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Abstract

In this paper we analyse the properties of the conventional Gaussian-based co-

integrating rank tests of Johansen (1996) in the case where the vector of series

under test is driven by possibly non-stationary, conditionally heteroskedastic

(martingale di�erence) innovations. We �rst demonstrate that the limiting null

distributions of the rank statistics coincide with those derived by previous authors

who assume either i.i.d. or stationary martingale di�erence innovations. We

then propose wild bootstrap implementations of the co-integrating rank tests

and demonstrate that the associated bootstrap rank statistics replicate the �rst-

order asymptotic null distributions of the rank statistics. We show that the

same is also true of the corresponding rank tests based on the i.i.d. bootstrap of

Swensen (2006). The wild bootstrap, however, has the important property that,

unlike the i.i.d. bootstrap, it preserves in the re-sampled data the pattern of

heteroskedasticity present in the original shocks. Consistent with this, numerical

evidence suggests that, relative to tests based on the asymptotic critical values

or the i.i.d. bootstrap, the wild bootstrap rank tests perform very well in small

samples under a variety of conditionally heteroskedastic innovation processes.

An empirical application to the term structure of interest rates is also given.
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1 Introduction

In a recent paper, Gon�calves and Kilian (2004) argue that \... the failure of the i.i.d.
assumption is well-documented in empirical �nance ... many monthly macroeconomic
variables also exhibit evidence of conditional heteroskedasticity." (2004,p.92); see Sec-
tion 2 of Gon�calves and Kilian (2004) for detailed discussion and empirical evidence on
this point. Gon�calves and Kilian (2004,2007) show that, so far as inference in station-
ary univariate autoregressive models is concerned, standard residual-based bootstraps
based on an i.i.d. re-sampling scheme are invalid under conditional heteroskedastic-
ity. They demonstrate that in such cases inference based on the wild bootstrap is
asymptotically valid and delivers substantial improvements over both residual-based
i.i.d. bootstrap tests and standard tests based on asymptotic critical values. Cavaliere
and Taylor (2008) show that analogous properties also hold when using wild bootstrap
methods in the context of the univariate unit root testing problem.

The trace and maximum eigenvalue co-integrating rank tests of Johansen (1996)
are derived under the assumption of Gaussian i.i.d. innovations. Recently, however,
Rahbek, Hansen and Dennis (2002) [RHD] have demonstrated that the assumption re-
quired on the innovation process can be considerably weakened to that of a (strict and
second-order) stationary and ergodic vector martingale di�erence sequence (with con-
stant unconditional variance and satisfying certain mild regularity conditions) without
altering the asymptotic null distributions of the rank statistics. In this paper we �rst
show that these limiting null distributions still pertain for the rank statistics even in
the presence of possibly non-stationary, conditionally heteroskedastic shocks satisfying
certain moment conditions. Moreover, we show that the maximum likelihood estimator
[MLE] of the error correction model which assumes Gaussian i.i.d. disturbances also
remains consistent under these weaker conditions.

Although, the standard rank tests based on asymptotic critical values therefore re-
main asymptotically valid even in the presence of conditionally heteroskedastic shocks,
the construction of these tests does not utilise sample information relating to any con-
ditional heteroskedasticity present in the shocks. Given this result, and the observation
of Gon�calves and Kilian (2004) that conditional heteroskedasticity is a relatively com-
mon occurrence in macroeconomic and �nancial time series, it is clearly important and
practically relevant to also consider bootstrap testing procedures in the multivariate
time series setting which are asymptotically valid in the presence of conditional het-
eroskedasticity. We therefore develop bootstrap versions of the standard co-integrating
rank tests. Our approach builds on the residual-based bootstrap co-integrating rank
tests of van Giersbergen (1996), Harris and Judge (1998), Mantalos and Shukur (2001),
Trenkler (2008) and, most notably, Swensen (2006).

Unlike Swensen (2006) and these other authors, we do not assume in our analysis
that the innovations are independent and identically distributed (i.i.d.), nor indeed
that they are covariance stationary. In particular, we make use of the wild bootstrap
re-sampling scheme, since this replicates in the re-sampled data the pattern of het-
eroskedasticity present in the original shocks. The wild bootstrap scheme we use has
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also been considered in the co-integration rank testing scenario by Cavaliere, Rahbek
and Taylor (2007) [CRT] in the fundamentally di�erent scenario where the innovations
display non-stationary volatility; that is, cases where the unconditional variance of the
innovation vector varies over time in a systematic fashion. CRT demonstrate that in
such cases, under the assumption of an absence of any conditional heteroskedasticity,
the conventional co-integrating rank statistics do not have the same form as given in Jo-
hansen (1996), rather they depend on nuisance parameters relating the the underlying
volatility process. They demonstrate, however, that the wild bootstrap rank statistics
can replicate this limit distribution, to �rst order. Consequently, although the wild
bootstrap algorithm we use here is the same as that in CRT, it is being used in the
context of a quite di�erent statistical model.

We show that wild bootstrap co-integrating rank statistics replicate the �rst-order
asymptotic null distributions of the rank statistics, such that the corresponding boot-
strap tests are asymptotically valid, in the presence of conditionally heteroskedastic
innovations. The same is shown to be true of the corresponding i.i.d. bootstrap tests
of Swensen (2006). It is not our aim in this paper to establish that the wild bootstrap
provides a superior approximation to the conventional asymptotic approximation or to
the i.i.d. bootstrap approximation. Rather we detail a less restrictive set of conditions
than is adopted in the extant literature under which both the asymptotic test and both
the wild and i.i.d. bootstrap approaches are asymptotically valid. However, since the
wild bootstrap incorporates sample information on the conditional heteroskedasticity
where present, one might anticipate that the wild bootstrap would provide a superior
approximation to that provided by the asymptotic and i.i.d. bootstrap approximations
which do not incorporate such sample information. Simulation evidence for a variety
of conditionally heteroskedastic innovation models is supportive of this view. Taken
together, the results in this paper coupled with those in CRT demonstrate that the wild
bootstrap is a very powerful and useful tool, able to handle time-dependent behaviour
in both the conditional and unconditional variance of the innovations. The question
of whether there are conditions under which the wild bootstrap approach will provide
asymptotic re�nements is left for future research.

The paper is organized as follows. Section 2 outlines our reference co-integrated
VAR model driven by possibly non-stationary, conditionally heteroskedastic (martin-
gale di�erence) innovations. Here we show that the standard rank statistics attain the
same �rst-order limiting null distribution as given in Johansen (1996) and RHD under
di�erent (i.i.d. and stationary MDS, respectively) assumptions. Here we also show that
the MLE of the parameters from our co-integrated VAR model remain consistent in the
presence of conditional heteroskedasticity. Our wild bootstrap-based approach, which
also incorporates a sieve procedure using the (consistently) estimated coe�cient matri-
ces from the co-integrated VAR model, is outlined in Section 3. Here it is shown that
the wild bootstrap statistics are asymptotically valid, attaining the same �rst-order
limiting null distribution as given for the standard statistics in section 2. The same
result is shown to hold for the i.i.d. re-sampling bootstrap rank tests of Swensen (2006).
In Section 4, the �nite sample properties of the tests are explored through Monte Carlo
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methods and compared with the standard asymptotic tests and with the i.i.d. boot-
strap tests, for a variety of conditionally heteroskedastic error processes. In section
5 we apply our tests to bond market data from several major economies. Section 6
concludes. All proofs are contained in the Appendix.

In the following `
w!' denotes weak convergence, `

p!' convergence in probability,
and `

w!p' weak convergence in probability (Gin�e and Zinn, 1990; Hansen, 1996), in
each case as the sample size diverges to positive in�nity; I(�) denotes the indicator
function and `x := y' (`x =: y') indicates that x is de�ned by y (y is de�ned by x);
b�c denotes the integer part of its argument. The space spanned by the columns of
any m� n matrix A is denoted as col(A); if A is of full column rank n < m, then A?
denotes an m�(m� n) matrix of full column rank satisfying A0

?A = 0. For any square
matrix, A, jAj is used to denote the determinant of A, kAk the norm kAk2 := tr fA0Ag,
where tr fAg denotes the trace of A, and � (A) its spectral radius (that is, the maximal
modulus of the eigenvalues of A). For any vector, x, kxk denotes the usual Euclidean
norm, kxk := (x0x)1=2.

2 The Conditionally Heteroskedastic Co-integration

Model

We consider the following VAR(k) model in error correction format:

�Xt = �Xt�1 +	Ut + �Dt + "t, t = 1; :::; T (2.1)

where: Xt and "t are p � 1, Ut :=
�
�X 0

t�1; :::;�X
0
t�k+1

�0
is p (k � 1) � 1 and 	 :=

(�1; :::;�k�1), where f�igk�1i=1 are p � p lag coe�cient matrices and the impact matrix
� := ��0 where � and � are full column p � r matrices, r � p. The term Dt collects
all deterministic components, and in this paper we focus on the leading case of a linear
trend, Dt := (1; t)0, with associated coe�cients � := (�01; �

0
2)
0. The initial values,

X0 :=
�
X 0

0; :::; X
0
�k+1

�0
, are taken to be �xed.

Throughout the paper the process in (2.1) is assumed to satisfy the following as-
sumptions.

Assumption 1: (a) all the characteristic roots associated with (2.1); that is of A (z) :=
(1� z) Ip � ��0z � �1z (1� z)� � � � � �k�1zk�1 (1� z) = 0, are outside the unit circle
or equal to 1; (b) det (�0?��?) 6= 0, with � := Ip � �1 � � � � � �k�1.

Assumption 2: The innovations f"tg form a martingale di�erence sequence with
respect to the �ltration Ft; where Ft�1 � Ft for t = :::;�1; 0; 1; 2; :::, satisfying: (i)

1

T

TX
t=1

E ("t"
0
tjFt�1)

p! � > 0; (2.2)

and (ii) E k"tk4 � K <1.
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Remark 2.1. While Assumption 1 is standard in the co-integration testing literature,
Assumption 2 is not. This assumption implies that "t is a serially uncorrelated, poten-
tially conditionally heteroskedastic process. This contrasts with the assumption that "t
is i.i.d. as made in Johansen (1996) and Swensen (2006). Moreover, and in contrast to
RHD, Assumption 2 imposes neither strict stationarity nor second-order stationarity
on "t. In particular, the second order moments �t := E ("t"

0
t) are allowed to change

over time, in such a way that they satisfy the condition in (2.2).

Remark 2.2. Under Assumption 2, a functional central limit theorem [FCLT] as in
Brown (1971) applies to "t; viz,

1p
T

bT �cX
t=1

"t
w! W (�) , (2.3)

where W is a Brownian motion with covariance matrix �, as de�ned in (2.2). This
result follows using the convergence result in (2.2) and noting that the assumption of
�nite fourth order moments implies the Lindeberg-type condition

T�1�T
t=1E

�
k"tk2 � I

n
k"tk > �

p
T
o���Ft�1

�
p! 0 .

As is standard in the time series literature, an innovation process which admits the
FCLT in (2.3) will be referred to as a vector I(0) process. Assumption 2 also ensures
that conditions (5) and (6) in Hannan and Heyde (1972, Theorem 1) hold, implying that
the empirical average, T�1

PT
i=1 si, and empirical autocovariances, T�1

PT
t=1 sts

0
t+k,

where st :=
P1

i=0 �i"t�i with
P1

i=0 k�ik <1, converge in probability to 0 and
P1

i=0 �i��
0
i+k,

respectively.

Remark 2.3. The conditions in Assumption 2 ensure that a FCLT applies to the MDS,
f"tg, and that the product moments converge, as detailed in Remark 2.2. Both the
convergence in (2.2) and the convergence of the product moments would also be implied
by assuming geometric ergodicity of the f"tg sequence, since the law of large numbers
applies to functions of geoemtrically ergodic processes; see Jensen and Rahbek (2007)
for details. Geometric ergodicity is satis�ed for a rich class of (G)ARCH processes;
see, for example, the discussion in Kristensen and Rahbek (2005a,b) and the references
therein. �

For unknown parameters �, �, 	, �, and when � and � are p � r matrices, not
necessarily of full rank, (2.1) denotes our conditionally heteroskedastic co-integrated
VAR model, which we denote as H(r). The model may then be written in the compact
form

Z0t = ���0Z1t + �2Z2t + "t (2.4)

with Z0t := �Xt, and Z1t and Z2t de�ned according to the following three cases for
the deterministic terms, as in Johansen (1996, p.81):

(i) �Dt = 0 in (2.1), Z1t := Xt�1 and Z2t := Ut (no deterministic components);
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(ii) �Dt = �1 = ��01 in (2.1), Z1t := (X 0
t�1; 1)

0 and Z2t := Ut (restricted constant);

(iii) �Dt = �1 + �2t with �2 = ��02 in (2.1), Z1t := (X 0
t�1; t)

0 and Z2t := (U 0
t ; 1)

0

(restricted linear trend);

As is standard, let Mij := T�1
PT

t=1 ZitZ
0
jt, i; j = 0; 1; 2, with Zit de�ned as in

(2.4), and let Sij := Mij:2 := Mij �Mi2M
�1
22 M2j, i; j = 0; 1. Under the assumption of

i.i.d. Gaussian disturbances, the pseudo Gaussian likelihood function depends on the
vector �PML := (�; �;	; �;�) (throughout we apply the usual norming or identication
as in Johansen, 1996, section 13.2). We denote the corresponding pseudo Maximum

Likelihood (PML) estimator as �̂
PML

:= (�̂; �̂; 	̂; �̂; �̂). Write the maximized (pseudo)
log-likelihood under H (r), say ` (r), as

` (r) = �T
2
log jS00j � T

2

rX
i=1

log
�
1� �̂i

�
where �̂1 > : : : > �̂p, solve the eigenvalue problem���S11 � S10S

�1
00 S01

�� = 0: (2.5)

The pseudo LR (PLR) test for H(r) vs H(p) then rejects for large value of the statistic

Qr := �2 (` (r)� ` (p)) = �T
pX

i=r+1

log
�
1� �̂i

�
: (2.6)

We now demonstrate the validity of the following theorem concerning the limiting
null distribution of the Qr statistic under conditional heteroskedasticity of the form
speci�ed in Assumption 2. To keep the presentation simple we consider, for the present,
the case of no deterministics in the model and in the estimation (so that �̂ is omitted
from the de�nition of �PML above). This will be subsequently relaxed in Remark 2.5.

Theorem 1 Let fXtg be generated as in (2.1) under Assumptions 1 and 2, with � = 0.
Then, under the hypothesis H(r),

Qr
w! tr(QB) =: Qr;1 (2.7)

where

QB :=

Z 1

0

(dB(u))B(u)0
�Z 1

0

B(u)B(u)0du
��1 Z 1

0

B(u)(dB(u))0 (2.8)

with B(�) a (p� r)-variate standard Brownian motion.

Remark 2.4. The representation for the limiting null distribution of Qr given in (2.7)
coincides with that given in Johansen (1996) for the case of independent Gaussian
innovations and in RHD for covariance stationary martingale di�erence innovations.
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Remark 2.5. The result in Theorem 1 can be generalized to cover the four addi-
tional cases for the deterministic component considered just below (2.4). It is an
entirely straightforward extension of the result in Theorem 1 to establish that in
such a case the asymptotic null distribution of Qr is given by (2.7) but now with

QB := tr(
R
(dB(u))F (u)0

�R
F (u)F (u)0

��1 � R F (u)(dB(u))0), where B is as de�ned in
Theorem 1, and F is a function of B whose precise form depends on the deterministic
term. More speci�cally, decomposing B as B := (B0

1; B2)
0, where B2 is one-dimensional

and using the notation ajb := a(�)�R a(s)b(s)0ds(R b(s)b(s)0ds)�1b(�) to denote the pro-
jection residuals of a onto b:

(i) if �Dt = 0 in (2.1), then F := B, as in Theorem 1;

(ii) if �Dt = ��01 in (2.1), then F := (B0; 1)0;

(iii) if �Dt = �1 + ��02t in (2.1), then F := (B0; uj1)0.

Remark 2.6. The discussion outlined in this section extends to the so-called maximum
eigenvalue test; that is, a PLR test based for H(r) vs H(r+1). As is well known, this
test rejects for large values of the statistic

Qr;max := �2 (` (r)� ` (r + 1)) = �T log(1� �̂r+1) ,

see, for example, Equation (6.19) of Johansen (1996). It then follows trivially from the
preceding results that the null asymptotic distribution of Qr;max corresponds to the
distribution of the maximum eigenvalue of the real symmetric random matrix QB.

Remark 2.7. As in Johansen (1996), under H(r), the r largest eigenvalues solving
(2.5), �̂1; : : : ; �̂r, converge in probability to positive numbers, while T �̂r+1; : : : ; T �̂p are
of Op(1). Consequently, the PLR test based on either Qr or Qr;max will be consistent at
rate Op(T ) if the true co-integration rank is, say, r0 > r. This implies, therefore, that
the sequential approach to determining the co-integration rank1 outlined in Johansen
(1996) will still lead to the selection of the correct co-integrating rank with probability
(1��) in large samples, as in the i.i.d. Gaussian case. The same results also hold under
cases (ii)-(iii) of Remark 2.5. �

We conclude this section by demonstrating that even though based on a mis-

speci�ed model the PML estimator, �̂
PML

, is consistent. This will turn out to be
a key property needed to establish the validity of the bootstrap PLR tests we propose
in section 3.

Theorem 2 Under the conditions of Theorem 1, T 1=2(�̂� �) p! 0. Moreover, �̂
p! �,

	̂
p! 	, and �̂

p! �.

1This procedure starts with r = 0 and sequentially raises r by one until for r = r̂ the test statistic
Qr̂ (or Qr̂;max) does not exceed the � level critical value for the test.
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Remark 2.8. Theorem 2 shows that in the presence of conditional heteroskedasticity
of the form speci�ed in Assumption 2, the PML estimators of �; �, � and 	 remain
consistent. Under cases (ii)-(iii) of Remark 2.5 it can additionally be shown that �̂,
the PML estimator of �, also remains consistent. �

3 Bootstrap PLR Tests

In section 3.1 we �rst outline our wild bootstrap algorithm. Subsequently in section 3.2
we show that because, as was shown in the previous section, we can still consistently
estimate �; �; � and 	 in the presence of conditional heteroskedasticity, (asymptoti-
cally) pivotal null p-values can be obtained using wild bootstrap re-sampling methods,
regardless of whether conditional heteroskedasticity is present or not in the shocks. In
section 3.3 we then demonstrate that the i.i.d. bootstrap rank tests of Swensen (2006)
share the same large sample properties as the wild bootstrap.

The re-sampling algorithm discussed in section 3.1 draws on the wild bootstrap
literature (see, inter alia, Wu, 1986; Liu, 1988; Mammen, 1993) and allows us to
construct bootstrap co-integration rank tests which are asymptotically robust to con-
ditional heteroskedasticity. In the context of the present problem, we focus our primary
attention on the wild bootstrap scheme because, unlike the i.i.d. residual re-sampling
schemes used for other bootstrap co-integration tests proposed in the literature; see,
e.g., Swensen (2006) and, in the univariate (p = 1) case, Inoue and Kilian (2002),
Paparoditis and Politis (2003), Park (2003), the wild bootstrap replicates the pattern
of heteroskedasticity present in the original shocks, and, hence, preserves the tempo-
ral ordering in the conditional heteroskedasticity. The wild bootstrap might therefore
be expected to deliver improved �nite sample size properties relative to the standard
and i.i.d. bootstrap rank tests in the presence of conditional heteroskedasticity. The
simulations results presented in section 4 support this conjecture.

3.1 The Wild Bootstrap Algorithm

Let us start by considering the problem of testing the null hypothesis H(r) against
H(p), r < p. Swensen (2006, section 2) discusses at length a way of implementing
a bootstrap version of the well known trace test in this case. Here we extend his
approach by modifying his re-sampling scheme in order to account the presence of
conditional heteroskedasticity by means of the wild bootstrap. Implementation of the
wild bootstrap requires us only to estimate the VAR(k) model under H(p) (i.e., the
unrestricted VAR) and under H(r).

As in section 2, let 	̂ := (�̂1; :::; �̂k�1) and, where appropriate, �̂ denote the PML
estimates of 	 and �, respectively, from the model under H(p); the corresponding
unrestricted residuals are denoted by "̂t, t = 1; :::; T . In addition, let �̂; �̂ denote the
PML estimates of �,� under the null hypothesis H (r). The bootstrap algorithm we
consider in this section requires that the roots of the equation jÂ� (z) j = 0 are either
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one or outside the unit circle, where

Â� (z) := (1� z) Ip � �̂�̂
0
z � �̂1 (1� z) z � :::� �̂k�1 (1� z) zk�1 ;

moreover, we also require that j�̂0?�̂�̂?j 6= 0, (�̂ := Ip � �̂1 � ::: � �̂k�1). While the
latter condition is always satis�ed in practice, if the former condition is not met, then
the bootstrap algorithm cannot be implemented, because the bootstrap samples may
become explosive; cf. Swensen (2006, Remark 1). However, in such cases any estimated
root which has modulus greater than unity could be shrunk to have modulus strictly
less than unity; cf. Burridge and Taylor (2001,p.73).

The following steps constitute our wild bootstrap algorithm, which coincides with
Algorithm 1 of CRT:

Algorithm 1 (Wild Bootstrap Co-integration Test)

Step 1: Generate T bootstrap residuals "bt, t = 1; :::; T , according to the device

"bt := "̂twt (3.1)

where fwtgTt=1 denotes an independent N(0; 1) scalar sequence;

Step 2: Construct the bootstrap sample recursively from

�Xb
t := �̂�̂

0
Xb

t�1 + �̂1�X
b
t�1 + :::+ �̂k�1�Xb

t�k+1 + "bt ; t = 1; :::; T;

with initial values, Xb
�k+1; :::; X

b
0;

Step 3: Using the bootstrap sample, fXb
t g, obtain the bootstrap test statistic, Qb

r :=
�2 �`b (r)� `b (p)

�
, where `b(r) and `b(p) denote the bootstrap analogues of `(r) and

`(p), respectively;

Step 4: Bootstrap p-values are then computed as, pbr;T := 1�Gb
r;T (Qr), where G

b
r;T (�)

denotes the conditional (on the original data) cumulative distribution function (cdf) of
Qb

r. �

Remark 3.1. Notice that the bootstrap shocks, "bt , replicate the pattern of het-
eroskedasticity present in the original shocks since, conditionally on "̂t, "

b
t is indepen-

dent over time with zero mean and variance matrix "̂t"̂
0
t. Speci�cally, notice that,

conditionally on the data,

T�1=2
bTucX
i=1

"bt = T�1=2
bTucX
i=1

"̂twt � N

0@0; 1
T

bTucX
t=1

"̂t"̂
0
t

1A
where T�1

PbTuc
t=1 "̂t"̂

0
t � u� with � being the average conditional variance, cf. Remark

2.1.
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Remark 3.2. As is standard, the bootstrap samples are generated by imposing the
null co-integration rank on the re-sampling scheme, thereby avoiding the di�culties
with the use of unrestricted estimates of the impact matrix �; see Basawa et al. (1991)
in the univariate case and Swensen (2006) in the multivariate case.

Remark 3.3. As is well known in the wild bootstrap literature (see Davidson and
Flachaire, 2001, for a review) in certain cases improved accuracy can be obtained by
replacing the Gaussian distribution used for generating the pseudo-data by an asym-
metric distribution with E (wt) = 0, E (w2

t ) = 1 and E (w3
t ) = 1 (Liu, 1988). A well

known example is Mammen's (1993) two-point distribution: P (wt = �0:5(p5 � 1) =
0:5(

p
5+1)=

p
5 = p, P (wt = 0:5(

p
5+1)) = 1�p. Davidson and Flachaire (2001) also

consider the Rademacher distribution: P (wt = 1) = 1=2 = P (wt = �1). We found no
discernible di�erences between the �nite sample properties of the bootstrap unit root
tests based on the Gaussian or the Mammen or Rademacher distributions. This �nding
is consistent with evidence reported in Table 5 of Gon�calves and Kilian (2004,p.105)
in the context of hypothesis testing using the wild bootstrap in stationary univariate
autoregressive models driven by conditionally heteroskedastic innovations. Notice also
that the wild bootstrap re-sampling scheme in (3.1) is no harder (arguably easier) to
implement than the i.i.d. re-sampling scheme of Swensen (2006).

Remark 3.4. In practice, the cdf Gb
r;T (�) required in Step 4 of Algorithm 1 will not be

known, but can be approximated in the usual way through numerical simulation; cf.
Hansen (1996) and Andrews and Buchinsky (2000). This is achieved by generating N
(conditionally) independent bootstrap statistics, Qb

n:r, n = 1; :::; N , computed as above
but recursively from

�Xb
n:t := �̂�̂

0
Xb

n:t�1 + �̂1�X
b
n:t�1 + :::+ �̂k�1�Xb

n:t�k+1 + "bn:t; t = 1; :::; T;

for some initial values Xb
n:�k+1; :::; X

b
n:0 and with ffwn:tgTt=1gNn=1 a doubly indepen-

dent N(0; 1) sequence. The simulated bootstrap p-value is then computed as ~pbr;T :=

N�1PN
n=1 I

�
Qb

n:r > Qr

�
, and is such that ~pbr;T

a:s:! pbr;T as N ! 1. Note that an

asymptotic standard error for ~pbr;T is given by (~pbr;T (1� ~pbr;T )=N)1=2; cf. Hansen (1996,
p.419).

Remark 3.5. The maximum eigenvalue statistic, Qr;max for H(r) vs H(r + 1) can be
bootstrapped in the same way as outlined for Qr above, replacing Q

b
r with Q

b
r;max :=

�2 �`b (r)� `b (r + 1)
�
in Steps 3 and 4 of Algorithm 1, and similarly in Remark 3.4.

3.2 Asymptotic Theory for the Wild Bootstrap

The asymptotic validity of the wild bootstrap method outlined in Algorithm 1 under
conditional heteroskedasticity is now established in Theorem 3. In order to keep our
presentation simple, we demonstrate our result for the case of no deterministic vari-
ables. The equivalence of the �rst-order limiting null distributions of the Qb

r and Qr

statistics can also be shown to hold for cases (ii)-(iii) of Remark 2.5. Again this is a
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straightforward extension of the results in Theorem 3 and is omitted in the interests
of brevity.

Theorem 3 Let the conditions of Theorem 1 hold. Then, under the null hypothesis
H(r), Qb

r
w!p Qr;1. Moreover, pbT

w! U [0; 1].

Remark 3.6. A comparison of the result for Qb
r in Theorem 3 with that given for

Qr in Theorem 1 demonstrates the usefulness of the wild bootstrap: as the number
of observations diverges, the wild bootstrapped statistic has the same �rst-order null
distribution as the original test statistic. Consequently, the bootstrap p-values are
(asymptotically) uniformly distributed under the null hypothesis, leading to tests with
(asymptotically) correct size in the presence of conditional heteroskedasticity of the
form given in Assumption 2.

Remark 3.7. It can be shown that the sequential procedure of Johansen (1996), see
footnote 1, employed using the wild bootstrap Qb

r, r = 0; :::; p�1, test statistics is con-
sistent in the sense that correctly selects the true co-integrating rank with probability
(1� �) in large samples (� denoting the nominal signi�cance level used in each test in
the procedure) in the presence of conditional heteroskedasticity satisfying Assumption
2. Speci�cally, Proposition 2 of Swensen (2006), strengthened with additional condi-
tions outlined in Swensen (2008), which shows that a sequential procedure based on
the i.i.d. bootstrap in the homoskedastic case is consistent, also holds for a sequential
procedure based on the wild bootstrap in the conditionally heteroskedastic case. To
see this, it su�ces to observe that Lemmas 3 and 4 in Swensen (2006), which are used
to establish Lemma 2 therein, do not depend on the speci�c bootstrap re-sampling
scheme being used. Speci�cally, under the additional conditions of Swensen (2008),
they hold given the representation for the original data Xt in Lemma A.1 of Appendix
A, and given the consistency of the unrestricted OLS estimators. This result implies
that our Lemma A.4, which is equivalent to Lemma 1 in Swensen (2006), also holds for
each rank r = 0; 1; ::::; p� 1, in the conditionally heteroskedastic case. That is, under
the additional conditions of Swensen (2008), the wild bootstrap analogues of Lemma
2 and Proposition 2 of Swensen (2006), both hold when the data are conditionally
heteroskedastic in the sense of Assumption 2.

Remark 3.8. Given the results in Theorem 3, it follows straightforwardly that the
limiting null distribution of the bootstrap maximum eigenvalue statistic, Qb

r;max, coin-
cides with that given in Remark 2.6, so that again our wild bootstrap procedure will
deliver (asymptotically) correctly sized maximum eigenvalue co-integration tests under
the conditions of Theorem 3. The results of Remark 3.7 also apply for the sequential
procedure based on the bootstrap maximum eigenvalue statistic. �

3.3 Swensen's i.i.d. Bootstrap

The i.i.d. bootstrap method outlined in Swensen (2006) follows the same steps as the
wild bootstrap method outlined above in section 3.1, except that Step 1 of Algorithm

11



1 is replaced by the following:

Step 1: Generate T bootstrap residuals "st , t = 1; :::; T , as independent draws with
replacement from the centred residuals f"̂t � T�1

PT
i=1 "̂igTt=1.

The algorithm for the i.i.d. bootstrap rank tests then continues exactly as in Algorithm
1, but using the centred2 i.i.d. bootstrap residuals, "st , in place of the wild bootstrap
residuals, "bt . We denote the resulting i.i.d. bootstrap rank statistic by Qs

r and the
associated i.i.d. bootstrap p-value as psr;T . The same conditions on the roots of the

equation jÂ� (z) j = 0 as were required for the wild bootstrap must also hold here, as
must the condition that that j�̂0?�̂�̂?j 6= 0. Again any estimated root with modulus
greater than unity may again be shrunk to have modulus strictly less than unity.

Under the (homoskedastic) assumption that "t � i:i:d:(0;�) with �nite fourth mo-
ments, Swensen (2006) demonstrates that the i.i.d. bootstrap rank statistic Qs

r repli-
cates the �rst-order asymptotic null distribution of the standard trace statistic, Qr of
(2.6). In Theorem 4 we now establish that the i.i.d. bootstrap method of Swensen
(2006) remains asymptotically valid under the weaker conditionally heteroskedastic
conditions placed on the innovations in this paper. This result is demonstrated for
the case of no deterministic variables. The equivalence of the �rst-order limiting null
distributions of the Qs

r and Qr statistics under cases (ii)-(iii) of Remark 2.5 is again a
straightforward extension of the results in Theorem 4.

Theorem 4 Let the conditions of Theorem 1 hold. Then, under the null hypothesis
H(r), Qs

r
w!p Qr;1. Moreover, psr;T

w! U [0; 1].

Remark 3.10. As in Remark 3.4, the cdf of Qs
r used in Step 4 of the bootstrap

algorithm can again be approximated through numerical simulation. Moreover, an
i.i.d. bootstrap analogue of the maximum eigenvalue statistic can also be obtained in
an obvious way through the same principles as were outlined in Remark 3.5. Again
it follows immediately from the results in Theorem 4 that this statistic has the same
limiting null distribution as that given for Qr;max in Remark 2.6.

Remark 3.11. The results regarding the consistency of the sequential procedure for
the determination of the co-integration rank (speci�cally, Proposition 2 of Swensen,
2006) given in Remark 4.2 are also valid for the i.i.d. bootstrap. That is, the sequential
procedure based on the i.i.d. bootstrap, as suggested in Swensen (2006), with the
additional restrictions outlined in Swensen (2008), for the homoskedastic case, remains
consistent under conditional heteroskedasticity of the form given in Assumption 2.

The �nite sample behaviour of the standardQr and the corresponding i.i.d. and wild
bootstrap tests in the presence of a variety of conditionally heteroskedastic innovation
processes is explored numerically in the next section.

2Notice that if the estimated unrestricted VAR contains a constant, then T�1
PT

t=1 "̂t = 0 and,
hence, the residuals would not need to be centred prior to re-sampling.
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4 Finite Sample Simulations

In this section we use Monte Carlo simulation methods to compare the �nite sample
size and power properties of the PLR co-integration rank test of Johansen (1996) with
its wild bootstrap version proposed in Section 3 together with the corresponding i.i.d.
bootstrap test of Swensen (2006). We also compare the properties of the sequential
approach of Johansen (1996) when applied using the PLR test and the two bootstrap
analogue methods. The simulation model we consider generalises that used by previous
authors in that we are allowing for conditional heteroskedasticity in the innovation
process driving the V AR model.

In sections 4.1, and 4.2 we follow Johansen (2002) and Swensen (2006), and consider
as our simulation DGP an I(1), possibly co-integrated, V AR(1) process of dimension
p. We allow the dimension of the VAR process to vary over p = 2; :::; 5, and consider
both the case of no co-integration (r = 0) [section 4.1], and of a single co-integrating
vector (r = 1) [section 4.2]. In section 4.3 we will subsequently report results for r = 0
in a VAR(2) model, thereby also investigating the �nite sample impact of higher-order
serial correlation.

The DGP considered in section 4.1 is the multivariate martingale process,

�Xt = "t;

while a generalisation of this DGP to the non-co-integrated VAR(2) case is detailed in
section 4.3. In section 4.2., the DGP is the co-integrated VAR(1) model

�Xt = ��0Xt�1 + "t

where � and � are p�1 vectors. In each case "t := ("1;t; :::; "p;t)
0 is a p-dimensional mar-

tingale di�erence sequence with respect to the �ltration Ft := � ("t; "t�1; :::). Following
van der Weide (2002), we assume that "t may be written as the linear map

"t = �et (4.1)

where � is an invertible p� p matrix which is constant over time, while the p compo-
nents of et := (e1;t; :::; ep;t)

0 are independent across i = 1; :::; p. In the case where the
individual components follow a standard GARCH(1; 1) process (as is the case with
Models A and B below), van der Weide (2002) refers to "t as a GO � GARCH(1; 1)
process.

Notice that, by de�nition, the PLR statistic does not depend on the matrix �, as
the eigenvalue problem in (2.5) has the same eigenvalues upon re-scaling (as can be
seen by simply pre- and post-multiplying by ��1 in (2.5)). This allows us to set � = Ip
in the simulations, without loss of generality. Moreover, in the r = 1 case considered in
section 4.2, we follow Johansen (2002) and Swensen (2006) by considering DGPs with
� := (1; 0; :::; 0)0 and � := (a1; a2; 0; :::; 0)

0. This leads to the model

�X1;t = a1X1;t�1 + "1;t

�X2;t = a2X1;t�1 + "2;t

�Xi;t = "i;t, i = 3; :::; p:

13



In our reported simulations we set a1 = a2 = �0:4, as in Swensen (2006, Table 2).
Within the context of (4.1) we consider for the individual components of et the

univariate innovation processes and parameter con�gurations used in Section 4 of
Gon�calves and Kilian (2004), to which the reader is referred for further discussion.
These are as follows:

� Model A is a standard GARCH(1; 1) process driven by standard normal innova-

tions of the form eit = h
1=2
it vit, i = 1; :::; p, where vit is i.i.d. N(0; 1), independent

across i, and hit = ! + d0e
2
it�1 + d1hit�1, t = 0; :::; T . Results are reported for

(d0; d1) 2 f(0:5; 0:0); (0:3; 0:65); (0:2; 0:79); (0:05; 0:94)g.
� Model B is the same as Model A except that the vit, i = 1; :::; p, are independent
i.i.d. t5 (normalised to unit variance) variates.

� Model C is the exponential GARCH(1; 1) (EGARCH(1; 1)) model of Nelson

(1991) with eit = h
1=2
it vit; ln(hit) = �0:23 + 0:9 ln(hit�1) + 0:25[jv2it�1j � 0:3vit�1],

with vit � i.i.d. N(0; 1), independent across i = 1; :::; p.

� Model D is the asymmetric GARCH(1; 1) (AGARCH(1; 1)) model of Engle

(1990) with eit = h
1=2
it vit; hit = 0:0216+0:6896hit�1+0:3174[eit�1�0:1108]2, with

vit � i.i.d. N(0; 1), independent across i = 1; :::; p.

� Model E is the GJR � GARCH(1; 1) model of Glosten et al. (1993) with

eit = h
1=2
it vit; hit = 0:005 + 0:7hit�1 + 0:28[jeit�1j � 0:23eit�1]2, with vit � i.i.d.

N(0; 1), independent across i = 1; :::; p.

� Model F is the �rst-order AR stochastic volatility model: eit = vit exp (hit);
hit = �hit�1 + 0:5�it, with (�it; vit) � i.i.d. N(0; diag(�2� ; 1)), independent across
i = 1; :::; p. Results are reported for (�; ��) = f(0:936; 0:424); (0:951; 0:314)g.

The reported simulations were programmed using the rndKMn function of Gauss
7.0. All experiments were conducted using 10; 000 replications. The sample sizes were
chosen within the set f50; 100; 200g and the number of replications used in the wild
bootstrap algorithm was set to 399. All tests were conducted at the nominal 0:05
signi�cance level. For the reasons outlined on page 12 of RHD, relating to similarity
with respect to initial values (see also Nielsen and Rahbek, 2000), the VAR model
was �tted with a restricted constant (i.e. deterministic case (ii) of Remark 2.5), when
calculating all of the tests. For the standard PLR tests we employed asymptotic critical
values as reported in Table 15.2 of Johansen (1996).

We have shown that the standard PLR Qr test of Johansen (1996), together with
the wild bootstrap Qb

r test outlined in section 3.1 and the i.i.d. bootstrap Qs
r test of

Swensen (2006) are all asymptotically valid under conditional heteroskedastiticy of the
form given in Assumption 2. However, and unlike the wild bootstrap re-sampled data
in (3.1), the i.i.d. re-sampled data will clearly not preserve the temporal ordering in
the conditional heteroskedasticity present in the original data. We would therefore
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expect its �nite sample performance to be quite similar to that of the asymptotic tests
and to not perform as well as the wild bootstrap tests in the presence of conditional
heteroskedasticity.

4.1 The Non-Co-Integrated Model (r = 0)

Table 1 reports the �nite sample (empirical) size properties of both the standard PLR
test, Q0, and its wild and i.i.d. bootstrap analogue tests, Qb

0 and Q
s
0 respectively, for

H(0) : r = 0 against H(p) : r = p, for p = 2; :::; 5, in the presence of conditional
heteroskedasticity of the types outlined above. Tables 2,3,4 and 5 report for p = 2,
3, 4 and 5, respectively, the corresponding properties of the sequential procedures of
Johansen (1996) using the Qr, Q

b
r and Q

s
r (r = 0; :::; p�1) tests (as described in footnote

1 with signi�cance level � = 0:05) in the column blocks headed Q-based, Qb-based and
Qs-based, respectively.

Tables 1� 5 about here

Consider �rst the results in Table 1. Under constant conditional variances (the
cases where d0 = d1 = 0 in Models A and B) it can be seen from the �rst two panels of
Table 1 that both the Qb

0 and Q
s
0 tests display �nite sample sizes which are closer to the

nominal level than the standard Q0 test based on asymptotic critical values (the wild
bootstrap can, however, be a little undersized); for example, in the case of Model A
for p = 5, while the standard PLR test has size of 8:1% for T = 100, the corresponding
wild and i.i.d. bootstrap tests have size of 4:4% and 4:7% respectively.

It is, however, where the innovation process displays conditional heteroskedasticity
that the bene�ts of the wild bootstrap over the other tests become clear. The results in
Table 1 show that both the Q0 and Q

s
0 tests can display quite unreliable size properties,

even for samples as large as T = 200, in the presence of conditional heteroskedastic-
ity. In contrast, the size properties of our wild bootstrap PLR test, Qb

0, seem largely
satisfactory throughout.

The size distortions seen in the Q0 and Q
s
0 tests are generally worse, other things

being equal, the higher is the V AR dimension, p. For example, in the case of Model
A with d0 = 0:3, d1 = 0:65 and T = 200, the Q0 and Q

s
0 have size of 10% and 9.3%,

respectively, for p = 2 rising to 13:9% and 10:9%, respectively, for p = 5. In contrast,
here the Qb

0 test has size of 5.6% and 5.7% for p = 2 and p = 5, respectively. The precise
model of conditional heteroskedasticity can also make quite a substantial di�erence to
the size properties of the tests. For example, comparing the results for Models A and
B, we see that t5 innovations tend to cause rather less size ination than is seen for
standard normal innovations. Of all the models considered, it is the autoregressive
stochastic volatility case, Model F, which has the strongest impact on the size of the
tests. The two parameter con�gurations both imply relatively strong serial dependence
in the conditional variance of the innovation process (although in both cases the process
does formally satisfy Assumption 2). Here the standard PLR test, Q0, displays size of
between around 20% to 40% depending on p and the parameter con�guration, while the
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i.i.d. bootstrap test, Qs
0, performs only slightly better. Although the wild bootstrap

test, Qb
0, does also show a degree of over-size under Model F, it still represents an

enormous improvement on the size properties of the other tests. Moreover, what size
distortions there are in the wild bootstrap tests are ameliorated, other things equal, as
the sample size is increased. Notice that this last observation is not the case for the
Q0 and Q

s
0 tests where the size distortions increase as the sample size increases. Very

signi�cant over-sizing, although not as bad as for Model F, is also seen for the Q0 and
Qs

0 tests in each of Models C, D and E. Again here the wild bootstrap test is much
better behaved throughout.

Consider next the results in Tables 2-5. Since all of the tests were run at the
5% signi�cance level, the standard and bootstrap sequential procedures should, in
the limit, select r = 0 with probability 95% and r > 0 with (combined) probability
5%. Consistent with the results in Table 1, we see that, in general, the procedure
based on the wild bootstrap PLR tests gets considerably closer to these proportions in
small samples than do the procedures based on the standard and i.i.d. bootstrap PLR
tests, the latter two tending to perform worse the higher is p. Indeed these latter two
procedures can perform very poorly indeed under conditional heteroskedasticity. For
example, under Model F for the �rst parameter con�guration and p = 5 the procedures
based on the standard and i.i.d. PLR tests select the correct co-integrating rank only
62:9% and 69:2% of the time, respectively, even for T = 200; indeed, each will wrongly
indicate that the true co-integrating rank is two about 5% of the time. In contrast,
the procedure based on the wild bootstrap PLR tests appears to perform very well in
practice, with its empirical probability of selecting the true co-integrating rank of zero
converging rapidly towards 95% throughout; cf. Remark 3.7. In the same example as
above, the wild bootstrap-based procedure selects the true co-integrating rank 92.1%
of the time, and a rank of two only around 1% of the time.

4.2 The Co-Integrated Model (r = 1)

Consider �rst the results in Table 6 for the empirical sizes of the standard PLR Q1

test and its i.i.d. and wild bootstrap analogues. The results here are very much in line
with those seen in Table 1 with the standard PLR and its i.i.d. bootstrap analogue
test not displaying anything like adequate size control in the presence of conditional
heteroskedasticity. The observed size distortions again worsen, others things being
equal, as p is increased. Again the worst distortions are seen in these tests under
Model F, with serious over-size problems also seen under Models C, D and E. For the
GO � GARCH(1; 1) case (Models A and B) the observed size distortions are again
generally smaller under t5 innovations than N(0; 1) innovations. In contrast to the
standard and i.i.d. bootstrap PLR tests, the wild bootstrap PLR test displays very
good size control throughout, with size only ever exceeding 7% in the case of Model
F, where although still a little over-sized it does, nonetheless, still represent a massive
improvement over the other tests.
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Tables 6� 10 about here

Tables 7, 8, 9 and 10 report corresponding results for the sequential procedure of
Johansen (1996) for each of the three tests for p = 2; 3; 4 and 5, respectively. Again
the procedures based on the Qr, Q

b
r and Qs

r (r = 0; :::; p � 1) tests are reported in
the column blocks headed Q-based, Qb-based and Qs-based, respectively. Since now
the co-integrating rank is one, these procedures should, in the limit, select r = 0 with
probability 0%, r = 1 with probability 95% and r > 1 with (combined) probability
5%. While these proportions are largely maintained, at least for T = 200, by the wild
bootstrap-based procedure, the same cannot be said for the procedures based on the
standard PLR and i.i.d. bootstrap PLR tests, which as with the corresponding results
in Tables 2-5 can display a strong tendency to over-estimate the co-integrating rank
under conditional heteroskedasticity, even in quite large samples. It is also interesting to
also note that in the smaller sample sizes considered the standard and i.i.d. bootstrap-
based procedures display a lesser tendency to under-estimate the true co-integration
rank than the wild bootstrap-based procedure: for example, when p = 3 and T = 50,
under Model D the procedure based on the standard PLR tests selects a co-integrating
rank of zero 26.6% of the time, while the wild bootstrap procedure does so 40.1% of
the time. This result is, of course, an artefact of the uncontrolled size of the standard
Q0 test, this test in fact having size of 14:4% in this case; cf. Table 1.

Finally, in the case where volatility is constant (models A and B with d0 = d1 = 0),
and for the larger sample sizes considered (so that the standard Q0 test is not heavily
over-sized when r = 0 - see Table 1), observe from Tables 7-10 that the Qb

0 test does
not lose power against r = 1, relative to the Q0 and Q

s
0 tests. This is very encouraging

because it implies that in cases where the tests are all approximately correctly sized
the wild bootstrap does not lose power relative to the other tests, despite displaying
far superior size properties than the other tests where conditional heteroskedasticity
does occur; cf. Tables 1 and 6.

4.3 The Non-Co-Integrated VAR(2) Model

To conclude this section, and following Johansen (2002, p.1940), we report some ad-
ditional results investigating the �nite sample behaviour under the null hypothesis of
tests for � = 0 in the VAR(2) model

�Xt = �Xt�1 + �1�Xt�1 + "t

with �1 = �Ip, �1 < � < 1. This model is an interesting extension of the conditionally
heteroskedastic VAR(1) model considered in sections 4.1 and 4.2 because it allows for
higher-order stationary serial correlation. To that end we set � = 0:5, which allows
for a moderate degree of stationary serial correlation in the process. As regards the
innovation term, "t, we again considered each of Models A-F, reporting results for a
subset of the parameter con�gurations reported for Models A, B and F in sections
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4.1 and 4.2.3 A restricted constant was again included in the estimated model. Table
11 reports results for both the standard PLR test and its wild and i.i.d. bootstrap
analogue tests for H(0) : r = 0 against H(p) : r = p, for p = 2; :::; 5.

Table 11 about here

In general, it can be seen from the results in Table 11 that higher-order stationary
serial correlation tends to inate the �nite sample size of the standard PLR test, Q0,
further above its nominal level, relative to the corresponding results for the VAR(1)
case in Table 1. This is true in both the conditionally homoskedastic and conditionally
heteroskedastic cases. To illustrate, for p = 4 in the i.i.d. innovations case (Model A
with d0 = d1 = 0) the Q0 test has size of 41.5% for T = 50, reducing to 10.9 % for
T = 200, as compared to 8.7% and 6.5% respectively for the VAR(1) case in Table 1.
Both bootstrap tests also display a degree of over-size for T = 50 in this case, but these
distortions are much smaller than for the Q0 test (8.5% for the Qb test and 8.9% for
the Qs test) and are all but eliminated by T = 200. As a second example, under Model
C for p = 5 the Q0 test has size of 73% for T = 50 (22.5 % for T = 200) compared
with 20% (14.7%) in the corresponding VAR(1) model. Again the higher-order serial
correlation does a�ect the �nite sample size of both bootstrap tests, but again this is
to a much lesser extent than for the Q0 test: in the last example, the size of the Q

b and
Qs bootstrap tests are 12.5% and 15.6% (6.5% and 10.2% for T = 200), respectively,
compared to 7.1% and 10.1% (5.7% and 11.2% for T = 200), respectively, in Table
1. Overall, both bootstrap tests deal much better with higher-order serial correlation
than does the Q0 test.

As with the results in Table 1 for the VAR(1) case, in the VAR(2) case the results
in Table 11 show that the wild bootstrap Qb

0 test again displays far more robust �nite
sample size properties than either the Q0 or the Q

s
0 test in the presence of conditional

heteroskedasticity.

5 Empirical application

In this section we illustrate the methods discussed in this paper with a short application
to the term structure of interest rates; see Campbell and Shiller (1987) for an early
reference. According to traditional theory, aside from a constant or stationary risk
premium, long-term interest rates are an average of current and expected future short
term rates over the life of the investment. Hence, provided interest rates are well
described as I(1) variables, bond rates at di�erent maturities should be driven by a
single common stochastic trend, with the spreads between rates at di�erent maturities
being stationary. Although early studies tend to corroborate this view, see, for example,
Hall et al. (1992), more recent research, based on broader sets of maturities, suggests
that yields are better characterised by more than one common trend, reecting possible

3This was done in the interests of space, the additional results qualitatively adding very little to
what is reported.
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non-stationarities in the risk premia and additional risk factors, such as the slope and
curvature of the yield curve; see, for example, Diebold, Ji and Li (2007) and Giese
(2006).

We consider monthly interest rate data from the United States, Canada, the United
Kingdom, and Japan, taken from the OECD/MEI database. For each country a single
long-run interest rate, Lt, and a variety of short-run rates, Sit, were used in the co-
integration analysis. Speci�cally, these were as follows. United States (1978:1{2002:12):
Lt = government composite bond yield (> 10 years); S1t = federal funds rate; S2t =
prime rate; S3t = rate on certi�cates of deposit; S4t = US dollar in London, 3-month
deposit rate. Canada (1982:6{2002:12): Lt = benchmark bond yield (10 years); S1t =
o�cial discount rate; S2t = overnight money market rate; S3t = rate on 90-day deposits.
United Kingdom (1978:1{2002:12): Lt = yield on 10-year government bonds; S1t =
London clearing banks rate; S2t = overnight interbank rate; S3t = rate on 3-month
interbank loans. Japan (1989:1{2002:12): Lt = yield on interest bearing government
bonds (10 years); S1t = o�cial discount rate; S2t = un-collateralized overnight rate;
S3t = rate on 90-day certi�cates of deposit.

For each country let Xt := (Lt; S1t; :::; Sp�1;t)0, where p = 4 for all but the U.S.
where p = 5. As is standard, we �t a VAR model for Xt with restricted intercept; that
is, D2t = 0 and D1t = 1 in (2.4). The VAR was estimated using Gaussian maximum
likelihood under the assumption of constant volatility; cf. Section 2. For each country
the number of lags, k, was estimated using the BIC: for the U.K., Japan and the U.S.
k = 2 was chosen, while for Canada k = 1 obtained. For each country the residuals
from the �tted VAR(k) model were subjected to both single-equation and vector diag-
nostic tests against non-normality, GARCH(1,1), and general heteroskedasticity (using
White's test both with and without cross-variable terms).4 In the case of the U.K.
and the U.S. all of the single-equation and vector tests rejected at the 1% level. For
Canada this was also the case, except that two of the single equation GARCH(1,1)
were not signi�cant. For Japan, all of the vector tests rejected at the 1% level, as did
all of the single-equation normality tests. However, none of the GARCH(1,1) tests were
signi�cant, while White's single-equation tests delivered three (two) out of four signif-
icant outcomes at the 1% level when cross-variable terms were (were not) included. In
summary, the interest rate data for all of the countries considered display (to varying
degrees) statistically signi�cant evidence of heteroskedasticity.

Table 12 about here

Table 12 reports the results of the standard, wild and i.i.d. bootstrap co-integration
rank tests for each country. For the standard tests (asymptotic) p-values were computed
as suggested in MacKinnon, Haug and Michelis (1999). For both of the bootstrap
methods the number of bootstrap replications was set to 399.

For each country, the standard sequential procedure detects two co-integrating re-
lations at any conventional signi�cance level, with a third co-integration relation being

4The complete set of diagnostic test results can be obtained from the authors on request.
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signi�cant at the 10% level (with a p-value of 0:08) in the case of the U.S. data. The
same conclusions are drawn using the corresponding procedure based on the i.i.d. boot-
strap tests of Swensen (2006), except that the third co-integrating vector in the case
of the U.S. is deemed insigni�cant at the 10% level (with a p-value of 0.12). In line
with what would be expected from the Monte Carlo simulation results in section 4
for series displaying a signi�cant degree of heteroskedasticity, the wild bootstrap-based
procedure consistently delivers a higher p-value for a given hypothesised co-integrating
rank. For both the U.K. and Canada this does not lead us to a di�erent conclusion on
the co-integrating rank (of two) as was drawn from the standard and i.i.d. bootstrap
tests. However, for both Japan and the U.S. only one co-integrating vector is uncov-
ered by the wild bootstrap procedure, implying the presence of four common trends
in the �ve-dimensional U.S. system, and three common trends in the four-dimensional
Japanese system.

These results all therefore contradict the traditional view of the expectation hypoth-
esis of the term structure, suggesting the presence of additional risk factors, since the
hypothesis of p�1 stationary relations (p being the number of interest rates considered)
is never accepted, thereby providing further support in favour of recent multi-factor
theories of the term structure; see, for example, Diebold, Ji and Li (2007). It is worth
noting, however, that in the case of the U.S. data the p-value for testing p� 2 against
p� 1 co-integrating relations is 12% using the asymptotic test and 15% using the i.i.d.
bootstrap test. For the wild bootstrap this p-value rises sharply to 62%. The case
of the U.S. data shows the biggest di�erences between the wild bootstrap procedure
and those based on either the asymptotic test or the i.i.d. bootstrap tests of Swensen
(2006). Given the signi�cant heteroskedasticity found in the U.S. data (indeed the
outcomes of the diagnostic test statistics were consistently much larger for the U.S.
than for the other countries considered) the inferences from the wild bootstrap-based
procedure would appear to be the most reliable.

6 Conclusions

In this paper we have demonstrated that the conventional co-integration rank tests
of Johansen (1996) retain their usual limiting null distributions in the case where the
innovations follow a possibly non-stationary, conditionally heteroskedastic (martingale
di�erence) process. We have also proposed wild bootstrap-based implementations of
the co-integration rank tests in order to exploit the information in sample on the con-
ditional heteroskedasticity, where present. As with any bootstrap procedure, no tables
of critical values are required as the procedure automatically delivers a p-value for
the hypothesis being tested. Both our proposed wild bootstrap scheme and the i.i.d.
bootstrap scheme of Swensen (2006) were demonstrated to deliver rank statistics which
share the same �rst-order limiting null distributions as the corresponding standard rank
statistic. Monte Carlo evidence presented suggests that the proposed wild bootstrap
co-integrating rank tests perform very well in �nite samples, being considerably more
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robust than both the standard PLR tests based on asymptotic critical values and i.i.d.
residual-based bootstrap analogues of the PLR tests, when the innovations are condi-
tionally heteroskedastic. An empirical application to interest rate data from several
major economies was also reported which suggested the presence of more than one com-
mon trend in bond yields over di�erent maturities, consistent with recent multi-factor
theories of the term structure.

A Appendix

This section contains the proofs of the main theorems given in the paper. Proofs for
Theorems 1 and 2 are collected in section A.1. The proof of the validity of the wild
bootstrap co-integration test is reported in section A.2, while the corresponding result
for the i.i.d. bootstrap test of Swensen (2006) is detailed in section A.3.

A.1 Proof of Theorems 1 and 2

Under the stated assumptions, the process Xt has the representation below in Lemma
A.1 which is essential for the proofs of Lemmas A.2 and A.3. Lemma A.1 generalises
the usual Granger-type representation in Johansen (1996) in that, rather than being
i:i:d:, the "t sequence is now, by assumption, a (possibly non-stationary) MDS.

Lemmas A.2 and A.3 immediately imply that the proofs of Theorem 11.1 and
Lemma 13.1 in Johansen (1996) hold, establishing Theorem 1 and 2 respectively. �

Lemma A.1 Under the conditions of Theorem 1,

Xt = C
tX

i=1

"i + St + C0: (A.1)

Here the (p� p)�dimensional matrices C := �? (�
0
?��?)

�1 �0? and C0 := C(Ip;�	)X0.
De�ne the (r + p(k � 1))-dimensional autoregressive process X�t where X�t := �0Xt for

k = 1; and otherwise, X�t :=
�
X 0

t�;�X
0
t; :::;�X

0
t�k+1

�0
: Then the p-dimensional pro-

cess St := (�;	)QX�t, where X�t has the MA(1) representation, X�t = �(L) �t =P1
i=0�

i�t�i: Here �t := (�; Ip; 0; :::; 0)
0 "t and the spectral radius of � is smaller than

one; � (�) < 1. The (r + p(k � 1)) � (r + p(k � 1)) dimensional matrix Q is non-
singular.

Proof: With Xt :=
�
X 0

t; :::; X
0
t�k+1

�0
the system can be written in companion form

as,
�Xt = AB

0
Xt�1 + et (A.2)
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with et := ("0t; 0; :::; 0)
0, X0 �xed and

A :=

0BBBB@
� �1 �2 ::: �k�1
0 Ip 0 ::: 0
0 0 Ip ::: 0
::: ::: ::: ::: :::
0 0 0 ::: Ip

1CCCCA B :=

0BBBB@
� Ip 0 ::: 0
0 �Ip Ip ::: 0
0 0 �Ip ::: 0
::: ::: ::: ::: :::
0 0 0 ::: �Ip

1CCCCA : (A.3)

Note that with X�t := B
0
Xt, � :=

�
Ir+p(k�1) + B

0
A
�
; then X�t = �X�t�1 + B

0et. By
Assumption 1, � (�) < 1 and X�t has the stated MA(1) representation. Standard
arguments and recursions give,

Xt = C

tX
i=1

ei + St + CX0 (A.4)

where C := B?(A0?B?)
�1
A
0
?; and St := A (B0A)�1X�t. As Xt = (Ip; 0; :::; 0)Xt, the

results in Lemma A.1 hold with St = (Ip; 0; :::; 0) St = (�;	)QX�t, Q := (B0A)�1.
Noting that,

A? = (Ip;��1; :::;��k�1)
0 �?, B? = (Ip; :::; Ip)

0 �?

the various expressions follow by simple algebraic identities. �

Let 
�� := plim
T!1

T�1
PT

t=1 �
0Z1tZ

0
1t�, 
�i := plim

T!1
T�1

PT
t=1 �

0Z1tZ
0
it for i = 0; 2, and


ij := plim
T!1

T�1
PT

t=1 ZitZ
0
jt, i; j = 0; 2. By Lemma A.1, these are well-de�ned as

in�nite sums in terms of exponentially decaying coe�cients. For example, since � (�) <
1;


�0 = �0 (�;	)Q
1X
i=0

�
�i (�; Ip; 0; :::; 0)

0� (�; Ip; 0; :::; 0)�
i0� (�;	)0 .

In terms of these moment matrices we have the following results.

Lemma A.2 Under the conditions of Theorem 1, and as T !1,

S00
p! �00, �

0S10
p! ��0 and �

0S11�
p! ��� (A.5)

where �ij = 
ij � 
i2

�1
22 
2j, i; j = 0; 1; �. Moreover, the following identities hold,

�00 = ���0 + �; �0� = ���� (A.6)

and
��100 � ��100 �(�

0��100 �)
�1�0��100 = �?(�0?��?)

�1�0?: (A.7)

Proof: Consider �0S10 = �0M10 � �0M12M
�1
22 M20. Using Lemma A.1 and the fact

that, by de�nition,

�Xt = ��0Xt�1 +	Ut + "t = (�;	)X�t�1 + "t; (A.8)
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the �rst term equals,

�0M10 =
1

T

TX
t=1

�0Xt�1�X 0
t =

1

T

TX
t=1

�0St�1 ((�;	)X�t�1 + "t)
0 .

As mentioned in section 2, the strong law of large numbers in Hennan and Heyde
(1972) can be applied by Assumption 2 and the fact that the coe�cients �i in the
representation for X�t in are exponentially decreasing by Lemma A.1. We then obtain
directly that:

�0M10
p! 
�0 := �0 (�;	)Q

1X
i=0

�
�i (�; Ip; 0; :::; 0)

0� (�; Ip; 0; :::; 0)�
i0� (�;	)0 :

Likewise, the terms �0M12, M22 and M20 converge in probability and we conclude that

�0S10
p! ��0 := 
�0 � 
�2


�1
22 
20 .

Identical arguments lead to the other results in (A.5).

The identities in (A.6) follow by post-multiplying (A.8) by (the transpose of) �0Xt�1;�Xt

and Ut respectively, taking averages and applying the law of large numbers as above,
and solving the resulting system of equations. To prove the identity in (A.7) use the
projection identity

Ip = ��100 �(�
0��100 �)

�1�0 + �?(�0?�00�?)�1�0?�00

and �0?�00 = �0?�; see (A.6). �

Lemma A.3 De�ne the (p� r)-dimensional process,

G(u) := �0?CW (u), (A.9)

where W (�) is a p-dimensional Browian motion with covariance �. Then under the
conditions of Theorem 1, as T !1,

1p
T
�0?XbTuc

w! G(u) (A.10)

�0?S10�? = �0?S12�?
w!
Z 1

0

G (s) dW (s)0 �? (A.11)

1

T
�0?S11�?

w!
Z 1

0

G(s)G(s)0ds (A.12)

and furthermore,
p
T�0S10�? =

p
T�0S1"�?

w! Nr�p�r(0;��� 
 �0?��?) (A.13)

�0S11�? 2 Op(1). (A.14)
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Proof: The result in (A.10) holds by using the FCLT in Brown (1971) (see Re-

mark 2.2) applied to "t as Lemma A.1 implies directly that �
0
?XbT �c = �0?C

PbT �c
1 "t+

op(
p
T ). To prove (A.11) note that

�0?S1" = �0?M1" � �0?M12M
�1
22 M2"

where M1" := T�1
PT

t=1�Xt"
0
t. Consider �rst �

0
?M1" and use the representation of Xt

given in (A.1) to see that

�0?M1" =
1

T

�
�0?C

XT

t=1
(
Xt�1

i=1
"i)"

0
t + �0?

XT

t=1
St�1"0t + �0?C0

XT

t=1
"0t
�

which by Hansen (1992), the LLN and the fact that "t and "t�1 are uncorrelated, weakly
converges to

R 1
0
G (s) dW (s)0. Next, M"2 := T�1

PT
t=1 "tU

0
t tends to zero in probability

by the law of large numbers. Since �0?M12 2 Op(1) andM22 converges in probability by
the law of large numbers, we conclude that (A.11) holds. The result in (A.12) follows
immediately from (A.10) and the continuous mapping theorem. Finally (A.13) holds
by applying the central limit theorem to the MDS �0Xt�1"0t, rewriting S1" as above.�

A.2 Proof of Theorem 3

While our results are new and generalize the results in Swensen (2006), we closely
follow the sequence of arguments in Swensen (2006). As there we use P � to denote
the bootstrap probability and likewise E� to denote expectation under P �. Thus, as
in Swensen (2006, proof of Proposition 1), the weak convergence in probability result
in Theorem 3, Qb

r
w!p Qr;1, can be shown to hold by using Lemmas A.6 and A.7

below. These extend Lemmas A.2 and A.3 in the proof of Theorem 1 to the case of
the wild bootstrap data. Speci�cally, Lemmas A.4, A.5, A.7 and A.6 below extend and
generalize Lemmas 1, S1 and S2 used in Swensen (2006, proof of Proposition 1) for IID
bootstrap shocks.

Establishing thatQb
r

w!p Qr;1 impliesGb
r;T (�)! Gr;1 (�), uniformly in probability, where

Gr;1 denotes the cumulative distribution function of Qr;1. Then, using the same ar-
guments as in the proof of Theorem 5 in Hansen (2000b), it is entirely straightforward
to prove that pbr;T

w! U [0; 1] given the foregoing results. This completes the proof.

We now move to establishing the intermediate lemmas referred to above, establish-
ing a Granger-type representation and an invariance principle for the bootstrap data,
analogous to those given for the original data in Lemmas A.1 and A.3 respectively.

Lemma A.4 Under the conditions of Theorem 1,

Xb
t = Ĉ

tX
i=1

"bi + T 1=2Rb
t

where for all � > 0, P � �maxt=1;:::;T Rb
t

 > �
�! 0 in probability as T !1.
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Proof: From the proof of Lemma A.1 with Xb
t :=

�
Xb0

t ; :::; X
b0
t�k+1

�0
and Xb

0 := 0 we
�nd directly as in (A.4) that Xb

t = (Ip; 0; :::; 0)X
b
t has the representation,

Xb
t = Ĉ

tX
i=1

"bi + T 1=2Rb
t

with

Ĉ := (Ip; 0; :::; 0) bB?(bA0?bB?)�1bA0 = �̂?(�̂
0
?�̂�̂?)

�1�̂0?

Rb
t := (�̂; 	̂)(bB0bA)�1 t�1X

i=0

�̂i(T�1=2bB0ebt�i)
and where �̂ := (Ipk+bB0bA) and 	̂ := (�̂1; :::; �̂k�1). Note that in the de�nition of Rb

t the
sum is not in�nite as the bootstrap residuals are de�ned for t � 1 only. The matricesbA and bB are de�ned as A,B of (A.3) with � and � replaced by the corresponding
estimators �̂; �̂, and ebt :=

�
"b0t ; 0; :::; 0

�0
. Next, note that

max
t=1;:::;T

Rb
t

 � max
t=1;:::;T

(�̂; 	̂)(bB0bA)�1
t�1X
i=0

�̂i
�
T�1=2bB0ebt�i�

 �  T max
t=1;:::;T

T�1=2�bt
where �bt =

bB0ebt = ��̂; Ip; 0; :::; 0�0 "bt and  T =
(�̂; 	̂)(bB0bA)�1PT�1

i=0 �̂i
. It follows

that  T

p!  by using the established consistency of the estimators in Theorem 2. In
particular, note that for su�ciently large T we have, by continuity, that �(�̂) < 1, which
implies that jj�̂ijj �const.�i for some 0 < � < 1; uniformly over i. Finally, showing
that P � �maxt=1;:::;T T�1=2�bt > �

�
is of order op (1) implies the desired result that

P � �maxt=1;:::;T Rb
t

 > �
� p! 0. This again holds if P � �T�1=2maxt=1;:::;T "bt > �

�
=

op (1), which holds since

P �
�
T�1=2 max

t=1;:::;T

"bt > �

�
� 1

�4T 2

TX
t=1

E� �"b0t "bt�2 = 3

�4T 2

TX
t=1

("̂0t"̂t)
2 p! 0

since T�1
PT

t=1 ("̂
0
t"̂t)

2
= Op (1) under the assumption that "t has bounded fourth

moment. �

Lemma A.5 Under the conditions of Theorem 1,

Sb
T (�) :=

1

T 1=2

bT �cX
t=1

"bt
w!p W (�) .

Proof: Conditionally on f"̂tgTt=1, Sb
T (�) is a Gaussian process with independent incre-

ments and covariance matrix

E� �Sb
T (�)Sb

T (�)0
�
=

1

T

bT �cX
t=1

"̂t"̂
0
t:
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Consequently, Lemma A.5 follows if T�1
PbTuc

t=1 "̂t"̂
0
t ! u� in probability, uniformly

for all u 2 [0; 1]. Now, since T�1
PbTuc

t=1 "̂t"̂
0
t is monotonically increasing in u and the

limit function is continuous in u, it su�ces to prove pointwise convergence; cf. Hansen
(2000a, proof of Lemma A.10). Pointwise convergence follows by noticing that

1

T

bTucX
t=1

"̂t"̂
0
t =

1

T

bTucX
t=1

"t"
0
t + op (1)

where T�1
PbTuc

t=1 "t"
0
t ! u�, by the law of large numbers. �

Lemma A.6 Let G (�) be de�ned as in (A.9). Then under the conditions of Theorem
1,

1p
T
�̂
0
?X

b
bTuc

w!p G(u) (A.15)

�̂
0
?S

b
10�? = �̂

0
?S

b
12�?

w!p

Z 1

0

G (s) dW (s)0 �? (A.16)

1
T
�̂
0
?S

b
11�̂?

w!p

Z 1

0

G(s)G(s)0ds (A.17)

and furthermore,

p
T �̂

0
Sb
10�̂? =

p
T �̂

0
Sb
1"�̂?

w!p Nr�p�r(0;��� 
 �0?��?) (A.18)

�̂
0
Sb
11�̂ 2 Op�(1) (A.19)

in probability as T !1.

Proof: Applying Lemma A.4 and Lemma A.5, the results hold as in Lemma S2 of
Swensen (2006). �

Lemma A.7 Under the conditions of Theorem 3,

P � �Sb
00 � �00

 > �
�! 0 (A.20)

P �
�Sb

01�̂ � �0�

 > �
�
! 0 (A.21)

P �
��̂0Sb

11�̂ � ���

 > �
�
! 0 (A.22)

in probability as T !1.

Proof: In the interests of brevity, we only provide a proof of (A.20) here. Proofs of

(A.21) and (A.22) can be obtained on request. Notice that Sb
00 =M b

00�M b
02

�
M b

22

��1
M b

20

where theM b
ij are the product moments in terms of the bootstrap data. Hence, as noted
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in Swensen (2006), (A.20) follows by establishing that P � �M b � �M

 > �
� ! 0,

where

M :=
1

T

TX
t=1

�Xt�X
0
t, M

b :=
1

T

TX
t=1

�Xb
t�X

b0
t and �M := plim

T!1
M

with Xt :=
�
X 0

t; :::; X
0
t�k+1

�0
and X

b
t :=

�
Xb0

t ; :::; X
b0
t�k+1

�0
. By Lemma A.1, X�t =P1

i=0�
i�t�i and, hence, (A.2), implies that

�Xt = A

1X
i=1

�i�1 (�; I; 0; :::; 0)0 "t�i + (I; 0; :::; 0)0 "t :=
1X
i=0

�i"t�i: (A.23)

Similarly, �Xb
t =

Pt�1
i=0 �̂i"

b
t�i; "

b
t = "̂twt. As previously noted in the proof of Lemma

A.4, for su�ciently large T , k�ik ;
�̂i
 < c�i for some generic constant c > 0, 0 < � <

1, uniformly in i. In particular, the coe�cients �i and �̂i are exponentially decreasing.

Next recall that �M =
P1

i=0 �i��
0
i; and observe that with �Mb := E� �M b

�
,M b � �M

 � M b � �Mb

+ k�Mb � �Mk :
To see that k�Mb � �Mk tends to zero in probability rewrite �rst �Mb as:

�Mb = E�
 
1

T

TX
t=1

 
t�1X
i=0

�̂i"
b
t�i

! 
t�1X
i=0

�̂i"
b
t�i

!0!
=

1

T

TX
t=1

 
t�1X
i=0

�̂i"̂t�i"̂
0
t�i�̂

0
i

!

=
1

T

TX
t=1

 
T�tX
i=0

�̂i"̂t"̂
0
t�̂
0
i

!
=

1

T

TX
t=1

 1X
i=0

�̂i"̂t"̂
0
t�̂
0
i

!
� V1T ;

where V1T := 1
T

PT
t=1

�P1
i=T�t+1 �̂i"̂t"̂

0
t�̂
0
i

�
= op (1) : To see this, use the fact that

�i = A�iB, where A and B are constant matrices, see (A.23), and �̂i = Â�̂iB̂: In

particular, for su�ciently large T ,
�̂i � c�i, uniformly in i; and the result holds as

E k"tk4 < K <1 and
P1

i=T�t+1 �
T�i ! 0 as T !1. Next, observe that

1

T

TX
t=1

 1X
i=0

�̂i"̂t"̂
0
t�̂
0
i

!
� �M

=

 1X
i=0

�̂i

 
1

T

TX
t=1

"̂t"̂
0
t

!
�̂
0
i �

1X
i=0

�̂i��̂
0
i

!
+

 1X
i=0

�̂i��̂
0
i � �M

!
=: V2T + V3T .

It then follows that, as T !1,

kV2Tk �


1X
i=0

�
�̂i 
 �̂i

�
 1T

TX
t=1

"̂t"̂
0
t � �

 p! 0
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by the result that T�1
PT

t=1 "̂t"̂
0
t

p! � (see Theorem 2), and because
P1

i=0

�
�̂i 
 �̂i

�
is of order one. Also,

vec (V3T ) =

 1X
i=0

�
�̂i 
 �̂i

�
�

1X
i=0

(�i 
 �i)

!
vec (�)

p! 0;

using, as above, the fact that �i = A�iB and �̂i = Â�̂iB̂.

Finally, consider the term
M b � �Mb

. We have

M b =
1

T

TX
t=1

 
t�1X
i=0

�̂i"
b
t�i

! 
t�1X
i=0

�̂i"
b
t�i

!0

=
1

T

TX
t=1

 
t�1X
i=0

�̂i"
b
t�i
�
�̂i"

b
t�i
�0!

+
1

T

TX
t=1

 
t�1X

i;j=0;i6=j
�̂i"

b
t�i"

b0
t�j �̂

0
j

!
=:M b

1 +M b
2 :

First, notice that

M b
1 � �Mb =

1

T

TX
t=1

 
t�1X
i=0

�̂i"̂t�i"̂
0
t�i�̂

0
i�t�i

!
with �t := (w2
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Thus, with cT = c+ op (1),
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which converges in probability as "t has bounded fourth order moment. This establishes
the result that M b

1 � �Mb = op (1). It can similarly be shown that M b
2 = op (1), which

completes the proof. �
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A.3 Proof of Theorem 4

We proceed as in the proof of Theorem 3. Speci�cally, we establish that the results
in Lemmas A.4, A.5, A.7 and A.6 also hold for the i.i.d. bootstrap. Without causing
confusion, we now denote by P � the i.i.d. bootstrap probability and likewise E� denotes
expectation under P �. Objects with a superscript s in what follows are understood to
be the i.i.d. bootstrap analogues of the corresponding wild bootstrap quantities with a
superscript b.

Consider �rst the analogue of Lemma A.4.

Lemma A.8 Under the conditions of Theorem 1, the i.i.d. bootstrap data satisfy,

Xs
t = Ĉ

tX
i=1

"si + T 1=2Rs
t

where for all � > 0, P � (maxt=1;:::;T kR�
tk > �)! 0 in probability as T !1.

Proof: The arguments are identical to the proof of Lemma A.4 apart from the �nal
evaluation of P � �T�1=2maxt=1;:::;T "bt > �

�
in the i.i.d. case. Using that under i.i.d.
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That Lemmas A.5 and A.7 hold for the i.i.d. bootstrap case holds by Lemma S2 of
Swensen (2006). Finally, we need the analogue of Lemma A.7 for the i.i.d. case:

Lemma A.9 For the i.i.d. bootstrap and under the conditions of Theorem 4,

P � (kSs
00 � �00k > �)! 0 (A.24)
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 > �
�
! 0 (A.25)
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�
! 0 (A.26)

in probability as T !1.
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Proof: Proceed as in the proof of Lemma A.7 to reach the identical inequality:

kM s � �Mk � kM s � �Msk+ k�Ms � �Mk :
For evaluation of the last term, re-write �Ms as:
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t, and making use of the fact that "st are conditionally indepen-
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: (A.27)

The last term tends to zero by the arguments in the proof of Lemma A.7 for V1T
p! 0

and using the result that �̂T
p! � by consistency. Likewise, the �rst term in (A.27)

tends in probability to �M as desired. This holds by rewriting it as V2T + V3T , these
objects de�ned analogously as in the proof of Lemma A.7, and using the arguments
there to show that V2T ! 0; while V3T ! � in probability.

Turning to the �nal term kM s � �Msk, we have that
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Using the vec(�) operator and interchanging summation,
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Thus, with cT = c+ op (1),
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Use next that,
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which converges in probability as a result of the assumption that "t has bounded
fourth order moment. This establishes the result that M s

1 � �Ms = op (1). Similarly
M s

2 = op (1), which completes the proof. �
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Table 1: Size of Standard and Bootstrap PLR Tests for Rank = 0 Against Rank = p. True Rank is 0.

p = 2 p = 3 p = 4 p = 5

Model A: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

d0 d1 T Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0
0.0 0.0 50 6.3 5.7 4.9 7.0 5.1 4.9 8.7 4.3 4.8 12.1 3.7 4.8

100 5.3 4.9 4.6 6.6 5.1 5.5 7.3 5.0 5.1 8.1 4.4 4.7
200 5.3 4.6 4.8 6.1 5.3 5.2 6.5 4.9 4.9 6.9 4.4 4.7

0.5 0.0 50 9.9 7.2 7.9 10.7 6.6 7.8 13.6 6.3 8.5 17.6 6.2 9.1
100 7.3 5.3 6.5 9.8 6.3 7.9 11.2 6.3 8.3 12.6 5.4 8.2
200 6.6 4.8 5.9 8.3 5.3 7.2 8.7 5.2 6.7 9.6 4.3 6.8

0.3 0.65 50 10.2 6.8 8.3 12.6 7.2 9.6 14.8 6.4 9.4 18.1 6.2 9.5
100 9.9 5.6 8.5 12.3 6.5 10.3 13.7 6.2 10.7 14.8 6.3 10.0
200 10.0 5.6 9.3 10.7 5.2 9.5 12.1 5.6 10.0 13.9 5.7 10.9

0.2 0.79 50 9.3 6.6 7.6 11.2 7.1 8.3 13.8 5.9 8.2 16.2 5.5 7.7
100 9.9 5.6 8.7 11.4 6.4 9.8 13.1 6.2 9.9 14.0 5.5 9.2
200 10.8 5.5 10.1 12.2 5.4 11.0 12.8 5.5 10.7 13.5 5.6 10.6

0.05 0.94 50 6.5 5.9 5.2 7.6 5.5 5.2 9.3 4.6 5.3 12.3 4.2 4.9
100 5.8 4.9 5.2 7.0 5.4 5.6 8.1 5.2 5.8 8.8 4.4 4.9
200 6.5 5.1 5.9 7.2 5.1 6.5 7.2 5.0 5.5 7.9 4.9 5.5

Model B: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. t5, i = 1, ..., p

d0 d1 T Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0
0.0 0.0 50 6.6 5.2 5.1 8.0 4.9 5.8 9.3 4.4 5.6 12.8 3.6 5.0

100 5.7 4.9 5.0 6.3 4.7 4.9 6.7 4.1 5.0 8.2 4.4 4.8
200 5.5 4.7 5.0 5.8 4.6 4.6 6.3 4.8 4.9 6.5 3.8 4.4

0.5 0.0 50 8.5 6.0 6.8 11.3 6.4 7.9 12.7 5.6 8.2 15.9 4.8 7.4
100 7.3 5.3 6.4 8.4 5.2 6.8 9.5 5.1 6.9 12.0 5.1 7.2
200 6.5 5.0 5.6 6.9 4.7 5.9 8.1 4.9 6.4 8.6 4.3 6.1

0.3 0.65 50 8.7 5.8 7.1 11.0 6.2 7.8 12.6 5.9 7.9 15.8 4.9 7.2
100 7.5 5.1 6.5 9.2 5.5 7.7 10.4 5.5 7.7 12.4 5.6 7.5
200 7.2 5.2 6.6 8.2 5.2 7.1 9.5 5.1 7.4 10.2 4.7 7.2

0.2 0.79 50 8.0 5.6 6.4 10.5 6.0 7.6 11.7 5.2 7.3 14.5 4.7 6.4
100 7.2 5.4 6.2 8.9 5.4 7.3 9.7 5.3 7.3 11.2 5.4 7.2
200 7.1 5.0 6.2 8.3 5.0 7.0 8.7 5.1 7.4 9.7 4.5 6.6

0.05 0.94 50 6.9 5.2 5.3 8.9 5.4 6.2 9.9 4.6 5.9 13.1 3.9 5.2
100 5.9 5.0 5.3 7.1 5.0 5.9 7.4 4.6 5.4 8.9 4.5 5.4
200 5.8 4.7 5.4 6.5 4.6 5.5 7.2 5.1 5.8 7.2 4.0 4.8

Model C: εi,t = h
1/2
i,t vi,t, ln(hi,t) = −0.23 + 0.9 ln(hi,t−1) + 0.25[|v2i,t−1|− 0.3vi,t−1], vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

T Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0
50 11.0 7.2 9.2 13.8 7.9 10.5 17.2 7.3 10.6 20.0 7.1 10.1
100 10.3 5.6 9.2 12.9 6.6 10.7 14.6 6.3 11.1 16.8 7.0 11.8
200 9.7 5.3 9.1 11.5 5.9 10.1 13.6 5.4 11.2 14.7 5.7 11.2

Model D: εi,t = h
1/2
i,t vi,t, hi,t = 0.0216 + 0.6896hi,t−1 + 0.3174[εi,t−1 − 0.1108]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

T Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0
50 11.8 6.8 9.9 14.4 7.9 11.1 16.9 7.6 11.3 19.8 6.6 10.3
100 12.7 6.2 11.5 15.0 6.9 13.1 16.6 6.9 13.1 18.7 6.5 13.2
200 13.9 5.6 13.0 17.0 6.0 15.0 17.9 6.3 15.3 20.2 6.4 16.1

Model E: εi,t = h
1/2
i,t vi,t, hi,t = 0.005 + 0.7hi,t−1 + 0.28[|εi,t−1|− 0.23εi,t−1]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

T Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0
50 10.7 6.7 9.0 13.1 7.3 10.1 15.5 6.6 10.1 18.2 6.1 9.5
100 11.1 5.7 10.0 13.0 6.3 11.2 14.9 6.2 11.8 16.1 5.8 11.4
200 12.0 4.9 11.3 14.1 5.7 12.5 16.0 5.6 13.6 16.9 5.4 13.8

Model F: εi,t = vi,t exp (hi,t), hi,t = λhi,t−1 + 0.5ξi,t, (ξi,t, vi,t) ∼ i.i.d. N(0,diag(σ2ξ , 1)), i = 1, ..., p
λ σξ T Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0

0.936 0.424 50 19.3 8.4 16.9 24.5 9.1 19.1 29.3 9.7 20.8 35.0 11.0 22.2
100 21.3 6.8 19.1 26.8 8.5 23.2 32.2 8.7 26.3 35.4 9.5 27.0
200 22.0 6.8 20.1 27.3 7.6 24.6 32.7 7.8 28.1 37.1 7.9 30.8

0.951 0.314 50 16.5 7.1 13.7 20.0 8.2 16.3 24.0 8.4 16.5 28.1 9.0 17.3
100 17.5 6.5 15.6 22.2 7.4 19.2 25.4 7.9 20.8 28.0 8.7 21.5
200 18.6 6.6 17.2 22.8 6.7 20.5 25.9 6.6 22.2 30.5 7.7 24.9



Table 2: Standard and Bootstrap Sequential Procedures for Selecting the Co-integration
Rank. p = 2, True Rank is 0.

Q-based Qb-based Qs-based
r = 0 1 2 0 1 2 0 1 2

Model A: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

d0 d1 T
0.0 0.0 50 93.7 5.5 0.8 94.3 4.6 1.1 95.1 3.9 1.0

100 94.7 5.0 0.4 95.1 4.2 0.6 95.4 4.1 0.5
200 94.7 5.0 0.3 95.4 3.9 0.7 95.2 4.3 0.5

0.5 0.0 50 90.1 9.2 0.7 92.8 6.1 1.1 92.1 6.8 1.1
100 92.7 6.7 0.6 94.7 4.6 0.7 93.5 5.7 0.8
200 93.4 6.0 0.6 95.2 4.1 0.6 94.1 5.2 0.7

0.3 0.7 50 89.8 9.1 1.0 93.2 5.5 1.2 91.7 7.0 1.3
100 90.1 9.1 0.7 94.4 5.0 0.6 91.5 7.4 1.1
200 90.0 9.1 0.9 94.4 4.9 0.7 90.7 7.9 1.4

0.2 0.8 50 90.7 8.3 1.0 93.4 5.4 1.2 92.4 6.4 1.2
100 90.1 9.1 0.9 94.4 4.8 0.8 91.3 7.5 1.3
200 89.2 9.7 1.0 94.5 4.9 0.6 89.9 8.6 1.5

0.1 0.9 50 93.5 5.8 0.7 94.1 4.7 1.3 94.8 4.1 1.2
100 94.2 5.5 0.3 95.1 4.1 0.8 94.8 4.7 0.6
200 93.5 6.1 0.4 94.9 4.5 0.7 94.1 5.1 0.8

Model B: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. t5, i = 1, ..., p

d0 d1 T
0.0 0.0 50 93.4 6.0 0.6 94.8 4.2 1.1 94.9 4.2 1.0

100 94.3 5.4 0.3 95.1 4.3 0.7 95.0 4.4 0.6
200 94.5 5.0 0.5 95.3 4.1 0.6 95.0 4.2 0.8

0.5 0.0 50 91.5 7.7 0.8 94.0 4.8 1.2 93.2 5.8 1.0
100 92.7 6.9 0.4 94.7 4.6 0.7 93.6 5.6 0.8
200 93.5 6.1 0.5 95.0 4.4 0.6 94.4 4.8 0.8

0.3 0.7 50 91.3 8.0 0.7 94.2 4.7 1.1 92.9 6.1 1.0
100 92.5 7.0 0.5 94.9 4.5 0.6 93.5 5.6 0.9
200 92.8 6.5 0.6 94.8 4.6 0.7 93.4 5.7 0.9

0.2 0.8 50 92.0 7.3 0.8 94.4 4.5 1.1 93.6 5.3 1.1
100 92.8 6.7 0.5 94.6 4.7 0.7 93.8 5.5 0.7
200 92.9 6.5 0.6 95.0 4.4 0.6 93.8 5.5 0.8

0.1 0.9 50 93.1 6.2 0.7 94.8 4.2 1.0 94.7 4.4 0.9
100 94.1 5.5 0.4 95.0 4.4 0.7 94.7 4.5 0.7
200 94.2 5.3 0.5 95.3 4.0 0.7 94.6 4.5 0.8

Model C: εi,t = h
1/2
i,t vi,t, ln(hi,t) = −0.23 + 0.9 ln(hi,t−1) + 0.25[|v2i,t−1|− 0.3vi,t−1], vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p
50 89.0 9.8 1.1 92.8 6.1 1.1 90.8 7.7 1.5
100 89.7 9.4 0.9 94.4 4.9 0.7 90.8 8.0 1.2
200 90.3 9.0 0.8 94.7 4.5 0.7 90.9 7.9 1.2

Model D: εi,t = h
1/2
i,t vi,t, hi,t = 0.0216 + 0.6896hi,t−1 + 0.3174[εi,t−1 − 0.1108]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p
50 88.2 10.6 1.2 93.2 5.5 1.3 90.1 8.2 1.7
100 87.3 11.7 1.1 93.8 5.4 0.8 88.5 9.8 1.6
200 86.1 12.6 1.3 94.4 4.9 0.7 87.0 11.1 2.0

Model E: εi,t = h
1/2
i,t vi,t, hi,t = 0.005 + 0.7hi,t−1 + 0.28[|εi,t−1|− 0.23εi,t−1]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p
50 89.3 9.6 1.2 93.3 5.6 1.2 91.0 7.6 1.5
100 88.9 10.1 1.0 94.3 5.1 0.7 90.0 8.8 1.2
200 88.0 10.7 1.3 95.1 4.1 0.8 88.7 9.7 1.6

Model F: εi,t = vi,t exp (hi,t), hi,t = λhi,t−1 + 0.5ξi,t, (ξi,t, vi,t) ∼ i.i.d. N(0,diag(σ2ξ , 1)), i = 1, ..., p
λ σξ T

0.936 0.424 50 80.7 16.8 2.5 91.6 7.3 1.1 83.1 14.0 2.9
100 78.7 19.0 2.4 93.2 5.9 1.0 80.9 16.4 2.6
200 78.0 19.9 2.1 93.2 6.2 0.6 79.9 17.7 2.4

0.951 0.314 50 83.5 14.4 2.1 92.9 6.0 1.1 86.3 11.4 2.3
100 82.5 15.6 1.9 93.5 5.5 1.0 84.4 13.2 2.3
200 81.4 16.9 1.7 93.4 6.1 0.6 82.8 15.2 2.0



Table 3: Standard and Bootstrap Sequential Procedures for Selecting the Co-integration
Rank. p = 3, True Rank is 0.

Q-based Qb-based Qs-based
r = 0 1 2 3 0 1 2 3 0 1 2 3

Model A: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

d0 d1 T
0.0 0.0 50 93.0 6.1 0.7 0.1 94.9 4.2 0.6 0.3 95.1 4.0 0.7 0.2

100 93.4 6.0 0.6 0.1 94.9 4.4 0.5 0.2 94.5 4.8 0.6 0.1
200 93.9 5.5 0.6 0.0 94.7 4.6 0.5 0.1 94.8 4.5 0.5 0.2

0.5 0.0 50 89.3 9.7 0.9 0.1 93.4 5.6 0.7 0.3 92.2 7.0 0.6 0.2
100 90.2 8.8 0.9 0.1 93.7 5.5 0.6 0.2 92.1 6.9 0.8 0.2
200 91.7 7.5 0.7 0.1 94.7 4.7 0.5 0.1 92.8 6.3 0.6 0.3

0.3 0.65 50 87.4 11.2 1.1 0.3 92.8 5.9 1.1 0.2 90.4 8.1 1.1 0.4
100 87.7 11.1 1.0 0.2 93.5 5.7 0.6 0.3 89.7 8.8 1.1 0.3
200 89.3 9.8 0.8 0.1 94.8 4.6 0.4 0.2 90.5 8.4 0.9 0.2

0.2 0.79 50 88.8 10.0 0.9 0.2 92.9 5.9 0.9 0.3 91.7 7.2 0.8 0.3
100 88.6 10.1 1.1 0.2 93.6 5.4 0.8 0.2 90.2 8.4 1.1 0.3
200 87.8 11.0 1.0 0.2 94.6 4.6 0.6 0.2 89.0 9.5 1.1 0.4

0.05 0.94 50 92.4 6.6 0.8 0.2 94.5 4.5 0.6 0.4 94.8 4.3 0.7 0.2
100 93.0 6.2 0.6 0.2 94.6 4.5 0.6 0.2 94.4 4.9 0.6 0.2
200 92.8 6.6 0.4 0.1 94.9 4.5 0.5 0.2 93.5 5.9 0.4 0.2

Model B: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. t5, i = 1, ..., p

d0 d1 T
0.0 0.0 50 92.0 7.3 0.6 0.2 95.1 4.2 0.5 0.2 94.2 5.1 0.5 0.3

100 93.7 5.7 0.4 0.1 95.3 4.0 0.5 0.2 95.1 4.2 0.4 0.2
200 94.2 5.2 0.6 0.0 95.4 4.0 0.5 0.1 95.4 4.1 0.5 0.1

0.5 0.0 50 88.7 10.3 0.8 0.1 93.6 5.4 0.8 0.2 92.1 6.8 0.9 0.2
100 91.6 7.7 0.5 0.2 94.8 4.4 0.7 0.2 93.2 6.0 0.7 0.2
200 93.1 6.4 0.5 0.1 95.3 4.2 0.4 0.1 94.1 5.3 0.4 0.2

0.3 0.65 50 89.0 9.9 0.9 0.1 93.8 5.4 0.6 0.2 92.2 6.9 0.7 0.2
100 90.8 8.3 0.7 0.2 94.5 4.6 0.6 0.3 92.3 6.7 0.8 0.3
200 91.8 7.5 0.6 0.1 94.8 4.6 0.4 0.2 92.9 6.2 0.6 0.3

0.2 0.79 50 89.5 9.4 1.0 0.1 94.0 5.2 0.6 0.2 92.4 6.5 0.9 0.3
100 91.1 7.9 0.8 0.2 94.6 4.6 0.6 0.3 92.7 6.2 0.7 0.3
200 91.7 7.6 0.6 0.1 95.0 4.4 0.5 0.2 93.0 6.2 0.5 0.3

0.05 0.94 50 91.1 8.1 0.7 0.1 94.6 4.6 0.5 0.3 93.8 5.4 0.6 0.2
100 92.9 6.5 0.4 0.2 95.0 4.2 0.5 0.3 94.1 5.1 0.4 0.3
200 93.5 6.0 0.5 0.1 95.4 4.1 0.4 0.1 94.5 4.8 0.4 0.2

Model C: εi,t = h
1/2
i,t vi,t, ln(hi,t) = −0.23 + 0.9 ln(hi,t−1) + 0.25[|v2i,t−1|− 0.3vi,t−1], vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p
50 86.2 12.1 1.4 0.3 92.1 6.5 1.0 0.4 89.5 8.9 1.2 0.4
100 87.1 11.6 1.2 0.1 93.4 5.7 0.7 0.2 89.3 9.1 1.4 0.3
200 88.5 10.4 1.0 0.1 94.1 5.4 0.3 0.2 89.9 8.7 1.0 0.4

Model D: εi,t = h
1/2
i,t vi,t, hi,t = 0.0216 + 0.6896hi,t−1 + 0.3174[εi,t−1 − 0.1108]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p
50 85.6 12.6 1.5 0.3 92.1 6.5 1.1 0.4 88.9 9.4 1.2 0.5
100 85.0 13.3 1.5 0.2 93.1 5.9 0.8 0.2 86.9 11.3 1.4 0.4
200 83.0 15.0 1.8 0.3 94.0 5.2 0.6 0.2 85.0 12.6 1.9 0.5

Model E: εi,t = h
1/2
i,t vi,t, hi,t = 0.005 + 0.7hi,t−1 + 0.28[|εi,t−1|− 0.23εi,t−1]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

50 86.9 11.6 1.3 0.2 92.7 6.1 0.9 0.3 89.9 8.5 1.0 0.6
100 87.0 11.7 1.2 0.2 93.7 5.5 0.6 0.1 88.8 9.7 1.2 0.3
200 85.9 12.8 1.2 0.1 94.3 5.1 0.5 0.1 87.5 10.7 1.5 0.3

Model F: εi,t = vi,t exp (hi,t), hi,t = λhi,t−1 + 0.5ξi,t, (ξi,t, vi,t) ∼ i.i.d. N(0,diag(σ2ξ , 1)), i = 1, ..., p
λ σξ

0.936 0.424 50 75.5 20.7 3.4 0.4 90.9 7.5 1.3 0.3 80.9 15.9 2.6 0.6
100 73.2 22.3 3.8 0.6 91.5 7.4 0.9 0.2 76.8 19.1 3.2 0.8
200 72.7 23.6 3.3 0.4 92.4 6.7 0.7 0.2 75.4 21.4 2.5 0.7

0.951 0.314 50 80.0 17.2 2.4 0.4 91.8 6.7 1.2 0.3 83.7 13.6 2.1 0.6
100 77.8 18.8 3.0 0.5 92.6 6.4 0.9 0.2 80.8 15.9 2.5 0.8
200 77.2 20.0 2.4 0.4 93.3 6.1 0.5 0.1 79.5 17.6 2.3 0.6



Table 4: Standard and Bootstrap Sequential Procedures for Selecting the Co-integration
Rank. p = 4, True Rank is 0.

Q-based Qb-based Qs-based
r = 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Model A: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

d0 d1 T
0.0 0.0 50 91.3 7.7 0.9 0.1 0.0 95.7 3.7 0.5 0.1 0.1 95.2 4.1 0.5 0.1 0.0

100 92.7 6.4 0.7 0.2 0.0 95.0 4.2 0.6 0.2 0.0 94.9 4.3 0.6 0.2 0.0
200 93.5 5.9 0.5 0.1 0.0 95.1 4.2 0.5 0.1 0.1 95.1 4.2 0.5 0.1 0.0

0.5 0.0 50 86.4 12.0 1.3 0.2 0.0 93.7 5.4 0.6 0.2 0.2 91.5 7.4 0.8 0.2 0.1
100 88.8 10.0 1.0 0.2 0.0 93.7 5.5 0.4 0.2 0.1 91.7 7.1 0.7 0.3 0.1
200 91.3 8.0 0.6 0.1 0.0 94.8 4.7 0.4 0.1 0.0 93.3 5.9 0.6 0.1 0.0

0.3 0.65 50 85.2 13.1 1.4 0.2 0.0 93.6 5.4 0.7 0.2 0.1 90.6 8.0 1.0 0.3 0.2
100 86.3 12.0 1.5 0.2 0.0 93.8 5.3 0.7 0.2 0.1 89.3 9.2 1.3 0.2 0.1
200 87.9 10.9 1.0 0.2 0.0 94.4 4.9 0.6 0.1 0.0 90.0 8.8 1.0 0.2 0.1

0.2 0.79 50 86.2 12.1 1.4 0.2 0.0 94.1 4.9 0.6 0.3 0.1 91.8 6.9 0.8 0.3 0.1
100 86.9 11.5 1.3 0.2 0.0 93.8 5.3 0.8 0.1 0.0 90.1 8.3 1.2 0.3 0.1
200 87.2 11.4 1.2 0.1 0.1 94.5 4.8 0.6 0.1 0.0 89.3 9.3 1.2 0.1 0.1

0.05 0.94 50 90.7 8.2 1.0 0.1 0.1 95.4 3.9 0.4 0.2 0.1 94.7 4.5 0.5 0.2 0.1
100 91.9 7.3 0.7 0.1 0.0 94.8 4.5 0.4 0.3 0.1 94.2 4.9 0.6 0.2 0.0
200 92.8 6.5 0.6 0.1 0.0 95.0 4.4 0.5 0.1 0.0 94.5 4.8 0.6 0.1 0.0

Model B: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. t5, i = 1, ..., p

d0 d1 T
0.0 0.0 50 90.7 8.2 0.9 0.2 0.0 95.6 3.6 0.6 0.1 0.1 94.4 4.9 0.5 0.2 0.0

100 93.3 5.8 0.6 0.2 0.1 95.9 3.4 0.5 0.1 0.1 95.0 4.4 0.4 0.2 0.1
200 93.7 5.6 0.6 0.0 0.0 95.2 4.2 0.6 0.0 0.0 95.1 4.2 0.7 0.1 0.0

0.5 0.0 50 87.3 11.2 1.1 0.3 0.0 94.4 4.8 0.6 0.2 0.0 91.8 7.2 0.7 0.2 0.1
100 90.5 8.4 0.9 0.1 0.1 94.9 4.3 0.6 0.1 0.1 93.1 5.9 0.7 0.2 0.1
200 91.9 7.4 0.6 0.1 0.0 95.1 4.4 0.4 0.1 0.1 93.6 5.8 0.4 0.2 0.1

0.3 0.65 50 87.4 10.9 1.4 0.2 0.0 94.1 5.1 0.6 0.1 0.1 92.1 6.8 0.8 0.2 0.1
100 89.6 9.2 0.9 0.1 0.1 94.5 4.6 0.6 0.1 0.1 92.3 6.5 0.8 0.2 0.1
200 90.5 8.6 0.7 0.1 0.0 94.9 4.5 0.5 0.1 0.1 92.6 6.6 0.6 0.1 0.1

0.2 0.79 50 88.3 10.1 1.3 0.2 0.1 94.8 4.5 0.5 0.1 0.1 92.7 6.3 0.7 0.2 0.1
100 90.3 8.6 0.9 0.1 0.1 94.7 4.5 0.6 0.1 0.1 92.7 6.1 0.8 0.2 0.2
200 91.3 7.8 0.6 0.2 0.0 94.9 4.4 0.5 0.1 0.1 92.6 6.5 0.7 0.1 0.1

0.05 0.94 50 90.1 8.8 0.9 0.2 0.0 95.4 3.8 0.6 0.1 0.1 94.1 5.1 0.6 0.2 0.0
100 92.6 6.5 0.7 0.2 0.1 95.4 3.9 0.5 0.1 0.1 94.6 4.5 0.6 0.2 0.1
200 92.8 6.5 0.6 0.0 0.0 94.9 4.5 0.5 0.1 0.0 94.2 5.0 0.7 0.0 0.0

Model C: εi,t = h
1/2
i,t vi,t, ln(hi,t) = −0.23 + 0.9 ln(hi,t−1) + 0.25[|v2i,t−1|− 0.3vi,t−1], vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

50 82.8 15.1 1.8 0.2 0.0 92.7 6.3 0.8 0.2 0.1 89.4 9.0 1.1 0.4 0.1
100 85.4 12.8 1.6 0.2 0.0 93.7 5.3 0.7 0.2 0.1 88.9 9.4 1.2 0.3 0.1
200 86.4 12.1 1.3 0.2 0.0 94.6 4.6 0.6 0.1 0.0 88.8 9.7 1.2 0.2 0.0

Model D: εi,t = h
1/2
i,t vi,t, hi,t = 0.0216 + 0.6896hi,t−1 + 0.3174[εi,t−1 − 0.1108]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

50 83.1 14.6 2.0 0.3 0.0 92.4 6.4 0.8 0.3 0.0 88.7 9.7 1.2 0.3 0.0
100 83.4 14.1 2.1 0.3 0.1 93.1 5.9 0.8 0.1 0.1 86.9 10.9 1.8 0.4 0.1
200 82.1 15.4 2.2 0.2 0.1 93.7 5.4 0.6 0.2 0.0 84.7 13.0 1.9 0.3 0.1

Model E: εi,t = h
1/2
i,t vi,t, hi,t = 0.005 + 0.7hi,t−1 + 0.28[|εi,t−1|− 0.23εi,t−1]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

50 84.5 13.6 1.7 0.2 0.0 93.4 5.6 0.8 0.2 0.0 89.9 8.7 1.1 0.2 0.1
100 85.1 13.1 1.4 0.2 0.1 93.8 5.3 0.7 0.1 0.1 88.2 10.1 1.3 0.2 0.1
200 84.0 14.1 1.7 0.1 0.0 94.4 5.0 0.4 0.2 0.0 86.4 11.8 1.6 0.2 0.0

Model F: εi,t = vi,t exp (hi,t), hi,t = λhi,t−1 + 0.5ξi,t, (ξi,t, vi,t) ∼ i.i.d. N(0,diag(σ2ξ , 1)), i = 1, ..., p
λ σξ T

0.936 0.424 50 70.7 23.9 4.4 0.8 0.2 90.3 8.2 1.1 0.2 0.2 79.2 16.8 2.9 0.7 0.4
100 67.8 26.0 5.2 0.8 0.2 91.3 7.5 0.9 0.2 0.1 73.7 21.3 4.0 0.7 0.3
200 67.3 26.8 5.0 0.8 0.1 92.2 6.9 0.8 0.0 0.0 71.9 23.3 3.9 0.6 0.3

0.951 0.314 50 76.0 20.0 3.4 0.5 0.1 91.6 7.0 1.0 0.2 0.2 83.5 13.7 2.2 0.4 0.2
100 74.6 20.8 3.9 0.4 0.2 92.1 6.7 1.0 0.1 0.1 79.2 16.9 3.1 0.5 0.3
200 74.1 21.1 4.0 0.6 0.1 93.4 5.5 0.8 0.2 0.1 77.8 18.2 3.2 0.6 0.2



Table 5: Standard and Bootstrap Sequential Procedures for Selecting the Co-integration
Rank. p = 5, True Rank is 0.

Q-based Qb-based Qs-based
r = 0 1 2 3 4, 5 0 1 2 3 4, 5 0 1 2 3 4, 5

Model A: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

d0 d1 T
0.0 0.0 50 87.9 10.6 1.2 0.3 0.1 96.3 3.1 0.4 0.2 0.0 95.2 4.1 0.6 0.1 0.0

100 91.9 7.3 0.6 0.1 0.0 95.6 4.0 0.4 0.0 0.0 95.3 4.3 0.3 0.1 0.0
200 93.1 6.1 0.7 0.1 0.0 95.6 3.7 0.6 0.1 0.0 95.3 4.0 0.5 0.1 0.0

0.5 0.0 50 82.4 15.3 2.0 0.3 0.0 93.8 5.4 0.6 0.2 0.0 90.9 8.3 0.8 0.1 0.0
100 87.4 11.0 1.4 0.1 0.0 94.6 4.7 0.6 0.1 0.1 91.8 7.1 0.8 0.2 0.1
200 90.4 8.8 0.8 0.1 0.0 95.7 3.9 0.4 0.0 0.0 93.2 6.0 0.6 0.1 0.0

0.3 0.65 50 81.9 15.3 2.5 0.2 0.1 93.8 5.2 0.9 0.1 0.1 90.5 8.1 1.2 0.1 0.0
100 85.2 12.8 1.5 0.4 0.1 93.7 5.4 0.6 0.1 0.1 90.0 8.7 0.9 0.3 0.1
200 86.1 12.3 1.4 0.2 0.0 94.3 5.1 0.6 0.1 0.0 89.1 9.5 1.2 0.2 0.1

0.2 0.79 50 83.8 13.8 2.1 0.3 0.1 94.5 4.5 0.8 0.2 0.0 92.3 6.4 1.0 0.3 0.1
100 86.0 12.1 1.5 0.3 0.1 94.5 4.8 0.5 0.1 0.0 90.8 7.9 1.0 0.2 0.1
200 86.5 11.8 1.5 0.2 0.0 94.4 4.8 0.7 0.1 0.0 89.4 9.0 1.3 0.3 0.0

0.05 0.94 50 87.7 10.8 1.2 0.3 0.1 95.8 3.5 0.5 0.2 0.0 95.1 4.1 0.6 0.2 0.0
100 91.2 7.8 0.8 0.1 0.1 95.6 3.8 0.5 0.1 0.0 95.1 4.3 0.6 0.1 0.0
200 92.1 7.1 0.7 0.1 0.0 95.1 4.3 0.5 0.1 0.0 94.5 4.9 0.6 0.1 0.0

Model B: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. t5, i = 1, ..., p

d0 d1 T
0.0 0.0 50 87.2 11.4 1.1 0.2 0.1 96.4 3.2 0.2 0.1 0.1 95.0 4.5 0.3 0.1 0.1

100 91.8 7.3 0.8 0.1 0.0 95.6 3.9 0.3 0.1 0.0 95.2 4.3 0.4 0.0 0.1
200 93.5 5.9 0.5 0.0 0.0 96.2 3.4 0.3 0.0 0.0 95.6 4.0 0.3 0.0 0.1

0.5 0.0 50 84.1 13.9 1.7 0.2 0.1 95.2 4.0 0.6 0.1 0.1 92.6 6.6 0.7 0.1 0.1
100 88.0 10.6 1.2 0.1 0.0 94.9 4.4 0.5 0.1 0.0 92.8 6.4 0.7 0.1 0.0
200 91.4 7.8 0.7 0.1 0.0 95.7 3.8 0.4 0.1 0.0 93.9 5.4 0.6 0.1 0.0

0.3 0.65 50 84.2 13.8 1.7 0.2 0.1 95.1 4.0 0.6 0.1 0.1 92.8 6.0 1.0 0.1 0.1
100 87.6 11.1 1.1 0.1 0.1 94.4 5.0 0.4 0.1 0.0 92.5 6.6 0.7 0.1 0.1
200 89.8 9.3 1.0 0.0 0.0 95.3 4.2 0.4 0.1 0.0 92.8 6.4 0.7 0.1 0.0

0.2 0.79 50 85.5 12.5 1.6 0.3 0.1 95.3 3.9 0.6 0.1 0.1 93.6 5.3 0.9 0.1 0.1
100 88.8 9.9 1.2 0.1 0.0 94.6 4.8 0.4 0.1 0.1 92.8 6.3 0.7 0.1 0.1
200 90.3 8.7 1.0 0.1 0.0 95.5 4.1 0.4 0.1 0.0 93.4 6.0 0.6 0.1 0.0

0.05 0.94 50 86.9 11.5 1.3 0.2 0.1 96.1 3.4 0.3 0.1 0.1 94.8 4.7 0.4 0.1 0.0
100 91.1 8.0 0.9 0.1 0.0 95.5 3.9 0.5 0.1 0.0 94.6 4.7 0.6 0.1 0.0
200 92.8 6.6 0.6 0.0 0.0 96.0 3.7 0.3 0.1 0.0 95.2 4.3 0.4 0.1 0.0

Model C: εi,t = h
1/2
i,t vi,t, ln(hi,t) = −0.23 + 0.9 ln(hi,t−1) + 0.25[|v2i,t−1|− 0.3vi,t−1], vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

50 80.0 16.9 2.7 0.3 0.1 92.9 5.9 0.9 0.1 0.1 89.9 8.7 1.1 0.2 0.1
100 83.2 14.7 1.8 0.3 0.1 93.0 5.9 0.9 0.2 0.0 88.2 10.1 1.2 0.4 0.1
200 85.3 13.0 1.6 0.1 0.0 94.3 5.0 0.6 0.1 0.0 88.8 9.9 1.2 0.2 0.0

Model D: εi,t = h
1/2
i,t vi,t, hi,t = 0.0216 + 0.6896hi,t−1 + 0.3174[εi,t−1 − 0.1108]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

50 80.2 16.5 2.7 0.5 0.1 93.4 5.4 0.8 0.3 0.1 89.7 8.3 1.6 0.4 0.1
100 81.3 15.9 2.4 0.4 0.1 93.5 5.6 0.7 0.2 0.0 86.8 11.1 1.6 0.4 0.1
200 79.8 17.1 2.8 0.3 0.1 93.6 5.3 0.9 0.1 0.1 83.9 13.3 2.2 0.5 0.1

Model E: εi,t = h
1/2
i,t vi,t, hi,t = 0.005 + 0.7hi,t−1 + 0.28[|εi,t−1|− 0.23εi,t−1]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

50 81.8 15.2 2.6 0.4 0.1 93.9 4.9 0.9 0.2 0.1 90.5 7.8 1.4 0.2 0.1
100 83.9 13.9 1.9 0.3 0.1 94.2 5.1 0.6 0.1 0.1 88.6 9.8 1.3 0.2 0.1
200 83.1 14.7 1.8 0.3 0.0 94.6 4.6 0.5 0.1 0.0 86.2 11.7 1.6 0.3 0.1

Model F: εi,t = vi,t exp (hi,t), hi,t = λhi,t−1 + 0.5ξi,t, (ξi,t, vi,t) ∼ i.i.d. N(0,diag(σ2ξ , 1)), i = 1, ..., p
λ σξ T

0.936 0.424 50 65.0 26.4 6.9 1.3 0.3 89.0 8.9 1.6 0.4 0.1 77.8 17.0 3.9 1.0 0.3
100 64.6 27.8 6.2 1.2 0.2 90.5 7.9 1.2 0.3 0.1 73.0 21.4 4.6 0.8 0.2
200 62.9 28.7 7.0 1.3 0.1 92.1 6.6 1.1 0.2 0.0 69.2 23.9 5.6 1.1 0.2

0.951 0.314 50 71.9 22.0 5.0 1.0 0.2 91.0 7.4 1.2 0.2 0.1 82.7 13.8 2.7 0.6 0.2
100 72.0 22.5 4.5 0.9 0.2 91.3 7.3 1.2 0.2 0.0 78.5 17.6 3.0 0.8 0.2
200 69.5 24.8 4.8 0.8 0.1 92.3 6.7 0.8 0.2 0.0 75.1 20.4 3.5 0.9 0.1



Table 6: Size of Standard and Bootstrap PLR Tests for Rank = 0 Against Rank = p. True Rank is 1.

p = 2 p = 3 p = 4 p = 5

Model A: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

d0 d1 T Q1 Qb1 Qs1 Q1 Qb1 Qs1 Q1 Qb1 Qs1 Q1 Qb1 Qs1
0.0 0.0 50 5.2 5.7 4.9 5.2 4.7 4.1 6.2 4.0 3.7 6.1 2.6 2.8

100 5.8 5.6 5.5 5.9 5.2 5.0 6.9 5.2 5.0 7.3 4.6 4.6
200 5.5 5.6 5.0 5.6 5.0 4.9 5.3 4.5 4.5 6.8 4.6 4.6

0.5 0.0 50 6.3 5.8 5.9 7.6 5.4 6.0 9.0 5.1 5.7 9.0 3.6 4.5
100 6.4 6.0 6.0 7.9 5.5 6.6 8.5 5.2 6.2 10.6 5.8 7.4
200 5.1 4.9 5.0 7.3 5.4 6.5 7.8 5.1 6.1 8.8 4.8 6.5

0.3 0.65 50 6.8 5.9 6.2 7.7 5.5 6.0 9.6 5.1 6.2 9.9 4.0 5.0
100 7.7 5.8 7.4 10.2 5.9 8.2 11.2 6.2 8.6 12.3 5.6 8.6
200 7.5 5.5 7.4 9.4 5.1 8.7 10.5 5.0 8.7 12.7 5.4 9.8

0.2 0.79 50 6.5 5.8 6.1 7.8 5.6 6.1 8.8 4.9 5.2 9.6 4.0 4.4
100 8.0 5.9 7.5 10.1 5.7 8.0 10.6 5.5 8.3 12.1 5.1 8.1
200 7.9 5.4 7.8 10.4 6.0 9.2 11.2 5.3 9.3 12.6 5.4 10.2

0.05 0.94 50 5.2 5.5 5.0 5.8 4.7 4.4 6.2 4.1 3.7 6.5 2.7 2.9
100 6.1 5.6 5.9 6.9 5.1 5.6 7.1 5.3 5.2 7.9 4.8 4.9
200 5.8 5.7 5.7 6.8 5.1 5.7 6.6 4.6 5.4 7.4 4.7 5.4

Model B: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. t5, i = 1, ..., p

d0 d1 T Q1 Qb1 Qs1 Q1 Qb1 Qs1 Q1 Qb1 Qs1 Q1 Qb1 Qs1
0.0 0.0 50 5.1 6.0 4.6 6.5 5.4 4.7 6.7 4.3 3.9 7.3 2.7 3.3

100 5.6 5.6 5.1 6.4 5.3 5.5 6.7 4.6 4.9 6.8 3.8 4.2
200 4.9 4.6 4.3 5.6 4.6 4.6 6.4 4.6 4.8 6.6 4.1 4.7

0.5 0.0 50 6.2 6.3 5.6 7.8 5.6 6.0 7.8 4.5 5.0 9.9 3.6 4.4
100 6.3 6.2 5.8 6.9 5.2 6.0 8.7 5.4 6.4 9.3 5.0 6.4
200 5.5 4.8 4.9 6.5 5.2 5.5 7.4 4.7 5.9 7.9 4.7 5.6

0.3 0.65 50 6.5 6.4 6.2 7.8 5.7 6.4 8.2 4.5 5.2 9.7 3.4 4.7
100 6.6 5.9 6.1 7.7 5.3 6.5 9.0 5.4 6.7 10.0 4.9 6.4
200 5.9 4.9 5.4 7.2 5.0 6.1 8.3 4.9 6.8 9.0 4.8 6.6

0.2 0.79 50 6.4 6.3 5.9 7.5 5.6 6.0 7.6 4.4 5.0 9.0 3.3 4.3
100 6.5 6.0 6.0 7.7 5.3 6.3 8.8 5.3 6.5 9.3 4.4 6.0
200 5.8 4.5 5.6 7.4 4.9 6.3 8.4 5.0 6.9 9.0 4.7 6.5

0.05 0.94 50 5.7 6.1 5.0 6.7 5.1 5.0 6.4 4.0 4.0 7.7 3.0 3.5
100 6.0 5.5 5.6 6.9 5.4 5.8 7.1 4.9 5.3 7.5 3.8 4.7
200 5.5 4.8 5.0 6.2 4.8 5.0 6.9 5.0 5.6 7.3 4.3 5.2

Model C: εi,t = h
1/2
i,t vi,t, ln(hi,t) = −0.23 + 0.9 ln(hi,t−1) + 0.25[|v2i,t−1|− 0.3vi,t−1], vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

T Q1 Qb1 Qs1 Q1 Qb1 Qs1 Q1 Qb1 Qs1 Q1 Qb1 Qs1
50 7.0 5.9 6.5 8.2 5.8 6.5 10.5 5.4 7.0 11.0 4.0 5.2
100 7.7 5.9 7.2 10.3 6.3 8.8 11.9 5.7 9.0 13.9 6.6 9.6
200 7.6 5.6 7.2 9.7 5.9 8.6 11.3 5.8 9.6 13.3 6.1 10.5

Model D: εi,t = h
1/2
i,t vi,t, hi,t = 0.0216 + 0.6896hi,t−1 + 0.3174[εi,t−1 − 0.1108]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

T Q1 Qb1 Qs1 Q1 Qb1 Qs1 Q1 Qb1 Qs1 Q1 Qb1 Qs1
50 7.8 6.2 7.2 9.3 5.6 7.5 11.0 5.5 7.3 12.1 4.5 6.2
100 9.8 6.5 9.2 13.2 6.9 11.2 14.0 6.2 11.3 15.7 5.5 11.3
200 10.5 5.9 10.2 14.1 6.3 12.6 15.6 5.7 13.4 17.9 5.9 15.1

Model E: εi,t = h
1/2
i,t vi,t, hi,t = 0.005 + 0.7hi,t−1 + 0.28[|εi,t−1|− 0.23εi,t−1]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

T Q1 Qb1 Qs1 Q1 Qb1 Qs1 Q1 Qb1 Qs1 Q1 Qb1 Qs1
50 7.5 6.1 6.9 8.9 5.7 6.9 10.6 5.1 6.3 11.0 4.2 5.8
100 9.2 6.2 8.5 11.7 6.5 9.9 12.6 5.9 10.1 13.5 5.5 9.5
200 9.3 5.8 9.1 12.4 6.1 11.5 14.0 5.9 11.9 14.8 5.6 12.2

Model F: εi,t = vi,t exp (hi,t), hi,t = λhi,t−1 + 0.5ξi,t, (ξi,t, vi,t) ∼ i.i.d. N(0,diag(σ2ξ , 1)), i = 1, ..., p
λ σξ T Q1 Qb1 Qs1 Q1 Qb1 Qs1 Q1 Qb1 Qs1 Q1 Qb1 Qs1

0.936 0.424 50 10.5 7.0 10.1 15.1 7.1 11.7 19.4 7.8 13.8 21.8 7.6 13.3
100 12.4 6.5 11.6 19.6 7.6 16.9 24.0 8.2 19.6 28.0 8.8 20.8
200 12.0 6.1 11.5 18.9 6.6 17.0 25.5 7.4 21.9 30.3 7.9 25.4

0.951 0.314 50 9.2 6.7 9.0 12.7 7.0 10.5 15.3 6.6 10.6 17.9 6.3 10.7
100 11.3 6.8 10.7 16.9 7.2 14.4 19.8 7.5 16.5 22.7 7.4 16.4
200 10.9 5.5 10.4 16.2 6.1 14.3 21.0 6.5 17.9 25.3 7.1 20.7



Table 7: Standard and Bootstrap Sequential Procedures for Selecting the Co-integration
Rank. p = 2, True Rank is 1.

Q-based Qb-based Qs-based
r = 0 r = 1 r = 2 r = 0 r = 1 r = 2 r = 0 r = 1 r = 2

Model A: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

d0 d1 T
0.0 0.0 50 9.4 85.4 5.2 14.8 79.5 5.7 12.0 83.1 4.8

100 0.0 94.2 5.8 0.0 94.4 5.6 0.0 94.5 5.5
200 0.0 94.5 5.5 0.0 94.4 5.6 0.0 95.0 5.0

0.5 0.0 50 9.8 83.9 6.3 18.0 76.4 5.6 12.5 81.7 5.8
100 0.0 93.6 6.4 0.3 93.8 6.0 0.0 94.0 6.0
200 0.0 94.9 5.1 0.0 95.1 4.9 0.0 95.0 5.0

0.3 0.65 50 12.5 80.7 6.8 21.2 73.1 5.8 14.7 79.0 6.2
100 0.2 92.0 7.7 1.4 92.8 5.8 0.3 92.3 7.4
200 0.0 92.5 7.5 0.1 94.4 5.5 0.0 92.6 7.4

0.2 0.79 50 14.3 79.3 6.5 22.3 72.0 5.7 17.0 76.9 6.1
100 0.3 91.7 8.0 1.8 92.4 5.9 0.3 92.2 7.5
200 0.0 92.1 7.9 0.1 94.6 5.4 0.0 92.2 7.8

0.05 0.94 50 11.7 83.1 5.2 16.6 77.9 5.5 14.2 80.8 5.0
100 0.0 93.9 6.1 0.2 94.2 5.6 0.0 94.0 5.9
200 0.0 94.2 5.8 0.0 94.3 5.7 0.0 94.3 5.7

Model B: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. t5, i = 1, ..., p

d0 d1 T
0.0 0.0 50 10.2 84.6 5.1 16.1 78.1 5.9 13.5 81.9 4.6

100 0.0 94.4 5.6 0.1 94.2 5.6 0.0 94.8 5.1
200 0.0 95.1 4.9 0.0 95.4 4.6 0.0 95.7 4.3

0.5 0.0 50 10.4 83.4 6.2 17.9 75.9 6.2 13.7 80.8 5.6
100 0.0 93.7 6.3 0.3 93.6 6.2 0.1 94.1 5.8
200 0.0 94.5 5.5 0.0 95.2 4.8 0.0 95.1 4.9

0.3 0.65 50 11.3 82.2 6.5 19.1 74.6 6.3 14.7 79.1 6.2
100 0.1 93.3 6.6 0.6 93.5 5.9 0.1 93.7 6.1
200 0.0 94.1 5.9 0.0 95.1 4.9 0.0 94.6 5.4

0.2 0.79 50 12.0 81.7 6.4 19.0 74.8 6.2 15.2 78.9 5.9
100 0.1 93.4 6.5 0.6 93.4 6.0 0.2 93.9 6.0
200 0.0 94.2 5.8 0.0 95.5 4.5 0.0 94.4 5.6

0.05 0.94 50 11.4 82.9 5.7 17.3 76.7 6.0 14.4 80.7 5.0
100 0.1 93.9 6.0 0.3 94.2 5.5 0.1 94.3 5.6
200 0.0 94.5 5.5 0.0 95.2 4.8 0.0 95.0 5.0

Model C: εi,t = h
1/2
i,t vi,t, ln(hi,t) = −0.23 + 0.9 ln(hi,t−1) + 0.25[|v2i,t−1|− 0.3vi,t−1], vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p
50 12.2 80.8 7.0 21.7 72.5 5.8 14.8 78.6 6.5
100 0.2 92.1 7.7 1.4 92.7 5.9 0.3 92.5 7.2
200 0.0 92.4 7.6 0.1 94.3 5.6 0.0 92.8 7.2

Model D: εi,t = h
1/2
i,t vi,t, hi,t = 0.0216 + 0.6896hi,t−1 + 0.3174[εi,t−1 − 0.1108]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

50 14.7 77.5 7.8 24.5 69.7 5.9 17.3 75.5 7.2
100 0.6 89.7 9.8 3.0 90.5 6.5 0.7 90.1 9.2
200 0.0 89.5 10.5 0.4 93.7 5.9 0.0 89.7 10.2

Model E: εi,t = h
1/2
i,t vi,t, hi,t = 0.005 + 0.7hi,t−1 + 0.28[|εi,t−1|− 0.23εi,t−1]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

50 13.5 79.0 7.5 22.7 71.3 6.0 16.2 77.0 6.8
100 0.5 90.3 9.2 2.5 91.3 6.2 0.5 91.0 8.5
200 0.0 90.7 9.3 0.2 94.0 5.8 0.0 90.9 9.1

Model F: εi,t = vi,t exp (hi,t), hi,t = λhi,t−1 + 0.5ξi,t, (ξi,t, vi,t) ∼ i.i.d. N(0,diag(σ2ξ , 1)), i = 1, ..., p
λ σξ T

0.936 0.424 50 16.0 73.5 10.5 29.5 64.5 6.0 19.3 70.8 9.9
100 1.3 86.3 12.4 8.7 85.0 6.3 1.9 86.5 11.6
200 0.0 88.0 12.0 1.2 92.7 6.0 0.0 88.5 11.5

0.951 0.314 50 15.9 74.9 9.2 27.8 66.2 6.0 18.9 72.3 8.8
100 0.9 87.8 11.3 6.3 87.0 6.7 1.3 88.0 10.7
200 0.0 89.1 10.9 0.7 93.8 5.5 0.0 89.6 10.4



Table 8: Standard and Bootstrap Sequential Procedures for Selecting the Co-integration
Rank. p = 3, True Rank is 1.

Q-based Qb-based Qs-based
r = 0 1 2 3 0 1 2 3 0 1 2 3

Model A: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

d0 d1 T
0.0 0.0 50 28.5 66.3 4.8 0.4 40.3 55.0 3.8 0.9 36.7 59.3 3.4 0.6

100 0.2 93.9 5.5 0.5 0.4 94.3 4.5 0.7 0.3 94.7 4.4 0.6
200 0.0 94.4 5.2 0.4 0.0 95.0 4.5 0.5 0.0 95.1 4.4 0.5

0.5 0.0 50 25.5 66.9 6.8 0.8 39.8 54.9 4.3 1.0 32.4 61.7 5.0 0.9
100 0.8 91.3 7.3 0.6 2.1 92.3 4.7 0.8 1.1 92.4 5.7 0.9
200 0.0 92.7 6.7 0.6 0.0 94.6 4.6 0.8 0.0 93.5 5.7 0.8

0.3 0.65 50 25.9 66.4 6.8 0.8 39.8 54.9 4.3 1.1 31.6 62.5 4.9 1.0
100 1.8 88.0 9.1 1.1 5.1 89.0 5.0 1.0 2.4 89.4 6.9 1.3
200 0.0 90.6 8.6 0.8 0.2 94.7 4.3 0.8 0.0 91.3 7.6 1.2

0.2 0.79 50 27.3 64.9 7.0 0.7 38.8 55.7 4.5 0.9 32.6 61.4 5.2 0.8
100 2.5 87.4 9.0 1.1 6.1 88.3 4.7 0.9 3.1 89.0 6.6 1.3
200 0.0 89.6 9.4 1.0 0.2 93.8 5.1 0.9 0.0 90.8 7.9 1.3

0.05 0.94 50 27.7 66.5 5.3 0.5 37.6 57.9 3.5 1.0 34.2 61.4 3.7 0.7
100 0.8 92.3 6.3 0.6 1.9 93.1 4.3 0.8 1.6 92.9 4.8 0.8
200 0.0 93.2 6.4 0.4 0.0 94.9 4.4 0.7 0.0 94.3 5.1 0.6

Model B: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. t5, i = 1, ..., p

d0 d1 T
0.0 0.0 50 28.6 64.9 5.9 0.6 40.9 53.8 4.1 1.2 36.8 58.5 3.8 0.9

100 0.5 93.1 5.7 0.7 1.1 93.7 4.2 1.0 0.8 93.7 4.7 0.8
200 0.0 94.4 5.1 0.5 0.0 95.4 4.0 0.7 0.0 95.4 4.1 0.5

0.5 0.0 50 26.6 65.6 7.2 0.5 40.7 53.9 4.3 1.0 34.7 59.3 5.1 0.9
100 0.5 92.6 6.2 0.7 2.0 92.8 4.2 1.1 1.0 93.0 5.0 0.9
200 0.0 93.5 6.0 0.5 0.0 94.8 4.7 0.4 0.0 94.5 5.0 0.5

0.3 0.65 50 27.3 64.8 7.1 0.7 41.0 53.5 4.4 1.1 34.3 59.4 5.2 1.2
100 0.9 91.5 7.0 0.7 2.7 91.9 4.4 1.0 1.2 92.3 5.6 0.9
200 0.0 92.8 6.6 0.6 0.0 95.0 4.3 0.7 0.0 93.9 5.3 0.8

0.2 0.79 50 27.9 64.6 6.8 0.7 40.3 54.4 4.4 1.0 34.9 59.2 4.8 1.1
100 1.0 91.3 7.0 0.7 2.8 91.9 4.4 0.9 1.3 92.3 5.6 0.8
200 0.0 92.6 6.9 0.5 0.0 95.1 4.2 0.6 0.0 93.7 5.7 0.6

0.05 0.94 50 28.5 64.8 6.1 0.6 40.5 54.5 4.0 1.0 36.1 58.9 4.0 0.9
100 0.7 92.4 6.3 0.6 1.7 92.9 4.3 1.2 1.0 93.1 5.0 0.9
200 0.0 93.8 5.7 0.5 0.0 95.2 4.2 0.6 0.0 95.0 4.4 0.6

Model C: εi,t = h
1/2
i,t vi,t, ln(hi,t) = −0.23 + 0.9 ln(hi,t−1) + 0.25[|v2i,t−1|− 0.3vi,t−1], vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

50 25.0 66.8 7.2 1.0 39.8 54.5 4.5 1.1 31.3 62.2 5.4 1.1
100 1.7 88.0 9.3 1.0 5.4 88.4 5.3 1.0 2.3 88.8 7.7 1.2
200 0.0 90.3 9.0 0.7 0.3 93.8 5.1 0.8 0.0 91.4 7.5 1.1

Model D: εi,t = h
1/2
i,t vi,t, hi,t = 0.0216 + 0.6896hi,t−1 + 0.3174[εi,t−1 − 0.1108]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

50 26.6 64.1 8.4 1.0 40.1 54.4 4.6 0.8 31.6 61.0 6.3 1.1
100 3.2 83.6 11.6 1.5 8.9 84.2 5.6 1.3 3.9 84.8 9.4 1.9
200 0.0 85.9 12.5 1.6 0.7 93.0 5.1 1.1 0.0 87.3 10.8 1.9

Model E: εi,t = h
1/2
i,t vi,t, hi,t = 0.005 + 0.7hi,t−1 + 0.28[|εi,t−1|− 0.23εi,t−1]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

50 27.0 64.1 7.9 1.0 40.6 53.9 4.5 1.0 31.9 61.2 5.6 1.3
100 2.8 85.5 10.4 1.3 7.9 85.7 5.5 1.0 3.4 86.6 8.2 1.7
200 0.0 87.6 11.1 1.3 0.5 93.3 5.5 0.6 0.0 88.5 10.0 1.5

Model F: εi,t = vi,t exp (hi,t), hi,t = λhi,t−1 + 0.5ξi,t, (ξi,t, vi,t) ∼ i.i.d. N(0,diag(σ2ξ , 1)), i = 1, ..., p
0.936 0.424 50 23.4 61.5 13.1 2.0 42.0 51.4 5.3 1.3 28.7 59.7 9.6 2.1

100 3.7 76.7 17.0 2.6 18.2 74.5 6.2 1.1 5.2 77.9 14.1 2.8
200 0.1 81.0 16.9 2.0 2.3 91.1 5.8 0.8 0.1 82.9 14.6 2.4

0.951 0.314 50 24.9 62.5 11.0 1.7 41.1 52.4 5.1 1.4 29.9 59.7 8.4 2.1
100 3.5 79.6 14.7 2.2 14.7 78.3 5.6 1.4 4.5 81.2 11.8 2.6
200 0.1 83.8 14.7 1.5 1.5 92.4 5.2 0.8 0.1 85.6 12.3 2.0



Table 9: Standard and Bootstrap Sequential Procedures for Selecting the Co-integration
Rank. p = 4, True Rank is 1.

Q-based Qb-based Qs-based
r = 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Model A: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

d0 d1 T
0.0 0.0 50 42.5 51.2 5.5 0.7 0.1 60.3 35.7 3.1 0.6 0.3 56.1 40.2 3.0 0.4 0.2

100 2.2 90.9 6.3 0.6 0.0 4.6 90.3 4.3 0.6 0.3 3.6 91.4 4.3 0.5 0.2
200 0.0 94.7 4.8 0.4 0.0 0.0 95.5 3.9 0.5 0.1 0.0 95.5 4.0 0.4 0.1

0.5 0.0 50 36.6 54.3 8.0 0.8 0.3 58.0 37.1 4.1 0.5 0.3 48.5 45.9 4.8 0.5 0.4
100 2.9 88.6 7.5 0.9 0.1 7.4 87.4 4.5 0.6 0.2 4.3 89.4 5.5 0.6 0.1
200 0.0 92.2 7.2 0.5 0.1 0.0 94.8 4.6 0.4 0.1 0.0 93.9 5.4 0.5 0.1

0.3 0.65 50 34.5 55.9 8.4 0.8 0.3 54.6 40.4 4.0 0.5 0.4 45.5 48.3 5.3 0.6 0.3
100 4.9 83.9 9.7 1.3 0.2 12.6 81.1 5.3 0.6 0.3 7.5 84.0 7.2 0.9 0.5
200 0.0 89.5 9.2 1.1 0.2 0.4 94.6 4.3 0.5 0.2 0.0 91.2 7.5 1.0 0.2

0.2 0.79 50 35.7 55.5 7.5 1.0 0.3 51.8 43.4 3.9 0.5 0.3 45.2 49.7 4.2 0.6 0.3
100 6.5 82.9 9.2 1.3 0.2 14.1 80.4 4.6 0.6 0.3 8.9 82.8 6.9 1.1 0.4
200 0.0 88.8 9.9 1.0 0.2 0.4 94.3 4.5 0.6 0.3 0.0 90.7 7.9 1.0 0.4

0.05 0.94 50 39.5 54.3 5.2 0.8 0.1 56.0 39.9 3.3 0.5 0.3 51.0 45.4 2.9 0.4 0.3
100 4.2 88.7 6.1 0.9 0.1 7.5 87.2 4.3 0.8 0.2 6.1 88.7 4.2 0.7 0.3
200 0.0 93.4 5.9 0.7 0.0 0.0 95.4 4.0 0.5 0.2 0.0 94.6 4.6 0.5 0.2

Model B: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. t5, i = 1, ..., p

d0 d1 T
0.0 0.0 50 43.4 49.9 5.7 0.8 0.1 61.9 34.1 3.1 0.7 0.2 57.0 39.2 3.0 0.8 0.1

100 2.7 90.6 5.9 0.6 0.1 5.9 89.5 3.9 0.5 0.3 4.3 90.8 4.1 0.5 0.2
200 0.0 93.6 5.9 0.4 0.1 0.0 95.4 4.1 0.4 0.1 0.0 95.2 4.1 0.5 0.2

0.5 0.0 50 39.6 52.6 6.8 0.9 0.1 58.8 36.9 3.5 0.8 0.2 51.6 43.4 4.1 0.7 0.2
100 3.0 88.3 7.9 0.7 0.1 8.1 86.5 4.7 0.5 0.3 4.9 88.7 5.6 0.6 0.2
200 0.0 92.6 6.6 0.7 0.0 0.0 95.2 4.2 0.4 0.1 0.0 94.1 5.1 0.6 0.1

0.3 0.65 50 39.6 52.2 7.2 0.8 0.1 58.4 37.2 3.4 0.7 0.3 51.5 43.4 4.1 0.8 0.2
100 3.7 87.2 7.9 0.9 0.2 9.7 84.9 4.5 0.6 0.3 6.0 87.3 5.8 0.7 0.3
200 0.0 91.7 7.6 0.7 0.1 0.0 95.0 4.3 0.5 0.1 0.0 93.2 5.9 0.8 0.2

0.2 0.79 50 40.4 52.1 6.5 0.9 0.2 58.6 37.2 3.2 0.8 0.3 52.3 42.8 4.0 0.7 0.2
100 4.4 86.8 7.5 1.0 0.2 10.0 84.7 4.4 0.7 0.3 6.6 86.9 5.4 0.7 0.3
200 0.0 91.6 7.7 0.6 0.1 0.1 95.0 4.3 0.5 0.1 0.0 93.1 6.3 0.5 0.1

0.05 0.94 50 42.3 51.3 5.4 0.7 0.2 60.1 36.1 2.9 0.6 0.3 54.2 41.8 3.2 0.5 0.3
100 3.9 89.1 6.2 0.7 0.1 7.9 87.2 4.0 0.6 0.3 5.7 88.9 4.5 0.5 0.3
200 0.0 93.1 6.3 0.4 0.2 0.0 95.0 4.3 0.5 0.1 0.0 94.4 4.9 0.4 0.2

Model C: εi,t = h
1/2
i,t vi,t, ln(hi,t) = −0.23 + 0.9 ln(hi,t−1) + 0.25[|v2i,t−1|− 0.3vi,t−1], vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

50 33.9 55.7 9.0 1.2 0.2 54.2 40.6 4.1 0.7 0.3 44.4 48.6 5.8 0.8 0.4
100 4.9 83.3 10.5 1.3 0.1 13.7 80.6 4.7 0.6 0.4 7.1 83.9 7.6 1.0 0.4
200 0.0 88.7 10.1 1.0 0.2 0.5 93.7 5.0 0.6 0.3 0.0 90.4 8.4 1.0 0.3

Model D: εi,t = h
1/2
i,t vi,t, hi,t = 0.0216 + 0.6896hi,t−1 + 0.3174[εi,t−1 − 0.1108]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

50 33.3 55.8 9.3 1.4 0.3 51.6 43.1 4.2 0.9 0.3 42.4 50.4 5.9 1.1 0.3
100 7.4 78.6 12.0 1.7 0.3 18.0 75.8 5.0 0.9 0.4 9.7 79.0 9.3 1.3 0.6
200 0.1 84.4 13.5 1.8 0.2 1.6 92.7 4.7 0.7 0.3 0.1 86.5 11.1 1.8 0.5

Model E: εi,t = h
1/2
i,t vi,t, hi,t = 0.005 + 0.7hi,t−1 + 0.28[|εi,t−1|− 0.23εi,t−1]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

50 34.5 54.9 9.2 1.1 0.3 52.4 42.6 3.9 0.7 0.3 43.4 50.3 5.3 0.7 0.3
100 6.7 80.7 10.7 1.5 0.4 16.9 77.2 4.7 0.9 0.3 9.4 80.4 8.2 1.3 0.6
200 0.1 86.0 12.3 1.4 0.3 0.9 93.2 5.0 0.5 0.3 0.1 88.0 10.2 1.3 0.4

Model F: εi,t = vi,t exp (hi,t), hi,t = λhi,t−1 + 0.5ξi,t, (ξi,t, vi,t) ∼ i.i.d. N(0,diag(σ2ξ , 1)), i = 1, ..., p
λ σξ T

0.936 0.424 50 27.9 52.7 16.1 3.0 0.4 49.6 42.9 6.3 0.9 0.3 36.0 50.2 10.9 2.2 0.6
100 7.9 68.1 20.3 3.2 0.4 26.7 65.4 6.4 1.2 0.3 10.9 69.5 16.2 2.7 0.7
200 0.2 74.2 22.0 2.9 0.6 4.9 87.8 6.5 0.6 0.2 0.4 77.7 18.5 2.6 0.8

0.951 0.314 50 30.0 54.7 12.7 2.2 0.4 49.9 43.7 5.3 0.8 0.3 38.5 51.0 8.4 1.6 0.6
100 7.8 72.4 17.1 2.4 0.4 23.9 68.7 6.2 0.9 0.3 10.5 73.0 14.0 1.7 0.8
200 0.2 78.9 18.1 2.5 0.4 3.0 90.5 5.8 0.6 0.1 0.2 81.9 15.2 2.0 0.7



Table 10: Standard and Bootstrap Sequential Procedures for Selecting the Co-integration
Rank. p = 5, True Rank is 1.

Q-based Qb-based Qs-based
r = 0 1 2 3 4, 5 0 1 2 3 4, 5 0 1 2 3 4, 5

Model A: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

d0 d1 T
0.0 0.0 50 51.5 42.4 5.3 0.6 0.1 75.4 22.1 2.1 0.2 0.2 71.0 26.3 2.3 0.3 0.1

100 7.2 85.5 6.6 0.6 0.1 15.5 80.0 3.8 0.5 0.2 12.9 82.5 4.0 0.5 0.1
200 0.0 93.2 6.0 0.7 0.1 0.0 95.4 4.0 0.4 0.2 0.0 95.4 4.0 0.5 0.1

0.5 0.0 50 44.7 46.3 7.9 0.9 0.2 71.4 25.0 3.1 0.3 0.2 63.1 32.4 3.8 0.4 0.3
100 7.7 81.7 9.4 1.0 0.2 19.9 74.3 5.0 0.6 0.2 12.8 79.8 6.5 0.7 0.2
200 0.0 91.2 8.0 0.7 0.1 0.0 95.2 4.3 0.3 0.1 0.0 93.5 5.8 0.5 0.1

0.3 0.65 50 41.5 48.6 8.7 1.1 0.1 65.6 30.4 3.4 0.5 0.1 57.4 37.7 4.2 0.6 0.1
100 10.3 77.5 10.5 1.6 0.2 24.6 69.9 4.6 0.7 0.2 15.5 75.8 7.3 1.1 0.3
200 0.0 87.2 11.5 1.1 0.2 1.0 93.6 4.7 0.6 0.1 0.1 90.1 8.5 1.1 0.2

0.2 0.79 50 41.8 48.5 8.4 1.0 0.3 64.0 32.0 3.3 0.5 0.2 56.2 39.3 3.7 0.5 0.2
100 12.2 75.7 10.5 1.3 0.3 25.4 69.5 4.2 0.7 0.2 17.6 74.4 6.8 1.0 0.3
200 0.2 87.2 11.1 1.4 0.2 1.3 93.3 4.8 0.4 0.2 0.3 89.5 8.7 1.2 0.3

0.05 0.94 50 47.6 45.8 5.6 0.7 0.2 70.6 26.7 2.1 0.4 0.2 64.9 32.3 2.4 0.3 0.1
100 10.4 81.7 7.0 0.7 0.1 19.3 75.9 4.0 0.6 0.1 16.1 79.1 4.2 0.5 0.1
200 0.0 92.6 6.7 0.6 0.1 0.1 95.2 4.2 0.4 0.1 0.0 94.6 4.8 0.4 0.2

Model B: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. t5, i = 1, ..., p

d0 d1 T
0.0 0.0 50 49.8 42.9 6.4 0.8 0.1 74.6 22.7 2.3 0.3 0.1 69.1 27.7 2.8 0.3 0.1

100 7.8 85.4 6.1 0.6 0.1 16.6 79.6 3.5 0.2 0.1 13.5 82.3 3.8 0.4 0.1
200 0.0 93.4 6.0 0.6 0.1 0.0 95.9 3.8 0.3 0.1 0.0 95.3 4.2 0.4 0.1

0.5 0.0 50 43.6 46.5 8.9 0.7 0.2 71.1 25.4 3.0 0.3 0.2 63.1 32.6 3.9 0.3 0.2
100 8.1 82.7 8.2 0.9 0.2 19.5 75.5 4.4 0.5 0.2 13.4 80.2 5.7 0.5 0.2
200 0.0 92.0 7.4 0.5 0.1 0.2 95.1 4.3 0.3 0.1 0.0 94.4 5.1 0.3 0.2

0.3 0.65 50 43.1 47.2 8.8 0.8 0.1 70.6 26.0 2.8 0.3 0.2 61.8 33.6 4.2 0.4 0.1
100 8.7 81.3 9.0 0.9 0.2 20.0 75.1 4.4 0.4 0.1 14.1 79.5 5.7 0.6 0.2
200 0.0 91.0 8.1 0.7 0.2 0.3 94.9 4.2 0.5 0.1 0.0 93.3 5.8 0.7 0.1

0.2 0.79 50 44.0 47.0 8.0 0.8 0.1 70.0 26.8 2.7 0.4 0.1 62.4 33.4 3.7 0.4 0.1
100 8.8 81.9 8.2 1.0 0.1 20.1 75.5 3.9 0.3 0.1 14.8 79.2 5.3 0.6 0.2
200 0.0 91.0 8.2 0.7 0.1 0.2 95.0 4.2 0.5 0.1 0.0 93.4 5.7 0.6 0.2

0.05 0.94 50 47.8 44.5 6.9 0.7 0.1 72.6 24.4 2.5 0.3 0.2 66.3 30.3 2.8 0.4 0.1
100 9.0 83.5 6.8 0.5 0.1 17.9 78.2 3.4 0.3 0.1 14.9 80.4 4.2 0.4 0.1
200 0.0 92.7 6.6 0.7 0.1 0.1 95.6 3.9 0.4 0.0 0.0 94.8 4.5 0.5 0.1

Model C: εi,t = h
1/2
i,t vi,t, ln(hi,t) = −0.23 + 0.9 ln(hi,t−1) + 0.25[|v2i,t−1|− 0.3vi,t−1], vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

50 39.4 49.6 9.6 1.2 0.2 65.0 31.0 3.3 0.5 0.2 55.5 39.4 4.3 0.6 0.2
100 9.2 76.9 12.1 1.7 0.1 23.9 69.6 5.6 0.8 0.2 14.4 76.0 8.3 1.1 0.3
200 0.1 86.6 11.9 1.2 0.2 0.8 93.2 5.3 0.6 0.2 0.1 89.4 9.2 0.9 0.4

Model D: εi,t = h
1/2
i,t vi,t, hi,t = 0.0216 + 0.6896hi,t−1 + 0.3174[εi,t−1 − 0.1108]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

50 38.8 49.1 10.2 1.6 0.3 61.0 34.5 3.4 0.8 0.3 52.7 41.2 5.0 0.9 0.3
100 12.1 72.2 13.6 1.8 0.3 28.0 66.5 4.7 0.6 0.1 17.0 71.7 9.9 1.0 0.3
200 0.2 81.9 15.2 2.4 0.3 3.3 90.8 4.9 0.7 0.3 0.4 84.5 12.5 1.9 0.7

Model E: εi,t = h
1/2
i,t vi,t, hi,t = 0.005 + 0.7hi,t−1 + 0.28[|εi,t−1|− 0.23εi,t−1]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

50 39.9 49.1 9.4 1.2 0.4 62.7 33.2 3.4 0.5 0.2 53.9 40.3 4.8 0.7 0.3
100 11.4 75.1 11.7 1.6 0.3 26.3 68.2 4.7 0.6 0.2 16.2 74.3 8.3 0.9 0.3
200 0.2 85.0 12.7 1.8 0.3 2.2 92.2 4.6 0.7 0.2 0.3 87.5 10.4 1.4 0.5

Model F: εi,t = vi,t exp (hi,t), hi,t = λhi,t−1 + 0.5ξi,t, (ξi,t, vi,t) ∼ i.i.d. N(0,diag(σ2ξ , 1)), i = 1, ..., p
λ σξ T

0.936 0.424 50 28.8 49.4 16.9 3.9 1.0 55.7 37.2 5.6 1.2 0.3 41.0 45.8 10.3 2.2 0.7
100 11.8 60.2 22.7 4.7 0.6 34.3 57.1 7.2 1.2 0.2 16.3 62.9 17.0 2.9 0.8
200 0.5 69.2 25.2 4.5 0.7 8.6 83.5 6.7 0.9 0.3 0.8 73.8 20.8 3.7 0.9

0.951 0.314 50 32.8 49.3 14.3 2.9 0.6 57.6 36.4 4.6 1.1 0.4 45.4 43.9 8.3 1.8 0.5
100 12.3 65.0 18.9 3.2 0.6 32.6 60.1 6.2 0.9 0.2 17.2 66.4 13.4 2.5 0.4
200 0.3 74.4 21.7 2.8 0.7 6.1 86.9 5.8 0.9 0.4 0.8 78.5 17.5 2.5 0.7



Table 11: Size of Standard and Bootstrap PLR Tests for Rank = 0 Against Rank = p.
True Rank is 0. VAR(2) Case.

p = 2 p = 3 p = 4 p = 5

Model A: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

d0 d1 T Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0
0.0 0.0 50 12.2 7.3 6.8 21.4 6.5 6.9 41.5 8.5 8.9 70.3 9.7 11.5

100 8.9 6.0 6.2 12.5 5.6 5.9 18.9 5.2 5.9 32.0 6.5 7.4
200 7.0 4.9 5.3 8.5 5.2 5.6 10.9 4.8 5.1 15.8 5.2 5.3

0.3 0.65 50 16.3 8.0 10.1 27.0 8.5 11.0 46.2 9.4 11.2 72.2 12.0 14.6
100 12.9 6.7 9.4 17.3 7.1 10.1 25.4 7.0 10.6 38.1 8.6 12.5
200 10.5 5.9 8.8 13.4 5.8 9.4 16.1 5.7 9.4 22.9 6.3 10.8

Model B: εi,t = h
1/2
i,t vi,t, hi,t = ω + d0ε

2
i,t−1 + d1hi,t−1, vi,t ∼ i.i.d. t5, i = 1, ..., p

d0 d1 T Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0
0.0 0.0 50 12.3 6.2 6.7 22.0 6.9 7.6 41.3 7.7 8.7 70.2 10.2 11.1

100 8.4 5.0 5.7 12.2 5.5 6.1 18.7 5.8 6.8 32.3 5.7 6.5
200 7.3 5.4 5.6 8.7 5.1 5.5 10.9 5.2 5.8 16.8 5.9 6.4

0.3 0.65 50 14.3 7.2 8.0 24.6 8.0 9.6 44.7 8.6 10.5 72.4 11.0 12.6
100 10.7 5.6 7.6 14.2 6.1 7.8 22.2 6.3 8.4 35.4 6.6 9.3
200 9.0 5.9 7.4 11.0 5.9 7.5 13.5 5.2 7.3 19.8 6.1 8.1

Model C: εi,t = h
1/2
i,t vi,t, ln(hi,t) = −0.23 + 0.9 ln(hi,t−1) + 0.25[|v2i,t−1|− 0.3vi,t−1], vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

T Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0
50 16.4 8.3 10.3 27.7 8.9 11.4 47.4 10.4 12.5 73.0 12.5 15.6
100 13.3 6.7 9.1 18.0 7.0 10.6 25.5 7.6 11.4 39.9 8.5 12.6
200 10.8 5.9 8.6 13.2 6.0 9.2 16.7 6.0 9.4 22.5 6.5 10.2

Model D: εi,t = h
1/2
i,t vi,t, hi,t = 0.0216 + 0.6896hi,t−1 + 0.3174[εi,t−1 − 0.1108]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

T Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0
50 17.9 8.9 11.8 29.8 9.8 12.3 47.6 10.6 13.5 73.1 12.7 15.9
100 16.0 7.3 12.4 21.0 7.8 12.9 29.7 8.0 13.8 42.8 9.3 14.8
200 15.0 6.2 12.5 18.8 6.7 14.4 22.9 6.6 14.6 29.7 7.4 16.2

Model E: εi,t = h
1/2
i,t vi,t, hi,t = 0.005 + 0.7hi,t−1 + 0.28[|εi,t−1|− 0.23εi,t−1]2, vi,t ∼ i.i.d. N(0, 1), i = 1, ..., p

T Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0
50 17.0 8.3 10.8 28.5 9.1 11.5 45.9 10.3 13.1 72.5 12.2 15.7
100 14.4 7.0 10.8 19.9 7.4 12.2 27.4 7.4 12.4 40.9 8.2 13.3
200 12.9 6.4 11.1 16.6 6.5 12.6 20.0 6.2 12.5 26.5 6.2 13.0

Model F: εi,t = vi,t exp (hi,t), hi,t = λhi,t−1 + 0.5ξi,t, (ξi,t, vi,t) ∼ i.i.d. N(0,diag(σ2ξ , 1)), i = 1, ..., p
λ σξ T Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0 Q0 Qb0 Qs0

0.951 0.314 50 21.7 8.8 14.1 33.0 10.6 16.1 52.2 13.4 19.8 76.0 16.5 22.7
100 19.9 8.1 15.8 26.9 8.7 18.0 36.6 9.5 19.2 49.6 11.7 21.3
200 16.9 5.9 13.8 22.6 6.7 16.9 30.2 7.3 20.7 37.2 8.1 21.4



Table 12: Standard and Bootstrap Co-integration Tests: UK, Japan, Canada and the U.S.

Asymptotic Wild Bootstrap I.I.D. Bootstrap
Country Qr Statistics p-values p-values p-values

UK r = 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
154.88 67.83 10.65 0.98 0.00 0.00 0.58 0.95 0.00 0.00 0.76 0.98 0.00 0.00 0.60 0.95

Japan r = 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
101.86 40.19 10.50 3.68 0.00 0.01 0.59 0.46 0.00 0.20 0.86 0.75 0.00 0.04 0.71 0.51

Canada r = 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
248.50 74.65 15.84 6.11 0.00 0.00 0.18 0.18 0.00 0.00 0.33 0.31 0.00 0.00 0.20 0.26

USA r = 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
138.66 60.04 33.32 17.47 3.15 0.00 0.01 0.08 0.12 0.55 0.02 0.36 0.51 0.62 0.90 0.00 0.01 0.12 0.15 0.62




