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Abstract

In this paper we develop a simple test procedure for a linear trend which
does not require knowledge of the form of serial correlation in the data, is robust
to strong serial correlation, and has a standard normal limiting null distribution
under either I(0) or I(1) shocks. In contrast to other available robust linear trend
tests, our proposed test achieves the Gaussian asymptotic local power envelope
in both the I(0) and I(1) cases. For near-I(1) errors our proposed procedure is
conservative and a modi�cation for this situation is suggested. An estimator of
the trend parameter, together with an associated con�dence interval, which is
asymptotically e¢ cient, again regardless of whether the shocks are I(0) or I(1),
is also provided.

Keywords: Linear trend; strong serial correlation; asymptotic normality; power
envelope; unit root tests; stationarity tests.

JEL Classi�cations: C22.

1 Introduction

The ability to detect the presence of a deterministic linear trend in an economic time
series is an important issue in applied econometrics for a number of reasons. The ef-
fectiveness of both policy modelling and forecasting is, for example, reliant on correct
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Associate Editor, two anonymous referees, and, in particular, Peter Robinson, for their helpful com-
ments on previous versions of this paper. We also thank Helle Bunzel for providing us with the
terms of trade data analysed in Section 6. Correspondence to: Robert Taylor, School of Economics,
The Sir Clive Granger Building, University of Nottingham, Nottingham NG7 2RD, U.K. Email:
Robert.Taylor@nottingham.ac.uk
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identi�cation of the trend function. Correctly specifying the trend function is also of
crucial importance in the context of unit root and stationarity testing. It is, for exam-
ple, well known that an un-modelled linear trend e¤ects non-similar and inconsistent
unit root tests (see Perron, 1988), while unnecessarily including a trend vastly reduces
power to reject the unit root null under I(0) (weakly dependent) errors (see, for ex-
ample, Marsh, 2005). Similarly, it is trivial to show that an un-modelled linear trend
causes stationarity test statistics, such as that of Kwiatkowski et al. (1990) [KPSS,
hereafter], to diverge regardless of whether the errors are I(0) or I(1). Hypothesis
testing to detect whether a trend is present is also of interest in its own right. An ex-
ample is given by the Prebisch-Singer hypothesis, re-considered recently in Bunzel and
Vogelsang (2005), which predicts that over time, the net barter terms of trade should
be declining between countries that primarily export commodities and those that pri-
marily export manufactured goods, implying the presence of a negative trend in the
data. Moreover, since the slope of the trend function represents the average growth
in the series (or rate of growth if the data are measured in logarithms) it is clearly of
considerable empirical interest to be able to construct point estimates and con�dence
intervals for this quantity, allowing, for example, comparisons of growth rates across
countries or regions.
In response to this, there has recently been a number of papers which suggest various

procedures for identifying the presence of a trend in the presence of serially correlated
shocks. These include, inter alia, Canjels and Watson (1997), Vogelsang (1998), Sun
and Pantula (1999) and Bunzel and Vogelsang (2005). Formal testing of whether a
time series contains a trend is greatly complicated by the fact that in practice it is
not known whether the trend is embedded in an I(0) or I(1) series, that is, within a
weakly or strongly autocorrelated series. If one knew that the shocks were I(0) then
one could test for the presence of a linear trend using levels data. Similarly, if it were
known that the shocks were I(1) then one could perform tests on the �rst di¤erences
of the data (growth rates). However, tests based on growth rates display very poor
power properties relative to those based on levels when the shocks are in fact I(0), as
is discussed in a wider context in Vogelsang (1998). Moreover, the large sample null
distributions of tests on the parameters of the trend function in levels data depend on
whether the shocks are I(0) or I(1), as is discussed in Phillips and Durlauf (1988).
Of the trend function testing procedures cited above only those of Vogelsang (1998)

and Bunzel and Vogelsang (2005) are robust, in the sense that, asymptotically, inference
on the trend function is una¤ected as to whether the data are I(0) or I(1). The
pertinent feature of these approaches is that they avoid the size problems of trend
function tests that, as in Sun and Pantula (1999), rely on the results of conventional
pre-testing (using stationarity or unit root statistics), whereby the asymptotic Type I
errors associated with such pre-tests means that the size of subsequent trend function
tests cannot be fully controlled, even asymptotically.
In this paper we propose a new testing procedure that falls into the class of robust

tests for the trend function. The statistic is based on taking a simple data-dependent
weighted average of two trend test statistics, both conventional t-ratios, one that is
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appropriate when the data are generated by an I(0) process and a second that is
appropriate when the data are I(1). Determined from an auxiliary statistic which
consistently estimates the true order of integration of the data, the weights are designed
to switch weight between the two trend statistics, depending on whether the data are
generated by an I(0) or I(1) process. We show that the new weighted statistic has a
standard normal limiting null distribution in both the I(0) and I(1) cases.
We compare the asymptotic local power of our new trend test with that of the

preferred robust trend function testing procedure from Bunzel and Vogelsang (2005),
namely that based on the Dan-J statistic, and show that it o¤ers signi�cantly improved
performance over the Dan-J test, achieving the Gaussian asymptotic local power en-
velope in both the I(0) and I(1) cases. We also examine the asymptotic properties
of our procedure when the data are generated by a near-I(1) process. Here we �nd
that, in common with the Dan-J test, our procedure is under-sized, which can lead to
a reduction in power for small values of the local trend alternative. However, we show
that a straightforward modi�cation to our procedure largely o¤sets this problem.
In order to keep exposition simple we focus our attention in this paper on the

empirically relevant problem of testing for a linear time trend in an economic series,
under which Vogelsang (1998) and Bunzel and Vogelsang (2005) derive all the numerical
results reported in their papers. However, it should be noted that the basic testing
principle which we advocate is actually quite general and could easily be extended
to include testing of more sophisticated trend functions, such as polynomial trend
functions or breaks in trend.
The paper is organized as follows. Section 2 motivates our suggested approach to

testing for a linear trend within a simpli�ed, stylized model. A more general speci�ca-
tion is then considered in Section 3, where the asymptotic properties of our proposed
statistic are also established. In Section 4 we discuss issues relating to the practical
implementation of our testing procedure. Section 5 reports numerical evidence on the
asymptotic power properties of our new trend tests, along with �nite sample size and
power simulations. These are compared to those of the Dan-J test from Bunzel and
Vogelsang (2005). In Section 6 we apply our tests and that of Bunzel and Vogelsang
(2005) to time-series data on a number of real GDP series and also on the commodity
prices series previously analysed for the presence of a downward trend by Bunzel and
Vogelsang (2005). Section 7 concludes. A short appendix contains the proofs of our
main results.
In what follows we use the following notation: x := y (x =: y) to indicate that

x is de�ned by y (y is de�ned by x); b�c to denote the integer part of the argument;
p! to denote convergence in probability; d! to denote weak convergence, and N(a; b)
to denote a Gaussian distribution with mean a and variance b. Finally, reference to a
variable being Op(T k) is taken to hold in its strict sense, meaning that the variable is
not op(T k).
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2 Motivation for the Test Procedure

To �x ideas, we start with a highly simpli�ed model and testing problem. Consider,
therefore, the Gaussian AR(1) model

yt = �+ �t+ ut; t = 1; :::; T (1)

ut = �ut�1 + "t; t = 2; :::; T; u1 = "1; (2)

where "t is assumed to be NIID(0; �2). We suppose that the I(0) scenario for ut
is represented by � = 0 and the I(1) scenario by � = 1, with no other possibilities
assumed to exist for the present. Our interest centres on testing H0 : � = �0 against
either a two-sided alternative, H1 : � 6= �0, or either of the two one-sided alternatives
H1 : � > �0 or H1 : � < �0, but without assuming knowledge of whether ut in (1) is
I(0) or I(1). The case of leading empirical relevance is the no trend null hypothesis,
given by �0 = 0, although other values of �0 may also be of practical interest, for
example testing whether the growth rate in a particular country coincides with some
hypothetical or desired growth rate. As is customary in this kind of testing problem,
we partition H1 into two scaled components H1;0 : � = �0+�T

�3=2 when ut is I(0) and
H1;1 : � = �0 + �T

�1=2 when ut is I(1), where � is a �nite constant, which provide the
appropriate Pitman drifts on � under I(0) and I(1) errors, respectively. Notice that
both H1;1 and H1;0 reduce to H0 when � = 0.
If ut is known to be I(0) then ut = "t, t = 1; :::; T , and a test which rejects for

large values [large positive or large negative values for a two-tailed test, large negative
(positive) values for a lower- (upper-)tailed test] of the (centred) t-ratio, associated
with the OLS estimator of � in the estimated model (1), is an optimal (uniformly most
powerful in the case of one-sided alternatives and uniformly most powerful unbiased in
the case of the two-sided alternative) test of H0 against H1;0, and is consistent against
�xed alternatives. Letting �̂ and �̂ denote the OLS estimators from (1), this t-ratio is
therefore given by

z0 :=
�̂ � �0
s0

; (3)

s0 :=

vuut�̂2u= TX
t=1

(t� �t)2

where �̂2u := (T � 2)�1
PT

t=1 û
2
t , ût := yt � �̂ � �̂t. Completely standard results show

that under H0, z0
d! N(0; 1), while under H1;0, z0

d! �
�
p
12
+N(0; 1).

Correspondingly, if ut is known to be I(1) then the optimal test of H0 against H1;1
is based on the t-ratio associated with the (centred) OLS estimator of � in the model
(1) estimated in �rst di¤erences,

�yt = � + vt; t = 2; :::; T (4)
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where vt := �ut = "t. De�ning T� := T � 1, the t-ratio is therefore given by

z1 :=
~� � �0
s1

; (5)

s1 :=
q
~�2v=T�

where ~� is the OLS estimator of � in (4), viz, ~� := T�1�
PT

t=2�yt = T�1� (yT � y1),
and ~�2v := (T� � 1)�1

PT
t=2 ~v

2
t , ~vt := �yt � ~�. Once more, standard results show that

under H0, z1
d! N(0; 1) and under H1;1, z1

d! �
�
+N(0; 1). Again the test is consistent

against �xed alternatives.
Now consider the behaviour of the statistic z0 of (3) when ut is in fact I(1). It is

entirely straightforward to establish that under both H0 and H1;1, z0 is of Op(T 1=2).
That is, it diverges regardless of whether H0 or H1;1 is true. As for the behaviour of
z1 of (5) when ut is I(0), it is easy to show that under H0 and H1;0, z1 is of Op(T�1=2)
and, hence, converges in probability to zero, again regardless of whether H0 or H1;0
holds. The pertinent features of these �ndings are that z0 does not control size under
H0 when ut is I(1) (its asymptotic size is unity), and z1 does not control size when ut
is I(0) (its asymptotic size is zero).
In view of the above results, and given that the order of integration of ut is not

known in practice, it is a fairly natural step to consider constructing a test procedure
that employs some auxiliary routine which ensures that, asymptotically at least, the
statistic z0 of (3) is selected when ut is I(0) while z1 of (5) is selected when ut is I(1).
As this auxiliary routine should be ambivalent between H0 and H1, it needs to be
based on the de-meaned and de-trended yt from the �tted model (1) since these are
then invariant to � and �.
Here we pursue an approach based on a data-dependent weighted average of z0 of (3)

and z1 of (5) where the weights used are based on a consistent estimator of d 2 f0; 1g,
the (unknown) order of integration of ut. The estimator of d which we propose is
constructed from unit root and stationarity test statistics. In generic notation, let U
denote some unit root statistic used for testing the I(1) null that � = 1 against the I(0)
alternative, which corresponds to � = 0 in the present simpli�ed context. Similarly,
let S denote some stationarity statistic for testing the I(0) null that � = 0 against the
I(1) alternative � = 1. We assume that these statistics have the following low-level
properties.

Assumption 1. Let the statistics U and S satisfy the following conditions: (i) If ut
is I(0), then U diverges at a rate Op(T �U ), �U > 0, while S = Op(1); (ii) If ut is I(1),
then U = Op(1), while S diverges at a rate Op(T �S), �S > 0.

We also suppose that a function of U and S is available which satis�es the following
conditions.

Assumption 2. Let �(U; S) be some function on [0; 1] for which: (i) If ut is I(0),
�(U; S) = op(1); (ii) If ut is I(1), �(U; S) = 1 + op(T�1=2).
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Remark 2.1: Observe that, under Assumption 1, �(U; S)
p! 0 when ut is I(0), while

�(U; S)
p! 1 when ut is I(1), as desired. Examples of statistics U and S which satisfy

Assumption 1 and a simple function �(U; S) which satis�es Assumption 2 will be pro-
vided later in Section 4, with a speci�c recommendation for �(U; S) given in Remark
4.4. �
Our approach to testing for a linear trend is then based on a simple weighted average

of z0 of (3) and z1 of (5) of the form

z� := f1� �(U; S)gz0 + �(U; S)z1: (6)

As noted above, if ut is I(0) then z1 is of Op(T�1=2), and, hence, from (6) it follows
that under Assumptions 1 and 2

z� = f1 + op(1)gz0 + op(1)Op(T�1=2)
= z0 + op(1)

while if ut is I(1), then z0 is of Op(T 1=2) and, hence, we have, under Assumptions 1
and 2, that

z� = op(T
�1=2)Op(T

1=2) + f1 + op(T�1=2)gz1
= z1 + op(1):

A consequence of these results is that z� will converge in probability to z0 when ut is
I(0) but will converge in probability to z1 when ut is I(1). As such, the appropriate
optimal test will be applied asymptotically in each of the I(0) and I(1) situations by
using z�. In addition, since both z0 and z1 have standard normal limiting distributions
under H0, the same is clearly also true of the weighted statistic, z� of (6). Finally, it
is trivial to show that z� will also be consistent against �xed alternatives of the form
given in H1.

Remark 2.2: The asymptotic standard normality of z� under both I(0) and I(1)
shocks allows us to construct approximate con�dence bounds for � which hold regard-
less of whether the shocks are I(0) or I(1). For z� evaluated at �0 = �, we therefore
have that

lim
T!1

Pr(�c�=2 < z� < c�=2) = � (7)

where Pr(x > c�) = �, for x � N(0; 1). Substituting for z� in (7), and rearranging
yields that

lim
T!1

Pr

 
f1� �(U; S)g�̂s1 + �(U; S)~�s0 � c�=2s0s1

f1� �(U; S)gs1 + �(U; S)s0
< � <

f1� �(U; S)g�̂s1 + �(U; S)~�s0 + c�=2s0s1
f1� �(U; S)gs1 + �(U; S)s0

!
= �:
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Consequently, an approximate (1��)% two-sided con�dence interval for � is given by:

�̂� � c�=2
s0s1

f1� �(U; S)gs1 + �(U; S)s0
(8)

where

�̂� :=
f1� �(U; S)g�̂s1 + �(U; S)~�s0
f1� �(U; S)gs1 + �(U; S)s0

; (9)

while an approximate (1 � �)% one-sided upper (lower) con�dence interval can be
constructed using

�̂� + (�)c�s0s1 (f1� �(U; S)gs1 + �(U; S)s0)
�1 : (10)

It is easily established from the foregoing results and the BLUE properties of �̂ when
ut is I(0) and of ~� when ut is I(1), that �̂� is a consistent and asymptotically e¢ -
cient estimator of the trend parameter � regardless of whether ut is I(0) or I(1); see,
for example, Rao (1973,p.319).1 Moreover, (8) and (10) are approximately uniformly
most accurate con�dence regions, by virtue of the corresponding asymptotic optimality
properties of the test based on z�, discussed above.

3 An Autocorrelation Robust Procedure and its
Asymptotic Properties

Having motivated our new testing procedure within a simpli�ed framework, we now
generalize the approach and modify our tests accordingly before establishing their large
sample properties. To that end we now assume that ut in (1) satis�es the following
assumption.

Assumption 3. The stochastic process futg of (1) is such that

ut = �ut�1 + "t; t = 2; :::; T; u1 = Op(1) (11)

"t = c(L)et; c(L) =

1X
i=0

ciL
i (12)

with, for some �nite constants �c1 and �c2: (i) c(1)2 > �c1 > 0; (ii)
P1

i=0 ijcij < �c2 <1,
and (iii) fetg is a martingale di¤erence sequence with unit conditional variance and
suptE(e

4
t ) <1.

Remark 3.1: Assumption 3 essentially coincides with Assumption 1 of Bunzel and
Vogelsang (2005,p.382). As in Bunzel and Vogelsang (2005), we follow the standard

1An alternative consistent and asymptotically e¢ cient estimator of � is given by the simple
weighted average f1� �(U; S)g�̂ + �(U; S)~�. However, unreported �nite sample Monte Carlo simula-
tions suggested that this estimator was less e¢ cient than �̂�.
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approach in the literature and present large sample results for our statistics which
are based on pointwise convergence. In order to overcome potential problems of near-
observational equivalence between I(0) and I(1) speci�cations for ut, in the sense of
Faust (1996) and Pötscher (2002), it would be necessary to establish uniform con-
vergence results. This would involve the need to place additional restrictions on "t,
including a strengthening of the summability condition in (ii) of Assumption 3 (cf.
Phillips and Xiao, 1999) to one which also imposes an eventual rate of decay on the
fcig. One possibility is provided by condition A(K; p) of Faust (1996,p.728) with
p > 2.2 Faust also replaces condition (iii) of Assumption 3 with the requirement that
fetg is IID(0; 1) with �nite fourth moments, although this restriction does not seem
crucial. �

For the present we assume that the dominant autoregressive root � in (11) sat-
is�es � = 1 (such that ut is I(1)) or j�j < 1 (such that ut is I(0)). Later in
this section we will generalize our analysis to also allow for near unit root behav-
iour in ut. Notice that, under Assumption 3, the long run variance of "t is given
by !2" := limT!1 T

�1E(
PT

t=1 "t)
2 = c(1)2. Moreover, in the I(0) case the long run

variance of ut is given by !2u := limT!1 T
�1E(

PT
t=1 ut)

2 = c(1)2=(1� �)2.
Because we now allow for weak dependence in "t through Assumption 3, the as-

ymptotic null distributions of z0 and z1 will no longer be pivotal. Consequently, it is
necessary to work with non-parametrically autocorrelation-corrected analogues of z0
and z1. Speci�cally, in what follows we rede�ne

z0 :=
�̂ � �0
s0

and z1 :=
~� � �0
s1

(13)

with

s0 :=

vuut!̂2u= TX
t=1

(t� �t)2 and s1 :=
q
~!2v=T� (14)

where �̂ and ~� are as de�ned in Section 2, and !̂2u and ~!
2
v are the long run variance

estimators

!̂2u := 
̂0 + 2

T�1X
j=1

h(j=`)
̂j, 
̂j := T
�1

TX
t=j+1

ûtût�j (15)

and

~!2v := ~
0 + 2

T��1X
j=1

h(j=`)~
j, ~
j := T
�1
�

TX
t=j+2

~vt~vt�j; (16)

where the residuals fûtgTt=1 and f~vtgTt=2 are as de�ned in Section 2. In both (15) and
(16) the kernel function, h(�), and the bandwidth parameter, `, are assumed to satisfy
Assumptions A3 and either A4 or A4�of Jansson (2002,pp.1450,1452), respectively.

2Condition A(K; p) requires that jcij < ki�p with p > 1 for all i > K, where k is a positive
constant. In our case, setting p > 2 implies (ii) of Assumption 3.
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In Theorem 1 we now detail the asymptotic properties of z0 and z1 of (13) when ut
is I(0). Corresponding results when ut is I(1) are subsequently given in Theorem 2.

Theorem 1 Let Assumption 3 hold and assume ut is I(0). Then, under H1;0: (i)
z0

d! �
!u
p
12
+N(0; 1); and (ii) z1

p! 0.

Remark 3.2: From the results in Theorem 1 it is seen that when ut is I(0) and H0
holds, z0 has a standard normal limiting null distribution, whereas z1 converges in
probability to zero. Moreover, when ut is I(0), it is seen that z0 attains the Gaussian
asymptotic local power envelope for this testing problem.

Theorem 2 Let Assumption 3 hold and assume ut is I(1). Then, under H1;1: (i)
z0 = op(T

1=2); and (ii) z1
d! �

!"
+W (1) where W (r) is a standard Brownian motion

on [0; 1].

Remark 3.3: Noting that W (1) � N(0; 1), we observe from Theorem 2 that when ut
is I(1) and H0 holds, z1 has a standard normal limiting null distribution. Moreover,
when ut is I(1), observe that z1 achieves the Gaussian asymptotic local power envelope
for this testing problem. �

Now suppose that U is a unit root test for testing the I(1) null that � = 1 against
the I(0) alternative j�j < 1 and S is a stationarity test for testing the I(0) null that
j�j < 1 against the I(1) alternative � = 1, both tests being based on the de-trended
residuals, ût. Also, suppose that U and S satisfy Assumption 1 and that Assumption
2 holds. Our non-parametrically corrected analogue of (6) is then given by

z� := f1� �(U; S)gz0 + �(U; S)z1 (17)

where z0 and z1 are as de�ned in (13). The following Corollary of Theorems 1 and 2
details the large sample behaviour of z�.

Corollary 1 Let Assumptions 1-3 hold: (i) If ut is I(0) and H1;0 is true, then z� =
z0+ op(1)

d! �
!u
p
12
+N(0; 1); and (ii) If ut is I(1) and H1;1 is true, z� = z1+ op(1)

d!
�
!"
+N(0; 1).

Remark 3.4: The results in Corollary 1 show that if ut is I(0), z� is asymptotically
equivalent to z0, while if ut is I(1), z� is asymptotically equivalent to z1. Consequently,
z� achieves the Gaussian asymptotic local power envelope regardless of whether ut is
I(0) or I(1). Moreover, the limiting distribution of z� under H0 is standard normal,
again irrespective of whether ut is I(0) or I(1). Again it is entirely straightforward to
show that z� is consistent against �xed alternatives of the form given in H1, regardless
of whether ut is I(0) or I(1).
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Remark 3.5: Notice that in contrast to all other robust trend tests currently avail-
able, p-values can easily be constructed for the z� test due to the fact that it has
a standard normal limiting null distribution regardless of whether ut is I(0) or I(1).
The �nite-sample accuracy of the normal approximation involved here will be explored
numerically in Section 5. Notice also that, unlike our proposed test based on z�, the
feasible Dan-J test of Bunzel and Vogelsang (2005) has data-dependent critical values
for a given signi�cance level. Unlike other robust trend tests, the functional form of
the z� test statistic does not depend on the choice of signi�cance level. However, it
is important to stress that in order to compute z� in practice one must make a spe-
ci�c choice for the function �(U; S) and, hence, for the statistics U and S. Speci�c
recommendations are provided in Section 4.

Remark 3.6: Con�dence intervals for � can once more be constructed as in (8) and
(10) with s0 and s1 appropriately re-de�ned as in (14). Notice also from the foregoing
results that the estimator �̂� of (9) given in Remark 2.2 remains an asymptotically
e¢ cient estimator of the trend parameter � under the weaker conditions placed on
f"tg in this section, again regardless of whether ut is I(0) or I(1). This is because of
the well-known asymptotic optimality property of the OLS estimators �̂ and ~� when
ut is I(0) and when ut is I(1), respectively; see Grenander and Rosenblatt (1957). �

Thus far we have assumed that � = 1 or j�j < 1, thereby excluding the possibility of
a near unit root in ut. We now consider extending our analysis of strong autocorrelation
to include the case of near-I(1) processes which obtain for � = �T = 1�c=T , 0 � c <1,
in (1). When ut is near-I(1) it is easily shown that the result in Theorem 2 (i) continues
to hold. The result in Theorem 2 (ii), however, generalizes to

z1
d! �

!"
+ Jc(1) (18)

where Jc(r) is the standard Ornstein-Uhlenbeck process, Jc(r) =
R r
0
e�(r�s)cdW (s) �

N(0; �c;r), where �c;r := (2c)�1(1 � e�2rc), and W (r) is a standard Brownian motion.
Consequently, z1

d! �
!"
+N(0; �c;1). Likewise, the result in Corollary 1 (ii) is amended

to z�
d! �

!"
+N(0; �c;1), provided U and S still satisfy Assumption 2 under near-I(1)

errors. Observing that �0;1 = 1 (since J0(r) = W (r)) and that �c;1 is a monotonically
decreasing function of c, it is seen that employing standard normal critical values for
z� (which are appropriate for c = 0) will result in a conservative test under H0 when
c > 0, with a consequent reduction in power under H1;1. It is straightforward to show
that z� remains consistent against �xed alternatives, of the form given in H1, when
c > 0.
If �c;1 were consistently estimable, we could appropriately re-scale z� in order to

restore its asymptotic distribution to standard normal. Unfortunately, this is not
possible since, as noted by Bunzel and Vogelsang (2005,p.387), c cannot be consistently
estimated. It is, however, interesting to investigate whether there is any simple means
of reducing the impact of the value of c > 0 on the behaviour of the test.
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To this end, we consider the non-negative quantity

R� :=

�
~!2v

T�1�̂2u

��
; � > 0;

where �̂2u = (T � 2)�1
PT

t=1 û
2
t . In the near-I(1) case it is straightforward to show that

R�
d!
�Z 1

0

Nc(r)
2dr

���
(19)

where Nc(r) denotes the continuous time residual from the projection of Jc(r) onto
the space spanned by f1; rg. The limit distribution of R� is pivotal and its mean
and variance are both increasing functions of c. It is therefore to be expected that
multiplying z1 by R� will, to some extent, o¤set the fact that Jc(1) has a variance
which diminishes with c. We therefore suggest replacing z1 and, hence, z� with the
modi�ed statistics thereof:

zm�1 := 
�;�R�z1

and
zm�� := f1� �(U; S)gz0 + �(U; S)zm�1

where 
�;� is some �nite positive constant.
Under Assumption 3 and H1;1 in the near-I(1) case we obtain from (18), (19) and

an application of the continuous mapping theorem that

zm�1
d! 
�;�

�Z 1

0

Nc(r)
2dr

��� �
�

!"
+ Jc(1)

�
=: ��(c; �; �) (20)

As is clear from (20), the null (� = 0) limiting distribution of zm�1 is not standard
normal for any c. However, using a technique popularised by Vogelsang (1998), the
constant 
�;� can be chosen such that under H0 and when c = 0, the critical value
of ��(0; �; �) at a given signi�cance level � coincides with that of a standard normal
variate. The adopted scale factor R� has the advantage that f

R 1
0
N0(r)

2drg��W (1) has
a symmetric distribution which entails that the value of 
�;� will coincide for upper and
lower tails.
For the modi�ed test procedure, we obtain from (20) that under Assumptions 1-3

in the near-I(1) case that under H1;1,

zm�� = zm�1 + op(1)
d! ��(c; �; �)

so that under H0 and c = 0, the � level standard normal critical value again applies in
the limit. In the I(0) case, part (i) of Corollary 1 also holds for zm�� ; that is,

zm�� = z0 + op(1)
d! �

!u
p
12
+N(0; 1):
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Consequently, when ut is I(0) standard normal (asymptotic) critical values remain
appropriate under H0 and, moreover, zm�� still attains the Gaussian asymptotic local
power envelope.
Notice that z� statistic of (17) coincides with the modi�ed statistic, zm�� of (20), for

� = 0 and 
�;� = 1. The values � = 1; 2 can therefore be considered to represent two
increasing levels of modi�cation. We experimented with other values for � and found
that for values of � smaller than one the correction had insu¢ cient e¤ect to o¤set the
conservative behaviour of the test in the near-I(1) case, while for values larger than two
near-I(1) corrections were bought only at the expense of a signi�cant power reduction
in the pure I(1) case. Accordingly we shall focus on the values � = 1; 2 in what follows.
Values for 
�;1 and 
�;2, obtained by simulation, are given for various signi�cance levels
in Table 1.

4 Practical Implementation of the Test Procedure

In this section we discuss the practicalities of our proposed test procedure. Provided
the choices for U , S and �(U; S) satisfy the asymptotic properties of Assumptions 1
and 2 respectively, their actual speci�cation is otherwise essentially arbitrary. Clearly
di¤erent speci�cations of U , S and �(U; S) will yield di¤ering �nite sample behaviour
in z� (and zm�� ), since normality and optimality are only asymptotic characteristics of
the behaviour of z� and our theoretical framework does not provide guidance on spe-
ci�c choices for U , S and �(U; S). In what follows, therefore, we provide recommended
speci�cations that performed well in terms of a �nite sample size/power trade-o¤ in
unreported Monte Carlo simulations. Our proposed choices, used throughout the re-
mainder of the paper, are also relatively straightforward to compute, in keeping with
our emphasis on a procedure that is simple to apply.
Consider �rst the choice of a suitable statistic U . It is well-known that the condi-

tions placed on U by Assumption 1 are satis�ed by standard unit root test statistics,
such as the OLS- or local GLS-detrended (augmented) Dickey-Fuller statistic. We em-
ploy the local GLS-detrended augmented Dickey-Fuller t-test of Elliott et al. (1996),
i.e., DF-GLS� , as our choice for U in what follows. Precisely, DF-GLS� is the usual
t-ratio for testing �� = 0 in the regression equation

�~ut = �
�~ut�1 +

pX
j=1

�j�~ut�j + ~et; t = p+ 2; :::; T (21)

where ~ut are the local GLS de-trended residuals obtained from the regression of y�c :=
(y1; y2��cy1; :::; yT��cyT�1)0 on Z�c := (z1; z2��cz1; :::; zT��czT�1)0, where zt = (1; t)0 and
�c = �13:5 ; cf. Elliott et al. (1996). The number of lagged di¤erence terms, p, included
in (21) is determined by application of the autocorrelation-robust MAIC procedure of
Ng and Perron (2001), setting the maximum lag length at pmax = b12(T=100)1=4c.
Notice that DF-GLS� is exact invariant to � and �.3

3The use of DF-GLS with MAIC involves parametric model selection, unlike the individual trend
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As regards S, again it is well-known that standard (trend-) stationarity test sta-
tistics, such as that of KPSS, satisfy Assumption 1. In what follows we will therefore
adopt as our choice for S the KPSS statistic

�̂� :=

PT
t=1

�Pt
i=1 ûi

�2
T 2!̂2u

where the long run variance estimator !̂2u is as de�ned in (15). In what follows, in
the context of both !̂2u and ~!

2
v of (16), we will use the quadratic spectral kernel with

Newey and West (1994) automatic bandwidth selection adopting a non-stochastic prior
bandwidth of b4(T=100)2=25c. Again, �̂� is exact invariant to � and �.

Remark 4.1: It is well-known that DF-GLS� and �̂� statistics also satisfy Assumption
1 (ii) under near-I(1) errors; see Elliott et al. (1996) and Müller (2005), respectively.
Consequently, therefore, we are able to provide representations for the limiting null
distributions and asymptotic local power functions associated with our feasible z� and
zm�� statistics in the near-I(1) setting, which are as given in Section 3. This is in con-
trast to Bunzel and Vogelsang (2005) who are unable to provide such a representation
for their feasible Dan-J statistic; op. cit., p.388.

Remark 4.2: Observe that since Assumption 1 only requires certain orders in proba-
bility, it is not actually necessary for DF-GLS� and �̂� to be autocorrelation-corrected
to obtain pivotal limit distributions under their respective null or alternative hypothe-
ses. Whether or not they are autocorrelation-corrected will likely have consequences
for the �nite sample performance of z� and zm�� , and it would seem expedient to employ
the usual corrections, as above. �

We now turn to specifying a function which satis�es Assumption 2. Such a function
is not di¢ cult to obtain: a simple example (a slight generalization of which we adopt
in what follows) is given by the exponential function

�(U; S) = exp

�
�jU jjSj

�
In the I(0) case we have that

�(U; S) = exp

 
�
��Op(T �U )��
jOp(1)j

!

and so �(U; S)
p! 0. Turing to the I(1) case, we have that

�(U; S) = exp

�
� jOp(1)j
jOp(T �S)j

�
statistics z0 and z1. However, it would be entirely straightforward to replace U with a test based on
non-parametric methods (cf., inter alia, Phillips and Perron, 1988), should a practitioner �nd that
more appealing.
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which converges in probability to unity faster than any 1+Op(T�
) variate with �nite

 > 0.

Remark 4.3: Notice that Assumption 2 (ii) is in fact slightly stronger than is now
required because when ut is I(1) or near-I(1), z0 is of op(T 1=2), unlike in the Gaussian
IID model considered initially in Section 2 where z0 was of Op(T 1=2).

Remark 4.4: Based on our speci�c choices of DF-GLS� and �̂� for U and S, respec-
tively, we found numerically that the best performance overall �nite sample perfor-
mance was obtained using

�(U; S) = exp

 
�0:00025

�
DF-GLS�

�̂�

�2!
;

which clearly satis�es Assumption 2, and it is this particular function on which all sub-
sequent �nite sample results are based. As predicted by the large sample distribution
theory in Section 3, we found that variations in the �nite sample behaviour of our tests
arising from the precise choice of �(U; S) diminished as the sample size was increased.

5 Comparisons with Other Tests

In this section we consider the performance of the newly proposed z� and zm�� tests
and assess the results relative to the performance of the Dan-J test recommended by
Bunzel and Vogelsang (2005). Bunzel and Vogelsang (2005) propose a further feasible
test, which they denote Dan-BG, but advise against its use in practice: corresponding
results for this test are therefore not reported but are obtainable on request.
Bunzel and Vogelsang�s Dan-J test statistic is of the form

Dan-J = z00 exp(�c�J )

where z00 is z0 as de�ned in (13) but with the implicit long run variance estimator, !̂
2
u,

constructed using the Daniell kernel with a data-dependent bandwidth. Speci�cally,
the bandwidth is given by max(b̂optT; 2), where b̂opt = bopt(ĉ). Here, ĉ = T (1� �̂) with
�̂ obtained by OLS estimation of (2), and bopt(:) is a step function given in Bunzel
and Vogelsang (2005). In the expressions for Dan-J, the z00 statistic is scaled by a
function of the J unit root test statistic of Park (1990) and Park and Choi (1988). The
constant c� is chosen so that, at a given signi�cance level, �, a particular test has the
same critical value under both I(0) and I(1) errors. The value of c� depends on b̂opt;
Bunzel and Vogelsang (2005) provide a response surface for determining c� for a given
signi�cance level, and b̂opt. The critical values for the test also depend on b̂opt, and
again a response surface is provided by the authors for a variety of signi�cance levels.
We now examine the asymptotic power and �nite sample size and power properties

of the tests. All of the reported trend tests are conducted against a one-sided (upper
tail) alternative.
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5.1 Asymptotic Performance

Figures 1 and 2 report, for I(0) and (near-) I(1) errors respectively, the asymptotic
size and power of the z� and zm�� tests for � = 1; 2, along with results for the Dan-J
test of Bunzel and Vogelsang (2005). In the near-I(1) case, we set � = 1� c=T in (2)
and consider the local-to-unity settings c 2 f0; 5; 10; 15g, c = 0 giving the basic I(1)
case. The results were obtained by direct simulation of the limiting distributions of our
tests, approximating the Wiener processes using NIID(0; 1) random variates, with the
integrals approximated by normalized sums of 1000 steps. For the Dan-J test, because
c is not consistently estimated using ĉ, Bunzel and Vogelsang (2005) only provide a
limiting distribution for Dan-J when it is assumed that c is known in the calculation
of b̂opt. That is, when b̂opt = bopt(ĉ) is replaced by bopt(c). Although this strictly means
that their asymptotic results are based on the limiting behaviour of an infeasible test,
for tractability here we also calculate the limit distribution of Dan-J using bopt(c). All
tests are run at the asymptotic 0.05 level appropriate for c = 0; that is, using a critical
value of 1.645 for all tests other than Dan-J.
Results are reported for the the null hypothesis � = �0 and local alternatives

H1;0 : � = �0 + �T
�3=2 and H1;1 : � = �0 + �T

�1=2 (i.e. for I(0) and (near-) I(1)
errors respectively). We consider the range of values � 2 [0; 20] for I(0) errors and
� 2 [0; 8] for (near-) I(1) errors, in each case using a grid with 100 steps. Here and
throughout the paper, simulations were programmed in Gauss 6.0 using 50,000 Monte
Carlo replications.
Figure 1 con�rms that the power plots for z�, zm1� and zm2� are all equivalent in the

I(0) case and that these o¤er a power improvement, albeit very modest, over Dan-J
which does not achieve the Gaussian asymptotic power envelope. Part (a) of Figure
2 provides results pertaining to the pure I(1) case, c = 0. Here the power ranking
amongst the tests is quite unambiguous: z�, zm1� , zm2� and �nally Dan-J. That z� is,
and by a very clear margin, the most powerful test here re�ects its optimality (in that
it achieves the Gaussian asymptotic power envelope) in this setting. In parts (b)-(d)
of Figure 2 the e¤ects of near-integration in the I(1) process can clearly be seen. In
contrast to Figure 1 and Figure 2 part (a), all of the tests become under-sized when
�=!" = 0, particularly so z�. The e¤ect of this is to reduce its power to detect small
values of �=!", with the power pro�le of z� resembling a step function around the point
1.645. However, the modi�cation embodied in zm1� leads to a substantial improvement
in power for small �=!", and that in zm2� even more so. The trade-o¤ here is that, as
noted for part (a) above, zm1� and zm2� have lower power than z� when c = 0. Notice
that throughout parts (b)-(d) of Figure 2, zm2� is almost always more powerful than
the Dan-J test. Only when both tests have power below 0.15 is Dan-J the more
powerful. In summary, if only I(0) and I(1) processes are being considered, then the
best performing test is z�. If performance with near-I(1) processes is also considered to
be of importance, then zm2� is arguably the better choice, at least from the perspective
of the near-I(1) asymptotic theory.
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5.2 Finite Sample Performance

We now turn to a consideration of the �nite sample behaviour of the z�, zm1� , zm2� and
Dan-J tests. Speci�cally, we report simulated rejection frequencies of these tests when
applied to data generated according to the following data generating process,

yt = �t+ ut; t = 1; :::; T
(1� �L)ut = (1� �L)"t; t = 2; :::; T; u1 = 0

(22)

with "t � NIID(0; 1). We focus attention on testing the null hypothesis of the absence
of a linear trend, � = 0, against the alternative hypothesis of a positive trend, � > 0,
although it should be stressed that identical results would obtain for the more general
problem of testing � = �0 against � > �0.
Table 2 reports �nite sample empirical sizes (� = 0) for the above tests, again using

the 0:05 level asymptotic critical values appropriate for c = 0. Experiments are reported
for the design parameters � = 1 � c=T , c 2 f0; 5; 10; 15; Tg, � 2 f0;�0:4;�0:8g and
sample sizes T 2 f100; 200g. Notice that for c = T , ut is a pure MA(1) process. From
the results in Table 2 we see that z� is modestly over-sized when c = 0, suggesting that
the normal approximation for the limiting distribution of z� is somewhat inaccurate for
the pure I(1) case in �nite samples, although this problem appears to be ameliorated
to some extent by increasing the sample size, as predicted by the asymptotic theory. It
is also clear that zm1� and, especially, zm2� are largely free from size distortion problems
when c = 0. All three of these tests tend to be under-sized across the other values
of c, though less so when c = T . Interestingly, none of their sizes appear particularly
sensitive to the choice of �. The size properties of Dan-J are certainly more sensitive
to the choice of c and �. It is generally quite considerably over-sized when � = 0:8
(apart from when c = T , in which case it is badly under-sized). Our asymptotic results
predict that all the tests are undersized when c 2 f5; 10; 15g, so it would appear that,
when � = 0:8 for Dan-J, rather larger �nite sample sizes than those considered here
are probably required before the asymptotic results become a decent predictor of �nite
sample performance.
Figures 3-6 present size-adjusted (such that for each parameterisation considered

the tests were run at a nominal exact 0.05 level) power curves for the four tests in
experiments with parameter settings � = 1� c=T , c 2 f0; 5; 10; 15g, � 2 f0;�0:4g and
T 2 f100; 200g, in each case plotted across a range of values of � (varying with the
choice of c). The tests have been size-adjusted to control for the di¤ering �nite sample
size properties of the tests noted above. Our basic z� test comfortably dominates all
other tests on �nite sample size-adjusted power. This superiority is most pronounced in
the pure I(1) case, c = 0, as might be expected given the (asymptotic) optimality of z�
here. The modi�ed zm1� test everywhere outperforms the zm2� test, and also dominates
Dan-J in all cases apart from when T = 100, � = 0:4 and c = 15 (Figure 6 part (e)),
where the two power curves intersect. The zm2� test outperforms Dan-J except when
� = 0:4 and c = 10; 15. Notice also from Figures 3-6 that for each test, and as predicted
by the large sample distribution theory, the power curves vary over the di¤erent values
of � considered with power being higher the larger is �, other things being equal.
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In order to investigate whether the �nite sample power superiority of z� over all the
other tests when c > 0 is attributable to the fact that we are reporting size-adjusted
results, in Figure 7 we present �nite sample power curves for tests run using the 0:05
level asymptotic critical values appropriate for c = 0. Results are reported for here for
c 2 f5; 10; 15g for the central case of � = 0. With the exception of z�, all of the tests�
power curves display reasonably similar patterns and rankings to those seen in the
corresponding asymptotic power curves in parts (b)-(d) of Figure 2. For z�, however,
we see that the step-function-like behaviour in its asymptotic local power function
noted above is far from apparent even for c = 15 and T = 200. Consequently, the
asymptotic theory for I(0) errors appears to provide a better predictor for the �nite
sample behaviour of the z� test under near-I(1) errors. Overall, z� appears to display
the best power of the four tests. Although Dan-J displays slightly higher power for
small values of � (most notably when T = 200 and c = 15), for larger values of �, z�
tends to display signi�cantly higher power than Dan-J.
On the basis of these results, we recommend the use of the z� test in practice.

This test appears overall to have the best �nite sample power properties, at least for
the models we have examined, amongst available robust trend tests and attains the
Gaussian asymptotic power envelope under either I(0) or I(1) errors. Our preferred
z� test has the additional advantage of being computationally simpler than the other
tests, especially when Dan-J is considered, and is run using standard normal critical
values without any requirement for signi�cance level-speci�c adjustments.

6 Empirical Examples

We �rst examine evidence for the presence of a trend in the logarithms of seasonally
adjusted real GDP for a set of twelve countries: Australia, Canada, France, Germany,
Japan, Italy, Netherlands, South Africa, Spain, Switzerland, UK and US. The data are
observed quarterly over the period 1980:1�2005:2 (T = 102) and were obtained from
the O¢ ce for National Statistics for the UK, and International Financial Statistics for
all other countries. The time series (with adjusted intercepts) are plotted in Figure 8.
The four tests considered in this paper: z�, zm1� , zm2� and Dan-J are applied to the series
assuming a one-sided (upper-tail) alternative, and the results are presented in Table
3. All of the series in Figure 8 display very similar strong upward trending behaviour
across the sample period. This is con�rmed by the z� test which comfortably rejects
the hypothesis of no trend in favour of a positive trend in all twelve series at the 0.05
level. In fact, the individual p-values for these outcomes are uniformly smaller than
0.0005. Because of the signi�cance level-speci�c adjustments inherent in all the other
tests, we do not report p-values, but at the 0.05 level, zm1� �nds eleven rejections; zm2�
eight and Dan-J four rejections. The DF-GLS� and DF-GLS� (the latter constructed
as for DF-GLS� except that ~ut in (21) are replaced by the residuals from the regression
of y�c on Z�c for zt = 1 and �c = �7) tests of Elliott et al. (1996) which we also report
show that, regardless of whether a constant or constant and trend is speci�ed, the
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unit root hypothesis cannot be rejected for any of the series. As demonstrated by
our Monte Carlo results, this is one of the situations where our proposed z� test is
expected to strongly dominate the other tests on power, and in particular the Dan-J
test. The trend test outcomes for these data appear re�ective of this. The annualised
percentage growth rates we report, calculated using the e¢ cient estimator of (9), i.e.
400�̂�, and shown with a 95% con�dence interval, are mostly around the 2-3% level,
consistent with generally accepted �gures over this period and indicative of the strong
trend behaviour detected by the newly proposed tests.
As a further comparison of the z�, zm1� and zm2� tests with the Dan-J test of Bunzel

and Vogelsang (2005), we also apply these tests to the series employed in that paper,
namely the logarithm of the net barter terms of trade series constructed by Grilli
and Yang (1998) and extended by Lutz (1999). The data are annual from 1900�1995
(T = 96) and are plotted in Figure 9. The Prebisch-Singer hypothesis postulates that
such a series should exhibit a downward trend over time, and we consequently apply the
tests against a one-sided (lower-tail) alternative, conducting the tests at the � = 0:10,
0.05 and 0.01 levels. The results are reported in Table 4. The zm1� , zm2� and Dan-J
tests all reject the hypothesis of no trend in favour of a negative trend at the 0.05 level,
while the z� test rejects the null at the 0.01 level. Notice that local GLS de-trending
according to a constant and trend rather than just a constant, as appears appropriate
from the trend tests, enables us to emphatically reject the unit root hypothesis in favour
of trend stationarity for the net terms of trade data. The central result of a signi�cant
downward trend provides evidence in favour of the Prebisch-Singer hypothesis, with
the percentage growth rate (again calculated using the estimator of (9), i.e. 100�̂�)
found to be �0:625%, with a 95% con�dence interval of �1:091% to �0:159%.

7 Conclusions

In this paper we have developed computationally simple linear trend tests which do
not require knowledge of the form of serial correlation in the data and are robust
to strong serial correlation. Our proposed test procedure is based on a simple data-
dependent weighted average of two conventional t-ratios, one appropriate for when the
data are generated by an I(0) process and the other when the data are I(1). We have
demonstrated that our proposed test has a standard normal limiting null distribution
and outperforms other robust trend tests in terms of asymptotic local power, achieving
the Gaussian power envelope, in both I(0) and I(1) environments. In the presence of a
near unit root, our proposed test, in common with other robust procedures, was shown
to be conservative, a modi�cation for which was proposed. The �nite sample size and
power properties of our new test and its modi�ed variants were also shown, for the
cases considered, to be superior overall to the recommended Dan-J robust trend test
of Bunzel and Vogelsang (2005).
We applied our new tests together with the Dan-J test of Bunzel and Vogelsang

(2005) to real GDP data from a variety of developed countries and also to the net
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barter terms of trade series previously analysed in Bunzel and Vogelsang (2005). All of
the tests were able to reject the no trend null for the terms of trade data. For the real
GDP data, where the data display a quite apparent positive trend, our preferred z�
test is able to reject the no trend null in favour of positive growth rates for all twelve of
the series, while the Dan-J test rejects for only four of the twelve series. This outcome
is not wholly unexpected given that the presence of an autoregressive unit root cannot
be rejected for any of these series.
Although we have outlined our testing procedure through the problem of testing

for the presence of a linear trend, as we noted in the Introduction, our approach
is in fact much more general. For the usual linear regression model y = X� + ",
provided the individual (deterministic) regressors satisfy, for example, Assumption 2
of Bunzel and Vogelsang (2005,p.382), we can apply the same principle to testing
any set of linearly independent linear restrictions on the elements of � of the usual
R� = r form. This is achieved simply by replacing the t-ratios used in this paper with
the appropriate (maximum) likelihood ratio statistics and constructing the unit root
(U) and stationarity (S) test statistics used in the switching function, �(U; S), using
the residuals from the appropriate (either OLS or local-GLS) regression of y on X.
Such tests will share the robustness properties of the tests discussed in this paper to
(strong) serial correlation in the disturbances, and will have standard limiting �2 null
distributions and asymptotic optimality properties under both I(0) and I(1) errors.
Another approach to circumventing the problems of model uncertainty inherent in a

pre-testing methodology is that of Bayesian model averaging, allowing for uncertainty
with regard to both the presence of a trend and the order of integration jointly (see, for
example, Karlsson and Salabasis, 2004). In comparison to a Bayesian framework, the
trend function hypothesis tests proposed in this paper appeal to asymptotic theory for
their justi�cation, but at the gain of not imposing very speci�c regularity conditions
on the process innovations (such as normality), and obviating the need for the spec-
i�cation of priors, which can of course be problematic. The newly proposed test has
the added appeal (at least from a practitioner�s viewpoint) that it is computationally
straightforward, requiring little or nothing in the way of bespoke software, unlike an
implementation of the Markov-chain Monte Carlo algorithm needed for Bayesian model
averaging. On the other hand, our procedure is potentially not as informative about
the full range of model speci�cations as Bayesian model averaging, since it provides
robust inference on the trend function alone.
Finally, a potentially worthwhile extension of our approach, at least from a macro-

economic aspect, would be to test for a linear trend in a multivariate system; for
example, in a regression model with I(1) variables where co-integration between these
variables may, or may not, pertain. This is an area of research which is currently under
consideration by the authors.
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Appendix

Proof of Theorem 1.

(i) Multiplying the numerator and denominator of z0 of (13) by T 3=2 we have that

z0 =
T 3=2(�̂ � �0)q

!̂2u
T�3

PT
t=1(t��t)2

: (A.1)

Consider �rst the numerator of (A.1). Substituting for the OLS estimator of � we
obtain that

T 3=2(�̂ � �0) = �+
T�3=2

P
tut � (T�2

P
t)(T�1=2

P
ut)

T�3
P
t2 � (T�2

P
t)2

d! �+ !u12

�
1

2
W (1)�

Z 1

0

W (r)dr

�
where W (r) is a standard Brownian motion process de�ned via !�1u T

�1=2PbTrc
t=1 ut

d!
W (r). Integration by parts establishes the result that

1

2
W (1)�

Z 1

0

W (r)dr =

Z 1

0

�
s� 1

2

�
dW (s)

the right member of which is normal with mean zero and varianceZ 1

0

�
s� 1

2

�2
ds =

1

12
:

Consequently,
T 3=2(�̂ � �0)

d! �+ !u
p
12N(0; 1): (A.2)

Turning to the denominator of (A.1), under the conditions placed on !̂2u in section 3
we have that !̂2u

p! !2u, since ut is I(0). It is then trivially seen that

!̂2u

T�3
PT

t=1(t� �t)2
p! 12!2u (A.3)

and the stated result then follows from (A.2) and (A.3) via an application of the
continuous mapping theorem.

(ii) Recall that ~� = T�1� (yT � y1). Consequently, under H1;0, ~� = �0 + �T
�3=2 +

T�1� (uT � u1), and, hence,

z1 =
T
1=2
� �T�3=2 + T

�1=2
� (uT � u1)p
~!2v

: (A.4)
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For the numerator of (A.4) observe that

T 1=2� �T�3=2 + T�1=2� (uT � u1) = O(T�1) +Op(T
�1=2)

= Op(T
�1=2):

Turning to the denominator of (A.4), observe that ~!2v
p! !2v = limT!1 T

�1E(
PT

t=2 vt)
2 =

0, since vt = �ut is over-di¤erenced when ut is I(0). However, the fastest rate of con-
vergence of any long run variance estimator satisfying the conditions laid out in section
3 is slower than Op(T�1=2) and, hence,

p
~!2v converges in probability to zero at a rate

slower than Op(T�1=4). Consequently, z1 is of op(1).

Proof of Theorem 2.

(i) Multiplying the numerator and denominator of z0 of (13) by T 1=2 we have that

z0 =
T 1=2(�̂ � �0)q

T�2!̂2u
T�3

PT
t=1(t��t)2

: (A.5)

The numerator of (A.5) is such that

T 1=2(�̂ � �0) = �+
T�5=2

P
tut � (T�2

P
t)(T�3=2

P
ut)

T�3
P
t2 � (T�2

P
t)2

which is easily seen to be ofOp(1). Turning to the denominator of (A.5), it is well-known
that !̂2u diverges to +1 at a rate faster than Op(T ) (see, for example, Kwiatkowski et
al., 1992, p.168) and, hence,

p
T�2!̂2u converges in probability to zero at a rate slower

than Op(T�1=2). Consequently, z0 is of op(T 1=2).

(ii) Under H1;1, ~� = �0 + �T
�1=2 + T�1� (uT � u1), and so

z1 =
T
1=2
� �T�1=2 + T

�1=2
� (uT � u1)p
~!2v

:

Since T�1=2� (uT � u1) = T�1=2uT + op(1), we �nd that for the numerator

T 1=2� �T�1=2 + T�1=2� (uT � u1)
d! �+ !"W (1)

where W (r) is a standard Brownian motion de�ned via !�1" T
�1=2PbTrc

t=1 "t
d! W (r).

Noting that vt = "t when ut is I(1), we therefore have that ~!2v
p! !2" under the

conditions placed on ~!2v in section 2. The stated result then follows directly using an
application of the continuous mapping theorem.
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Table 1. Asymptotic 
�;� values for the z
m�
� tests

� � = 1 � = 2

0.100 0.04953 0.00204
0.050 0.04411 0.00149
0.025 0.03952 0.00115
0.010 0.03462 0.00085
0.005 0.03292 0.00071

Table 2. Empirical sizes of nominal 0.05-level tests

T = 100 T = 200

c � z� zm1� zm2� Dan-J z� zm1� zm2� Dan-J

0 �0.8 0.114 0.076 0.057 0.041 0.097 0.070 0.055 0.046
�0.4 0.118 0.080 0.061 0.043 0.099 0.072 0.056 0.047
0.0 0.117 0.079 0.060 0.051 0.098 0.070 0.055 0.052
0.4 0.118 0.067 0.050 0.107 0.097 0.064 0.047 0.084
0.8 0.100 0.043 0.039 0.305 0.088 0.032 0.027 0.311

5 �0.8 0.012 0.013 0.013 0.019 0.008 0.010 0.012 0.020
�0.4 0.014 0.015 0.015 0.019 0.010 0.012 0.014 0.021
0.0 0.017 0.017 0.017 0.023 0.010 0.012 0.013 0.024
0.4 0.019 0.016 0.015 0.064 0.012 0.012 0.012 0.051
0.8 0.030 0.023 0.023 0.203 0.016 0.013 0.012 0.234

10 �0.8 0.011 0.011 0.012 0.022 0.008 0.009 0.011 0.024
�0.4 0.012 0.013 0.014 0.022 0.010 0.012 0.014 0.024
0.0 0.017 0.018 0.017 0.030 0.011 0.013 0.014 0.031
0.4 0.019 0.016 0.016 0.072 0.012 0.013 0.013 0.062
0.8 0.033 0.029 0.029 0.138 0.018 0.016 0.016 0.197

15 �0.8 0.012 0.013 0.013 0.025 0.009 0.011 0.013 0.027
�0.4 0.014 0.014 0.015 0.025 0.012 0.014 0.016 0.028
0.0 0.021 0.021 0.021 0.039 0.015 0.016 0.017 0.040
0.4 0.021 0.019 0.018 0.077 0.015 0.015 0.016 0.071
0.8 0.038 0.036 0.036 0.088 0.021 0.019 0.019 0.161

T �0.8 0.030 0.028 0.028 0.031 0.031 0.030 0.030 0.037
�0.4 0.037 0.035 0.035 0.033 0.034 0.033 0.033 0.039
0.0 0.031 0.030 0.030 0.032 0.027 0.026 0.027 0.041
0.4 0.038 0.036 0.036 0.012 0.031 0.031 0.031 0.033
0.8 0.018 0.014 0.014 0.000 0.035 0.034 0.034 0.001

24



Table 3. Application of tests to real GDP

Country z� zm1� zm2� Dan-J DF-GLS� DF-GLS� Growth rate (c.i.) %

Australia 10.355�� 10.414�� 8.831�� 24.193�� 1.507 �2.092 3.294 (�0:624)
Canada 6.853�� 5.654�� 4.088�� 11.261 1.315 �2.169 2.736 (�0:782)
France 13.955�� 12.955�� 11.316�� 11.747�� 0.807 �2.155 1.999 (�0:281)
Germany 3.428�� 1.939�� 0.911 3.342 0.371 �1.174 2.101 (�1:201)
Japan 5.128�� 1.349 0.317 0.004 1.006 �1.236 2.492 (�0:953)
Italy 6.048�� 3.312�� 1.466 3.121 0.379 �1.018 1.691 (�0:548)
Netherlands 8.607�� 7.846�� 6.518�� 6.663 0.057 �2.040 2.312 (�0:526)
South Africa 3.935�� 2.237�� 1.028 2.529 1.214 �1.589 2.034 (�1:013)
Spain 8.383�� 5.795�� 3.588�� 3.199 0.414 �1.466 2.958 (�0:692)
Switzerland 4.632�� 3.377�� 2.134�� 7.641 0.480 �1.915 1.457 (�0:616)
UK 8.024�� 8.562�� 7.808�� 32.228�� 0.280 �1.619 2.449 (�0:598)
US 22.002�� 22.781�� 22.318�� 65.633�� 0.251 �2.715 3.101 (�0:276)

Note: �� denotes rejection at the 0.05-level

Table 4. Application of tests to net barter terms of trade

sig. level z� zm1� zm2� Dan-J DF-GLS� DF-GLS� Growth rate (c.i.) %

0.10 �2.629� �2.374� �2.165� �3.453� �1.186 �3.757� �0.625 (�0:391)
0.05 �2.629�� �2.326�� �2.102�� �2.445�� �1.186 �3.757�� �0.625 (�0:466)
0.01 �2.629��� �2.241 �2.029 �0.811 �1.186 �3.757��� �0.625 (�0:612)

Note: �, �� and ��� denote rejection at the 0.10-, 0.05-, and 0.01-levels respectively
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Figure 1. Asymptotic size and power: I(0) errors, zλ, z
m1

λ
, z

m2

λ
: , Dan-J : - - -

(a) c = 0 (b) c = 5

(c) c = 10 (d) c = 15

Figure 2. Asymptotic size and power: I(1) errors, zλ: , z
m1

λ
: – – , z

m2

λ
: - - - , Dan-J : · · ·
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(a) T = 100, θ = −0.4 (b) T = 200, θ = −0.4

(c) T = 100, θ = 0 (d) T = 200, θ = 0

(e) T = 100, θ = 0.4 (f) T = 200, θ = 0.4

Figure 3. Finite sample size-adjusted power: c = 0, zλ: , z
m1

λ
: – – , z

m2

λ
: - - - , Dan-J : · · ·
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(a) T = 100, θ = −0.4 (b) T = 200, θ = −0.4

(c) T = 100, θ = 0 (d) T = 200, θ = 0

(e) T = 100, θ = 0.4 (f) T = 200, θ = 0.4

Figure 4. Finite sample size-adjusted power: c = 5, zλ: , z
m1

λ
: – – , z

m2

λ
: - - - , Dan-J : · · ·
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(a) T = 100, θ = −0.4 (b) T = 200, θ = −0.4

(c) T = 100, θ = 0 (d) T = 200, θ = 0

(e) T = 100, θ = 0.4 (f) T = 200, θ = 0.4

Figure 5. Finite sample size-adjusted power: c = 10, zλ: , z
m1

λ
: – – , z

m2

λ
: - - - , Dan-J : · · ·
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(a) T = 100, θ = −0.4 (b) T = 200, θ = −0.4

(c) T = 100, θ = 0 (d) T = 200, θ = 0

(e) T = 100, θ = 0.4 (f) T = 200, θ = 0.4

Figure 6. Finite sample size-adjusted power: c = 15, zλ: , z
m1

λ
: – – , z

m2

λ
: - - - , Dan-J : · · ·
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(a) T = 100, c = 5 (b) T = 200, c = 5

(c) T = 100, c = 10 (d) T = 200, c = 10

(e) T = 100, c = 15 (f) T = 200, c = 15

Figure 7. Finite sample empirical power: θ = 0, zλ: , z
m1

λ
: – – , z

m2

λ
: - - - , Dan-J : · · ·
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(a) Australia, Canada, France, Germany, (b) Netherlands, South Africa, Spain,
Japan, Italy (bottom to top) Switzerland, UK, US (bottom to top)

Figure 8. Real GDP in logarithms (intercept adjusted), 1980:1–2005:2

Figure 9. Net barter terms of trade in logarithms, 1900–1995
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