
 
 
 
 
 
 
 

 
 

A powerful test for linearity when the order 
of integration is unknown 

 
by 
 

David I. Harvey, Stephen J. Leybourne and Bin Xiao 
 
 

Granger Centre Discussion Paper No. 07/06 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6245787?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A Powerful Test for Linearity when the Order of
Integration is Unknown

David I. Harvey, Stephen J. Leybourne and Bin Xiao
School of Economics, University of Nottingham

October 2007

Abstract

In this paper we propose a test of the null hypothesis of time series linearity
against a nonlinear alternative, when uncertainty exists as to whether or not
the series contains a unit root. We provide a test statistic that has the same
limiting null critical values regardless of whether the series under consideration
is generated from a linear I(0) or linear I(1) process, and is consistent against
nonlinearity of either form, being asymptotically equivalent to the efficient test
in each case. Finite sample simulations show that the new procedure has better
size control and offers substantial power gains over the recently proposed robust
linearity test of Harvey and Leybourne (2007).

Keywords: Nonlinearity testing; Wald tests; Unit root tests; Stationarity tests.

JEL Classifications: C22.

1 Introduction

The recent time series literature has shown that it is often the case that economic
variables are better characterised by nonlinear, rather than linear, time series models. It
is important therefore, for the purposes of both modelling and forecasting, that reliable
tests be available to determine whether a linear or nonlinear model is appropriate for
a given series.

The standard tests of the null of linearity against a nonlinear alternative, proposed
by Teräsvirta (1994) and Luukkonen et al. (1988), rely on an assumption of I(0)
behaviour in the underlying series. However, if the series is in fact generated by an
I(1) linear process, then spurious rejections of the linearity null hypothesis will occur.
In practice, the validity of an I(0) assumption may often be questionable; indeed, it
is frequently the case that uncertainty exists as to the order of integration. In an
attempt to circumvent this difficulty, Harvey and Leybourne (2007) proposed a test for
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linearity which does not require an a priori assumption as to the order of integration
of the process. Their approach involves estimating a hybrid regression allowing for
both I(0) and I(1) linear and nonlinear components, and conducting a Wald test for
the exclusion of all nonlinear variables. The limiting null distribution of this Wald
statistic is different for I(0) series than for I(1) series, but this is overcome by use of
a multiplicative scaling factor modification of the kind suggested by Vogelsang (1998).
This gives rise to a test statistic that has identical (and standard) critical values for a
given significance level under both I(0) and I(1) cases.

In this paper, we continue in the vein of Harvey and Leybourne (2007) to develop
tests of linearity that do not require knowledge of the order of integration. Specifically,
we propose a test that is comprised of a simple data-dependent weighted average of two
Wald test statistics; one that is efficient when the data are generated by an I(0) process
and a second that is efficient when the data are I(1). The weights are determined from
an auxiliary statistic, which ensures a switch between the two efficient Wald statistics,
depending on whether the data are generated by an I(0) or I(1) process. The new
weighted statistic has a standard chi-squared limiting null distribution in both the
I(0) and I(1) cases, and is shown to have better finite sample size properties and
substantially improved power in comparison to the robust test proposed by Harvey
and Leybourne (2007). We therefore recommend use of the new test proposed in this
paper for practical applications.

The paper is structured as follows. In the next section we present models of linearity
and nonlinearity, showing how they approximate specifications such as exponential
and logistic smooth transition autoregressive models (ESTAR and LSTAR) in both
the I(0) and I(1) contexts. We also describe the efficient Wald statistics that assume
knowledge of the order of integration. In Section 3, we develop our robust statistic
for testing the hypothesis of testing I(0) or I(1) linearity against nonlinearity, as well
as deriving its null asymptotic distribution and establishing consistency under the
nonlinear alternative. Section 4 provides finite sample size and power Monte Carlo
simulation results, comparing the newly proposed test with the efficient tests (that
assume a known order of integration), the Harvey and Leybourne (2007) test, and
an alternative approach based on pre-testing for the order of integration. Section 5
presents an application of the tests to short-term interest rate series, while Section 6
concludes.

2 The Model and Standard Linearity Tests

Consider a nonlinear AR(1) model for an I(0) time series yt, t = 1, ..., T

yt = µ+ vt,

vt = ρvt−1 + δf(vt−1, θ)vt−1 + εt (1)

where εt is a zero mean IID white noise process that possesses finite moments up to
order 12 (as in Assumption 1 of Harvey and Leybourne, 2007), and where ρ, δ and
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the function f(., θ) are chosen such that vt is globally stationary. Assuming that the
function f(., θ) admits a Taylor series expansion around θ = 0, this model can be
approximated to the second order by

yt = µ+ vt,

vt = δ1vt−1 + δ2v
2
t−1 + δ3v

3
t−1 + εt. (2)

Typical specifications for f(., θ) include the well-known ESTAR and LSTAR models

ESTAR : f(vt−1, θ) = 1− exp[−θ(vt−1 − c)2]

LSTAR : f(vt−1, θ) =
2

1 + exp[(−θ(vt−1 − c)]
− 1

where c is a non-centrality parameter. A second order expansion of the form given in
(2) is usually considered sufficient to capture the essential nonlinear features of models
such as ESTAR and LSTAR.

In this framework, the null hypothesis of linearity and alternative of nonlinearity
can be expressed as

H0,0 : δ2 = δ3 = 0

H1,0 : δ2 6= 0 and/or δ3 6= 0

whereH.,0 denotes a hypothesis under the assumption of yt being I(0). For the purposes
of testing, we can rewrite the DGP (2) as a regression model in terms of the observed
yt

yt = β0 + β1yt−1 + β2y
2
t−1 + β3y

3
t−1 + εt (3)

where

β0 = µ(1− δ1 + δ2µ− δ3µ
2), β1 = δ1 − 2δ2µ+ 3δ3µ

2, β2 = δ2 − 3δ3µ, β3 = δ3.

In terms of (3), the null and alternative hypotheses can therefore be stated as

H0,0 : β2 = β3 = 0

H1,0 : β2 6= 0 and/or β3 6= 0.

The standard Wald statistic for testing these restrictions is given by

W0 = T

(
RSSr

0

RSSu
0

− 1

)
where RSSu

0 and RSSr
0 denote, respectively, the residual sums of squares from the

unrestricted OLS regression (3) and a restricted OLS regression imposing β2 = β3 = 0
in (3), i.e.

yt = β0 + β1yt−1 + εt. (4)
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Standard large sample theory shows that W0 will follow an asymptotic χ2(2) distri-
bution under the null H0,0, and will diverge at the rate Op(T ) under the nonlinear
alternative H1,0.

Now consider a corresponding nonlinear AR(1) model for an I(1) series, where the
nonlinearity is assumed to enter through the first differences of yt

yt = µ+ vt,

∆vt = φ∆vt−1 + λf(∆vt−1, θ)∆vt−1 + εt (5)

where φ, λ and the function f(., θ) are again chosen such that ∆vt is globally stationary.
The function f(., θ) is used in a generic sense but needs not be identical to that in
(1). If the function again allows a Taylor series expansion around θ = 0, (5) can be
approximated to the second order by

yt = µ+ vt,

∆vt = λ1∆vt−1 + λ2(∆vt−1)
2 + λ3(∆vt−1)

3 + εt. (6)

The null of linearity and alternative of nonlinearity are here given by

H0,1 : λ2 = λ3 = 0

H1,1 : λ2 6= 0 and/or λ3 6= 0

where H.,1 denotes a hypothesis under the assumption of yt being I(1). As with the
analysis of the I(0) case above, the DGP (6) can be rewritten as a regression model

∆yt = λ1∆yt−1 + λ2(∆yt−1)
2 + λ3(∆yt−1)

3 + εt. (7)

Notice that since ∆yt = ∆vt, (7) and (6) are essentially identical, thus the null and
alternative H0,1 and H1,1 are as given above.

The corresponding Wald statistic based on (7) is

W1 = T

(
RSSr

1

RSSu
1

− 1

)
where RSSu

1 and RSSr
1 denote, respectively, the residual sums of squares from the

unrestricted OLS regression (7) and a restricted OLS regression imposing λ2 = λ3 = 0
in (7), i.e.

∆yt = λ1∆yt−1 + εt. (8)

Standard theory again shows that W1 follows an asymptotic χ2(2) distribution under
the null H0,1, and diverges at the rate Op(T ) under the alternative H1,1.

When conducting tests such as W0 and W1 in practice, we also need to admit
the possibility of more general autoregressive structures. Following Kapetanios et al.
(2003) and Harvey and Leybourne (2007), we assume that this additional serial cor-
relation enters linearly so that the regression models (3), (4), (7) and (8) are replaced
with

yt = β0 + β1yt−1 + β2y
2
t−1 + β3y

3
t−1 +

p∑
j=1

β4,j∆yt−j + εt (9)
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yt = β0 + β1yt−1 +

p∑
j=1

β4,j∆yt−j + εt (10)

∆yt = λ1∆yt−1 + λ2(∆yt−1)
2 + λ3(∆yt−1)

3 +

p∑
j=2

λ4,j∆yt−j + εt (11)

and

∆yt = λ1∆yt−1 +

p∑
j=2

λ4,j∆yt−j + εt (12)

respectively. In what follows, p is determined using a general-to-specific methodology,
with sequential testing performed at the 10%-level with pmax = [8(T/100)1/4], where [.]
denotes integer part.

3 Linearity Testing when the Order of Integration

is Unknown

If the order of integration of the time series yt is known, then the (asymptotically) size
controlled and efficient testing strategy is simply to apply W0 if the series is I(0), and
W1 if the series is I(1). However, the focus of this paper is the situation where it is
not known whether yt is stationary or unit root. We therefore consider an approach
which asymptotically selects the W0 statistic when the data are stationary, and the W1

statistic when the data have a unit root. This can be achieved by use of a weighted
average statistic

Wλ = {1− λ}W0 + λW1 (13)

where λ is some function that converges in probability (at sufficiently fast rates) to zero
when yt is I(0) and to one when yt is I(1). This approach has been used by Harvey
et al. (2007a, 2007b) in the contexts of robust testing for the presence of a trend and
a break in trend, respectively. To be operational, a suitable function for λ must be
chosen. While many functions could be employed, here we follow Harvey et al. (2007a)
in using information provided by both unit root and stationarity statistics, along with
the following functional form for λ

λ(U, S) = exp

(
−g
(
U

S

)2
)

(14)

where g is some finite positive constant and U and S denote suitably chosen unit root
and stationarity statistics. Heuristically, when the series is stationary, (U/S)2 diverges,
resulting in λ converging to zero, and when the series is unit root, (U/S)2 converges
to zero resulting in λ converging to one. This ensures that W0 or W1 is selected by Wλ

in (13) as appropriate for the order of integration.
For our purposes, we specify U and S as, respectively, the standard Dickey-Fuller

unit root statistic (allowing for a constant) and the nonparametric stationarity statistic
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proposed by Harris et al. (2003). The augmented Dickey-Fuller statistic U is the t-ratio
for testing π1 = 0 in the following regression

∆yt = π0 + π1yt−1 +

p∑
j=1

γj∆yt−j + εt. (15)

As with the Wald testsW0 andW1, the number of lagged difference terms used in (15) is
determined using a general-to-specific methodology, with sequential testing performed
at the 10%-level with pmax = [8(T/100)1/4].

The S statistic is given by

S =
T−1/2

∑T
t=k+1 ỹtỹt−k

ω̂{ỹtỹt−k}
(16)

where ỹt denotes the deviation yt from its mean, and ω̂2 {at,k} is the Bartlett kernel-
based long run variance estimator of a sequence of variables a1,k, ..., aT,k defined by

ω̂{at,k}2 = γ̂0{at,k}+ 2
l∑

j=1

(
1− j

l

)
γ̂j{at,k}, γ̂j{at,k} = T−1

T∑
t=j+k+1

at,kat−j,k (17)

with at,k = ỹtỹt−k for (16). In the computation of S, we set k = (2T )1/2 and l =
12(T/100)1/4 in (16) and (17), rounded to the nearest integer.

The asymptotic behaviour of W0, W1 and λ(U, S) is given by the following Lemmas,
the proofs of which are contained in the Appendix

Lemma 1 (a) If yt is I(0), then under H0,0 and H1,0: |U | diverges to +∞, |S| = Op(1),

and λ(U, S)
p→ 0 at a rate faster than Op(T

−γ) for any finite γ > 0; (b) If yt is I(1),

then under H0,1 and H1,1: |U | = Op(1), |S| diverges to +∞, and λ(U, S)
p→ 1.

Lemma 2 (a) If yt is I(0), then (i) under H0,0: W0 ⇒ χ2(2) and W1 = Op(T ), (ii)
under H1,0: W0 = Op(T ) and W1 = Op(T ); (b) If yt is I(1), then (i) under H0,1:
W0 = Op(1) and W1 ⇒ χ2(2), (ii) under H1,1: W0 = Op(1) and W1 = Op(T ).

The limit behaviour of the test statistic Wλ can then be summarised as follows

Theorem 1 (a) Under the null of I(0) linearity (H0,0), Wλ = W0 +op(1) ⇒ χ2(2) and
under I(1) linearity (H0,1), Wλ = W1 + op(1) ⇒ χ2(2); (b) Under the alternative of
I(0) nonlinearity (H1,0), T

−1Wλ = T−1W0 + op(1) and under I(1) nonlinearity (H1,1),
T−1Wλ = T−1W1 + op(1).

The proof is given in the Appendix. This implies that under the null of either
I(0) or I(1) linearity, Wλ selects the efficient test in the limit, and is asymptotically
distributed χ2(2). Under the nonlinear alternative of either I(0) or I(1) nonlinearity,
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Wλ again selects the efficient test in the limit in each case, and is thus consistent at
the rate Op(T ).

The value of the constant g in (14) has no effect on the asymptotic properties of
Wλ, however, its setting controls the rate at which Wλ switches between W0 and W1 in
finite samples. As a result, its value needs to be calibrated on the basis of finite sample
simulations. We simulated the size of the Wλ test for a grid of g values, for both I(0)
and I(1) processes, and for the sample sizes T = 150 and T = 300. Overall, we found
that the empirical sizes were closest to nominal size for the value g = 0.1; this value is
hence recommended and employed throughout the remainder of the paper.

4 Finite Sample Properties

In this section we use Monte Carlo simulation to investigate the finite sample size and
power behaviour of the Wλ linearity test. In order to gauge the performance of this new
test, we also report results for W0 and W1, the robust test of Harvey and Leybourne
(2007), W ∗, and a two-step procedure comprised of (i) pre-testing for the order of
integration, and (ii) conducting either W0 or W1, depending on the outcome of the pre-
test. For the latter, in the first step we employed the stationarity test of Harris et al.
(2003), given by (16) above, which has the attractive property of being asymptotically
standard normally distributed under the null of linear or nonlinear stationarity (H0,0

or H1,0); see the proof of Lemma 1 (a) in the Appendix. If S was found to reject
the null (using one-sided upper-tail standard normal 5%-level critical values), then W1

was conducted; if no rejection was observed, W0 was selected. This pre-test procedure
is denoted WP . All Monte Carlo simulations reported in this section were computed
using 20,000 replications, for linearity tests conducted at the nominal 5%-level.

4.1 Size

First we consider empirical size behaviour using the following DGP

(1− ρL)yt = (1− ψL)εt

with εt ∼ NID(0, 1). Simulations were conducted for the sample sizes T = {150, 300},
with the parameter settings ρ = {0, 0.8, 0.9, 0.95, 1} and ψ = {0,±0.3,±0.6,±0.9}.
Table 1 reports the results. The Wλ test is very well behaved under the null hypoth-
esis of linearity, with very little evidence of size distortion for either the I(0) or I(1)
cases, even for T = 150. Across the range of DGP parameters considered, there are a
few combinations of ρ and ψ which give rise to empirical size deviating a little from
nominal size, but these deviations are infrequent and never greater than ±2%. Overall,
therefore, we consider that the test is robust to the order of integration and to general
forms of serial correlation, displaying very attractive size properties.

By contrast, the W0 and W1 tests that assume knowledge of the order of integration
are not robust to the degree of persistence in the series. For the sample sizes considered,
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the W0 test is approximately correctly sized when ρ = 0, but becomes increasingly over-
sized as ρ approaches one (the only exception is when ψ = 0.9 where (near) cancelling
roots are present). In the I(1) case this over-size is quite severe, being around 15% for
the central case of ψ = 0. On the other hand, the W1 test has approximately correct
size in the I(1) case (ρ = 1) but suffers from under-size when ρ < 1. However, given
that the test does not exhibit over-size, the W1 test could be viewed as a conservative
test for linearity when uncertainty exists as to the order of integration.

The W ∗ test of Harvey and Leybourne (2007) displays generally good size control,
as was shown in the simulation results of that paper. However, for T = 150, some
noticeable size distortions are present, and although the degree of oversize is relatively
modest, Wλ is shown to exhibit better size behaviour here. For the pre-test procedure
WP , substantial over-size is seen for T = 150, particularly for unit root and near
unit root series. Although this improves for T = 300, size distortions still persist.
In addition, due to the inevitable Type I error in the first stage of the pre-test when
the series is I(0), there is no guarantee that WP will be asymptotically correctly sized
for linear stationary time series. These undesirable size properties raise significant
questions over the value of using such a pre-test procdure in practice. On the basis of
these finite sample size simulations, it is clearly the Wλ test that is the best performing
test.

4.2 Power

We also examine the power of the linearity tests against a number of nonlinear alter-
natives. First we consider both forms of nonlinearity discussed earlier, namely LSTAR
and ESTAR. As with the size simulations, we consider both I(0) and I(1) data, gen-
erated according to the following processes

I(0) : (1− φL)yt = δf(yt−1, θ)yt−1 + εt,

I(1) : (1− φL)∆yt = λf(∆yt−1, θ)∆yt−1 + εt.

Note that here we abstract from the effects of moving average errors, and we assumed
knowledge of the dynamic structure when computing the tests by setting p = 0 in (9)
and (15) when the data are I(0), and p = 1 when the series are I(1). A range of
nonlinearity parameter values θ are reported for several representative combinations
of φ and δ, λ, all for the sample sizes T = {150, 300}. The φ, δ and λ parameters are
chosen to ensure global stationarity of yt (∆yt), i.e. given φ ≥ 0, we ensure |φ± δ| < 1
(|φ± λ| < 1) for stationary (unit root) LSTAR models and |φ+ δ| < 1 (|φ+ λ| < 1)
for stationary (unit root) ESTAR models. The ESTAR condition allows for locally unit
root (φ = 1) or even explosive (φ > 1) behaviour, while maintaining global stationarity.

The results are reported in Tables 2 and 3 for LSTAR and ESTAR models respec-
tively. For the LSTAR models, when yt is I(0), Wλ has power almost identical to that
of the efficient test W0, even for the smaller sample size T = 150. The pre-test proce-
dure WP also displays good power performance, although the rejection frequencies are
almost always below those of Wλ, and the WP test was also shown to have poor size
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control. The power of the W ∗ test lies substantially below that of W0 and Wλ, and
while the W1 test can be considered as a conservative robust linearity test, its power
performance is extremely poor, as might be anticipated. When yt is I(1), the power
of Wλ is very slightly lower than that of W1 in the smaller sample simulations, but, as
would be expected given its asymptotic efficiency properties, the powers are again very
close for T = 300. In contrast, W ∗ has power well below that of Wλ and W1 for all
sample sizes, and in many cases the relative power losses are considerable. WP again
performs well, being broadly competitive with the better sized Wλ, although as before,
WP is almost always outperformed by Wλ. The W0 test has very low power when yt is
I(1) and the results clearly highlight its lack of consistency in this situation, as shown
in Lemma 2 (b) (ii).

Turning now to the results for ESTAR models, in the I(0) cases, much the same can
be said as for the LSTAR models, with Wλ having power close to that of the efficient
test W0 and clear superiority over W ∗, while the conservative W1 test again displays
very low rejection frequencies. WP is more competitive for T = 150 than was observed
for LSTAR models, and actually outpeforms Wλ on many occasions. Again however, it
must be stressed that WP lacks proper size control; in addition, there are regions of the
parameter space where Wλ has very large power gains over WP : see results for φ = 1.5,
δ = −1.0, θ = 0.1. When yt is I(1), the power of Wλ is again markedly superior to
that of W ∗, and compares very well with the efficient test W1. In fact, there are a
number of cases where the power of Wλ exceeds that of W1. This finite sample artefact
arises because W0, despite its lack of consistency, has substantial finite sample power
for many of the processes considered here, thus Wλ, derived as a weighted average of
W0 and W1, can on occasion achieve additional rejections of the null hypothesis than
would be realised by simply using W1. On comparing Wλ with WP , it can be seen that
Wλ now often demonstrates significant power advantages, up to the order of around
25%.

We now consider the behaviour of the linearity tests under a different nonlinear
alternative specification, one that is not nested in our model framework. Specifically,
we consider a self-exciting threshold autoregressive (SETAR) model, for both I(0) and
I(1) cases, given by

I(0) :
yt = φyt−1 + εt if yt−1 ≤ 0
yt = δyt−1 + εt if yt−1 > 0

,

I(1) :
∆yt = φ∆yt−1 + εt if ∆yt−1 ≤ 0
∆yt = λ∆yt−1 + εt if ∆yt−1 > 0

.

The SETAR model can be obtained as an LSTAR as θ → ∞, but the nonlinear com-
ponent cannot be written using a function f(., θ) that admits a Taylor series expansion
around θ = 0, as specified in the model setup. It is interesting, therefore, to examine
whether the tests have power against such alternatives, acting simply as tests of model
mis-specification.

Table 4 reports results for the parameter values φ = 0 and δ, λ = {0.3, 0.5, 0.7, 0.9}
(ensuring stationarity of yt for I(0) series and ∆yt for I(1) series), for the sample sizes
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T = {150, 300}. First, it can be seen that the tests do have power against SETAR
alternatives. As with the results for the LSTAR and ESTAR simulations, highest power
is observed for the W0 test when the series is I(0), and for the W1 test when the series
is I(1), as might be expected, but these tests perform very poorly when applied in
the reverse contexts, i.e. W0 for I(1) data, and W1 for I(0) data. Once again, Wλ

has power that is very close to W0 for I(0) series and W1 for I(1) series, making it
the best-performing test. The WP procedure is also very competitive (but as we have
shown earlier lacks size control), while W ∗ suffers power losses relative to Wλ.

In summary, our finite sample simulations allow us to conclude that Wλ displays
good finite sample size control, has power that compares very favourably with the
efficient tests that assume knowledge of the order of integration, and offers substantial
power improvements over the robust W ∗ test proposed by Harvey and Leybourne
(2007). We therefore recommend that the new Wλ test be used in practice.

5 Empirical Application

In this section we test for linearity in short-term interest rates. Many empirical studies
have found evidence for nonlinearity in the evolution of short-term interest rate series
over time; see, inter alia, Hamilton (1988), Gray (1996), Barkoulas et al. (1997), Ang
and Bekaert (2002a, 2002b) and Audrino (2006). However, it is unclear as to whether
such series are best modelled by unit root or stationary processes, thus application of
our robust tests to such series seems particularly apposite, since they remain agnostic
as to the true order of integration.

The data we consider are 3-month interest rates for Australia, Canada, New Zealand,
Switzerland, UK, and US, monthly over the period 1978:1–2006:12 (348 observations).
The data were obtained from the OECD Statistics database. We apply the new test
Wλ and the W ∗ test of Harvey and Leybourne (2007) to each series at the 10%, 5%
and 1% significance levels.1 Note that the W ∗ test requires re-computation of the test
statistic when run at different significance levels, since the construction of the statistic
involves use of a significance level-dependent parameter.

The results are reported in Table 5. We find that both Wλ and W ∗ reject the null
of linearity at the 1%-level for Australia, Canada, New Zealand and US, providing
strong evidence of nonlinearity for short-term interest rates in these countries. Of
particular interest are the results for the UK, where Wλ rejects at the 5%-level, but
no rejection is obtained, even at the 10%-level, when using W ∗. On the basis of the
simulation evidence of the previous section, where Wλ was found to display better size
and more power than W ∗, we would infer that it is the result of the Wλ test that is
to be believed here, indicating nonlinearity for the UK short-term interest rate. In the
case of Switzerland, no evidence of nonlinearity is detected by either of the tests at
conventional significance levels, thus Swiss interest rates appear to exist as an exception

1The W0 and W1 tests are not applied since they lack robustness to the order of integration; also,
WP is not considered since it lacks proper size control.
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to the general finding of short-term interest rate nonlinearity.

6 Conclusion

In this paper we have considered the issue of testing the null hypothesis of linearity
against a nonlinear alternative, in the practical scenario where the order of integration
of the data is unknown. We provide a new test, Wλ, that is asymptotically efficient,
in the sense that for both I(0) and I(1) series, Wλ is asymptotically equivalent to the
efficient test that assumes knowledge of the order of integration. Monte Carlo simula-
tion shows that the new test has very attractive size properties for varying degrees of
persistence, while at the same time forsaking very little in terms of finite sample power
relative to the efficient tests. Moreover, it is shown to have superior finite sample size
and power properties to the recently proposed robust test of Harvey and Leybourne
(2007), as well as outperforming an alternative procedure based on pre-testing for the
order of integration. We therefore recommend that the Wλ test proposed in this paper
be used in practical applications.

Throughout this paper we have assumed that the delay parameter in the function
f(., θ) is one period, and that additional serial correlation enters the models linearly
rather than nonlinearly. These assumptions make the analysis tractable and are con-
sistent with related work such as Kapetanios et al. (2003) and Harvey and Leybourne
(2007), also allowing straightforward comparisons with the latter. However, in future
research it would also be interesting to consider developing tests where these assump-
tions are relaxed. For example, the general approach taken in this paper to achieving
robust linearity tests could also be applied to models where the delay parameter is
treated as unknown (but bounded). Equivalent tests to W0 and W1 could first be de-
fined using regressions along the lines of those considered by Luukkonen et al. (1988),
and then a robust statistic that switches between them in the limit could be constructed
using the same principle as in Wλ of this paper.
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Appendix

Proof of Lemma 1

(a) Under H0,0, the series is linear and stationary, and so U = Op(T
1/2) by standard

results. Under H1,0, the series is nonlinear and stationary; however, since E(∆yt) = 0
still obtains, we find for the sample moments involved in the construction of the Dickey-
Fuller statistic U , the following orders hold∑T

t=p+1

(
∆yt−i −∆y−i

)
(yt−1 − y−1) = Op(T ) ∀i ≤ p,∑T

t=p+1 (yt−1 − y−1)
2 = Op(T ),∑T

t=p+1

(
∆yt−i −∆y−i

) (
∆yt−j −∆y−j

)
= Op(T ) ∀i, j ≤ p.

These combine to show that U = Op(T
1/2). Thus, |U | diverges to +∞ as T → ∞

under both H0,0 and H1,0.
Under H0,0, Theorem 8 (with n = 1) of Harris et al. (2003) shows that S ⇒ N(0, 1).

The same result can be obtained for S under H1,0 on replacing Assumption LP with a
suitable mixingale condition.

It therefore follows under both H0,0 and H1,0 that

λ(U, S) = exp

(
−g
(
U

S

)2
)

=
1

1 + g
(

U
S

)2
+ g2

2

(
U
S

)4
+ g3

6

(
U
S

)6
+ ...

=
1

1 + g |Op(T )|+ g2

2
|Op(T 2)|+ g3

6
|Op(T 3)|+ ...

p→ 0.

The infinite expansion in the denominator shows that λ(U, S)
p→ 0 at an exponential

rate, that is, a rate faster than Op(T
−γ) for any finite γ > 0.

(b) Under H0,1, the series is linear and unit root, and so U = Op(1), since it converges
to the Dickey-Fuller limit distribution. Under H1,1, the series is nonlinear and unit
root. In this case, E(∆yt) 6= 0, because expanding for E(∆yt) using (7) involves terms
such as E[(∆yt−1)

2]. This has the effect of inducing a drift into yt, which the Dickey-
Fuller statistic neglects to take into consideration. The corresponding sample moments
involved in U now have the following orders∑T

t=p+1

(
∆yt−i −∆y−i

)
(yt−1 − y−1) = Op(T

3/2) ∀i ≤ p,∑T
t=p+1 (yt−1 − y−1)

2 = Op(T
3),∑T

t=p+1

(
∆yt−i −∆y−i

) (
∆yt−j −∆y−j

)
= Op(T ) ∀i, j ≤ p.
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which combine to give U = Op(1).2 Thus, |U | = Op(1) under both H0,1 and H1,1.
Under H0,1, Lemma 1 (with N = 1) of Harris et al. (2005) shows that |S| diverges

to +∞. The same result can be shown to hold under H1,1 due to the neglected drift
term induced by E(∆yt) 6= 0.

Then, under both H0,1 and H1,1

λ(U, S) = exp

(
−g
(
U

S

)2
)

= exp (− |op(1)|)
p→ 1

as stated.

Proof of Lemma 2

(a) (i) Under H0,0, the series is stationary and β2 = β3 = 0, and so W0 ⇒ χ2(2) by
standard central limit theory. With regard to W1, the unrestricted model (11) and
restricted model (12) are constructed using first differences, and are therefore mis-
specified since neither nests the true stationary DGP. This results in the population
values λ2 and λ3 being non-zero, and thus λ̂2 and λ̂3 converge in probability to non-zero
constants. As a result, RSSr

1/RSS
u
1 = Op(1) but does not converge in probability to

one. Thus

W1 = T [Op(1)− 1]

= Op(T ).

(a) (ii) Under H1,0, the series is stationary and nonlinear, with β2 6= 0 and/or β3 6= 0,
and so W0 = Op(T ) by standard consistency arguments. For W1, the unrestricted and
restricted models are again mis-specified, with neither nesting the stationary DGP. As
in (a) (i) above, λ2 and λ3 are non-zero, and λ̂2 and λ̂3 converge in probability to non-
zero values. It again follows that RSSr

1/RSS
u
1 = Op(1), not converging in probability

to one, and hence W1 = Op(T ).

(b) (i) Under H0,1, the series is unit root and λ2 = λ3 = 0, and so W1 ⇒ χ2(2) by
standard limit theory. Although the series is unit root, the regressions involved in the
computation of W0, i.e. (9) and (10), nest the DGP, and hence W0 has the standard
order Op(1) (but does not converge in distribution to a χ2(2) random variable because
of the unit root in yt).

(b) (ii) Under H1,1, the series is unit root and nonlinear, with λ2 6= 0 and/or λ3 6= 0,
and so W1 = Op(T ) by standard consistency arguments. In respect of W0, both the

2This result is analagous to that of West (1988), where the effects of a neglected drift on the
Dickey-Fuller statistic are considered.
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unrestricted model (9) and restricted model (10) are mis-specified since neither nests
the true DGP. However, in this case, the population values β2 and β3 are zero. This
arises since the DGP behaves as a unit root model with drift (due to E(∆yt) 6= 0), and
although the unrestricted regression model is mis-specified, it does contain a constant
and yt−1, the corresponding coefficients of which (β0 and β1) account for the drift
and unit root. Thus the mis-specification involves an attempt to model nonlinear
dynamics in the (stationary) differences (∆y2

t−1,∆y
3
t−1) using the (unit root) levels

(y2
t−1, y

3
t−1). The regressors are then of a different order to the variables in the DGP

and the relevant coefficients are zero in population. As a consequence, β̂2

p→ 0 and

β̂3

p→ 0, and RSSr
0 −RSSu

0 = Op(1). Since RSSu
0 = Op(T ), we then have

W0 =
RSSr

0 −RSSu
0

T−1RSSu
0

=
Op(1)

Op(1)

= Op(1).

Proof of Theorem 1

(a) Under H0,0, the results of Lemma 1 (a) show that λ(U, S)
p→ 0 at an exponential

rate, and the results of Lemma 2 (a) (i) give W0 ⇒ χ2(2) and W1 = Op(T ). It then
follows that

Wλ = {1− λ(U, S)}W0 + λ(U, S)W1

= {1 + op(T
−γ)}W0 + op(T

−γ)Op(T ) ∀γ > 0

= W0 + op(1)

⇒ χ2(2).

UnderH0,1, Lemma 1 (b) gives λ(U, S)
p→ 1, and Lemma 2 (b) (i) showsW0 = Op(1)

and W1 ⇒ χ2(2). So

Wλ = op(1)Op(1) + {1 + op(1)}W1

= W1 + op(1)

⇒ χ2(2).

(b) Under H1,0, the results of Lemma 1 (a) show that λ(U, S)
p→ 0 at an exponential

rate, and Lemma 2 (a) (ii) gives W0 = Op(T ) and W1 = Op(T ). We find

T−1Wλ = {1− λ(U, S)}T−1W0 + λ(U, S)T−1W1

= {1 + op(T
−γ)}T−1W0 + op(T

−γ)Op(1)

= T−1W0 + op(1).
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Under H1,1, Lemma 1 (b) gives λ(U, S)
p→ 1, and Lemma 2 (b) (ii) shows W0 =

Op(1) and W1 = Op(T ). Hence

T−1Wλ = op(1)Op(T
−1) + {1 + op(1)}T−1W1

= T−1W1 + op(1).
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Table 1. Empirical sizes of nominal 5%-level linearity tests.

T = 150 T = 300

ρ ψ Wλ WP W ∗ W0 W1 Wλ WP W ∗ W0 W1

0.00 −0.9 5.0 6.2 5.9 6.3 3.6 4.4 5.2 5.0 5.3 3.2
−0.6 4.8 5.5 5.9 5.6 3.5 4.8 5.2 5.0 5.3 3.2
−0.3 4.9 5.5 6.2 5.6 3.9 4.7 5.0 5.1 5.0 3.3

0.0 5.8 6.2 6.2 6.3 3.6 5.2 5.3 5.2 5.4 3.2
0.3 6.0 6.3 6.3 6.4 3.6 5.6 5.7 5.2 5.7 3.2
0.6 5.9 6.0 6.3 6.2 3.3 5.5 5.6 5.6 5.7 3.2
0.9 6.3 6.4 6.9 6.5 3.3 5.7 5.7 5.7 5.8 3.2

0.80 −0.9 5.3 7.9 6.5 8.0 3.7 4.4 6.3 5.2 6.3 3.2
−0.6 5.2 7.5 6.3 7.6 3.4 4.8 6.2 5.2 6.3 3.0
−0.3 5.5 7.5 6.3 7.5 3.7 5.0 6.2 5.3 6.3 3.0

0.0 4.8 6.4 5.8 6.4 3.6 4.6 5.6 5.2 5.7 3.1
0.3 4.6 5.9 5.6 6.0 3.8 4.3 5.1 5.0 5.2 3.4
0.6 4.8 5.6 5.7 5.7 3.7 4.6 5.2 4.9 5.3 3.4
0.9 6.1 6.4 6.6 6.5 3.6 5.4 5.5 5.4 5.7 3.3

0.90 −0.9 5.6 9.4 7.2 9.7 3.7 4.6 6.9 5.7 7.3 3.3
−0.6 5.5 9.2 7.0 9.5 3.5 4.8 7.0 5.6 7.3 3.1
−0.3 5.8 9.2 7.0 9.6 3.5 4.9 6.9 5.5 7.3 3.0

0.0 4.9 7.8 6.4 8.2 3.7 4.3 6.4 5.4 6.7 3.2
0.3 4.7 6.9 5.7 7.2 3.7 3.9 5.6 5.2 5.8 3.3
0.6 4.0 5.3 5.3 5.4 3.7 3.6 4.7 4.6 4.8 3.3
0.9 5.8 6.2 6.2 6.3 3.6 5.2 5.3 5.2 5.4 3.2

0.95 −0.9 5.7 10.4 7.9 12.3 3.8 4.4 7.4 6.0 9.0 3.3
−0.6 5.5 10.0 7.8 12.0 3.5 4.4 7.4 6.1 9.2 3.1
−0.3 5.3 9.9 7.9 12.1 3.3 4.5 7.4 6.1 9.4 3.1

0.0 4.8 8.6 7.3 10.4 3.9 4.0 6.8 5.9 8.5 3.1
0.3 4.6 7.9 6.6 9.5 3.7 3.7 6.2 5.4 7.4 3.3
0.6 3.6 5.4 5.3 5.9 3.6 3.1 4.7 4.5 5.1 3.4
0.9 5.3 6.0 6.0 6.1 3.7 4.7 5.2 5.1 5.4 3.3

1.00 −0.9 6.6 9.5 7.7 17.4 6.5 5.4 6.6 6.5 15.9 5.6
−0.6 5.9 9.0 7.5 17.0 5.9 5.2 6.3 6.5 15.9 5.3
−0.3 5.8 8.8 7.6 17.2 5.8 5.0 6.0 6.6 15.9 5.1

0.0 5.8 8.4 7.3 15.7 6.1 5.1 6.2 6.3 15.2 5.4
0.3 5.8 8.2 7.0 14.9 5.9 5.1 6.0 6.5 14.9 5.3
0.6 4.9 6.8 5.5 9.8 5.5 4.9 5.8 5.2 11.3 5.3
0.9 4.3 5.4 5.5 6.0 4.1 3.4 4.6 4.2 5.3 3.9
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Table 2. Estimated powers of nominal 5%-level linearity tests: LSTAR, φ = 0.

Panel A. I(0)

T = 150 T = 300

δ θ Wλ WP W ∗ W0 W1 Wλ WP W ∗ W0 W1

0.7 0.1 8.1 7.9 7.0 8.1 3.3 10.9 10.6 8.7 10.9 4.1
0.3 31.9 31.2 24.2 32.0 8.4 58.2 56.4 46.2 58.2 14.7
0.5 66.9 65.2 55.4 67.0 18.0 93.2 90.8 87.5 93.2 35.7
0.7 87.1 85.2 79.3 87.2 29.4 99.3 97.6 98.3 99.3 56.7
0.9 95.1 93.3 90.5 95.2 38.8 99.9 98.7 99.8 99.9 70.2

0.9 0.1 9.8 9.6 8.3 9.8 3.7 14.8 14.4 11.6 14.8 5.0
0.3 49.4 48.2 39.3 49.5 12.6 80.7 78.2 70.7 80.7 24.1
0.5 87.3 85.4 79.5 87.4 30.1 99.4 97.7 98.3 99.4 57.8
0.7 97.8 96.3 95.5 97.8 47.1 100.0 99.2 99.9 100.0 79.7
0.9 99.6 98.7 99.0 99.7 57.6 100.0 99.6 100.0 100.0 87.8

Panel B. I(1)

T = 150 T = 300

λ θ Wλ WP W ∗ W0 W1 Wλ WP W ∗ W0 W1

0.7 0.1 8.4 10.0 6.9 13.6 9.1 13.0 13.9 8.4 13.6 13.9
0.3 42.3 41.0 19.9 15.8 45.2 75.3 74.9 34.3 15.8 76.7
0.5 82.0 78.5 40.5 17.3 84.5 98.8 98.4 66.1 14.6 99.0
0.7 96.2 94.2 58.9 18.6 97.1 100.0 99.9 81.6 14.9 100.0
0.9 99.4 98.5 70.1 20.4 99.6 100.0 100.0 87.0 17.3 100.0

0.9 0.1 10.9 12.4 7.9 13.9 12.0 19.1 19.8 10.3 13.8 20.0
0.3 63.8 60.8 30.0 16.9 67.0 93.0 92.5 51.2 15.5 93.8
0.5 95.8 93.3 60.0 19.2 96.7 100.0 99.9 82.2 15.6 100.0
0.7 99.7 99.2 78.6 27.4 99.8 100.0 100.0 90.0 25.2 100.0
0.9 100.0 99.9 85.9 40.2 100.0 100.0 100.0 92.6 40.7 100.0
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Table 3. Estimated powers of nominal 5%-level linearity tests: ESTAR.

Panel A. I(0)

T = 150 T = 300

φ δ θ Wλ WP W ∗ W0 W1 Wλ WP W ∗ W0 W1

0.0 0.7 0.1 19.8 19.4 15.3 20.0 1.7 38.5 37.0 29.1 38.6 1.5
0.3 38.7 38.6 30.6 39.8 1.7 74.4 71.9 63.1 74.6 1.8
0.5 28.6 29.3 22.7 30.1 2.0 62.5 60.8 49.4 63.0 2.0
0.7 17.3 18.4 14.3 18.8 2.1 41.1 40.3 30.9 41.9 2.1
0.9 10.6 11.6 9.6 11.8 2.2 25.5 25.3 18.5 26.3 2.3

0.9 0.1 31.6 30.9 25.0 31.9 1.6 60.1 57.9 49.5 60.2 1.5
0.3 60.0 62.0 49.0 63.6 2.1 95.0 92.3 88.7 95.3 2.1
0.5 29.5 34.1 24.5 34.9 2.5 63.8 65.5 50.1 67.7 2.6
0.7 12.8 16.2 11.8 16.6 2.6 26.1 29.0 19.6 30.1 2.5
0.9 6.9 9.2 7.4 9.5 2.7 11.1 13.0 9.3 13.4 2.5

1.0 −0.7 0.1 57.0 61.5 50.2 63.2 5.5 89.6 87.7 82.4 90.7 5.9
0.3 57.0 57.8 46.8 59.3 6.4 87.1 84.6 78.0 87.5 7.7
0.5 44.9 45.1 35.4 46.3 6.1 74.1 72.1 62.6 74.5 7.1
0.7 34.4 34.5 26.7 35.4 5.5 58.5 56.9 47.1 58.8 6.0
0.9 26.4 26.6 20.4 27.3 5.0 45.4 44.1 35.1 45.6 5.3

−0.9 0.1 71.3 73.2 63.6 75.2 7.0 96.2 93.4 92.2 96.6 8.0
0.3 74.8 74.0 65.1 76.0 9.1 96.7 93.8 92.7 96.8 12.3
0.5 63.8 62.9 53.1 64.6 8.2 90.9 88.1 83.6 91.0 10.3
0.7 51.4 50.6 41.0 51.9 6.9 80.2 77.7 69.7 80.2 8.1
0.9 40.8 40.1 31.6 41.2 5.8 67.2 65.0 55.4 67.2 6.5

1.5 −1.0 0.1 94.2 79.5 97.9 98.9 7.8 100.0 74.3 100.0 100.0 8.0
0.3 91.1 92.2 87.5 95.4 6.7 99.9 96.6 99.5 99.9 7.8
0.5 74.0 76.8 66.1 78.9 6.3 96.8 94.1 92.9 97.2 7.8
0.7 56.1 58.6 46.9 60.1 5.7 86.1 83.9 76.9 86.9 6.8
0.9 41.8 43.8 33.9 45.0 5.0 70.9 69.4 59.5 71.8 5.8

−1.4 0.1 99.8 94.5 99.9 100.0 15.0 100.0 94.8 100.0 100.0 19.7
0.3 99.4 97.3 98.4 99.5 19.8 100.0 97.4 100.0 100.0 32.6
0.5 95.9 93.9 91.6 96.3 16.2 100.0 97.4 99.8 100.0 25.9
0.7 87.1 85.3 79.0 87.6 12.3 99.1 96.3 97.7 99.1 18.3
0.9 75.1 73.6 64.4 75.7 9.6 95.9 92.9 91.6 95.9 13.1
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Table 3. Continued.

Panel B. I(1)

T = 150 T = 300

φ λ θ Wλ WP W ∗ W0 W1 Wλ WP W ∗ W0 W1

0.0 0.7 0.1 16.7 15.5 13.8 8.8 20.2 35.0 34.5 25.8 8.4 38.3
0.3 33.8 28.9 26.8 10.0 40.7 70.0 66.4 55.4 8.8 75.0
0.5 26.5 23.9 20.8 12.7 31.8 58.8 57.0 43.2 10.9 63.8
0.7 17.4 16.6 14.2 14.0 20.6 39.1 38.8 27.5 12.1 42.9
0.9 12.0 12.2 10.2 14.6 13.8 24.9 25.2 17.6 13.0 27.4

0.9 0.1 26.8 23.1 21.9 8.7 32.4 55.8 53.7 43.4 8.4 60.3
0.3 58.2 50.0 45.0 29.0 65.5 92.2 85.8 81.2 28.7 95.4
0.5 38.8 36.2 25.6 40.4 39.2 67.4 65.1 47.0 37.9 70.0
0.7 24.6 24.3 14.5 43.5 21.6 34.3 33.1 20.5 40.1 34.0
0.9 18.6 18.4 10.8 44.4 14.2 19.1 18.2 11.0 40.5 17.6

1.0 −0.7 0.1 55.7 46.3 47.1 16.6 64.5 87.0 81.6 75.8 16.2 90.9
0.3 50.0 40.4 42.8 9.3 59.7 82.9 77.6 71.0 9.1 87.5
0.5 37.9 31.0 32.4 7.7 46.2 69.4 65.7 55.5 7.6 74.4
0.7 28.7 24.3 24.6 7.0 35.7 53.8 51.9 41.4 6.9 58.6
0.9 21.8 19.0 19.0 6.8 27.2 41.1 40.4 31.0 6.7 45.5

−0.9 0.1 66.2 52.4 58.4 13.5 75.8 93.4 86.3 86.1 13.3 96.6
0.3 65.8 50.6 58.5 7.3 76.3 93.2 85.3 86.2 7.0 96.7
0.5 54.3 42.4 47.2 6.4 64.6 86.5 80.2 76.0 6.3 91.0
0.7 42.9 34.5 36.4 6.6 52.0 75.2 70.6 61.8 6.6 80.2
0.9 33.2 27.5 27.8 6.9 41.0 61.9 59.1 48.6 6.7 66.9

1.5 −1.0 0.1 99.4 94.1 90.8 44.8 100.0 99.9 98.6 96.2 49.1 100.0
0.3 88.7 70.6 81.0 20.9 95.6 98.0 91.3 95.0 21.2 99.9
0.5 69.8 55.3 60.3 14.9 79.3 93.7 87.1 86.0 14.6 97.2
0.7 51.2 41.6 43.1 12.4 60.5 82.3 77.6 69.7 12.1 87.0
0.9 37.3 31.5 31.6 11.1 45.4 66.8 64.0 52.8 11.1 71.7

−1.4 0.1 97.4 81.7 95.2 28.6 100.0 99.3 94.2 97.2 29.6 100.0
0.3 92.2 66.3 93.1 10.2 99.6 98.0 89.0 97.1 9.8 100.0
0.5 86.6 62.7 84.0 7.0 96.2 97.4 88.3 95.8 7.3 99.9
0.7 76.8 56.6 71.2 6.4 87.7 96.0 87.5 92.3 6.6 99.1
0.9 64.8 49.4 57.0 6.4 75.7 92.1 84.5 84.5 6.4 95.9
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Table 4. Estimated powers of nominal 5%-level linearity tests: SETAR, φ = 0.

Panel A. I(0)

T = 150 T = 300

δ Wλ WP W ∗ W0 W1 Wλ WP W ∗ W0 W1

0.3 13.5 13.3 11.1 13.6 4.7 24.1 23.4 18.0 24.1 6.8
0.5 31.8 31.4 24.0 32.1 7.9 59.0 57.3 47.0 59.1 12.8
0.7 57.6 57.6 46.4 59.0 11.2 89.0 86.5 80.6 89.2 19.4
0.9 73.3 77.2 67.0 79.3 11.3 97.4 95.3 94.6 97.8 17.8

Panel B. I(1)

T = 150 T = 300

λ Wλ WP W ∗ W0 W1 Wλ WP W ∗ W0 W1

0.3 28.1 28.5 9.6 13.6 29.7 54.6 55.2 12.6 14.7 55.7
0.5 69.0 68.4 16.3 21.1 70.2 95.6 95.7 27.3 22.0 95.7
0.7 94.6 94.5 28.7 38.9 94.8 100.0 100.0 54.3 39.7 100.0
0.9 94.9 94.3 47.1 72.6 94.4 99.7 99.6 75.0 73.1 99.6

22



Table 5. Application to short-term interest rate series, 1978:1–2006:12.

Country Wλ W ∗
10% W ∗

5% W ∗
1%

Australia 20.27∗∗∗ 37.35∗ 37.70∗∗ 38.31∗∗∗

Canada 22.09∗∗∗ 25.38∗ 25.56∗∗ 25.88∗∗∗

New Zealand 54.03∗∗∗ 71.76∗ 72.45∗∗ 73.69∗∗∗

Switzerland 1.59 5.03 5.06 5.11
UK 6.32∗∗ 7.31 7.38 7.50
US 30.20∗∗∗ 36.45∗ 36.75∗∗ 37.27∗∗∗

Note: ∗, ∗∗ and ∗∗∗ denote rejection at the 10%-, 5%- and 1%-
levels, respectively.
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