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Abstract

This paper presents a strategic growth model that analyzes the impact
of endogenous preferences on equilibrium dynamics by employing the tools
provided by lattice theory and supermodular games. Supermodular game
structure of the model let us provide monotonicity results on the great-
est and the least equilibrium without making any assumptions regarding
the curvature of the production function. We also sharpen these results
by showing the differentiability of the value function and the uniqueness
of the best response correspondence almost everywhere. We show that,
unlike globally monotone capital sequences obtained under correspond-
ing optimal growth models, a non-monotonic capital sequence can be ob-
tained. We conclude that the rich can help the poor avoid poverty trap
whereas even under convex technology, the poor may theoretically push
the rich to her lower steady state.

Keywords: Lattice programming, Endogenous time preference
JEL Classification Numbers: C61

1 Introduction

The classical optimal growth models focus on the convex structures of the tech-
nology and preferences that guarantee the monotonical convergence of the se-
quence of optimal stocks towards a unique steady state. Such a structure imply
that convergence is assured under perfect competition, constant or diminishing
returns with no external effects and the same constant discount rate, indepen-
dent of initial conditions. However, growth is uneven among countries (see
Quah, 1996; Barro, 1997; Barro and Sala-i-Martin, 1991), regional disparities
are persistent and income inequality is severe among the individuals.

To account for non-convergent growth paths among countries and regions,
a variety of one-sector optimal growth models that incorporate some degree of
market imperfections based on technological external effects and increasing re-
turns have been presented. Within a model of capital accumulation with convex-
concave production function, Dechert and Nishimura (1983), Mitra and Ray
(1984) have characterized optimal paths and prove the existence of threshold
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effect that generates development or poverty traps (see Azariadis and Stachurski,
2005, for a recent survey). In these models, an economy with low initial capital
stock converge to a steady state with low per capita income, while an economy
with high initial capital stock converge to a steady state with high per capita
income.

On the preference side, the endogeneity of time preference is put forward to
show the economies’ dependence on initial endowments. While Mantel (1998)
consider discount factor as a function of consumption, Stern (2006), along the
lines of Becker and Mulligan (1997), let individuals spend resources to increase
the appreciation of the future. Le Van et. al. (2009) adapt the classic optimal
growth model to include an endogenous rate of time preference depending on
the stock of capital. Under these various forms of endogenous discounting,
multiplicity of steady states and conditionally sustained growth are shown.

Although initial conditions are important for growth, poverty should not be
a curse. Indeed, overcoming regional disparities in per-capita income is a mat-
ter of major concern for the governments. Cohesion policies targeting regional
disparities aim to connect economically the rich regions with the other regions,
so that the laggard regions may benefit from and contribute to the overall eco-
nomic performance. For example, when the Portugal and Spain joined the EU
in 1986, their GDP per capita was - on a purchasing power basis - at 53 % and 70
% of EU average, respectively. In 2008, their GDP per capita - on a purchasing
power basis - attained 70% and 90% of the EU-15, (see Eurostat figures, 2009).
Provided their history and political transition period, it is obvious that both
countries would have grown out of the EU frame. However, EU membership
has fostered their growth through various channels including transfers. During
the 1994-1999, the structural and cohesion funds amounted 3.3 % of Portuguese
GDP and 1.5 % of Spanish GDP. The percentage of public investment financed
by EU funds reached average values of 42 % in Portugal and 15 % in Spain
(Royo and Manuel, 2003).

In order to overcome regional disparities substantial fiscal transfers flow from
relatively rich regions to relatively poor ones. It has been estimated that around
1.3 trillion euros have been transferred to the East after the German reunifica-
tion (Barrell and Velde, 2000). Due to this effort living standards in the East
have risen with GDP per capita attaining 70% of western Germans, however
there still exists a gap between East and West. Taking into account that 4%
of German GDP is annually consumed by the costs of reunification, the lack of
economic blossoming in the East could prevent Germany, and West Germany
in particular, from attaining a higher growth trajectory path. Financial trans-
fers to the Mezzogiorno, southern part of Italy, are another example where the
burden is put on the large agent in size. There are funds flowing to the South
in the form of national health service, unemployment insurance and public ex-
penditures from the central government (Faini et al., 1993). Moreover, Alesina
et. al. (1999) shows the use of public employment as a subsidy from the North
to the less wealthy South.

On the other hand, richer region would be small in size and may contribute
relatively too much to the common goal, deterring its own growth. Catalonia
suffers a slow but persistent drop in GDP, attaining its historical minimum
within Spain in 2001, 18.6 % of national GDP (Pons-i-Novell and Tremosa-i-
Balcells, 2005). Although one can find many reasons that could explain this
slowdown, one can not deny the role of the fiscal deficit amounted to 8.9 % of
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Catalan GDP (Alcaide and Alcaide, 2002) in the slowdown process. Indeed,
according to Ros et. al. (2003), Catalan GDP would have been a 31.3 % bigger
in 2000 if the Catalan fiscal deficit had been reinvested in public capital in
Catalonia.

Reducing regional disparities is a more serious concern for developing coun-
tries, where these disparities are two to six times more than in the developed
countries (Shankar and Shah, 2003, 2008). In such countries inequalities be-
yond a threshold may pose a threat to the economic and political stability of
the country. The poorest regions may consider such inequalities as manifestation
of regional injustice and call for radicalism and drastic redistribution policies.
On the other hand, the richest regions may view a union with the poorest re-
gions as a threat to their prosperity in the long run (Shankar and Shah, 2009).
For example, in India, a threat to its territorial integrity comes from the rich
south who no longer wants to subsidize poor regions of the North.

While the convergence literature focuses on sources and remedies of differ-
ences in factor productivity, the interaction among heterogeneous agents and
the consequences of such an interaction has been left unexplored. The exam-
ples above, particularly the examples on developed countries suggest that the
outcomes of the cohesion policies may not be attributable solely to the factor
productivity differences. It is the purpose of this paper to analyze the impact of
endogenous preferences on equilibrium dynamics in a strategic growth model.
We make our analysis while abstracting from any source of factor productivity
differences for both simplicity and being able to distinguish the consequences of
strategic interaction and endogeneity of time preference from the factors domi-
nating convergence literature.

In line with the empirical studies concluding that the rich are more patient
than the poor (see Lawrence, 1991; Samwick, 1998) and in parallel to the idea
that the stock of wealth is a key to reach better health services and better
insurance markets, we consider that the discount factor is increasing in the stock
of wealth. In such a model, consumption profiles of the agents depend on each
other and agents set their consumption strategies considering the strategies of
the others. We introduce heterogeneity by letting two agents differ in their initial
endowment, their share of aggregate income, and therefore in their subjective
discount rates. We analyze whether an agent with a low initial capital stock
can avoid poverty trap that she would face while acting alone. Moreover, we
analyze the implications of an interaction among agents on the relatively richer
one, particularly focusing on if the agent with a low initial capital stock can
pull the rich to her lower steady state that she would never face while acting by
herself.

In a standard optimal growth model with geometric discounting and the
usual convexity assumptions on preferences and technology, the optimal path is
easily found by differentiating the value function. However, in our model, the
objective function includes multiplication of a discount function. This gener-
ally destroys the usual concavity argument which is used in the proof of the
differentiability of value function and the uniqueness of the optimal paths (see
Benveniste and Scheinkman, 1979; Araujo, 1991). Since we can not use classical
convex analysis under the potential lack of concavity and the differentiability of
the value functions, we employ the theory of monotone comparative statics and
supermodular games based on order and monotonicity properties on lattices.

The framework of analysis to study supermodular games has been developed
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by Topkis (1968, 1978, 1979), Vives (1990), Milgrom and Roberts (1990) and
provided comprehensively by Topkis(1998). By allowing very general strategy
spaces, supermodular games provide a rich structure to be utilized in the analysis
of many diverse models including dynamic games.

We establish the supermodular game structure of our model by showing
that actions of the agents are strategic complements so that the best response
correspondence of a player to the actions of rivals is increasing in their level.
Supermodular game structure of the model let us provide existence and mono-
tonicity results on the greatest and the least equilibrium. We sharpen these
results by showing the differentiability of the value function and the uniqueness
of the best response correspondence almost everywhere, following from Amir
(1996) and Le Van and Dana (2003). Our approach also allows us to provide
our results without imposing any assumption on the form of technology.

We show that agents may differ in their capital accumulation decisions.
While one of the agents may accumulate, the other agent may deaccumulate
the capital stock at the first period. After the first period, they both either
accumulate or deaccumulate through the entire duration of the game. This al-
lows us to obtain a non-monotonic capital sequence in contrast with globally
monotone capital sequences obtained under the corresponding optimal growth
model (Le Van et. al., 2009). While abstracting from the curvature of the tech-
nology, we provide that the interaction between the rich and the poor may help
the poor avoid poverty traps that she would face while acting alone whereas the
poor can theoretically push the rich to her lower steady state even under convex
technology.

The article is organized as follows. The next section introduces the model.
Tools needed while utilizing the supermodularity of the game; equilibrium dy-
namics and the steady state analysis have been discussed in Section 3. Finally,
the Section 4 concludes.

2 Model

We consider an intertemporal one sector model of a private ownership econ-
omy a la Arrow-Debreu with a single good xt, and two infinitely lived agents
(households), i = 1, 2.

The single commodity is used as capital, along with labor, to produce output.
Labor is presumed to be supplied in fixed amounts, and capital and consumption
are interpreted in per-capita terms. The production function net of depreciation
is given by f (xt) . We assume that each agent receives a constant share, θi of the
output (see Debreu, 1959). The amount of current resources not consumed by
an agent is saved as capital until the next period. Given the optimal decisions
of the rival, each agent chooses a path of consumption ci =

{
ci
t

}
t≥0

so as to
maximize a discounted sum of instantaneous utilities. The real valued function
u gives the instantaneous utility from consumption.

In accordance with these, the problem of each agent (i = 1, 2) can be for-
malized as follows:

max
{ci

t,x
i
t+1}∞t=0

∞∑
t=0

(
t∏

s=1

β(xi
s)

)
ui(ci

t), (1)
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subject to

∀t, ci
t + xi

t+1 ≤ θif(xi
t + xj

t ), ci
t ≥ 0, xi

t ≥ 0, (2)

xi
0 ≥ 0, xj =

{
xj

t

}
≥ 0, given,

where j 6= i ∈ {1, 2} and the real valued function β(xi
s) is the level of discount

on future utility. Agents may only differ in their initial endowment, their share
of output, and therefore in their subjective discount rates.

We make the following assumptions regarding the properties of the discount,
utility and the production functions.

Assumption 1 u : R+ → R+ is continuous, concave, strictly increasing, u′(0) =
+∞ and u(0) = 0.

Assumption 2 β : R+ → R++ is continuous, concave, strictly increasing and
β′(0) = +∞.

Assumption 3 f : R+ → R+ is continuous, strictly increasing and there exists
an

−
x such that β

(
−
x
)

< 1 and f (x) < x whenever x >
−
x.

On the contrary to the standard optimal growth models, we assume that the
rate of time preference is endogenous depending on the path of investment. Our
assumption that β is strictly increasing in own capital implies a wealth effect
in discounting. The assumption that engaging in some activity or sacrificing
may alter the discount factor each period has been widely considered in a single
decision maker problem (see Hamada and Takeda, 2008, for a recent survey).
It has been shown that low levels of initial capital leads to a poverty trap
so that paths of deaccumulation would be optimal. However, the impact of
recursive preferences in the case of strategic growth games have been left almost
unexplored. It is the purpose of this paper to fill this gap in the literature and
analyze the consequences of recursive preferences on equilibrium dynamics in
this discrete time dynamic game.

2.1 Non-cooperative difference game and equilibrium strate-
gies

We adopt the noncooperative Nash equilibrium concept, in which case the strat-
egy choice is simultaneous and each agent is faced with a single criterion op-
timization problem with the strategies of the rival taken to be fixed at their
equilibrium values. This amounts to characterizing the optimal decisions of
each player conditional on the decisions of the rival.

Noting that the constraints will be binding at the optimum as utility and
the discount function is strictly increasing, we introduce the function U i defined
on the set of agent i’s feasible sequences as

U i
(
xi,xj

)
=

∞∑
t=0

(
t∏

s=1

β(xi
s)

)
ui(θif(xi

t + xj
t )− xi

t+1).

The following proposition ensures that, if an agent has an initial positive cap-
ital stock, independent of the rivals’ choices, he will have a positive consumption
and investment path through his trajectory.
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Proposition 1 (i) Given xi
0 and xj , there exists an optimal path xi. The as-

sociated optimal consumption path, ci is given by

ci
t = θif(xi

t + xj
t )− xi

t+1,∀t.

(ii) If xi
0 > 0, every solution (xi,ci) to the problem of agent i satisfies

ci
t > 0, xi

t > 0,∀t.

Proof. See Appendix.

2.2 Bellman Equation and Best Response Correspondance

As the recursive structure of the standard optimal growth models is preserved by
our model, in order to express the optimal decisions of each player conditional on
the decisions of the rival, we will utilize the value function and the best response
correspondance. Each agent i defines the value function as the solution to his
dynamic optimization problem given the initial state and the decisions of his
rival j, with j 6= i,

V i(xi
0 | xj) = max

{xi
t+1}∞t=0

{ ∑∞
t=0

(∏t
s=1 β(xi

s)
)

u(θif(xi
t + xj

t )− xi
t+1)

| xi
t ≥ 0,∀t

}
(3)

V i is well defined, non-negative, continuous and strictly increasing. The
satisfaction of Bellman’s equation is also straightforward (see Stokey and Lucas,
1989 and Le Van and Dana, 2003):

V i
(
xi

t | xj
)

= max
{xi

t+1}∞t=0

{u(θif(xi
t + xj

t )− xi
t+1) + β(xi

t+1)V
i
(
xi

t+1 | xj
)
} (4)

The best response correspondance of agent i, µi : R+ → R+, is defined as
follows:

µi
(
xi

t | xj
)

= arg max

{
u(θif(xi

t + xj
t )− yi) + β(yi)V i

(
yi | xj

)
| yi ∈

[
0, θif(xi

t + xj
t )
] } (5)

The non-emptiness and the closedness of the best response correspondence
and its equivalance with the optimal path follow easily from the continuity of
the value function by a standard application of the theorem of the maximum
(see Stern, 2006 and Le Van and Dana, 2003). Accordingly, if the game admits
an equilibrium then the optimal choices of agent i will be prescribed by the
solution V i

(
xi

0 | xj
)

of the functional equation (4).
In accordance with these, a sequence xi is the maximizing control strategy

of agent i if it satisfies

∀t, V i
(
xi

t | xj
)

= u(ci
t) + β(xi

t+1)V
i
(
xi

t+1 | xj
)
, where xi

t+1 ∈ µi
t

(
xi | xj

)
.

In a standard optimal growth model with geometric discounting and the usual
concavity assumptions on preferences and technology, the optimal policy corre-
spondence, µ is single valued and the properties of the optimal path is easily
found by using the first order conditions together with envelope theorem by
differentiating the value function. However, in our model, the objective func-
tion includes multiplication of a discount function. This generally destroys the
usual concavity argument which is used in the proof of the differentiability of
value function and the uniqueness of the optimal paths (see Benveniste and
Scheinkman, 1979; Araujo, 1991).
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3 Dynamic Properties of Strategic Equilibria

In order to prove existence of equilibrium and characterize the qualitative prop-
erties of the agents’ optimal choices, we will employ lattice programming and
Topkis’ theorems on supermodular games (see Topkis, 1998) as we need to
surmount the potential lack of concavity and the differentiability of the value
functions. The following section outlines the properties of the supermodular
games we will use in our analysis.

3.1 Supermodular Games and Topkis’ Theorem

Definition 1 A non-cooperative game (N,S, {fi : i ∈ N}) is a supermod-
ular game if the set S of feasible joint strategies is a sublattice of Rm (or of∏

i∈N Rmi), the payoff function fi(yi, x−i) is supermodular in yi on Si for
each x−i in S−i and each player i, and fi(yi, x−i) has increasing differences
in (yi, x−i) on Si × S−i for each i.

Under some regularity conditions, the following therom implies that the set
of equilibrium points for a supermodular game is a nonempty complete lattice.

Theorem 1 (Topkis, 1998) Consider a supermodular game (N,S, {fi : i ∈ N})
for which the set S of feasible joint strategies is nonempty and compact and the
payoff function fi(yi, x−i) is upper semicontinuous in yi on Si(x−i) for each x−i

in S−i and i, then the set of equilibrium points is a nonempty complete lattice
and a greatest and a least equilibrium point exist.

We refer to two theorems while obtaining the results on equilibrium points.
The first one gives us sufficient conditions on a parameterized collection of su-
permodular games such that the greatest and the least equilibrium points for
the game corresponding to each particular parameter increase as the parame-
ter increases. The second one gives us sufficient conditions for an optimization
problem to obtain a stronger result ensuring that the best response correspon-
dance of an agent in its initial capital is increasing. This fact will be crucial
in proving the uniqueness of the equilibrium point where the greatest and the
least equilibrium points coincide.

Theorem 2 Let St
i (x−i) denote the set of feasible strategies for player i given

strategies x−i for the other players and S−i = {x−i : Si(x−i) is nonempty} .
Suppose that T is a partially ordered set and (N,St, {f t

i : i ∈ N}) is a collection
of supermodular games parameterized by t in T where in game t, the payoff
function for each player i is f t

i (x) and the set of feasible joint strategies is St.
The set St of feasible joint strategies is nonempty and compact for each t in T
and is increasing in t on T . Let St

−i and St
i (x−i) denote the dependence of S−i

and Si(x−i) on the parameter t. For each player i and each x−i in St
−i, the

payoff function f t
i (yi, x−i) is upper semicontinuous in yi on St

i (x−i) for each t
in T and has increasing differences in (yi, t) on (∪t∈T St

i )×T. Then there exists
a greatest equilibrium point and a least equilibrium point for each game t in T ,
and the greatest (least) equilibrium point for game t is incresing in t on T .

Theorem 3 Suppose that X is a lattice, T is a partially ordered set, St is a
subset of X for each t in T, St is increasing in t on T, f(x, t) is supermodular
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in x on X for each t in T, and f(x, t) has strictly increasing differences in (x, t)
on X × T. If t′ and t′′ are in T, t′ < t′′, x′ is in argmaxx∈St′ f(x, t) and x′′ is
in argmaxx∈St′′ f(x, t), then x′ � x′′.

3.2 Equilibrium Dynamics

In this section, supermodularity of our strategic growth game will be established.
Then by using this property, existence and monotonicity proofs for the extreme
equilibrium points will be shown. Although these proofs are straightforward
applications of the theorems above, since they are important to see how the
supermodular game structure can be utilized in the analysis of dynamic games,
they are provided in detail at the appendix.

In the strategic growth game we have presented, N = {i, j} and S(xi
t|x

j)

=
[
0, θif(xi

t + xj
t )
]

denotes the set of feasible strategies for agent i at each

point in time. We define S ⊂ R2 as the set of feasible joint strategies, i.e.,
S(xi

t,x
j
t) = S(xi

t,|x
j)×S(xj

t ,|xi). Agent i’s payoff function is defined on S(xi
t,x

j
t); for

every joint strategy yt = (yi
t, y

j
t ) ∈ S(xi

t,x
j
t) agent i receives an utility measured

by her payoff function:

P (xi
t|x

j)(yi) = u(θif(xi
t + xj

t )− yi) + β
(
yi
)
V i
(
yi | xj

)
,

where yj = xj
t+1 ∈ xj .

Proposition 2 The non-cooperative game, (N = {i, j}, S(xi,xj), {P (xi| xj) : i ∈
N}) is a supermodular game.

Proof. See Appendix.
For each feasible joint strategy z in S(xi,xj), the best joint response corre-

spondence, µ(x | z ∈ x) is defined as the direct product of the individual agents’
best response correspondances:

µ(x | z ∈ x) = arg max
y∈S(xi,xj)

P (xi| xj)(yi) + P (xj | xi)(yj).

Recall that, P (xi
t|x

j)(yi) = u(θif(xi
t + xj

t ) − yi) + β
(
yi
)
V i
(
yi | xj

)
, and

P (xi
t|x

j)(yj) = u(θif(xi
t + xj

t )− yj) + β
(
yj
)
V i
(
yj | xi

)
, where zj = xj

t+1 ∈ xj

and zi = xi
t+1 ∈ xi.

Proposition 3 Supermodular game (N,S(xi,xj), {P (xi| xj) : i ∈ N}) has the
set of equilibrium points which is a nonempty complete lattice and a greatest
and a least equilibrium points exist.

Proof. See Appendix.
The existence of equilibria in this class of infinite action dynamic games with

imperfect information also follows from Chakrabarti (1999). Given a discrete
time dynamic game, it is shown that one can find a finite action game such that
every behavior strategy combination of the finite action game can be mimicked
by a behavior strategy combination of the original infinite action game in the
sense that the resulting payoffs from the behavior strategies cannot differ by
more than the small amount ε. Moreover, for every strategy combination on a
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subgame of the original game, it is proven that one can find a behavior strategy
of the finite action game which will give payoffs that can not differ by more than
ε on the subgames.

Accordingly, in our context, as the instantaneous utility functions are con-
tinuous and the individual consumption sets are compact sets that depend con-
tinuously on the choices made previously, the particular game that we have
described above has ε−perfect equilibria (see Chakrabarti, 1999). Such an
ε−perfect equilibria can incorporate most of the characteristics of the perfect
equilibrium which was used to construct it. Indeed, considering the limits of se-
quences of outcomes induced by ε−perfect equilibria, with ε converging to zero,
one can demonstrate that the game admits a subgame perfect equilibrium1.

Proposition 4 Let X = {
(
xi, xj

)
| xi ≥ 0, xj ≥ 0, xi + xj ≤ f(max (xi

0 + xj
0,

−
x))}, and X̂ =

[
0, f

(
max(xi

0 + xj
0,

−
x)
)]

.

i) The greatest (least) equilibrium point for the game (N, S(xi,xj), {P (xi| xj) :
i ∈ N}) is incresing in

(
xi, xj

)
on X.

ii) The greatest (least) equilibrium point for the game (N,Sx, {P (x| xj) : i ∈ N}),
where x =

(
xi + xj

)
is increasing in x on X̂.

Proof. See Appendix.
Next, we provide differentiability of the value function. It will not only help

us obtain the Euler conditions easily, but also sharpen the results we get. Since
almost everywhere differentiability of the value function is equivalent to almost
everywhere uniqueness of the best response correspondance, all the results we
get for the extreme equilibrium points hold for the unique equilibrium.

Lemma 1 V i is differentiable almost everywhere with

V i′(xi | xj) = u′(θf(xi + xj)− µi

(
xi | xj

)
)]θf ′(xi + xj)

where µi(xi | xj) is the best response correspondance of agent i.

Proof. See Appendix.
Now, by using the differentiability of value function, we could obtain the

Euler equation.

Lemma 2 ∀x ∈ [0,max (x0, x̄)], µ(·) satisfies the Euler equation:

u′[θf(xi + xj)− µi

(
xi | xj

)
] = β′[µi

(
xi | xj

)
]V i[µi

(
xi | xj

)
]+

β[µi

(
xi | xj

)
]V i′[µi

(
xi | xj

)
].

Proof. We take the first order derivative of 4 and equate this derivative to zero
to obtain the Euler equation.

The next result is important to see the possibility of non-monotonic capital
sequence in which while one agent accumulates, the other one deaccumulates
capital stock at the first period of the game. After the first period, equilibrium
dynamics are characterized by the total capital stock.

1See Harris (1985), Hellwig and Leininger (1987) and Carmona (2003) for the existence
of subgame perfect equilibrium in dynamic games with perfect information. Note that the
assumption of perfect information rules out the possibility that agents make simultaneous
choices. However, this assumption was used only to show the non-emptiness of a correspon-
dence that specifies a set of outcome paths feasible in any subgame in Harris (1985) and can
be dropped by imposing supplementary conditions which guarantee this step.
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Proposition 5 Either both agents accumulate or both agents deaccumulate af-
ter the first period of the game. Therefore, we have either

{
(xi

t, xj
t )
}∞

t=1
≥{

(xi
t+1, x

j
t+1)

}∞
t=1

, or
{

(xi
t, x

j
t )
}∞

t=1
≤
{

(xi
t+1, x

j
t+1)

}∞
t=1

.

Proof. We have four cases to analyze:
Case1: xi

0 ≥ xi
1 and xj

0 ≥ xj
1. Since xi

0 + xj
0 ≥ xi

1 + xj
1, by the monotonicity

of the equilibrium in total capital, we have xi
1 ≥ xi

2 and xj
1 ≥ xj

2. By the same
reason we can conclude that xi

t ≥ xi
t+1 and xj

t ≥ xj
t+1 for all t ≥ 1.

Case2: xi
0 ≤ xi

1 and xj
0 ≤ xj

1. Since xi
0 + xj

0 ≤ xi
1 + xj

1, by the monotonicity
of the equilibrium in total capital, we have xi

1 ≤ xi
2 and xj

1 ≤ xj
2. Hence we can

conclude that xi
t ≤ xi

t+1 and xj
t ≤ xj

t+1 for all t ≥ 1.

Case3: xi
0 ≥ xi

1 and xj
0 ≤ xj

1 where xi
0 + xj

0 ≥ xi
1 + xj

1. Since xi
0 + xj

0 ≥
xi

1 +xj
1, by the monotonicity of the equilibrium in total capital, we have xi

1 ≥ xi
2

and xj
1 ≥ xj

2. After t = 1, we are in case 1 and conclude that xi
t ≥ xi

t+1 and
xj

t ≥ xj
t+1 for all t ≥ 1.

Case4: xi
0 ≥ xi

1 and xj
0 ≤ xj

1 where xi
0 + xj

0 ≤ xi
1 + xj

1. Since xi
0 + xj

0 ≤
xi

1 +xj
1, by the monotonicity of the equilibrium in total capital, we have xi

1 ≤ xi
2

and xj
1 ≤ xj

2. After t = 1, we are in case 2 and conclude that xi
t ≤ xi

t+1 and
xj

t ≤ xj
t+1 for all t ≥ 1.

Remark 1 None of the results we get in this section, particularly differentia-
bility of value function and monotone dynamics of capital, require the concavity
of production function.

3.3 Steady States

The existence of a steady state follows from Proposition 5 and the fact that
X =

{(
xi, xj

)
| xi ≥ 0, xj ≥ 0, xi + xj ≤ f

(
max(xi

0 + xj
0,
−
x)
)}

is a compact
set. Euler equation provides us the following necessary conditions for the chara-
terization of the steady states:

u′[θf(xi + xj)− xi] = β′(xi)
u[θf(xi + xj)− xi]

1− β(xi)

+ θβ(xi)u′(θf(xi + xj)− xi)f ′(xi + xj),

and

u′[(1− θ) f(xi + xj)− xj ] = β′(xj)
u[(1− θ) f(xi + xj)− xj ]

1− β(xj)
+

(1− θ)β(xi)u′((1− θ)f(xi + xj)− xj)f ′(xi + xj).

Proposition 6 Steady states are linearly ordered. That is, for each pair of
distinct steady states, x̂ = (x̂i, x̂j) and x̌ = (x̌i, x̌j), either x̂ > x̌ or x̂ < x̌.
Proof. For a pair of distinct steady states, we have either x̂i + x̂j = x̌i + x̌j or
x̂i + x̂j 6= x̌i + x̌j . Let us assume that they are not linearly ordered. Figure 1
illustrates these cases diagramatically.

Case 1: x̂i+x̂j = x̌i+x̌j . Let′s take xn = (x̂i+ 1
n , x̂j), then xn

i +xn
j > x̂i+x̂j

and xn
i + xn

j > x̌i + x̌j . ∀ n such that x0 = xn, we can conclude x1 ≥ x̌ and

10



Figure 1: Possible cases if steady states were not linearly ordered

x1 ≥ x̂. Hence x1 ∈ A ∩ B where A = {x | x ≥ x̂} and B = {x | x ≥ x̌} . By
construction, limn→∞ xn = x̂. But, for x0 = x̂, x1 = x0 = x̂ /∈ A ∩ B yields a
contradiction since best response correspondance is right continuous.

Case 2: x̂i + x̂j 6= x̌i + x̌j . Without loss of any generality, suppose that
x̂i + x̂j > x̌i + x̌j . Let’s x̃ denote ( (x̂i+x̌i)

2 ,
(x̂j+x̌j)

2 ). There exists ε such that, for
∀ x ε Bε(x̃i, x̃j), we have x̂i+x̂j > x̃i+x̃j > x̌i+x̌j . Since x̂ is a steady state, for
x0 = x̂, we have x1 = x̂. By letting x0 = x, we obtain x1 ≤ x̂. In the same way,
we can show x1 ≥ x̌. By almost everywhere uniqueness of the best response
correspondances, for some x0 = x, x1 ∈ A ∩ B where A = {x | x ≤ x̂} and
B = {x | x ≥ x̃} . Since A∩B = ∅, this contradicts the existence of equilibrium
points.

Propositions 4 and 5 provide us a way to specify the steady states where
capital stock may converge. The next proposition shows that if the initial total
capital stock is less than the total capital at the lowest steady state, both agents
will accumulate after the first period until capital stock converges to this steady
state. Similarly, if the initial total capital stock is more than what we have at
the highest steady state, both agents will deaccumulate after the first period
until capital stock converges there. For all other cases, capital stock converges
either to the highest among stable steady states in which total capital stock is
lower than the initial total capital stock or to the lowest among stable steady
states in which total capital stock is higher than the initial total capital stock.
Moreover, as long as one agent accumulates more than the amount that the
other agent deaccumulates, capital stock will converge to the higher of those
through a sustained accumulation path.

Proposition 7 Let x̂ denote the lowest among stable steady states where total
capital stock is higher than the initial total capital stock and x̌ denote highest
among stable steady states where total capital stock is lower than the initial total
capital stock, if they exist. Additionally, let xt, x−

and
−
x denote capital stock at

time t, the lowest steady state and the highest steady state, respectively.
(a) If xi

0 + xj
0 ≤ x

−
i + x

−
j then limt→∞ xt = x

−
and xt ≤ x

−
for all t ≥ 1.

(b) If xi
0 + xj

0 ≥
−
x

i

+
−
x

j

then limt→∞ xt =
−
x and xt ≥

−
x for all t ≥ 1.

(c) If x̂i + x̂j ≥ xi
0 + xj

0 ≥ x̌i + x̌j then either limt→∞ xt = x̌ and xt ≥ x̌
for all t ≥ 1 or limt→∞ xt = x̂ and xt ≤ x̂ for all t ≥ 1.

11



Proof. From proposition 4 (ii) and proposition 5, (a) and (b) follow. Suppose
the condition under part (c) holds, from proposition 4 (ii) we obtain x̂ ≥ xt ≥ x̌
for all t ≥ 1. Proposition 5 establishes the result.

For the consumption dependent time preference, Tohme and Larrosa (2007)
have also studied the effects of strategic interaction by letting production func-
tion be concave and a priori assuming twice differentiability of value function.
Instead, we characterize the equilibria by employing the tools provided by lattice
theory and supermodular games.

Under various sources of endogeneity in the discount rate, it has been shown
that optimal growth models have globally monotone capital sequences and that
low levels of initial capital leads to a poverty trap (see Mantel, 1998; Stern,
2006; Le Van et. al., 2009). We obtain that under strategic interaction, non-
monotonic capital sequence is also possible since while one agent accumulates,
the other may deaccumulate capital stock at the first period of the game. Af-
ter the first period, they both either accumulate or deaccumulate through the
entire duration of the game and equilibrium dynamics are characterized by the
monotonicity of capital stock. Hence, interaction between the rich and the poor
may help the poor avoid poverty traps. Moreover, since we provide all of the
results while abstracting from the curvature of the technology, the poor can the-
oretically push the rich to her lower steady state even under convex technology.

3.4 Concluding Remarks:

In this paper, we study a strategic growth model with two agents under open
loop strategies. By employing the tools provided by lattice theory and super-
modular games, we characterize the equilibria.

Our results differ from corresponding optimal growth model in several ways.
We show that under strategic interaction, non-monotonic capital sequence may
also be obtained. We also conclude that the rich can help the poor avoid poverty
traps whereas the poor may push the rich to her lower steady state even under
convex technology.

As a natural extension of our model, feedback strategies with time dependent
share θi

t can be considered and the game can be solved for Markov perfect
equilibria. It should be emphasized that the tools utilized here can be extended
to other models that incorporate the supermodular game structure.

4 Appendix

4.1 Proof of Proposition 1

(i) Following from the existence of a maximum of xj and a sustainable capital
stock for i, It can be observed that there exists A(xi

0,x
j) < ∞ such that 0 ≤

xi
t ≤ A(xi

0,x
j) ∀t . With this bound and Tychonov theorem, [0, A(xi

0,x
j)]∞ is a

compact topological space. Let’s define Π
(
xi

0,x
j
)

as the set of feasible sequences
from xi

0 for xj , which is closed subset of [0, A(xi
0,x

j)]∞, hence compact. U i is
well defined since there exists a maximum sustainable capital stock and β

(
−
x
)

=

12



βm < 1. Moreover, U i is continuous followed from continuity of ui, f, β and the
bound βm < 1.It is now clear that the initial problem of agent i is equivalent to

max{U i
(
xi,xj

)
: xi ∈ Π

(
xi

0,x
j
)
}.

Π
(
xi

0,x
j
)

is compact for the product topology defined on the space of sequences
xi and U i is continuous for this product topology. Hence, an optimal path
exists. Moreover, since u is increasing, the constraint will be binding so that
ci
t = θif(xi

t + xj
t )− xi

t+1,∀t.
(ii) First, we will prove that xi

t > 0, ∀t. Assume the contrary. Take the
smallest t such that xi

t = 0 and call it n. Since xi
0 > 0, we have xi

n−1 > 0 for
any value of n. Consider xi′such that xi′

n = ε for a sufficiently small ε, and
xi

t = xi′
t ,∀t 6= n.

We have,

U i
(
xi′,xj

)
− U i

(
xi,xj

)
≥(∏n−1

s=1 β(xi
s)
)

ui(ci
n−1 − ε) +

(∏n−1
s=1 β(xi

s)
)

β(ε)ui(θif(ε + xj
n)− xi

n+1)

−
(∏n−1

s=1 β(xi
s)
)

ui(ci
n−1)

=

(
n−1∏
s=1

β(xi
s)

)[
ui(ci

n−1 − ε) + β(ε)ui(θif(ε + xj
n)− xi

n+1)− ui(ci
n−1)

]
.

Recall that β : R+ → R++, β(0) > 0. Therefore, from Inada Condition, for suf-
ficiently small ε, U i

(
xi′,xj

)
−U i

(
xi,xj

)
> 0, which contradicts the optimality

of xi. Hence, xi
t > 0, ∀t.

Now, we will prove that ci
t > 0,∀t. Assume the contrary. Clearly zero con-

sumption path after some period can never be optimal, because xi
t > 0, ∀t,

and positive capital will be accumulating forever with zero utility. Hence, there
exists n such that ci

n−1 = 0, ci
n > 0. Consider xi′such that xi′

n = xi
n − ε,

for a sufficiently small ε, and xi
t = xi′

t , ∀t 6= n. By choosing ε such that
θi
[
f(xi

n + xj
n)− f(xi

n + xj
n − ε)

]
< ci

n and ε < xi
n, we get xi′ ∈ Π

(
xi

0,x
j
)
.

Then, we have:

U i
(
xi′,xj

)
− U i

(
xi,xj

)
=(

n−1∏
s=1

β(xi
s)

)[
ui(ε) + β(xi

n − ε)ui(θif(xi
n + xj

n − ε)− xi
n+1)

− β(xi
n)ui(θif(xi

n + xj
n)− xi

n+1)

]

− 1
β(xi

n)

∞∑
t=n+1

(
t∏

s=1

β(xi
s)

)
ui(θif(xi

t + xj
t )− xi

t+1)
[
β(xi

n)− β(xi
n − ε)

]
.

From Inada condition, along with assumptions on u, f, β, for sufficiently small
ε, above expression becomes positive, leading to a contradiction.

4.2 Proof of Proposition 2

Since S(xi,xj) ⊆
[
0, θif(max(

−
x, (xi

0 + xj
0)))

]
×
[
0, θjf(max(

−
x, (xi

0 + xj
0)))

]
, we

can conclude S(xi,xj) is a sublattice of R2. Payoff function of agent i, P (xi| xj)(yi),
is supermodular in yi on S(xi|xj) for each yj in S(xj |xi) follows from the fact
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that S(xi| xj) is a chain. Thus showing P (xi| xj)(yi) has increasing differences
in
(
yi, yj

)
where

(
yi, yj

)
∈ S(xi,xj) will conclude our proof.

Let’s make the induction hypothesis that the value function of the n period
finite game,

V i
n

(
xi | xj

)
= max
{xi

t+1}n

t=0

{
n∑

t=0

(
t∏

s=1

β(xi
s)

)
u(θif(xi

t + xj
t )− xi

t+1) | xi
t ≥ 0

}
,

has increasing differences in
(
yi, yj

)
for any initial capital. We will show that

the value function of n + 1 period finite game,

V i
n+1

(
xi | xj

)
= max

yi∈S(xi,xj)
u(θif(xi + xj)− yi) + β

(
yi
)
V i

n

(
yi | xj

)
,

has increasing differences in
(
yi, yj

)
for any given level of the initial capital

stock.
Let yi ≥ ŷi, yj ≥ ŷj where

(
yi, yj

)
,
(
ŷi, ŷj

)
,
(
yi, ŷj

)
,
(
ŷi, yj

)
are feasible

joint strategies. Since increasing diferences and supermodularity is the same
notion on direct product of finite collection of chains, sum of supermodular
functions is supermodular and supermodularity is preserved under maximiza-
tion; showing β

(
yi
)
V i

n

(
yi | xj

)
is supermodular will be sufficient for our pur-

pose. Thus, we need to show that

β
(
yi
)
V i

n

(
yi | xj

)
+β

(
ŷi
)
V i

n

(
ŷi | x̂j

)
≥ β

(
yi
)
V i

n

(
yi | x̂j

)
+β

(
ŷi
)
V i

n

(
ŷi | xj

)
,

where xj and x̂j differ only in yj and ŷj . This follows from the induction hy-
pothesis and the fact that β(·) is increasing in yi. By means of the boundedness
assumption on β(·), one can easily show that Bellman operator is a contraction
mapping so that V i

n → V. Since supermodularity is preserved under pointwise
convergence, V is supermodular.

4.3 Proof of Proposition 3

Set S(xi,xj) of feasible joint strategies is nonempty and compact and the payoff
function P (xi| xj)(yi) is upper semicontinuous in yi on S(xi| xj) for each yj in
S(xj | xi) and i. Results follow from Theorem 1.

4.4 Proof of Proposition 4

i) X is a partially ordered set and since f is strictly increasing, S(xi,xj) is
increasing in

(
xi, xj

)
on X. In order to utilize Theorem 2, it is sufficient to show

that the payoff function P (xi| xj)(yi) has increasing differences in (yi, (xi, xj))
on
(
∪(xi,xj)∈XS(xi,xj)

)
×X.

Let us first show that P (xi| xj)(yi) has (strictly) increasing differences in
(yi, xi) while keeping x̃j constant. Let yi ≥ ŷi, and xi ≥ x̂i. We need to show
that:

u(θif(xi
t+x̃j

t )−yi)+β
(
yi
)
V i
(
yi | xj

)
+u(θif(x̂i

t+x̃j
t )−ŷi)+β

(
ŷi
)
V i
(
yi | xj

)
≥
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u(θif(x̂i
t+x̃j

t )−yi)+β
(
yi
)
V i
(
yi | xj

)
+u(θif(xi

t+x̃j
t )−ŷi)+β

(
ŷi
)
V i
(
ŷi | xj

)
.

Since we know that θif(xi + x̃j)− yi > θif(x̂i + x̃j)− yi,

u(θif(xi
t+x̃j

t )−ŷi)−u(θif(xi
t+x̃j

t )−yi) < u(θif(x̂i
t+x̃j

t )−ŷi)−u(θif(x̂i
t+x̃j

t )−yi)

follows from the strict concavity of u. Accordingly, the fact that P (xi| xj)(yi)
has (strictly) increasing differences in (yi, xj) while keeping x̃i constant can be
shown in the same way.

ii) X̂ is a chain and by definition we have Sx = S(xi,xj), P (x| xj) = P (xi| xj).

(N,Sx, {P (x| xj) : i ∈ N}) is a collection supermodular games parameterized
by x in X̂. S(x) is increasing in x on X̂ follows from strictly increasing f and
P (x| xj)(yi) has increasing differences in (yi, x) follows from the strict concavity
of u. Then the result follows from Theorem 2.

4.5 Differentiability of Value Function

We will show the differentiability of value function at three steps. First we will
provide a monotonicity result for the best response correspondance of an agent.
Then we will prove that left and right derivatives of value functions is exist. By
using these results, finally we will show that value function is differentiable at
almost everywhere.

Step 1:

The following proposition, stating that the best response correspondance
of an agent is increasing in its initial capital, will be crucial in proving the
differentiability of value function.

Proposition 8 Best response correspondance µi(xi | xj) is increasing in xi for
any given yjon S(xj | xi).

Proof. For any given xj where yj ∈ xj , problem of agent i corresponds to single
agent problem. Let X = [0,max (x0, x̄)] and T =

[
0,max

(
xi

0, x̄
)]

. S(xi|xj) =[
0, θif(xi + xj)

]
is a subset of X for each xi ∈ T. S(xi|xj)is increasing in xi on

T. P (xi|xj) is supermodular in yi on S(xi|xj) for each xi follows from the fact
that S(xi| xj) is a chain. Moreover we’ve already shown P (xi| xj)(yi) has srictly
increasing differences in (yi, xi). The result then follows from Theorem 3.

Step 2:

Next lemma proves the existence of left and right derivatives of V i. We will
denote the left and right derivatives of V i at a point xi by V i′(xi

− | xj) and
V i′(xi

+ | xj), respectively, and the left and right limits of µ(xi | xj) at a point
xi by µ(xi

− | xj) and µ(xi
+ | xj), respectively.

Lemma 3 The value function V i has finite left and right derivatives almost
everywhere on [0,max(

−
x, xi

0)]. Moreover,

V i′(xi
− | xj) = u′(θf(xi + xj)− µ

i

(
xi | xj

)
)θf ′(xi + xj) ≤

u′(θf(xi + xj)− µi

(
xi | xj

)
)θf ′(xi + xj) = V i′(xi

+ | xj),

where µ
i

(
xi | xj

)
= min

{
µ
(
xi | xj

)}
and µi

(
xi | xj

)
= max

{
µ
(
xi | xj

)}
.
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Proof. For a sufficiently small α > 0, µi

(
xi + α | xj

)
≤ θf(xi + xj) and

µi

(
xi | xj

)
≤ θf(xi +α+xj) follow from the facts that optimal investment will

be interior and f is increasing. In accordance with these,

V i
(
xi | xj

)
= u

[
θf(xi + xj)− µi

(
xi | xj

)]
+β[µi

(
xi | xj

)
]V (µi

(
xi | xj

)
| xj)

≥ u
[
θf(xi + xj)− µi

(
xi + α | xj

)]
+ β[µi

(
xi + α | xj

)
]V (µi

(
xi + α | xj

)
| xj),

and

V i
(
xi + α | xj

)
= u

[
θf(xi + α + xj)− µi

(
xi + α | xj

)]
+ β[µi

(
xi + α | xj

)
]V (µi

(
xi + α | xj

)
| xj)

≥ u
[
θf(xi + α + xj)− µi

(
xi | xj

)]
+ β[µi

(
xi | xj

)
]V (µi

(
xi | xj

)
| xj).

By using the two inequalities above and replacing µi with µi, we obtain:

u
[
θf(xi + α + xj)− µi

(
xi | xj

)]
− u

[
θf(xi + xj)− µi

(
xi | xj

)]
≤

V i
(
xi + α | xj

)
− V i

(
xi | xj

)
≤

u
[
θf(xi + α + xj)− µi

(
xi + α | xj

)]
− u

[
θf(xi + xj)− µi

(
xi + α | xj

)]
.

Dividing the inequalities by α > 0, and taking the limit as α tends to zero we
get

u′(h(xi))θf ′(xi+xj) ≤ lim
α→0+

V i
(
xi + α | xj

)
− V i(x | xj)

α
≤ u′(h(xi

+))θf ′(xi
++xj),

where h(xi) = θf(xi + xj) − µi

(
xi | xj

)
. Since µ is right continuous, µ(xi |

xj) = µ(xi
+ | xj). Hence, we have:

V ′i(xi
+ | xj)= u′(h(xi))θf ′(xi + xj) = u′(h(x+

i))θf ′(xi + xj).

If we write V i(xi | xj), V i(xi−α | xj) and repeat the same manipulations with
µ, we get V ′i(xi

− | xj)= u′(h(xi))θf ′(xi + xj) = u′(h(xi
−))θf ′(xi + xj). Since

h(xi) ≥ h(xi) and u is a concave function,

V ′i(xi− | xj) = u′(h(xi))θf ′(xi + xj) ≤ u′(h(xi))θf ′(xi + xj) = V ′i(xi+ | xj)

concludes the proof.

Step 3:

Lemma 1 V i is differentiable almost everywhere with

V i′(xi | xj) = u′(θf(xi + xj)− µi

(
xi | xj

)
)]θf ′(xi + xj)

where µi(xi | xj) is the best response correspondance of agent i.

Proof. Since the best response functions, µ(xi | xj) andµ(xi | xj) are increas-
ing, they are continuous almost everywhere. We will prove that the set of points
xi > 0 where µ is continuous equals to the set of points where µ is continous.
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Moreover, these best response functions coincide on this set. First, let k > 0 be
a point where µ is continuous. Let x̌i

n < xi, x̂i
n > xi ∀ n where x̌i

n → xi and
x̂i

n → xi. We have,

µ(x̌i
n | xj) < µ(x̌i

n | xj) < µ(xi | xj) < µ(x̂i
n | xj) < µ(x̂i

n | xj),

implying that

lim
x̌i

n→xi
µ(x̌i

n | xj) = lim
x̂i

n→xi
µ(x̂i

n | xj) = µ(xi | xj).

Since we have:
µ(x̌i

n | xj) < µ(xi
n | xj) < µ(x̂i

n | xj),

the function µ(xi | xj) is continuous at xi and µ(xi | xj) = µ(xi | xj). Similarly,
we prove that µ(xi | xj) is continuous where µ(xi | xj) is continuous and at this
point µ(xi | xj) = µ(xi | xj). Hence, we can conclude that the best response
correspondance µ(xi | xj) is single valued almost everywhere, or equivalently,
the value function is differentiable almost everywhere.
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