2c̄qT
−1
∑T

t=2 t+ c̄2qT
−2
∑T

t=2 t
2 + o(T )

a23 = 2
∑T

t=2 t+ 3c̄qT
−1
∑T

t=2 t
2 + c̄2qT

−2
∑T

t=2 t
3 + o(T 2)

a33 = 4
∑T

t=2 t
2 + 4c̄qT

−1
∑T

t=2 t
3 + c̄2qT

−2
∑T

t=2 t
4 + o(T 3)

so that T−1a13 → c̄q + c̄2q/3, T−2a23 → 1 + c̄q + c̄2q/4 =: π2,c̄q , and T−3a33 → 4/3 + c̄q +
c̄2q/5 =: π3,c̄q , respectively. The limits of b1 and b2 are also as for the DF-QD τ proof,

with c̄τ replaced by c̄q and κ = 0, i.e. T−1/2b1
p→ 0, T−1/2b2

d→ σM1,c̄q . Turning to b33,
we have that

b3 = 2
∑T

t=2 t∆yt + 2c̄qT
−1
∑T

t=2 tyt−1 + c̄qT
−1
∑T

t=2 t
2∆yt

+c̄2qT
−2
∑T

t=2 t
2yt−1 + op(T

3/2)
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so that

T−3/2b3 = 2T−3/2
∑T

t=2 t∆ut + 2c̄qT
−5/2

∑T
t=2 tut−1 + c̄qT

−5/2
∑T

t=2 t
2∆ut

+c̄2qT
−7/2

∑T
t=2 t

2ut−1 + op(1)

d→ 2σ

{
Wc(1)−

1∫
0

Wc(s)ds

}
+ 2c̄q

1∫
0

sWc(s)ds+ c̄q

{
Wc(1)− 2

1∫
0

sWc(s)ds

}
+c̄2q

1∫
0

s2Wc(s)ds

= σ

{
(2 + c̄q)Wc(1)− 2

1∫
0

Wc(s)ds+ c̄2q

1∫
0

s2Wc(s)ds

}
= σM2,c̄q .

Collecting results we therefore have, using the CMT, that T−1/2µ̃

T 1/2β̃
T 3/2γ̃

 =

 a11 T−1a12 T−2a13

a12 T−1a22 T−2a23

T−1a13 T−2a23 T−3a33

−1  T−1/2b1
T−1/2b2
T−3/2b3


d→

 1 0 0
1 + c̄τ + c̄2τ/2 π1,c̄q π2,c̄q

c̄q + c̄2q/3 π2,c̄q π3,c̄q

−1  0
σM1,c̄q

σM2,c̄q


=

 0
σd−1

c̄q
(π3,c̄qM1,c̄q − π2,c̄qM2,c̄q)

σd−1
c̄q

(π1,c̄qM2,c̄q − π2,c̄qM1,c̄q)

 .
Using the CMT, it then follows immediately that

T−1/2ũbrT c
d→ σ{Wc(r)−d−1

c̄q
(π3,c̄qM1,c̄q−π2,c̄qM2,c̄q)r−d−1

c̄q
(π1,c̄qM2,c̄q−π2,c̄qM1,c̄q)r

2} =: σJq,c̄q
c (r).

Noting that J
q,c̄q
c (0) = 0, and that the error variance estimator from (3) converges in

probability to σ2, the stated result for DF-QD q in (5) again follows using standard
arguments.

Proof of Lemma 2

Since ρT = 1− c/T , 0 ≤ c <∞, it follows from straightforward generalizations of the
results in Harvey et al. (1997) that t0 = op(T

1/2) and that λ = 1 + op(T
−1/2), so that

tλ = t1 + op(1) and tm2
λ = ηξR2t1 + op(1). To find the limiting distribution of tλ, we

therefore need only in this case establish the limiting distribution of t1. The numerator
of t1 is given by

δ̂2 = δ2 +

∑T
t=2

{
t− (T − 1)−1

∑T
s=2 s

}
vt∑T

t=2

{
t− (T − 1)−1

∑T
s=2 s

}2

= 2κT−3/2 +

∑T
t=2 t∆ut − (T − 1)−1

∑T
t=2 t

∑T
t=2 ∆ut∑T

t=2 t
2 − (T − 1)−1

(∑T
t=2 t

)2
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so that

T 3/2δ̂2 = 2κ+
T−3/2

∑T
t=2 t∆ut − T−2

∑T
t=2 t.T

−1/2uT

T−3
∑T

t=2 t
2 −

(
T−2

∑T
t=2 t

)2 + op(1)

d→ 2κ+ 12

{
1

2
ωεWc(1)− ωε

1∫
0

Wc(r)dr

}
.

On scaling by T 3/2, the denominator of t1 is given by

T 3/2

√
ω̂2

v[(
∑T

t=1 ztz′t)
−1]22 =

√
ω̂2

v

[
T−3

∑T
t=2 t

2 −
(
T−2

∑T
t=2 t

)2
]−1

+ op(1)

p→
√

12ω2
ε.

since ω̂2
v

p→ ω2
v = ω2

ε under the local-to-unit root specification for ut. The limiting
distribution of t1, and hence of tλ, then obtains using the CMT as

tλ
d→

2κ+ 12
{

1
2
ωεWc(1)− ωε

∫ 1

0
Wc(r)dr

}
√

12ω2
ε

=
κ∗√
3

+
√

12

{
1
2
Wc(1)−

∫ 1

0

Wc(r)dr

}
.

Given that the limiting distributions of t1 and tλ coincide, in deriving the limit of tm2
λ

we need only establish the asymptotic behaviour of R2. It is entirely straightforward
to show that

T−1σ̂2
u

d→ ω2
ε

1∫
0

Nc(r)
2dr

and, since ω̂2
v

p→ ω2
ε, we therefore have that

R2
d→
{∫ 1

0

Nc(r)
2dr

}−2

.

An application of the CMT then yields the result that

tm2
λ

d→ ηξ

{∫ 1

0

Nc(r)
2dr

}−2 [
κ∗√
3

+
√

12

{
1
2
Wc(1)−

∫ 1

0

Wc(r)dr

}]
completing the proof.
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Table 1. Application of unit root tests to relative primary commodity prices: 1900–2003

DF-QDτ DF-QDq URc UR(|tλ|) UR(|tm2
λ |) |tλ| |tm2

λ |
Aluminium −2.902** −3.326* * * *
Banana −1.325 −2.957 ** *
Beef −2.882** −2.896 * * *
Cocoa −2.036 −2.071
Coffee −2.273 −3.413* * * *
Copper −2.843* −2.897 * * *
Cotton −0.868 −2.343 ***
Hides −1.435 −1.479
Jute −0.739 −1.590 ***
Lamb −3.006** −3.010 * * *
Lead −1.344 −3.916** ** ** ** **
Maize −0.535 −5.301*** *** *** *** *** ***
Palmoil −1.448 −4.547*** *** *** *** **
Rice −0.931 −3.777** ** ** ** ***
Rubber −3.216** −3.539** ** ** **
Silver −1.777 −1.844
Sugar −2.652* −2.659
Tea −2.068 −2.941
Timber −3.382** −3.746** ** ** **
Tin −2.100 −2.607
Tobacco −0.710 −4.069*** ** *** *** *** ***
Wheat −1.144 −4.112*** ** ** ** *
Wool −0.825 −4.553*** *** *** *** ***
Zinc −4.621*** −4.682*** *** *** ***

Note: *, ** and *** denote rejection of the relevant null hypothesis at the 0.10-, 0.05- and
0.01-levels respectively.
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Figure 1. Asymptotic size and local power: γ = κT−3/2
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(a) κ = 0 (b) κ = 1

(c) κ = 2 (d) κ = 3

(e) κ = 4 (f) κ = 5

Figure 2. Finite sample and power: T = 150, γ = κT−3/2
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Figure 3a. Relative primary commodity price series and fitted deterministic components
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Figure 3b. Relative primary commodity price series and fitted deterministic components
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