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Abstract

The contribution of this paper is three-fold. Firstly, a characterisation theorem
of the sub-hypotheses comprising the seasonal unit root hypothesis is presented
which provides a precise formulation of the alternative hypotheses against which
regression-based seasonal unit root tests test. Secondly, it proposes regression-
based tests for the seasonal unit root hypothesis which allow a general seasonal
aspect for the data and are similar both exactly and asymptotically with respect
to initial values and seasonal drift parameters. Thirdly, limiting distribution
theory is given for these statistics where, in contrast to previous papers in the
literature, in doing so it is not assumed that unit roots hold at all of the zero
and seasonal frequencies. This is shown to alter the large sample null distribu-
tion theory for regression t-statistics for unit roots at the complex frequencies,
but interestingly to not affect the limiting null distributions of the regression
t-statistics for unit roots at the zero and Nyquist frequencies and regression F -
statistics for unit roots at the complex frequencies. Our results therefore have
important implications for how tests of the seasonal unit root hypothesis should
be conducted in practice. Associated simulation evidence on the size and power
properties of the statistics presented in this paper is given which is consonant
with the predictions from the large sample theory.

Keywords: Seasonal unit root tests; seasonal drifts; characterisation theorem.

JEL Classification: C22.

∗The first author is grateful for financial support for this research under ESRC Grant No.
R000237334. Correspondence to: Robert Taylor, School of Economics, The Sir Clive Granger Building,
University of Nottingham, Nottingham NG7 2RD, U.K. Email: Robert.Taylor@nottingham.ac.uk

1



1 Introduction

This paper considers testing for seasonal unit roots in a univariate time-series process;
that is, whether or not the data generating process (DGP) for the time series admits
unit roots at the zero, Nyquist and harmonic seasonal frequencies. We allow a general
seasonal aspect for the data and permit the drift parameter to vary across the seasons
under the null hypothesis that the data is generated by a seasonal random walk DGP.
Differential seasonal drift allows the amplitude of the variation across the seasons of
the deterministic component in the level of the time-series to vary (linearly) through
time in order that its relative magnitude may be maintained. Constant drift implies
that the amplitude is constant over time. The tests considered in this paper are similar,
both exactly and asymptotically, with respect to the possibility of differential seasonal
drift as well as to initial conditions.

Existing tests for seasonal unit roots are predicated on more restricted specifications
for the deterministics or are confined to consideration of particular values for the sea-
sonal aspect of the data. Hylleberg et al. (1990), HEGY henceforth, develop regression-
based tests for seasonal unit roots in a quarterly context as separate t- and F -tests
for unit roots at the zero, Nyquist and annual frequencies. They consider regressions
which may include an intercept, seasonal intercepts and a trend variable. Depending
on the DGP when seasonal unit roots are present and which regression formulation is
adopted, the corresponding statistics will be similar, both exactly and asymptotically,
with respect to particular nuisance parameters, for example, initial values and the
value of the drift parameter in the DGP. Ghysels et al. (1994) (GLN) provide critical
values for other F -statistics of interest in the quarterly context. Beaulieu and Miron
(1993) (BM) discuss the corresponding test statistics appropriate for monthly data.
Smith and Taylor (1998) (ST1) and Taylor (1998) have generalized the regression-
based approach of HEGY and BM to allow for differential seasonal drift in quarterly
and monthly scenarios respectively. However, the HEGY tests are not similar (ei-
ther exactly or asymptotically) with respect to drift which displays seasonal variation.
As noted by GLN (p.436), the safer strategy in applications is to include potentially
irrelevant deterministics in order to avoid erroneous inferences.

Section 2 of the paper sets out the problem for a univariate time series whose DGP
is specified as a general autoregression (AR). Section 3 presents a decomposition of
the AR polynomial in terms of polynomials which isolate the possible unit roots corre-
sponding to each spectral frequency. Section 4 develops a regression-based approach to
testing for seasonal unit roots and explores the impact of the decomposition of section
3 on testing for seasonal unit roots. Section 5 details representations for the asymp-
totic null distributions of the seasonal unit root statistics. Here, and in contrast to
previous papers in the literature, we do not assume in deriving our results that the
unit root null hypothesis holds at all of the zero and seasonal frequencies. Relative to
the case where unit roots are present at all frequencies, this is shown to alter the large
sample null distribution theory for regression t-statistics for unit roots at the complex
frequencies, but to not affect the limiting null distributions of the regression t-statistics
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for unit roots at the zero and Nyquist frequencies and regression F -statistics for unit
roots at the complex frequencies. The limiting null distributions of joint F -statistics
for the null hypothesis of unit roots at all of the seasonal frequencies, and at both
the zero and all of the seasonal frequencies are also both unaffected. A Monte Carlo
investigation into the finite sample properties of the statistics is provided in Section 5
and shows that the limiting distribution theory provides a useful prediction for small
sample behaviour. Our work therefore provides a useful complement to Taylor (2003)
who showed that the limiting null distributions of the seasonal unit root tests of Canova
and Hansen (1992) are not pivotal in the presence of unattended unit roots at the zero
or seasonal frequencies. Our results enable us to make firm recommendations on which
of the available statistics should (and which should not) be used in practice. Section
6 concludes the paper. An appendix contains the proofs of our main results and some
general results on circulant matrices.

2 The Problem

Let S denote the seasonal order of the data; for example, if the time-series is quarterly,
S = 4, or, if monthly, S = 12. The model for the univariate time series process {xSt+s}
is given by:

α(L) [xSt+s − γ∗s − δ∗s(St+ s)] = uSt+s, s = 1− S, ..., 0, t = 1, 2, . . . , (2.1)

where α(z) is an autoregressive (AR) polynomial of order S, α(z) ≡ 1 −
∑S

j=1 α
∗∗
j z

j.
We adopt the following convention for the lag operator L here and throughout the
paper; viz. L operates on the process {xSt+s} in the standard manner, LSj+kxSt+s =
xS(t−j)+s−k, whereas, for the purely seasonally varying coefficients, LSj+kγ∗s (≡ γ∗s−Sj−k)

= γ∗s−k, L
Sj+kδ∗s(≡ δ∗s−Sj−k) = δ∗s−k if 1−S ≤ s−k ≤ 0 and γ∗S+s−k and δ∗S+s−k otherwise,

k = 0, ..., S−1, j = 1, 2, .... The specification (2.1) allows for the presence of differential
seasonal intercept and time-trend terms via γ∗s and δ∗s respectively, s = 1−S, ..., 0. The
error process {uSt+s} in (2.1) is assumed to follow an AR(p) process; viz.,

φ(L)uSt+s = εSt+s, (2.2)

where φ(z) ≡ 1 −
∑p

i=1 φiz
i is a stationary (the roots of φ(z) = 0 all lie outside the

unit circle |z| = 1) AR polynomial of order p, 0 ≤ p < ∞, and {εSt+s} a martingale
difference sequence (MDS) with constant conditional variance, σ2; see Fuller (1996,
Theorem 5.3.5,pp.236-37) for precise assumptions on {εSt+s}. For notational conve-
nience, we define S∗ as (S/2)− 1 (if S is even) and [S/2] (if S is odd), where [S/2] is
the integer part of S/2.

Combining the AR(S) process (2.1) for {xSt+s} with the AR(p) process (2.2) for
the error process {uSt+s}, we may re-cast the AR(S + p) process {xSt+s} alternatively
as:

α∗(L)xSt+s = γ∗∗s + δ∗∗s (St+ s) + εSt+s, s = 1− S, ..., 0, t = 1, 2, . . . , (2.3)
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where the AR(S + p) polynomial α∗(z) ≡ α(z)φ(z) = 1 −
∑S+p

i=1 α
∗
i z

i, γ∗∗s ≡ (γ∗s −∑S+p
j=1 α

∗
jγ

∗
s−j) +

∑S+p
j=1 jα

∗
jδ
∗
s−j and δ∗∗s ≡ (δ∗s −

∑S+p
j=1 α

∗
jδ
∗
s−j).

This paper is concerned with regression-based tests for seasonal unit roots in the
autoregressive AR(S) lag polynomial α(z); that is, the null hypothesis of interest is

H0 : α(z) = 1− zS; (2.4)

the corresponding alternative hypothesis H1 is stated in section 3.
The hypothesis H0 of (2.4) induces γ∗∗s = S(δ∗s −

∑p
j=1 φjδ

∗
s−j) and δ∗∗s = 0 in (2.3)

as γ∗s ≡ γ∗s−S and δ∗s ≡ δ∗s−S, s = 1 − S, ..., 0. Thus, the DGP for {xSt+s} is that of a
seasonal unit root process with seasonal drifts

∆SxSt+s = γ∗∗s + uSt+s, s = 1− S, ..., 0, t = 1, 2, . . . , (2.5)

where ∆S ≡ 1 − LS is the seasonal difference operator. Solving (2.5) for the level
process {xSt+s} results in

xSt+s = xs + γ∗∗s t+
t∑

v=1

uSv+s, s = 1− S, ..., 0, t = 1, 2, . . . . (2.6)

Under H0, there is no deterministic trend present in the DGP of the differenced pro-
cess {∆SxSt+s} and, therefore, deterministic linear trends in the level process {xSt+s}
through the presence of the differential seasonal drifts, γ∗∗s , s = 1 − S, ..., 0, indicated
by (2.6). Moreover, the specification (2.1)-(2.2) and (2.3) ensures that the determin-
istic trending behaviour of the level process {xSt+s} is linear under both H0 and the
alternative hypothesis when α(z) is a stationary AR(S) polynomial as is evident from a
comparison of (2.3) and (2.6). Consequently, we can see from a comparison of (2.3) and
(2.6) that the level process {xSt+s} will display similar deterministic linear trending be-
haviour in both trend-stationary and seasonal difference-stationary environments, that
is, whether or not the seasonal unit root hypothesis holds. Moreover, from (2.6), the
amplitude of the seasonal variation of the deterministic component xs +γ∗∗s t of {xSt+s}
is permitted to vary through time in a linear fashion, s = 1− S, ..., 0, t = 1, 2, . . ..

We may also identify other scenarios of interest within (2.1), and hence (2.3), which
are special cases thereof: (i) no intercept, no time-trend: γ∗s = 0, δ∗s = 0, s = 1−S, ..., 0;
(ii) intercept, no time-trend: γ∗s = γ∗, s = 1 − S, ..., 0, δ∗s = 0, s = 1 − S, ..., 0; (iii)
seasonal intercepts, no time-trend: δ∗s = 0, s = 1 − S, ..., 0; (iv) intercept, time-trend:
γ∗s = γ∗, s = 1 − S, ..., 0, δ∗s = δ∗, s = 1 − S, ..., 0; (v) seasonal intercepts, time-trend:
δ∗s = δ∗, s = 1− S, ..., 0.
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3 A Characterisation Theorem

In formulating regression-based tests for seasonal unit roots, previous studies employ
an alternative representation for the polynomial α∗(z) ≡ α(z)φ(z); see, for example,
HEGY (Proposition, p.221) and the local expansion approach of ST1 ((2.9), p.272)
and Smith and Taylor (1999, (2.11)), ST2 henceforth. This representation for α∗(z)
employs filters which remove the possibility of seasonal unit roots in {xSt+s} apart from
at the seasonal frequency of interest. However, although the decomposition for α∗(z)
given in these papers enables one to identify particular resultant regressors with specific
sub-hypotheses of H0 of (2.4) defined at the seasonal frequencies, the corresponding
sub-hypotheses forming the alternative against which the null hypothesis H0 is being
tested remain unclear. Proposition 3.1 below resolves this ambiguity and enables an
exact description of the alternative hypotheses examined by the test statistics of earlier
research and those discussed here.

We denote the seasonal frequencies as ωk ≡ 2πk/S, k = 0, ..., [S/2]. Therefore,
letting i ≡

√
(−1), we factorise the AR(S) polynomial α(L) at the seasonal frequencies

as:
α(L) =

∏
[S/2]
k=0 ωk(L), (3.1)

where the lag polynomial
ω0(L) ≡ (1− α0L) (3.2)

associates the parameter α0 with the zero frequency ω0 ≡ 0, the lag polynomials ωk(L),
k = 1, ..., S∗, in (3.1) correspond to the conjugate seasonal frequencies (ωk, 2π − ωk),
respectively, whose roots occur as the conjugate pair αk ± βki, and are defined by

ωk(L) ≡ [1− (αk + βki) exp (iωk)L] [1− (αk − βki) exp (−iωk)L]

= 1− 2 (αk cosωk − βk sinωk)L+ (α2
k + β2

k)L
2, (3.3)

with corresponding parameters αk and βk, k = 1, ..., S∗, together with

ωS/2(L) ≡ (1 + αS/2L), (3.4)

with the Nyquist frequency ωS/2 ≡ π parameter αS/2 when S is even.
Consequently, the null hypothesis H0 of (2.4) may be partitioned as

H0 =
(
∩kH

α
0,k

)
∩
(
∩kH

β
0,k

)
(3.5)

where Hα
0,k : αk = 1, k = 0, ..., [S/2] and Hβ

0,k : βk = 0, k = 1, ..., S∗. The hypothesis
Hα

0,0 : α0 = 1 corresponds to a unit root at the zero-frequency ω0 = 0, while Hα
0,S/2 :

αS/2 = 1 yields a unit root at the Nyquist frequency ωS/2 = π. A unit root at the

conjugate seasonal frequencies (ωk, 2π−ωk) is obtained under H0,k ≡ Hα
0,k ∩H

β
0,k, that

is, H0,k : αk = 1, βk = 0, k = 1, ..., S∗.

The alternative hypothesis, denotedH1, may be succinctly stated asH1 = ∪[S/2]
k=0 H1,k

where the sub-hypotheses H1,0 : α0 < 1, H1,k : α2
k + β2

k < 1, k = 1, ..., S∗, and
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H1,S/2 : αS/2 < 1, if S is even. Notice, therefore, that the maintained hypothesisH0∪H1

excludes the possibility of unit roots at all frequencies other than ωk, k = 0, ..., [S/2],
and permits the possibility of a single unit root at frequencies ωk, k = 0, [S/2], and a
complex conjugate pair of unit roots at each of the harmonic seasonal frequencies ωk,
k = 1, ..., S∗.

Under H0,k = Hα
0,k ∩H

β
0,k, the polynomial ωk(z) of (3.3) becomes

ω0
k(z) ≡ [1− exp(iωk)z][1− exp(−iωk)z]

= 1− 2 cosωkz + z2,

k = 1, ..., S∗. Similarly, under Hα
0,0 : α0 = 1, ω0(z) of (3.2) reduces to ω0

0(z) ≡ 1 − z,
and, if S is even, under Hα

0,S/2 : αS/2 = 1, ωS/2(z) of (3.4) is ω0
S/2(z) ≡ 1 + z.

A more convenient parameterisation for the null hypothesis H0 of (2.4) and its
constituent sub-hypotheses H0,k, k = 0, ..., [S/2], than that given in (3.2)-(3.4) may
be obtained in terms of deviations of length and phase from the seasonal unit roots
exp (±iωk), k = 0, ..., [S/2]. Define the length rk ≡ (α2

k + β2
k)

1/2 and the phase shift
θk ≡ tan−1(βk/αk). Hence, from (3.3),

ωk(z) = [1− rk exp[i(θk + ωk)]z][1− rk exp[−i(θk + ωk)]z]

= 1− 2rk cos(θk + ωk)z + r2
kz

2. (3.6)

Therefore, from (3.6), we may express

ωk(z) = ω0
k(z) + γk[−(cosωk − z)z] + δk[sinωkz],

where

γk = r2
k − 1, δk = (sinωk)

−1
(
(r2

k − 1) cosωk − 2[rk cos(θk + ωk)− cosωk]
)
, (3.7)

k = 1, ..., S∗. For frequencies ω0 and ωS/2, ω0(z) = ω0
0(z)− γ0z, where γ0 ≡ r0− 1, and

ωS/2(z) = ω0
S/2(z) + γS/2z, where γS/2 ≡ rS/2− 1. In (3.7), the parameter γk represents

the deviation of the length of the kth root from unity and δk is a combination of the
length deviation γk and the phase shift θk, k = 1, ..., S∗. Thus, the seasonal unit root
hypothesis H0,k may be re-expressed as H0,k = Hγ

0,k ∩Hδ
0,k, with

Hγ
0,k : γk = 0, Hδ

0,k : δk = 0,

where the sub-hypothesis Hγ
0,k : γk = 0 is the unit root length restriction r2

k = 1 and,

conditional onHγ
0,k : γk = 0, Hδ

0,k : δk = 0 is the phase shift restriction θk = 0 in (3.6) as,
under γk = 0, δk = −2[cos(θk +ωk)−cosωk]/ sinωk, k = 1, ..., S∗. Correspondingly, the
alternative hypothesis H1,k may be simply expressed as Hγ

1,k : γk < 0, k = 0, ..., [S/2].
The following proposition defines a decomposition of the AR(S + p) polynomial

α∗(z) in terms of polynomials ∆0
k(z), defined below, associated with the seasonal fre-

quencies ωk, k = 0, ..., [S/2]. In particular, the polynomial ∆0
k(z) involves seasonal

filters which, under the maintained hypothesis H0∪H1, remove the possible presence of
seasonal unit roots at all seasonal frequencies ωj, j 6= k, apart from ωk, k = 0, ..., [S/2].
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Proposition 1 (Characterisation Theorem.) The polynomial α∗(z) ≡ α(z)φ(z) may
be expressed as

α∗(z) = φ∗(z)∆S(z)− π∗0z∆
0
0(z)− π∗S/2z∆

0
S/2(z)

−
[S/2]∑
k=0

(
π∗k,α[−(cosωk − z)z] + π∗k,β[sinωkz]

)
∆0

k(z), (3.8)

dropping the term −π∗S/2z∆
0
S/2(z) if S is odd, where

π∗0 ≡ −Λ∗
0γ0, π

∗
S/2 ≡ Λ∗

S/2γS/2,

π∗k,α ≡ Re(Λ∗
k)γk − Im(Λ∗

k)δk, π
∗
k,β ≡ Re(Λ∗

k)δk + Im(Λ∗
k)γk, (3.9)

k = 1, ..., S∗, φ∗(z) ≡ 1−
∑p

i=1 φ
∗
i z

i is a stationary polynomial, the parameters γk and

δk are defined in (3.7), ∆0
k(z) ≡ −

∏[S/2]
j 6=k,j=0 ω

0
k(z) and

Λ∗
k ≡

∆k[exp(−iωk)]

∆0
k[exp(−iωk)]

φ[exp(−iωk)],

∆k(z) ≡ −
∏[S/2]

j 6=k,j=0 ωk(z), k = 0, ..., [S/2].

Remark 1: Observe that

∆0
0(z) ≡ −

(
1 + z + ...+ zS−1

)
,∆0

S/2(z) ≡ −
(
1− z + z2 − ...− zS−1

)
,

∆0
k (z) = − 1

sinωk

S−1∑
j=0

sin[(j + 1)ωk]z
j, (3.10)

k = 1, ..., S∗; see ST2 (equation (2.16)). �

It is immediate from Proposition 1 that the sub-hypotheses H0,k = Hγ
0,k ∩Hδ

0,k of a
seasonal unit root at frequency ωk, k = 0, ..., [S/2], may be simply re-stated from (3.9)
in the form

H0,0 : π∗0 = 0, H0,S/2 : π∗S/2 = 0,

H0,k : π∗k,α = π∗k,β = 0, (3.11)

k = 1, ..., S∗. However, the corresponding sub-hypotheses Hγ
1,k : γk < 0 of the alterna-

tive hypothesis H1 = ∪[S/2]
k=0 H

γ
1,k may not be simply expressed in terms of the coefficients

π∗k,α and π∗k,β, k = 1, ..., S∗, of (3.9).
The polynomials z∆0

0(z), z∆
0
S/2(z), −(cosωk − z)z∆0

k(z) and sinωkz∆
0
k(z), k =

1, ..., S∗, in (3.8) are precisely those employed in earlier research when constructing
regression-based t- and F -tests for seasonal unit roots; see inter alia HEGY, GLN,
BM and ST1. However, Proposition 1 emphasises that the corresponding regression
coefficients π∗k,α and π∗k,β of (3.9) are both (linear) functions of the length deviation
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parameter γk and the composite length deviation and phase shift parameter δk, k =
1, ..., S∗. This observation holds even in the special case when ∆k(z) = ∆0

k(z), that
is, there are unit roots at all other seasonal frequencies j 6= k, and, thus, Re(Λ∗

k) =
Re(φ[exp(−iωk)]) and Im(Λ∗

k) = Im(φ[exp(−iωk)]). However, if the order of the AR
polynomial φ(z) is also zero, that is, p = 0, then Re(Λ∗

k) = 1 and Im(Λ∗
k) = 0 in which

case
α∗(z) = ∆S(z)− [ωk(z)− ω0

k(z)]∆
0
k(z)

= ∆S(z)− γk[−(cosωk − z)z]∆0
k(z)− δk[sinωkz]∆

0
k(z).

Therefore one can uniquely identify the unit root length restriction γk = 0 with the
polynomial −(cosωk− z)z∆0

k(z) and, conditional on γk = 0, the phase shift restriction
θk = 0 with the polynomial sinωkz∆

0
k(z), k = 1, ..., S∗. We comment further on the

impact of these results for testing H0 of (2.4) in the discussion of section 4.
For completeness, we detail the relationship between the general decomposition for

α∗(z) given in Proposition 1 and the local expansion approach of, for example, ST1 and
ST2. In order to do so we re-parameterise (3.1)-(3.3) as α0 = 1+π0, αk = 1+(πk,α/2),
βk = πk,β/2, k = 1, ..., S∗, and, if S is even, αS/2 = 1 + πS/2. Hence, γ0 = π0,
γk = πk,α + o(πk,α), δk = πk,β + o(πk,β), k = 1, ..., S∗, and, if S is even, γS/2 = πS/2. We
therefore obtain the following result.

Corollary 1 (Local Expansion Characterisation Theorem.) The polynomial α∗(z) ≡
α(z)φ(z) may be expressed as

α∗(z) = φ∗(z)∆S(z)− π∗0z∆
0
0(z)− π∗S/2z∆

0
S/2(z)

−
S∗∑

k=1

(
π∗k,α[−(cosωk − z)z] + π∗k,β[sinωkz]

)
∆0

k(z) + o({πk,α, πk,β}),

dropping the term −π∗S/2z∆
0
S/2(z) if S is odd, where

π∗0 ≡ −φ(1)π0, π
∗
S/2 ≡ φ(−1)πS/2,

π∗k,α ≡ Re(φ[exp(−iωk)])πk,α − Im(φ[exp(−iωk)])πk,β,

π∗k,β ≡ Re(φ[exp(−iωk)])πk,β + Im(φ[exp(−iωk)])πk,α,

k = 1, ..., S∗, and φ∗(z) ≡ 1−
∑p

i=1 φ
∗
i z

i is a stationary polynomial.

As above, it is only in the case when the order of the AR polynomial φ(z) is zero,
that is, p = 0, and, thus, Re(φ[exp(−iωk)]) = 1 and Im(φ[exp(−iωk)]) = 0, that
in the local expansion of Corollary 3.1 one can uniquely identify the parameter πk,α

with the polynomial −(cosωk − z)z∆0
k(z) and the parameter πk,β with the polynomial

sinωkz∆
0
k(z), k = 1, ..., S∗; cf. ST1 and ST2.
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4 Testing for Seasonal Unit Roots

Given the decomposition for α∗(z) detailed in Proposition 1, we substitute (3.8) into
(2.3) to obtain the linear regression

φ∗(L)∆SxSt+s = γ∗∗s + δ∗∗s (St+ s) + π∗0x0,St+s−1 + π∗S/2xS/2,St+s−1

+
S∗∑

k=1

(
π∗k,αx

α
k,St+s−1 + π∗k,βx

β
k,St+s−1

)
+ εSt+s, (4.1)

dropping the term π∗S/2xS/2,St+s−1 if S is odd, s = 1 − S, ..., 0, t = 1, 2, ..., with the

transformed level variables x0,St+s, xS/2,St+s, x
α
k,St+s and xβ

k,St+s, k = 1, ..., S∗, defined
from (3.10) by

x0,St+s =
S−1∑
j=0

xSt+s−j, xS/2,St+s =
S−1∑
j=0

cos[(j + 1)π]xSt+s−j,

xα
k,St+s =

S−1∑
j=0

cos[(j + 1)ωk]xSt+s−j, x
β
k,St+s = −

S−1∑
j=0

sin[(j + 1)ωk]xSt+s−j, (4.2)

k = 1, ..., S∗. For quarterly, S = 4, and monthly, S = 12, data, the relevant transfor-
mations are given in ST2. In what follows we assume that the investigator has available
sufficient (p+ S) pre-sample values of the lagged seasonal differences {∆SxSt+s}t≤0 to
accommodate the pth order AR polynomial φ∗(z) and the seasonal difference operator
∆S together with the observations xSt+s, s = 1− S, ..., 0, t = 1, ..., T .

The auxiliary regression (4.1) provides the basis of a testing procedure for the
presence or otherwise of unit roots at the kth seasonal frequency; that is, H0,k of (3.11)
against Hγ

1,k : γk < 0, k = 0, ..., [S/2]. In particular, in order to test whether or not a
unit root is present at the kth seasonal frequency necessitates a test for the exclusion of
the regressor x0,St+s−1 if k = 0, xS/2,St+s−1 if k = S/2, and both xα

k,St+s−1 and xβ
k,St+s−1

if k = 1, ..., S∗, in (4.1).
In the quarterly context, S = 4, HEGY consider t-tests for the individual hypotheses

Hπ
0,0 : π∗0 = 0, Hπα

0,1 : π∗1,α = 0, H
πβ

0,1 : π∗1,β = 0 and Hπ
0,2 : π∗2 = 0 together with an

F -test for H0,1 = Hπα
0,1 ∩ H

πβ

0,1, that is, π∗1,α = π∗1,β = 0, in the auxiliary regression
(4.1) with a common trend parameter δs = δ, s = 1 − S, ..., 0. HEGY argue that a
two-sided t-test of H

πβ

0,1 : π∗1,β = 0 is appropriate and that, if H
πβ

0,1 is accepted, one
should continue with a one-sided t-test of Hπα

0,1 : π∗1,α = 0 against Hπα
1,1 : π∗1,α < 0.

However, as detailed in Proposition 1, the coefficients π∗1,α and π∗1,β are generally a
linear composite of the length deviation parameter γ1 and the parameter δ1 which is a
function of the phase shift parameter θ1 but also involves γ1 (unless γ1 = 0); see (3.7).
It is only in the presence of unit roots at both frequencies ω0 and ω2 and when the
AR polynomial φ(z) of (2.2) is of order p = 0 that π∗1,α = γ1 and π∗1,β = δ1. These
circumstances would suggest firstly conducting a one-sided t-test for Hπα

0,1 : π∗1,α = 0

9



against Hπα
1,1 : π∗1,α < 0 and secondly, if Hπα

0,1 : π∗1,α = 0 is accepted in which case

π∗1,β = −2 cos(θk + π/2), conducting a two-sided t-test for H
πβ

0,1 : π∗1,β = 0 against

H
πβ

1,1 : π∗1,β 6= 0.1 However, in general, because in practice it is typically the case that
p > 0 and there is usually no a priori basis for a belief that unit roots are present
at all other frequencies, an appropriate test for a seasonal unit root at frequency ωk

should be an F -test for H0,k : π∗k,α = π∗k,β = 0, k = 1, ..., S∗, together with one-sided
t-tests for H0,0 : π∗0 = 0 against H1,0 : π∗0 < 0 and, if S is even, H0,S/2 : π∗S/2 = 0 against
H1,S/2 : π∗S/2 < 0, a recommendation supported by the limiting distribution theory in
Section 5 and the Monte Carlo evidence of section 6. Note that the implicit alternative
for the F -test for H0,k : π∗k,α = π∗k,β = 0 is Hπ

1,k : (π∗k,α 6= 0) ∪ (π∗k,β 6= 0) rather than
Hγ

1,k : γk < 0, k = 1, ..., S∗.
In the following, we will denote by t0 and tS/2 the regression t-statistics for H0,0 :

π∗0 = 0 and H0,S/2 : π∗S/2 = 0 respectively in (4.1), tαk and tβk the t-statistics for Hπα
0,k :

π∗k,α = 0 and H
πβ

0,k : π∗k,β = 0 respectively, k = 1, ..., S∗, Fk the F -statistic for H0,k =

Hπα
0,k ∩ H

πβ

0,k, k = 1, ..., S∗; that is, the test statistics for the exclusion of x0,St+s−1 if

k = 0 (t0), xS/2,St+s−1 if k = S/2 (tS/2), and xα
k,St+s−1 (tαk ), xβ

k,St+s−1 (tβk), and both

xα
k,St+s−1 and xβ

k,St+s−1 (Fk) if k = 1, ..., S∗, in (4.1). Furthermore, F1...[S/2] and F0...[S/2]

are the F -statistics for the joint hypotheses ∩[S/2]
k=1 H0,k and ∩[S/2]

k=0 H0,k respectively. We
will continue to adopt this notation to represent the corresponding t- and F - statistics
for the special cases of (2.1), and hence of the auxiliary regression (4.1), considered at
the end of section 2.

We conclude this section by demonstrating that tests based upon the statistics
defined above from (4.1) are exact similar with respect to both the initial conditions
{xs}0

s=1−S and the seasonal drift parameters {γ∗∗s }0
s=1−S. For simplicity, but with no

loss of generality, these results will be demonstrated under the overall null hypothesis,
H0 of (2.4).

As the time-trend parameters δs = 0, s = 1− S, ..., 0, under H0 of (2.4), it follows
from (2.6) that the seasonally de-meaned process {x̃St+s} may be written as

x̃St+s = xSt+s − x̄s = γ∗∗s (t− t̄) +
t∑

v=1

uSv+s − T−1

T∑
t=1

t∑
v=1

uSv+s, (4.3)

which is invariant to the initial conditions {xs}0
s=1−S, where t̄ ≡ T−1

∑T
t=1 t and x̄s =

T−1
∑T

t=1 xSt+s, s = 1 − S, ..., 0, t = 1, 2, ..., T . From (4.3), we may correspondingly

1Moreover, as the maintained hypothesis H0 ∪ H1 excludes the possibility of unit roots at other
frequencies than ωk, k = 0, ..., [S/2], the latter test might be omitted.
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express the seasonally de-meaned and seasonally de-trended process {x̂St+s} as

x̂St+s = x̃St+s − (t− t̄)

(
T∑

t=1

(t− t̄)2

)−1 T∑
t=1

(t− t̄)x̃St+s (4.4)

=
t∑

v=1

uSv+s − T−1

T∑
t=1

t∑
v=1

uSv+s

−(t− t̄)

(
T∑

t=1

(t− t̄)2

)−1 T∑
t=1

(t− t̄)

(
t∑

v=1

uSv+s − T−1

T∑
t=1

t∑
v=1

uSv+s

)
,

which is invariant to the initial conditions {xs}0
s=1−S and the seasonal drift parameters

{γ∗∗s }0
s=1−S, s = 1− S, ..., 0, t = 1, 2, ..., T .

After regression on the seasonal intercepts and time-trends, the auxiliary regression
equation (4.1) is consequently rendered from (4.4) as

∆̂SxSt+s =

p∑
i=1

φ∗i ∆̂SxSt+s−i + π∗0x̂0,St+s−1 + π∗S/2x̂S/2,St+s−1

+
S∗∑

k=1

(
π∗k,αx̂

α
k,St+s−1 + π∗k,βx̂

β
k,St+s−1

)
+ ε̂St+s, (4.5)

dropping the term π∗S/2x̂S/2,St+s−1 if S is odd, s = 1− S, ..., 0, t = 1, 2, ..., T , where

ε̂St+s = ε̃Sv+s − (t− t̄)

(
T∑

t=1

(t− t̄)2

)−1 T∑
t=1

(t− t̄)ε̃Sv+s

and the seasonally de-meaned error process ε̃St+s ≡ εSt+s − T−1
∑T

t=1 εSt+s. In (4.5),

∆̂SxSt+s is ∆SxSt+s seasonally de-meaned and seasonally de-trended, which is also
invariant to the initial conditions {xs}0

s=1−S and the seasonal drifts {γ∗∗s }0
s=1−S. We

have defined the seasonally de-meaned and seasonally de-trended transformed variables
from (4.2) as:

x̂0,St+s ≡
S−1∑
j=0

x̂St+s−j, x̂S/2,St+s ≡
S−1∑
j=0

cos[(j + 1)π]x̂St+s−j,

x̂α
k,St+s ≡

S−1∑
j=0

cos[(j + 1)ωk]x̂St+s−j, x̂
β
k,St+s ≡ −

S−1∑
j=0

sin[(j + 1)ωk]x̂St+s−j, (4.6)

k = 1, ..., S∗, s = 1 − S, ..., 0, t = 1, ..., T . Consequently, tests based on regression
t- and F -statistics from (4.1) will be exact similar with respect to both the initial
conditions {xs}0

s=1−S and the seasonal drift parameters {γ∗∗s }0
s=1−S. Using similar ar-

guments (see, for example, Burridge and Taylor, 2004, pp.71-73, for the quarterly case)
it is straightforward to show that these tests are also exact invariant to the seasonal
drift parameters.
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5 Asymptotic Distribution Theory

In the quarterly case, S = 4, HEGY and Engle, Granger, Hylleberg and Lee (1993)
detail the limiting null distributions of the t-statistics together with the F -statistic F1

for deterministic scenarios up to and including non-seasonal trend parameters δs = δ,
s = −3, ..., 0, in the auxiliary regression (4.1), while GLN derive the limit distributions
for the F1...2 and F0...2 statistics in these cases. ST1 generalise the quarterly results of
HEGY and GLN to allow for the presence of differential seasonal trends, as in (4.1),
and discuss the various deterministic scenarios given at the end of Section 1, also for
quarterly data S = 4, while Taylor (1998) and BM deal with the monthly case, S = 12.

The limiting distributional results provided by the above authors have all been
derived under the assumption that p = 0 in (2.2). In the quarterly case, Burridge
and Taylor (2001) have extended the analysis to the case where p > 0 in (2.2). They
demonstrate that provided (4.1), or the restricted cases (i)-(v) thereof discussed at the
end of Section 2, contains at least p lags of ∆4x4t+s, then so the limiting distributions of
the t0, tS/2, F1, F1...2 and F0...2 statistics under H0 of (2.4) coincide with those derived
by the above authors, for p = 0. However, and contrary to what is claimed by the
above authors, they demonstrate that the limiting null distributions of the harmonic
frequency t-tests, tα1 and tβ1 , are not of the form appropriate for p = 0, but that
they depend on the parameters characterising φ(z). This even though (4.1) has been
appropriately lag-augmented.

All of the above authors, including Burridge and Taylor (2001), derived their limit-
ing null distribution theory under the assumption that α(z) = (1− zS); that is, under
H0 of (2.4) which imposes the unit root null hypothesis at both the zero and all of the
seasonal frequencies; cf. (3.5). This is quite restrictive, particulary in the light of the
discussion in Ghysels and Osborn (2001,p.90) who note that most empirical applica-
tions of seasonal unit root tests have led to rejections of the unit root hypothesis at
at least one of the seasonal frequencies, implying the likely inappropriateness of the
assumption that α(z) = (1 − zS). Consequently, and in the light of our discussion
in Sections 3 and 4, we now turn to deriving the limiting null distributions of the t-
and F -statistics from (4.1) for an arbitrary seasonal aspect S in the more general case
where it is not necessarily assumed to be the case that the unit root null hypothesis
holds at each of the zero and seasonal frequencies. As in Burridge and Taylor (2001),
we allow for the case where p > 0 in (2.2). Our main results are stated for the case
where the auxiliary regression (4.1) contains seasonal intercepts and seasonal trends.
The corresponding limiting null distributions under the special cases of (4.1) outlined
at the end of section 2 are subsequently discussed in Remark 9.

In order to proceed, we first need to introduce some notation. First, let the
Sth order polynomial α(z) of (2.1) be decomposed into α(z) = ᾱ(z)a(z), where all
of the roots of ᾱ(z) = 0 (of a(z) = 0) lie on (outside) the unit circle. We then
observe that (ignoring deterministic components for ease of exposition), xSt+s sat-
isfies ∆SxSt+s = [(1 − LS)/ᾱ(L)]u∗St+s, where a(L)u∗St+s = uSt+s. Next define the
S-dimensional vector processes Xt ≡ [xSt−(S−1), xSt−(S−2), ..., xSt−3, xSt−2, xSt−1, xSt]

′
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and U∗
t ≡ [u∗St−(S−1), u

∗
St−(S−2), ..., u

∗
St−3, u

∗
St−2, u

∗
St−1, u

∗
St]

′, t = 1, 2, ... Observe from

Burridge and Taylor (2001) that

U∗
t =

∑∞

j=0
Ψ∗

jEt−j

where Et ≡ [εSt−(S−1), εSt−(S−2), ..., εSt−3, εSt−2, εSt−1, εSt]
′ and the sequence of the S×S

matrices:

Ψ∗
0 =



1 0 0 0 · · · 0
ψ1 1 0 0 · · · 0
ψ2 ψ1 1 0 · · · 0
ψ3 ψ2 ψ1 1 · · · 0
...

...
...

...
. . .

...
ψS−1 ψS−2 ψS−3 ψS−4 · · · 1



Ψ∗
j =



ψjS ψjS−1 ψjS−2 ψjS−3 · · · ψjS−(S−1)

ψjS+1 ψjS ψjS−1 ψjS−2 · · · ψjS−(S−2)

ψjS+2 ψjS+1 ψjS ψjS−1 · · · ψjS−(S−3)

ψjS+3 ψjS+2 ψjS+1 ψjS · · · ψjS−(S−4)
...

...
...

...
. . .

...
ψjS+S−1 ψjS+S−2 ψjS+S−3 ψjS+S−4 · · · ψjS


, j = 1, 2, · · ·

where ψ (z) ≡ 1 +
∑∞

j=1 ψjz
j is the inverse of φ (z) a(z). Finally, let X̂t denote the

de-meaned and de-trended counterpart of Xt.

In Lemma 1 we now provide an invariance principle for X̂t.

Lemma 1 Let {xSt+s} be generated according to (2.1)-(2.2) under the conditions stated
in section 2. Then, as T →∞, and denoting weak convergence by “⇒”

T−1/2X̂[T ·] ⇒ σCΨ∗ (1)Ŵ (·) (5.1)

where Ŵ (r) ≡ W(r) − (4 − 6r)
∫ 1

0
W(r) − (12r − 6)

∫ 1

0
sW(s)ds, r ∈ [0, 1], is an

S×1 vector (standard) de-meaned and de-trended Brownian motion process, with W
a standard Brownian motion, Ψ∗ (1) ≡

∑∞
j=1 Ψ∗

j , and C is a generic circulant matrix
whose precise form depends on ᾱ(z); see Remark 2 below.

Remark 2: The matrix C appearing in Lemma 1 is a circulant matrix (see, Davis,
1979, for details) whose rank is equal to the number of unit roots present in ᾱ(z). This
also coincides with the number of seasons minus the number of (linearly independent)
co-integrating relationships that exist between them; cf. Franses (1994). For example,
if there is a unit root only at frequency zero, such that ᾱ(z) = (1 − z), then C is
an S × S matrix of ones, C = C0 = Circ[1, 1, 1, 1, · · · , 1], while for a unit root only
at the Nyquist frequency, ᾱ(z) = (1 + z), C = CS/2 = Circ[1,−1, 1,−1, · · · ,−1]. In
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both of these examples C has rank one, such that there will exist S − 1 co-integrating
relationships between the seasons. For the case of a complex pair of unit roots at
frequency ωk, k = 1, ..., S∗, such that ᾱ(z) = (1− 2 cosωkz + z2), we have that

C = Ck = Circ

[
sin (ωk)

sin (ωk)
,
sin (2ωk)

sin (ωk)
,
sin (3ωk)

sin (ωk)
, · · · , sin ((S − 1)ωk)

sin (ωk)

]
(5.2)

= Cα
k +

cos (ωk)

sin (ωk)
Cβ

k

where:

Cα
k = Circ [cos (0ωk) , cos (ωk) , cos (2ωk) , · · · , cos ((S − 1)ωk)]

and

Cβ
k = Circ [sin (0ωk) , sin ((S − 1)ωk) , sin ((S − 1)ωk) , · · · , sin (ωk)] ,

which has rank two, and, hence, the number of co-integrating relationships between
the seasons is S − 2. For the case where H0 of (2.4) holds, such that ᾱ(z) = (1− zS),
we have that C = IS is of full rank and no co-integration exists between the seasons.
Based on properties of the sums of circulant matrices (see, for example, Theorem 3.2.4
of Davis, 1979, and Theorem 3.1 of Gray, 2006, and the appendix for details) it is
always possible to express C for any given ᾱ(z) polynomial as the following weighted
sum:

C = cᾱ0C0 + cᾱS/2CS/2 +
S∗∑

k=1

(
cᾱkαC

α
k + cᾱkβC

β
k

)
(5.3)

(omitting the term in CS/2 when S is odd), where cᾱ0 , cᾱS/2, c
ᾱ
kα and cᾱkβ, k = 1, ..., S∗, are

scalars which are non-zero (zero) when the factors (1−z), (1+z) and (1−2 cosωkz+z
2),

k = 1, ..., S∗, respectively, are present (not present) in ᾱ(z). The values of these
coefficients when they are non-zero depends upon the form of ᾱ(z).2 Finally, using the
notation Ψ∗(1)j to denote the jth element in the first row of Ψ∗(1), observe that Ψ∗ (1)
is also a circulant matrix, since

Ψ∗ (1) = Circ
[
Ψ∗ (1)1 ,Ψ∗ (1)2 ,Ψ∗ (1)3 , · · · ,Ψ∗ (1)S

]
= Circ

[
1 +

∞∑
j=1

ψjS,

∞∑
j=1

ψjS−1,

∞∑
j=1

ψjS−2, · · · ,
∞∑

j=1

ψjS−(S−1)

]
.

Some further results on circulant matrices are provided in the appendix. �

We are now in a position to state our main theorem, which establishes the asymp-
totic null distributions of the regression-based unit root statistics from (4.1).

2For example, for the process (6.1) used in the Monte Carlo exercise in Section 6, where
C=Circ [1, 0, 0, 0, 1,−1], the following identity holds C = 1

6C0 + 1
2CS/2 + 1

3C
α
2 − 1√

3
Cβ

2 . As a sec-

ond example consider the case where ᾱ(z) = (1 − zS); here C = IS = 1
S C0 + 1

S CS/2 + 2
S

∑S∗

k=1 Cα
k ,

omitting the term in CS/2 where S is odd.
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Theorem 1 Let xSt+s be generated according to (2.1)-(2.2) under the conditions stated
in Section 2, and let ŵ0(r), ŵS/2(r) (S even), and ŵα

k (r) and ŵβ
k (r), k = 1, ..., S∗,

denote S independent de-meaned and de-trended standard Brownian motions on [0, 1].

(a) Under H0,0, the t0 statistic from (4.1) satisfies

t0 ⇒
∫ 1

0
ŵ0(r) dŵ0(r)√∫ 1

0
ŵ0(r)2 dr

≡ η0 (5.4)

(b) For S even, under H0,S/2, the tS/2 statistic from (4.1) satisfies

tS/2 ⇒ t0 ⇒
∫ 1

0
ŵS/2(r) dŵS/2(r)√∫ 1

0
ŵS/2(r)2 dr

≡ ηS/2. (5.5)

(c) Under H0,k, the tαk , tβkand Fk, k = 1, ..., S∗, statistics from (4.1), satisfy

tαk ⇒

(
cᾱkαbk − cᾱkβak

) [∫ 1

0
ŵα

k (r) dŵα
k (r) +

∫ 1

0
ŵβ

k (r) dŵβ
k (r)

]
√(

(cᾱkα)2 +
(
cᾱkβ

)2)
[a2

k + b2k]
(∫ 1

0
ŵα

k (r)2 dr +
∫ 1

0
ŵβ

k (r)2 dr
)

−

(
cᾱkαak + cᾱkβbk

) [∫ 1

0
ŵβ

k (r) dŵα
k (r)−

∫ 1

0
ŵα

k (r) dŵβ
k (r)

]
√(

(cᾱkα)2 +
(
cᾱkβ

)2)
[a2

k + b2k]
(∫ 1

0
ŵα

k (r)2 dr +
∫ 1

0
ŵβ

k (r)2 dr
) (5.6)

tβk ⇒

(
cᾱkαak + cᾱkβbk

) [∫ 1

0
ŵα

k (r) dŵα
k (r) +

∫ 1

0
ŵβ

k (r) dŵβ
k (r)

]
√(

(cᾱkα)2 +
(
cᾱkβ

)2)
[a2

k + b2k]
(∫ 1

0
ŵα

k (r)2 dr +
∫ 1

0
ŵβ

k (r)2 dr
)

+

(
cᾱkαbk − cᾱkβak

) [∫ 1

0
ŵβ

k (r) dŵα
k (r)−

∫ 1

0
ŵα

k (r) dŵβ
k (r)

]
√(

(cᾱkα)2 +
(
cᾱkβ

)2)
[a2

k + b2k]
(∫ 1

0
ŵα

k (r)2 dr +
∫ 1

0
ŵβ

k (r)2 dr
) (5.7)

Fk ⇒

[∫ 1

0
ŵα

k (r) dŵα
k (r) +

∫ 1

0
ŵβ

k (r) dŵβ
k (r)

]2
+
[∫ 1

0
ŵβ

k (r) dŵα
k (r)−

∫ 1

0
ŵα

k (r) dŵβ
k (r)

]2
2
(∫ 1

0
ŵα

k (r)2 dr +
∫ 1

0
ŵβ

k (r)2 dr
) ≡ η2

k

(5.8)

where, for k = 1, ..., S∗,

bk ≡
S−1∑
j=0

cos (jωk) Ψ∗ (1)j+1 = Re(ψ[exp(iωk)])

ak ≡ −
S−1∑
j=0

sin (jωk) Ψ∗ (1)j+1 = Im(ψ[exp(iωk)]).
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(d) Under ∩[S/2]
k=1 H0,k, F1...[S/2] ⇒ 1

S−1

∑[S/2]
j=1 η2

j . Moreover, under H0 = ∩[S/2]
k=0 H0,k,

F0...[S/2] ⇒ 1
S

∑[S/2]
k=0 η

2
k.

Remark 3: Notice that in the absence of any stationary serial correlation in the
process; that is, where φ (z) a(z) = 1, we have that bk = 1 and ak = 0 and, hence,
while the representations in (5.4), (5.5) and (5.8) remain unaltered, those for (5.6) and
(5.7) simplify to

tαk ⇒
cᾱkα

[∫ 1

0
ŵα

k (r) dŵα
k (r) +

∫ 1

0
ŵβ

k (r) dŵβ
k (r)

]
− cᾱkβ

[∫ 1

0
ŵβ

k (r) dŵα
k (r)−

∫ 1

0
ŵα

k (r) dŵβ
k (r)

]
√(

(cᾱkα)2 +
(
cᾱkβ

)2)(∫ 1

0
ŵα

k (r)2 dr +
∫ 1

0
ŵβ

k (r)2 dr
)

and

tβk ⇒
cᾱkβ

[∫ 1

0
ŵα

k (r) dŵα
k (r) +

∫ 1

0
ŵβ

k (r) dŵβ
k (r)

]
+ cᾱkα

[∫ 1

0
ŵβ

k (r) dŵα
k (r)−

∫ 1

0
ŵα

k (r) dŵβ
k (r)

]
√(

(cᾱkα)2 +
(
cᾱkβ

)2)(∫ 1

0
ŵα

k (r)2 dr +
∫ 1

0
ŵβ

k (r)2 dr
)

respectively, which still depend on the parameters cᾱkα and cᾱkβ of Remark 2.

Remark 4: In the case where ᾱ(z) = (1 − 2 cosωkz + z2) we have that C = Cα
k +

cos(ωk)
sin(ωk)

Cβ
k , and, hence, cᾱkα = 1 and cᾱkβ = cos(ωk)

sin(ωk)
. Consequently, the expressions in (5.6)

and (5.7) simplify to

tαk ⇒

(
bk − cos(ωk)

sin(ωk)
ak

) [∫ 1

0
ŵα

k (r) dŵα
k (r) +

∫ 1

0
ŵβ

k (r) dŵβ
k (r)

]
√(

1 +
(

cos(ωk)
sin(ωk)

)2
)

[b2k + a2
k]
(∫ 1

0
ŵα

k (r)2 dr +
∫ 1

0
ŵβ

k (r)2 dr
)

−

(
ak + cos(ωk)

sin(ωk)
bk

) [∫ 1

0
ŵβ

k (r) dŵα
k (r)−

∫ 1

0
ŵα

k (r) dŵβ
k (r)

]
√(

1 +
(

cos(ωk)
sin(ωk)

)2
)

[a2
k + b2k]

(∫ 1

0
ŵα

k (r)2 dr +
∫ 1

0
ŵβ

k (r)2 dr
)

and

tβk ⇒

(
ak + cos(ωk)

sin(ωk)
bk

) [∫ 1

0
ŵα

k (r) dŵα
k (r) +

∫ 1

0
ŵβ

k (r) dŵβ
k (r)

]
√(

1 +
(

cos(ωk)
sin(ωk)

)2
)

[a2
k + b2k]

(∫ 1

0
ŵα

k (r)2 dr +
∫ 1

0
ŵβ

k (r)2 dr
)

+

(
bk − cos(ωk)

sin(ωk)
ak

) [∫ 1

0
ŵβ

k (r) dŵα
k (r)−

∫ 1

0
ŵα

k (r) dŵβ
k (r)

]
√(

1 +
(

cos(ωk)
sin(ωk)

)2
)

[a2
k + b2k]

(∫ 1

0
ŵα

k (r)2 dr +
∫ 1

0
ŵβ

k (r)2 dr
)
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respectively. It is therefore evident that even in the absence of any stationary serial
correlation in the process (so that φ (z) a(z) = 1, and bk = 1, ak = 0), when ᾱ(z) =
(1− 2 cosωkz + z2) the limiting null distributions of tαk and tβk are only pivotal for the
case of ωk = π/2.

Remark 5: When ᾱ(z) = (1 − zS), we have that C = IS and, hence from footnote
2, that cᾱkα = 2

S
and cᾱkβ = 0, k = 1, ..., S∗. It is therefore seen that the expressions in

(5.6) and (5.7) reduce to the representations given in (3.2) and (3.3), respectively, of
Theorem 3.1 of Rodrigues and Taylor (2004) with c = 0. Even here, it should be noted
that these distributions will not in general be pivotal when p > 0. Some exceptions
are discussed in Burridge and Taylor (2001).

Remark 6: The representations given in (5.4) and (5.5) are identical to the standard
DF distribution for a regression with intercept and trend; cf. Fuller (1976, Table
8.5.2, p.373). Hence, asymptotically, the t-statistics t0 and tS/2 are independently and
identically distributed under H0,0 ∩H0,S/2

Remark 7: From the representations (5.6) and (5.7), it is clear that, under H0,k∩H0,l,

k 6= l, k, l = 1, ..., S∗, the pairs tαk and tαl , and tβk and tβl , possess independent but not,
in general, identical limiting distributions, and are also asymptotically independent of
t0 and tS/2 under (H0,0∩H0,S/2)∩(H0,k∩H0,l), k 6= l, k, l = 1, ..., S∗. In contrast, under
H0,k∩H0,l, the limiting representations in (5.8) for the Fk and Fl statistics in (5.8) k 6= l,
k, l = 1, ..., S∗, are both independent and also identical and, moreover, are identical
to those given for the corresponding statistics in the quarterly and monthly contexts
for the case of p = 0; see ST1 and Taylor (1998), respectively, and are asymptotically
independent of t0 and tS/2 under (H0,0 ∩H0,S/2) ∩ (H0,k ∩H0,l), k 6= l, k, l = 1, ..., S∗.

Remark 8: The representations given for the limiting null distributions of the t0, tS/2

and Fk, k = 1, ..., S∗, statistics in (5.4), (5.5) and (5.8), respectively, and of the F0...[S/2]

and F1...[S/2] statistics in part (d), do not depend on any nuisance parameters; that is,
they take the same form irrespective of whether the unit root null holds at the other
frequencies or not, and irrespective of whether p = 0 (serially uncorrelated shocks) or
p > 0 (serially correlated shocks). In contrast, the corresponding representations for
the tαk and tβk statistics, k = 1, ..., S∗, depend on two sets of nuisance parameters: ak

and bk, relating to the stationary serial correlation in the process, and cᾱkα and cᾱkβ,
relating to those frequencies other than ωk which admit unit roots. Consequently the
use of tests for unit roots at the harmonic seasonal frequencies based the tαk and tβk ,
k = 1, ..., S∗, statistics cannot be recommended in practice.

Remark 9: In Theorem 1 we have assumed, via (2.1), that xSt+s of (2.1) contains sea-
sonal indicators and seasonal time trends in its deterministic mean function and that,
appropriate to this, (4.5) is constructed from seasonally de-meaned and seasonally de-
trended data. However, the limiting representations are valid under the more restricted
cases (i)-(v) discussed at the end of Section 2, provided the de-meaned and de-trended
standard Brownian motions appearing in Theorem 1 are re-defined as appropriate to
the deterministic scenario of interest within (2.1); cf. ST1 (Sections 4.1-4.5) and ST2
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for a complete typology. Remarks 3-8 remain valid, with appropriate re-definitions
where necessary, in each case. �

In the next section we investigate aspects of the finite sample size and power prop-
erties of these statistics via a series of Monte Carlo experiments for the case of S = 6.

6 Finite Sample Size and Power Properties

In this section we conduct a number of Monte Carlo simulation experiments to investi-
gate the finite-sample size and power properties of the seasonal unit root test-statistics
developed in section 4 when the process under investigation displays phase and/or
length shifts at a particular seasonal frequency.

We will consider the test-statistics tj, j = 0, 3 together with tαk , tβk and Fk, k = 1, 2,
for the case of a time-series process {x6t+s} with seasonal aspect S = 6. In what
follows we assume that the investigator has available the initial values of the level
process, x−5, . . . , x0, together with the observations x6t+s, s = −5, . . . , 0, t = 1, . . . , T .
We shall investigate the effects on the above statistics resulting from movements in
phase and/or length away from the unit root null hypothesis at frequency ω1 ≡ π/3,
whilst maintaining the unit root null at all other frequencies ωk ≡ πk/3, k = 0, 2, 3.
Specifically, the simulations computed in this section were based on the DGP:

(1− L2)(1 + L+ L2)(1− 2r1 cos(θ1 + π/3)L+ r2
1L

2)x6t+s = ε6t+s ∼ NID(0, 1),

t = 1, . . . , T, s = −5, . . . , 0, (6.1)

with ε6j+s = x6j+s = 0, j ≤ 0. As our Monte Carlo design, we vary the phase shift and
length parameters θ1 and r1 respectively according to θ1 ∈ {0,±π/4,±11π/36}, and
r1 ∈ {1.00× 1(θ = 0), 0.99, 0.95, 0.80}, where 1(·) is the indicator function. Under the
overall null hypothesis, H0 of (2.4), θ1 = 0 and r1 = 1. Note the phases θ1+ω1 specified
in these alternatives, π/12, π/36, and 7π/12, 23π/36, are close to the frequencies
ω0 ≡ 0 and ω2 ≡ 2π/3 respectively. All experiments were programmed using the RNDN
function of GAUSS 3.1 on a Pentium 400Mhz micro-computer using 30, 000 replications
for each experiment. Sample sizes 6T = 72, 150, 300 and 600 are considered. All test-
statistics were computed from a regression containing both seasonal intercepts and
seasonal trend variables; see (4.1).

The DGP (6.1) allows us to investigate the power properties of the tα1 , tβ1 and F1

test-statistics when either θ1 6= 0 and/or r1 6= 1, whilst simultaneously investigating
the size properties of the remaining statistics. To the best of our knowledge, a study
of this kind has not previously been conducted in the literature. Previous studies
have looked at departures of the length of roots at the harmonic seasonal frequencies
from unity but have always maintained a zero phase shift; see, for example, Beaulieu
and Miron (1992, pp.41–42) for S = 12 and GLN (pp.431–434) for S = 4. Because
the test-statistics which we consider in this section have not previously appeared in
the literature, we have used Monte Carlo simulation to generate approximate finite-
sample critical values for the above tests under H0 of (2.4) for each of the sample sizes
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considered. We do not report these critical values here although they, and a general
program which was used to run all the experiments in this section, are available from
the authors on request. These simulated critical values were then used in computing
the size and power properties of the tests as θ1 and r1 deviated from their null values
as described above. For all tests we adopted the nominal level of 0.05.

Tables 1–4 report the results of our Monte Carlo experimental design for the sam-
ple sizes 6T = 72, 150, 300 and 600, respectively. The top line of each of the tables
corresponds to when the overall null hypothesis H0 of (2.4) holds.

It is clear from the first panel of Tables 1–4 that, with a zero phase shift at the first
harmonic frequency, θ1 = 0, as the length of the root at this frequency, r1, decreases
and as the sample size, 6T , increases, so the powers of both the tα1 and F1 statistics
increase towards unity. In contrast, the tβ1 statistic displays power less than size for all
sample sizes; a similar pattern is seen in the simulation results reported in Beaulieu
and Miron (1992). The t0, t3, t

α
2 , tβ2 and F2 tests all adhere well to their nominal 0.05

level, although there is some evidence of an increase for the tβ2 test.
This pattern changes, however, when we allow a phase shift at the first harmonic

frequency, θ1 6= 0. Here we see that both the tβ1 and F1 tests are quite sensitive to
movements of θ1 from zero, even for small sample sizes, in both cases power increasing
well above nominal size. An interesting picture arises for the tα1 test whose power is well
below nominal size when r1 = 0.99 and θ1 6= 0 for all sample sizes considered but rises
as r1 decreases and as the sample size grows. Turning to the tests at other frequencies,
some very interesting patterns emerge here too. Firstly, depending on the values of
θ1 and r1, the levels of the t0 and t3 tests are either under or above the nominal 0.05
level in the smaller sample sizes considered but, as the sample size increases, so these
deviations quickly disappear, consonant with the results in Theorem 1. The same is also
true of the F2 statistic. To illustrate, the worst level distortions for the t0 and F2 tests
occur for 6T = 72 and r1 = 0.99, the actual levels being 0.11 at θ1 = −11π/36 and 0.09
at θ1 = 11π/36 respectively. The same, however, cannot be said for the tα2 and tβ2 test
statistics which from a practical viewpoint appear to be highly unreliable for inference
purposes. We can see that the level of the tβ2 test tends to exceed 0.05 for positive θ1,
increasing as θ1 moves from π/4 to 11π/36; that is, as θ1 + ω1 = 7π/12, 23π/36 moves
closer to the second harmonic frequency ω2 = 2π/3. For negative θ1, the magnitude of
θ1 seems to have no effect on the magnitude of the size distortions, probably reflecting
that θ1 + ω1 now takes values π/12 and π/36 close to the zero frequency ω0 ≡ 0.
It is also apparent that, in the case of positive values of θ1, there is a very strong
interaction effect between r1 and θ1. For fixed values of r1 and θ1, the distortions seen
in the level of the tβ2 statistic from the nominal 0.05 level appear to stabilise as sample
size increases. This observation accords with (5.7) of Theorem 1 which says that for a
particular (θ1, r1) combination, there is a finite shift in the limiting distribution of the
tβ2 statistic. A similar observation may be made regarding the limiting distribution of
the tα2 statistic except that the level of the tα2 statistic decreases below the nominal 0.05
level whereas that for the tβ2 statistic increases. Although the tests for H0,2 based on

the tα2 and tβ2 statistics are neither exactly nor asymptotically similar under deviations
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from H0,1, it is known from (5.8) of Theorem 1 that the test for H0,2 based on the F2

statistic does displays an asymptotic similarity property, which our numerical results
suggest becomes apparent even in quite moderate sample sizes.

Although the above experiments are based on deviations of the phase and length of
the root at the first seasonal harmonic frequency away from their null hypothesis values
under H0,1, we also investigated the effects of departures in phase and length from the
null hypothesis H0,2 at the second harmonic frequency, ω2 ≡ 2π/3, while maintaining
seasonal unit roots at all other frequencies. These results were qualitatively no different
from those observed above. In this case, the results pertaining to the t0 and t3 tests
given above are interchanged. The tα2 , tβ2 and F2 tests display very similar patterns to
those seen above for the corresponding tα1 , tβ1 and F1 tests. The tα1 and tβ1 statistics
show almost identical level distortions to those reported above for the tα2 and tβ2 tests
for movements of θ1 away from zero and r1 away from unity, except that the impact of
the sign of θ2 is reversed from that seen above for θ1.

Consequently, and consonant with the predictions from the limiting distribution
theory in section 5, in the presence of deviations from the seasonal unit root hypothesis
at other frequencies, a test for a seasonal unit root at frequency ωk based on the t-
statistics tαk and tβk as described in HEGY or as above in section 4 is likely to be
unreliable for inference purposes, whereas the use of the F -statistic Fk would appear
to be more efficacious, k = 1, ..., S∗.

7 Conclusions

This paper has been concerned with providing regression-based test statistics for sea-
sonal unit roots for a general seasonal aspect of the data which are similar both exactly
and asymptotically with respect to initial values of the time series process and seasonal
drift parameters. A general characterisation result is provided which clarifies precisely
the null and alternative sub-hypotheses under test in the regression approach due to
Hylleberg et al. (1990). Asymptotic distribution theory coupled with a set of Monte
Carlo experiments indicates that a t-statistic approach, as advocated by HEGY in their
original article, to testing for unit roots at the harmonic seasonal frequencies cannot
be recommended, and here the use of a joint F -test based approach is appropriate.
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Mathematical Appendix

Due to the similarity properties of the statistics discussed in Section 4, we may set
xs = γ∗s = δ∗s = 0, s = 1− S, . . . , 0, in (2.1) with no loss of generality in what follows.

Proof of Proposition 1: Define ωk(z) ≡ δk,α(z)δk,β(z), where

δk,α(z) ≡ 1− rk exp[i(θk + ωk)]z, δk,β(z) ≡ 1− rk exp[−i(θk + ωk)]z,

k = 1, ..., S∗, and, for frequencies ω0 and ωS/2, δ0,α(z) ≡ 1 − r0z, δ0,β(z) ≡ 1 and
δS/2,α(z) ≡ 1, δS/2,β(z) ≡ 1 + rS/2z. Similarly, ω0

k(z) ≡ δ0
k,α(z)δ0

k,β(z), where

δ0
k,α(z) ≡ 1− exp(iωk)z, δ

0
k,β(z) ≡ 1− exp(−iωk)z,

k = 1, ..., S∗, and δ0
0,α(z) ≡ 1 − z, δ0

0,β(z) ≡ 1 and δ0
S/2,α(z) ≡ 1, δ0

S/2,β(z) ≡ 1 +

z. Therefore, δ0
k,α[exp(−iωk)] = 0, δ0

k,β[exp(iωk)] = 0, k = 1, ..., S∗. Now α(z) =∏[S/2]
k=0 ωk(z) =

∏[S/2]
k=0 δk,α(z)δk,β(z) and ∆S(z) =

∏[S/2]
k=0 ω

0
k(z) =

∏[S/2]
k=0 δ

0
k,α(z)δ0

k,β(z),
where ∆S(z) = 1− zS. Define

∆k(z) = −
[S/2]∏

j 6=k,j=0

ωj(z) = −
[S/2]∏

j 6=k,j=0

δj,α(z)δj,β(z),

∆0
k(z) = −

[S/2]∏
j 6=k,j=0

ω0
j (z) = −

[S/2]∏
j 6=k,j=0

δ0
j,α(z)δ0

j,β(z).

Hence, ∆0
k[exp(−iωj)] = ∆0

k[exp(iωj)] = 0, j 6= k, and ∆0
k[exp(−iωk)] 6= 0, ∆0

k[exp(iωk)] 6=
0. Note that α(z) = −ωk(z)∆k(z) and ∆S(z) = −ω0

k(z)∆
0
k(z).

Consider the polynomial

ψ∗(z) ≡ α∗(z)+

[S/2]∑
k=0

(
λ∗k,αδ

0
k,β(z)[δk,α(z)− δ0

k,α(z)] + λ∗k,βδ
0
k,α(z)[δk,β(z)− δ0

k,β(z)]
)
∆0

k(z),

where the complex conjugates

λ∗k,α ≡ − α[exp(−iωk)]

δ0
k,β[exp(−iωk)]δk,α[exp(−iωk)]∆0

k[exp(−iωk)]
φ[exp(−iωk)]

=
δk,β[exp(−iωk)]

δ0
k,β[exp(−iωk)]

∆k[exp(−iωk)]

∆0
k[exp(−iωk)]

φ[exp(−iωk)] =
δk,β[exp(−iωk)]

δ0
k,β[exp(−iωk)]

Λ∗
k,α,

λ∗k,β ≡ − α[exp(iωk)]

δ0
k,α[exp(iωk)]δk,β[exp(iωk)]∆0

k[exp(iωk)]
φ[exp(iωk)]
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=
δk,α[exp(iωk)]

δ0
k,α[exp(iωk)]

∆k[exp(iωk)]

∆0
k[exp(iωk)]

φ[exp(iωk)] =
δk,α[exp(iωk)]

δ0
k,α[exp(iωk)]

Λ∗
k,β,

in which we have defined

Λ∗
k,α ≡

∆k[exp(−iωk)]

∆0
k[exp(−iωk)]

φ[exp(−iωk)],Λ
∗
k,β ≡

∆k[exp(iωk)]

∆0
k[exp(iωk)]

φ[exp(iωk)].

Because of the stationarity assumption on the polynomial φ(z), φ[exp(−iωk)] 6= 0 and
φ[exp(iωk)] 6= 0. Note that Λ∗

k,α and Λ∗
k,β are complex conjugates and λ∗k,α(= Λ∗

k,α) =
λ∗k,β(= Λ∗

k,β), k = 0, S/2, are real.
It is easily seen that exp(iωk) and exp(−iωk), k = 0, ..., [S/2], are roots of the

polynomial ψ∗(z) = 0 and, therefore, we may express

α∗(z) = φ∗(z)∆S(z)−
[S/2]∑
k=0

(
λ∗k,αδ

0
k,β(z)[δk,α(z)− δ0

k,α(z)] + λ∗k,βδ
0
k,α(z)[δk,β(z)− δ0

k,β(z)]
)
∆0

k(z),

(A.1)
where φ∗(z) is a stationary pth order polynomial, φ∗(z) = 1−

∑p
i=1 φ

∗
i z

i, as α∗0 = 1.
For k = 1, ..., S∗, the second term in (A.1) involves the polynomial conjugate pair

λ∗k,αδ
0
k,β(z)[δk,α(z)− δ0

k,α(z)] = δ0
k,β(z)z exp(iωk)δk,α[exp(−iωk)]

δk,β[exp(−iωk)]

δ0
k,β[exp(−iωk)]

Λ∗
k,α,

λ∗k,βδ
0
k,α(z)[δk,β(z)− δ0

k,β(z)] = δ0
k,α(z)z exp(−iωk)δk,β[exp(iωk)]

δk,α[exp(iωk)]

δ0
k,α[exp(iωk)]

Λ∗
k,β,

(A.2)
noting δk,α(z)−δ0

k,α(z) = z exp(iωk)δk,α[exp(−iωk)] and δk,β(z)−δ0
k,β(z) = z exp(−iωk)δk,β[exp(iωk)].

Now,
δk,β[exp(−iωk)]

δ0
k,β[exp(−iωk)]

=
exp(iωk)− rk exp(−i(θk + ωk))

2i sinωk

,

δk,α[exp(iωk)]

δ0
k,α[exp(iωk)]

= −exp(−iωk)− rk exp(i(θk + ωk))

2i sinωk

,

as

δk,α[exp(iωk)] = 1− rk exp[i(θk + 2ωk)], δk,β[exp(−iωk)] = 1− rk exp[−i(θk + 2ωk)],

δ0
k,α[exp(iωk)] = −2i sinωk exp(iωk), δ

0
k,β[exp(−iωk)] = 2i sinωk exp(−iωk).

Hence, the polynomial conjugate pair in (A.2)

δ0
k,β(z)z exp(iωk)δk,α[exp(−iωk)]

δk,β[exp(−iωk)]

δ0
k,β[exp(−iωk)]

and

δ0
k,α(z)z exp(−iωk)δk,β[exp(iωk)]

δk,α[exp(iωk)]

δ0
k,α[exp(iωk)]
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have real part
z

2
(γk[−(cosωk − z)] + δk[sinωk])

and imaginary parts + and − times respectively

z

2
(−γk[sinωk] + δk[−(cosωk − z)]) .

Therefore, from (A.1)

α∗(z) = φ∗(z)∆S(z)− Λ∗
0,α (−γ0z) ∆0

0(z)− Λ∗
S/2,β

(
γS/2z

)
∆0

S/2(z)

−
S∗∑

k=1

Re(Λ∗
k,α) (γk[−(cosωk − z)z] + δk[sinωkz]) ∆0

k(z)

+
S∗∑

k=1

Im(Λ∗
k,α) (−γk[sinωkz] + δk[−(cosωk − z)z]) ∆0

k(z)

= φ∗(z)∆S(z)− Λ∗
0,α (−γ0z) ∆0

0(z)− Λ∗
S/2,β

(
γS/2z

)
∆0

S/2(z)

−
S∗∑

k=1

[Re(Λ∗
k,α)γk − Im(Λ∗

k,α)δk][−(cosωk − z)z]∆0
k(z)

−
S∗∑

k=1

[Re(Λ∗
k,α)δk + Im(Λ∗

k,α)γk][sinωkz]∆
0
k(z),

noting Re(Λ∗
k,α) = Re(Λ∗

k,β) and Im(Λ∗
k,α) = −Im(Λ∗

k,β), k = 1, ..., S∗. �

Proof of Lemma 1: It is straightforward to show that, as in Boswijk and Franses
(1996) and Burridge and Taylor (2001), inter alia, the process {xSt+s} admits the
vector-of-seasons representation

(1−B)Xt = (Θ0 + Θ1B)U∗
t , t = 1, ..., T, (A.3)

U∗
t =

∑∞

j=0
Ψ∗

jEt (A.4)

where B is the annual lag operator, such that BkXt ≡ Xt−k, k = 0,±1, ..., and the
S×S matrices Θ0 and Θ1 are such that Θ0+Θ1 = C and, hence, are again determined
by the form of ᾱ(z). To illustrate, for ᾱ(z) = (1− z),

Θ0 =



1 0 0 0 · · · 0
1 1 0 0 · · · 0
1 1 1 0 · · · 0
1 1 1 1 · · · 0
...

...
...

...
. . .

...
1 1 1 1 · · · 1


Θ1 =



0 1 1 1 · · · 1
0 0 1 1 · · · 1
0 0 0 1 · · · 1
0 0 0 0 · · · 1

· · · · · · · · · · · · . . .
...

0 0 0 0 · · · 0


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while for ᾱ(z) = (1 + z),

Θ0 =



1 0 0 0 · · · 0
−1 1 0 0 · · · 0
1 −1 1 0 · · · 0
−1 1 −1 1 · · · 0
...

...
...

...
... 0

−1 1 −1 1 · · · 1


Θ1 =



0 −1 1 −1 · · · −1
0 0 −1 1 · · · 1
0 0 0 −1 · · · −1
0 0 0 0 · · · 1
...

...
...

...
. . .

...
0 0 0 0 · · · 0


and for ᾱ(z) = (1− 2 cosωkz + z2), k = 1, ..., S∗,

Θ0 =
1

sin (ωk)



sin (ωk) 0 0 0 · · · 0
sin (2ωk) sin (ωk) 0 0 · · · 0
sin (3ωk) sin (2ωk) sin (ωk) 0 · · · 0
sin (4ωk) sin (3ωk) sin (2ωk) sin (ωk) · · · 0

...
...

...
...

. . .
...

sin ((S − 1) ωk) sin ((S − 2) ωk) sin ((S − 3) ωk) sin ((S − 3) ωk) · · · sin (ωk)


and

Θ1 =
1

sin (ωk)



0 sin ((S − 1) ωk) sin ((S − 2) ωk) sin ((S − 3) ωk) · · · sin (2ωk)
0 0 sin ((S − 1) ωk) sin ((S − 2) ωk) · · · sin (3ωk)
0 0 0 sin ((S − 1) ωk) · · · sin (4ωk)
0 0 0 0 · · · sin (5ωk)
...

...
...

...
. . .

...
0 0 0 0 · · · sin (ωk)


.

It is then straightforward to establish, along the same lines as for the proof of Lemma
1 in Boswijk and Franses (1996), from (A.3)-(A.4) the result that T−1/2X[T · ] ⇒
σCΨ∗ (1)W (·), where W (·) ≡ (W1−S(·),W2−S(·), ...,W0(·))′ is an S × 1 standard
Brownian motion process. The stated result then follows directly from an application
of the continuous mapping theorem [CMT]. �

Before turning the proof of Theorem 1 it will prove instructive to first establish
some properties of circulant matrices which will be used in the proof of Theorem 1.

Some Properties of Circulant matrices used in Remark 2 and Theorem 1

From Theorem 3.2.3 of Davis (1979), a generic circulant matrix A = Circ [a1, a2, a3, · · · , aS]
of order S × S admits the following decomposition A = F∗ΛF where F∗ and F
are the Fourier matrix of order S and its complex conjugate, respectively, (see sec-
tion 2.5 of Davis, 1979, for details) and Λ is a diagonal matrix of the form Λ =
diag [λ1, λ2, λ3, . . . , λS], where λj, j = 1, 2, . . . , S are the eigenvalues of A. Now, from
Theorem 3.2.2 of Davis (1979) these eigenvalues can be obtained using λj = PA ($j−1)
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where PA (z) =
∑S

j=1 ajz
j−1 is the polynomial associated with the circulant matrix,

$ = exp
(

2πi
S

)
= cos

(
2π
S

)
+ i sin

(
2π
S

)
, with i =

√
−1. From Theorem 3.2.4 of Davis

(1979) and Theorem 3.1 of Gray (2006), we have the following properties of the sums
and products of circulant matrices, where B = Circ [b1, b2, b3, · · · , bS] is a second circu-
lant matrix with associated eigenvalues λ̄j, j = 1, 2, . . . , S:

AB = F∗diag[λ1λ̄1, λ2λ̄2, · · · , λSλ̄S]F

A + B = F∗diag[λ1 + λ̄1, λ2 + λ̄2, ..., λS + λ̄S]F

cA = F∗diag[cλ1, cλ2, · · · , cλS]F,

where c is a scalar.
From the familiar Granger Representation Theorem (see Engle and Granger, 1987)

we know that for the multivariate Wold representation in (A.3) the matrix C =
(Θ0 + Θ1) has rank equal to the number of unit roots present in ᾱ(z). Hence, the
matrices C0 and CS/2 have rank one and the matrices Cα

k and Cβ
k have rank two. Con-

sequently, only one of the eigenvalues of C0 and CS/2 is non-zero, and only two of the

eigenvalues of Cα
k and Cβ

k are non-zero. Furthermore, using Theorem 3.1.1 of Fuller
(1996), it is possible to establish the position and the value of the non-zero eigenvalues
of matrices C0, CS/2, Cα

k and Cβ
k , k = 1, ..., S∗. In particular, the non-zero eigenvalue

of C0 and CS/2 is in both cases equal to S and has the first position and the S/2− 1

position in the diagonal eigenmatrix, respectively. In the case of matrices Cα
k and Cβ

k ,
the non-zero eigenvalues have the j + 1 and S − j + 1 positions, where j is such that
ωk = 2πj

S
. The non-zero eigenvalues associated with Cα

k are equal to S/2, and the non-

zero eigenvalues associated with Cβ
k are equal to −S/2i in position j + 1 and equal to

S/2i in position S− j+ 1. Based on the previous results relating to circulant matrices
it is evident that the general circulant matrix C associated with ᾱ(z) can always be
decomposed as in (5.3).

We now state some important identities relating to products involving C0, CS/2,

Cα
k , Cβ

k , k = 1, ..., S∗, and C:

CjCj = SCj, j = 0, S/2

Cα
kC

α
k =

S

2
Cα

k , Cα
kC

β
k =

S

2
Cβ

k , Cβ
kC

β
k = −S

2
Cα

k

C′Cj = CjC = Scᾱj Cj, j = 0, S/2 (A.5)

C′Cα
k =

S

2

(
cᾱkαC

α
k − cᾱkβC

β
k

)
, Cα

kC =
S

2

(
cᾱkαC

α
k + cᾱkβC

β
k

)
C′Cβ

k =
S

2

(
cᾱkαC

β
k + cᾱkβC

α
k

)
, Cβ

kC =
S

2

(
cᾱkαC

β
k − cᾱkβC

α
k

)
,

where we have used the fact that C0, CS/2 and Cα
k , k = 1, ..., S∗, are symmetric and

(Cβ
k)′ = −Cβ

k , k = 1, ..., S∗. Moreover, for products involving Ψ∗ (1) and C0, CS/2, Cα
k

and Cβ
k , k = 1, ..., S∗, the following identities hold:
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Ψ∗ (1)′ C0 = C0Ψ
∗ (1) = ψ (1)C0, Ψ∗ (1)′ CS/2 = CS/2Ψ

∗ (1) = ψ (−1)CS/2

Ψ∗ (1)′ Cα
k = bkC

α
k − akC

β
k , Cα

kΨ
∗ (1) = bkC

α
k + akC

β
k (A.6)

Ψ∗ (1)′ Cβ
k = akC

α
k + bkC

β
k , Cβ

kΨ
∗ (1) = −akC

α
k + bkC

β
k

where bk and ak are as defined in Theorem 1. Finally by using the identities in (A.5)
and (A.6) we may establish the following identities which will be required in order to
prove the results in Theorem 1:

Ψ∗ (1)′ C′C0 = Scᾱ0ψ (1)C0 (A.7)

Ψ∗ (1)′ C′C0CΨ∗ (1) = [Scᾱ0ψ(1)]2C0 (A.8)

Ψ∗ (1)′ C′CS/2 = ScᾱS/2ψ (−1)CS/2 (A.9)

Ψ∗ (1)′ C′CS/2CΨ∗ (1) = [ScᾱS/2ψ (−1)]2CS/2 (A.10)

Ψ∗ (1)′ C′Cα
k =

S

2

[(
cᾱkαbk − cᾱkβak

)
Cα

k −
(
cᾱkαak + cᾱkβbk

)
Cβ

k

]
(A.11)

Ψ∗ (1)′ C′Cβ
k =

S

2

[(
cᾱkαak + cᾱkβbk

)
Cα

k +
(
cᾱkαbk − cᾱkβak

)
Cβ

k

]
(A.12)

Ψ∗ (1)′ C′Cα
kCΨ∗ (1) =

(
S

2

)2 [
(cᾱkα)

2
+
(
cᾱkβ

)2] (
b2k + a2

k

)
Cα

k . (A.13)

Proof of Theorem 1: Note first that by Frisch-Waugh theorem the OLS estimators
of π∗0, π

∗
S/2,π

∗
k,α, π∗k,β, k = 1, . . . , S∗, and φ∗i , i = 1, . . . , p, from (4.1) and (4.5) are

identical. Moreover, (4.5) can be expressed in vector form as:

ŷ =
[
Ŷ1|Ŷ2

]
β0 + û

where: ŷ is an N × 1 vector with generic element ∆̂SxSt+s; Ŷ1 and Ŷ2 are N × r and
N×[(S − r) + p] matrices, where r is the number of unit roots present in ᾱ(z), such that
Ŷ1 collects together those non-stationary variables in (4.6) which are associated with
the r unit roots present in ᾱ(z), while Ŷ2 collects together the remaining (stationary)
variables from (4.6) together with the p lags of ∆̂SxSt+s; β0 ≡ (π∗0, π

∗
1,α, π∗1,β, . . . , π

∗
S∗,α,

π∗S∗,β, π
∗
S/2, φ

∗
1, . . . , φ

∗
p)
′, omitting π∗S/2 when S is odd; finally û is an N × 1 vector with

generic element ε̂St+s. The scaled OLS estimator of β from (4.5) can then be written
as

DT β̂0 =

[
N−2Ŷ′

1Ŷ1 N−3/2Ŷ′
1Ŷ2

N−3/2Ŷ′
2Ŷ1 N−1Ŷ′

2Ŷ2

]−1

×
[

N−1Ŷ′
1ŷ

N−1/2Ŷ′
2ŷ

]
where DT is a diagonal scaling matrix of the form DT = diag[N × Ir, N

1/2× I(S−r)+p].

Observe from the non-stationary nature of the elements of the matrix Ŷ1 and the sta-
tionarity of the elements of matrix Ŷ2, it follows straightforwardly that N−3/2Ŷ′

1Ŷ2
p→
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0. Moreover, due to the (asymptotic) orthogonality of the non-stationary auxiliary
variables in Ŷ1, the matrix N−2Ŷ′

1Ŷ1 weakly converges to a diagonal matrix the el-
ements on the leading diagonal of which are well-defined random variables. We now
establish the results in parts (a)-(d) in turn.

Proof of (a): Using the asymptotic orthogonality of the variables in Ŷ1, noted above,
the t0 statistic satisfies

t0 =
N−1ŷ′0Qŷ√
σ̂2N−2ŷ′0Qŷ0

+ op(1), (A.14)

where ŷ0 is an N×1 vector with generic element x̂0,St+s−1, and Q is the N×N symmet-

ric and idempotent matrix Q = I− Ŷ2

(
Ŷ′

2Ŷ2

)−1

Ŷ′
2. Consider first the denominator

of (A.14). It is straightforwardly to show that

N−2ŷ′0Qŷ0 = N−2ŷ′0ŷ0 + op (1)

= N−2
∑

(x̂0,St+s−1)
2 + op(1)

= N−2S
∑(

X̂′
t−1C0X̂t−1

)
+ op(1).

Similarly, for the numerator

N−1ŷ′0Qŷ = N−1ŷ′0Qû = N−1ŷ′0û + op (1)

= N−1
∑

x̂0,St+s−1ε̂St+s + op(1)

= N−1
∑

X̂′
t−1C0Êt + op(1),

where Êt is the de-meaned and de-trended counterpart of Et.

Using Lemma 1, (A.7), (A.8) and the CMT it follows that

N−2S
∑(

X̂′
t−1C0X̂t−1

)
⇒ σ2

S

∫ 1

0

Ŵ (r)′ Ψ∗ (1)′ C′C0CΨ∗ (1)Ŵ (r) dr

=
σ2

S
[Scᾱ0ψ(1)]2

∫ 1

0

Ŵ (r)′C0Ŵ (r) dr

= σ2[Scᾱ0ψ(1)]2
∫ 1

0

Ŵ∗ (r)′ C0Ŵ
∗ (r) dr

and

N−1
∑

X̂′
t−1C0Êt ⇒ σ2

S

∫ 1

0

Ŵ (r)′ Ψ∗ (1)′ C′C0dŴ (r)

=
σ2

S
cᾱ0Sψ (1)

∫ 1

0

Ŵ (r)′ C0dŴ (r)

= σ2cᾱ0Sψ (1)

∫ 1

0

Ŵ∗ (r)′ C0dŴ
∗ (r) ,
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where Ŵ∗ (r) ≡ 1√
S
Ŵ (r). Hence, as σ̂2 p→ σ2, and noting that C0 = v0v

′
0 where

v′0 = (1, 1, 1, 1, . . . , 1), it is easy to see that ŵ0 (r) = v′0Ŵ
∗ (r) = S−1/2

∑0
j=1−S Ŵj (r),

a standard de-meaned and de-trended Brownian motion, the result in (5.4) follows
straightforwardly using the CMT.

Proof of (b): In similar fashion as was observed for t0 in the proof of part (a), it can
be shown that

tS/2 =
N−1ŷ′S/2Qŷ√
σ̂2N−2ŷ′S/2QŷS/2

+ op(1)

=
N−1

∑
t X̂

′
t−1CS/2Êt√

σ̂2N−2S
∑(

X̂′
t−1CS/2X̂t−1

) + op (1)

where ŷS/2 is an N × 1 vector with generic element x̂S/2,St+s−1. Using Lemma 1, (A.9),
(A.10) and the CMT we obtain that

N−2S
∑(

X̂′
t−1CS/2X̂t−1

)
⇒ σ2

S

∫ 1

0

Ŵ (r)′ Ψ∗ (1)′ C′CS/2CΨ∗ (1)Ŵ (r) dr

=
σ2

S
[ScᾱS/2ψ (−1)]2

∫ 1

0

Ŵ (r)′ CS/2Ŵ (r) dr

= σ2[ScᾱS/2ψ (−1)]2
∫ 1

0

Ŵ∗ (r)′ CS/2Ŵ
∗ (r) dr

and

N−1
∑

X̂′
t−1CS/2Êt ⇒ σ2

S

∫ 1

0

Ŵ (r)′ Ψ∗ (1)′ C′CS/2dŴ (r)

=
σ2

S
cᾱS/2Sψ (−1)

∫ 1

0

Ŵ (r)′ CS/2dŴ (r)

= σ2cᾱS/2Sψ (−1)

∫ 1

0

Ŵ∗ (r)′ CS/2dŴ
∗ (r)

where Ŵ∗ (r) ≡ 1√
S
Ŵ (r). Hence, as σ̂2 p→ σ2 and noting that CS/2 = vS/2v

′
S/2, where

v′S/2 = (−1, 1,−1, 1, ..., 1), it is easy to see that ŵS/2 (r) = v′S/2Ŵ
∗ (r) = S−1/2

∑0
j=1−S (−1)−j

Ŵj (r), a standard de-meaned and de-trended Brownian motion independent of ŵ0 from
part (a), the result in (5.5) follows using the CMT.
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Proof of (c): As in parts (a) and (b), it can be shown that

tαk =
N−1ŷα′

k Qŷ√
σ̂2N−2ŷα′

k Qŷα
k

+ op(1) =
N−1

∑
t X̂

′
t−1C

α
k Êt√

σ̂2N−2S
∑(

X̂′
t−1C

α
k X̂t−1

) + op (1)

tβk =
N−1ŷβ′

k Qŷ√
σ̂2N−2ŷβ′

k Qŷβ
k

+ op(1) =
N−1

∑
t X̂

′
t−1C

β
kÊt√

σ̂2N−2S
∑(

X̂′
t−1C

α
k X̂t−1

) + op (1)

where ŷα
k and ŷα

k are N × 1 vectors with generic elements x̂α
k,St+s−1 and x̂β

k,St+s−1,
respectively. Using Lemma 1, (A.11), (A.12), (A.13) and applications of the CMT we
obtain the following results:

N−2S

2

∑(
X̂′

t−1C
α
k X̂t−1

)
⇒ σ2

S2

(
S

2

)∫ 1

0

Ŵ (r)′ Ψ∗ (1)′ C′Cα
kCΨ∗ (1)Ŵ (r) dr

=
σ2

S2

(
S

2

)3 [
(cᾱkα)

2
+
(
cᾱkβ

)2] (
b2k + a2

k

) ∫ 1

0

Ŵ (r)′ Cα
kŴ (r) dr

=
σ2

S2

(
S

2

)4 [
(cᾱkα)

2
+
(
cᾱkβ

)2] (
b2k + a2

k

) ∫ 1

0

Ŵ∗ (r)′ Cα
kŴ

∗ (r) dr

N−1
∑

X̂′
t−1C

α
k Êt ⇒ σ2

S

∫ 1

0

Ŵ (r)′ Ψ∗ (1)′ C′Cα
kdŴ (r)

=
σ2

S

(
S

2

)(
cᾱkαbk − cᾱkβak

) ∫ 1

0

Ŵ (r)′ Cα
kdŴ (r)

−σ
2

S

(
S

2

)(
cᾱkαak + cᾱkβbk

) ∫ 1

0

Ŵ (r)′ Cβ
kdŴ (r)

=
σ2

S

(
S

2

)2 (
cᾱkαbk − cᾱkβak

) ∫ 1

0

Ŵ∗ (r)′ Cα
kdŴ

∗ (r)

−σ
2

S

(
S

2

)2 (
cᾱkαak + cᾱkβbk

) ∫ 1

0

Ŵ∗ (r)′ Cβ
kdŴ

∗ (r)

30



and

N−1
∑

X̂′
t−1C

β
kÊt ⇒ σ2

S

∫ 1

0

Ŵ (r)′ Ψ∗ (1)′ C′Cβ
kdŴ (r)

=
σ2

S

(
S

2

)(
cᾱkαak + cᾱkβbk

) ∫ 1

0

Ŵ (r)′ Cα
kdŴ (r)

+
σ2

S

(
S

2

)(
cᾱkαbk − cᾱkβak

) ∫ 1

0

Ŵ (r)′ Cβ
kdŴ (r)

=
σ2

S

(
S

2

)2 (
cᾱkαak + cᾱkβbk

) ∫ 1

0

Ŵ∗ (r)′ Cα
kdŴ

∗ (r)

+
σ2

S

(
S

2

)2 (
cᾱkαbk − cᾱkβak

) ∫ 1

0

Ŵ∗ (r)′ Cβ
kdŴ

∗ (r)

where Ŵ∗ (r) ≡ 1√
S/2

Ŵ (r). Noting that Cα
k = vα

k v
α′
k and Cβ

k = vα
k v

β′
k , where

vα′
k =

[
cos (ωk [1− S]) cos (ωk [2− S]) · · · cos (ωk0)
sin (ωk [1− S]) sin (ωk [2− S]) · · · sin (ωk0)

]
and

vβ′
k =

[
− sin (ωk [1− S]) − sin (ωk [2− S]) · · · − sin (ωk0)
cos (ωk [1− S]) cos (ωk [2− S]) · · · cos (ωk0)

]
,

we obtain that

vα′
k Ŵ∗ (r) =

[
ŵα

k (r)

ŵβ
k (r)

]
=

[
(S/2)−1/2∑0

j=1−S cos (jωk) Ŵj (r)

(S/2)−1/2∑0
j=1−S sin (jωk) Ŵj (r)

]

vβ′
k Ŵ∗ (r) =

[
−ŵβ

k (r)
ŵα

k (r)

]
where ŵα

k (r) and ŵβ
k (r) are independent standard de-meaned and de-trended Brownian

motions, independent of ŵ0(r) and ŵS/2(r) of parts (a) and (b), respectively. The
results in (5.6) and (5.7) then follow straightforwardly after a little algebra using the

fact that σ̂2 p→ σ2 and applications of the CMT. Finally using the fact that Fk =
1
2
[(tαk )2+(tβk)2]+op (1), which follows from the asymptotic orthogonality of the elements

of Ŷ1, the representation in (5.8) obtains from the results in (5.6) and (5.7) and the
CMT, after a little algebra.

Proof of (d): The stated results follow trivially from the results in (5.4), (5.5), (5.8)
and applications of the CMT, again using the asymptotic orthogonality of the elements
of Ŷ1 in each case.
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Table 1: Size and Power of Seasonal Unit Root Tests, T = 12

θ1 r1 t0 tα1 tβ1 F1 tα2 tβ2 F2 t3
0.00 1.00 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

0.99 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.95 0.05 0.08 0.04 0.08 0.05 0.05 0.05 0.05
0.80 0.05 0.54 0.03 0.52 0.05 0.06 0.06 0.06

π/4 0.99 0.03 0.00 1.00 1.00 0.04 0.07 0.05 0.04
0.95 0.03 0.01 1.00 1.00 0.04 0.10 0.05 0.04
0.80 0.02 0.10 1.00 0.90 0.02 0.31 0.05 0.05

−π/4 0.99 0.05 0.00 1.00 1.00 0.03 0.07 0.04 0.04
0.95 0.05 0.00 1.00 1.00 0.03 0.07 0.04 0.03
0.80 0.05 0.11 1.00 1.00 0.03 0.07 0.04 0.04

11π/36 0.99 0.03 0.00 1.00 1.00 0.07 0.14 0.09 0.05
0.95 0.03 0.01 1.00 1.00 0.04 0.31 0.07 0.05
0.80 0.02 0.06 1.00 1.00 0.01 0.60 0.05 0.04

−11π/36 0.99 0.11 0.00 1.00 1.00 0.03 0.06 0.04 0.04
0.95 0.09 0.00 1.00 1.00 0.03 0.07 0.04 0.04
0.80 0.06 0.10 1.00 1.00 0.03 0.07 0.04 0.04
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Table 2: Size and Power of Seasonal Unit Root Tests, T = 35

θ1 r1 t0 tα1 tβ1 F1 tα2 tβ2 F2 t3
0.00 1.00 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

0.99 0.05 0.06 0.05 0.06 0.05 0.05 0.05 0.05
0.95 0.05 0.21 0.03 0.19 0.05 0.05 0.05 0.05
0.80 0.05 1.00 0.02 1.00 0.05 0.06 0.05 0.05

π/4 0.99 0.04 0.00 1.00 1.00 0.04 0.06 0.05 0.04
0.95 0.04 0.03 1.00 1.00 0.04 0.08 0.05 0.04
0.80 0.04 0.68 1.00 1.00 0.02 0.29 0.05 0.05

−π/4 0.99 0.05 0.00 1.00 1.00 0.04 0.06 0.04 0.04
0.95 0.05 0.01 1.00 1.00 0.04 0.06 0.04 0.04
0.80 0.05 0.85 1.00 1.00 0.03 0.07 0.04 0.04

11π/36 0.99 0.04 0.00 1.00 1.00 0.05 0.09 0.06 0.04
0.95 0.04 0.03 1.00 1.00 0.03 0.25 0.06 0.04
0.80 0.03 0.52 1.00 1.00 0.01 0.60 0.05 0.04

−11π/36 0.99 0.07 0.00 1.00 1.00 0.04 0.06 0.04 0.04
0.95 0.06 0.01 1.00 1.00 0.04 0.06 0.04 0.04
0.80 0.06 0.83 1.00 1.00 0.04 0.06 0.04 0.04
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Table 3: Size and Power of Seasonal Unit Root Tests, T = 50

θ1 r1 t0 tα1 tβ1 F1 tα2 tβ2 F2 t3
0.00 1.00 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

0.99 0.05 0.08 0.05 0.07 0.05 0.05 0.05 0.05
0.95 0.05 0.69 0.03 0.63 0.05 0.05 0.05 0.05
0.80 0.05 1.00 0.03 1.00 0.05 0.07 0.05 0.05

π/4 0.99 0.04 0.01 1.00 1.00 0.05 0.05 0.05 0.05
0.95 0.04 0.17 1.00 1.00 0.04 0.08 0.05 0.05
0.80 0.04 1.00 1.00 1.00 0.02 0.29 0.05 0.05

−π/4 0.99 0.05 0.00 1.00 1.00 0.04 0.05 0.05 0.05
0.95 0.05 0.09 1.00 1.00 0.04 0.06 0.05 0.05
0.80 0.05 1.00 1.00 1.00 0.04 0.07 0.05 0.05

11π/36 0.99 0.04 0.01 1.00 1.00 0.05 0.07 0.05 0.05
0.95 0.05 0.12 1.00 1.00 0.03 0.23 0.05 0.05
0.80 0.04 0.98 1.00 1.00 0.00 0.61 0.05 0.05

−11π/36 0.99 0.05 0.00 1.00 1.00 0.04 0.06 0.05 0.05
0.95 0.05 0.09 1.00 1.00 0.04 0.06 0.05 0.05
0.80 0.05 1.00 1.00 1.00 0.04 0.07 0.05 0.05
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Table 4: Size and Power of Seasonal Unit Root Tests, T = 100

θ1 r1 t0 tα1 tβ1 F1 tα2 tβ2 F2 t3
0.00 1.00 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

0.99 0.05 0.15 0.04 0.14 0.05 0.05 0.05 0.05
0.95 0.05 1.00 0.02 1.00 0.05 0.05 0.05 0.05
0.80 0.05 1.00 0.04 1.00 0.05 0.07 0.05 0.05

π/4 0.99 0.05 0.00 1.00 1.00 0.05 0.05 0.05 0.05
0.95 0.05 0.70 1.00 1.00 0.05 0.07 0.05 0.05
0.80 0.05 1.00 1.00 1.00 0.03 0.28 0.05 0.05

−π/4 0.99 0.05 0.00 1.00 1.00 0.05 0.05 0.05 0.05
0.95 0.05 0.82 1.00 1.00 0.05 0.05 0.05 0.05
0.80 0.05 1.00 1.00 1.00 0.05 0.06 0.05 0.05

11π/36 0.99 0.05 0.02 1.00 1.00 0.05 0.06 0.05 0.05
0.95 0.05 0.58 1.00 1.00 0.03 0.21 0.05 0.05
0.80 0.05 1.00 1.00 1.00 0.01 0.60 0.05 0.05

−11π/36 0.99 0.05 0.00 1.00 1.00 0.05 0.05 0.05 0.05
0.95 0.05 0.79 1.00 1.00 0.05 0.05 0.05 0.05
0.80 0.05 1.00 1.00 1.00 0.05 0.06 0.05 0.05
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