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Abstract 
How does a choice experiment model derived under standard preference axioms perform 
for respondents with incomplete preferences? Using simulated data, we illustrate how this 
preference-model mismatch generates noise and bias in welfare estimates, and we show 
how it can be avoided.  
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1. Introduction 

Choice experiments (CE) are a popular method to elicit preferences (see Louviere, 

2000).  CEs are designed to reveal preferences by asking a person to choose between 

alternative consumption bundles—assuming people have a complete preference ordering.  

But in complex or hypothetical decisions such as those for public goods, a person can be 

indecisive or indifferent to a choice between alternatives (see e.g., Hey and Orne 1994; 

Wang 1997; Ariely et al. 2003; Cantillo et al. 2009; Hanley et al., 2009).1  Eliaz and Ok 

(2006) argue that substantial evidence exists which suggests the explanatory power of the 

standard theory of individual choice is unsatisfactory; in response, they developed a 

choice-theoretic foundation for incomplete preferences.  People with incomplete 

preferences might prefer being given a “no-opinion” option in a CE survey.  Excluding 

this “no-opinion” option could yield biased estimates of preferences if the 

indecisive/indifferent person was treated in the econometric analysis as if he had 

complete preferences.2   But adding the no-opinion option also raises estimation issues in 

CE.  As noted by Fenichel et al. (2009):  “Including no-opinion response options means 

that respondents will select them, which reduces the sample size of yes and no responses. 

However, if there is a way to recover information from some no-opinion responses, then 

adding no-opinion response options may be beneficial.”3

                                                 
1 These people are violating the fundamental completeness axiom underpinning demand theory.  Recall the 
completeness axiom assumes a person choosing between two bundles 

  

1x  and 2x , can rank the alternatives 

as either: (i) 1x  is preferred to 2x , (ii) 1x  is indifferent to 2x , or (iii) 2x  is preferred to 1x .  
2 Respondents´ might still answer to please the experimenter. Another reason might be that they gain 
compensation if all questions in the survey are answered. In web-surveys it is not unusual that respondents´ 
cannot proceed to next question if they have not answered previous questions.   
3  Fenichel et al. (2009) used a split-sample design to explore the implications of including no-opinion 
responses in CE application to estimate preferences for inland, freshwater wetland mitigation. They found 
25 percent of the responses to be no-opinion responses. For more complicated surveys one could of course 
expect higher amount of no-opinion responses. 
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 Within the contingent valuation (CV) literature, Groothuis and Whitehead (2002) 

examined the effects of including a “Don´t Know” (DK) alternative in referendum 

contingent valuation (CV) study.  They suggest a DK option avoids a large amount of 

protest responses.4

  In the CE literature researchers are interested in how to deal with choice task 

complexity. For example, respondents do not always consider all attributes in choosing 

the utility maximizing alternative (e.g. Hensher et al 2005; Campbell et al. 2008),  people 

have lexicographical preferences (e.g. Burton and Rigby 2009), and people adopt a 

simplified strategy in making decision with high level of task complexity (e.g. Swait and 

Adamowicz 2001). Randomly choosing the alternatives could be another example of such 

simplified behavior but that easily can be avoided by including a no-opinion option.  

 Wang proposed a random valuation model that explicitly treats 

indecisive responses assuming that uncertainty arises because the alternatives have a 

similar level of utility and respondents have complete preferences if the thresholds of the 

utilities are exceeded. Balcombe and Fraser (2009) propose a model that simultaneously 

deals with misreporting and DK responses; here a reported DK might be a YES, NO or 

DK response, and YES could be a NO and vice versa.  

In this note, we illustrate how an ordered logit model could be used to recover the 

information from no-opinion responses in CE that allow for incomplete preference 

orderings when similarities between alternatives lead people to be indecisive/indifferent 

between alternatives.5

                                                 
4 Strazzera et al. (2003) proposed a mixture model with sample selection to account for both the true zero 
values (i.e. respondents who are indifferent to whether the public good is provided) and the protest 
responses.   

  Extending the work of Krishnan (1977) and Wang (1997) we find 

5 Contillo et al. (2009) develops a similar model using random thresholds and evaluates error in part-whole 
values (WTP) using synthetic and real data. We compare a model with and without fixed thresholds using 
Monte Carlo simulations and extend the scope of welfare measures that are evaluated. One of the strengths 
of the Monte Carlo Simulation method is that it uses repeated sampling that generates a large number of 
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three key results based on simulated data.  First, the traditional binary logit model 

becomes noisier and nosier as the fraction of indecisive/indifferent respondent grows.  

Second, the ordered logit approach estimates values without much more noise regardless 

of the indecisive fraction of the population. Third, while absolute welfare estimates are 

not significantly biased in the binary logit model, relative values are biased in proportion 

to the fraction of incomplete preferences.    

 
2. Econometric Model and Monte Carlo Simulation 

First, we define our benchmark model.  The traditional model used in choice 

experiments is the Logit model, which assumes a complete preference ordering and the 

absence of indecision/indifference, also called the “no-opinion” response.  In the binary 

choice model, a respondents´ choice between two alternatives, 1 and 2, is modeled as an 

index function:  

1=y  if 0´)(* 12 >++=−=∆ εβα xUUU ,    (1) 

0=y if 0´)(* 12 <++=−=∆ εβα xUUU     (2) 

The latent function U* can be interpreted either as general index function or as a net-

utility function. Assuming each error terms is independently and identically Logistic 

distributed we have the Logit Model. This is the standard model in which the no-opinion 

response is not elicited.    

 Second, we now develop our ordered logit model which can recover information 

from no-opinion responses that allow for indecision/indifference in the preference 

ordering.  We incorporate the notion of indecision/indifference by adding thresholds into 

                                                                                                                                                 
synthetic data sets that can be used to evaluate various statistics without being contingent on any single 
number of utilized samples of synthetic data.  
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the standard binary model.  Assume the respondent chooses alternative 2 if   

1´ kx >++ εβα ; alternative 1 if 2´ kx <++ εβα  .The net-utility of the alternatives must 

exceed a threshold values for the respondent to choose one of the alternatives. The 

respondent is defined as indecisive/indifferent when 12 ´ kxk <++< εβα .    

If each error term is independently and identically normal distributed, we have the 

order probit model (McKelvey and Zavoina, 1975). Assume the error term is logistic 

distributed. For the standard model, the probability of choosing alternative 1 or 2 is: 

,
)´exp(1

)´exp()'(
2

2
21, xk

xkxkPPn βα
βα

βαε
−−+

−−
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Write the joint probability a person will choose the indecisive/indifferent alternative as: 
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Let 11 =y if alternative 2 is chosen, 0 otherwise; and 12 =y  if alternative 1 is chosen, 0 

otherwise.   Consequently, 1211 =−− yy if the no-opinion alternative is chosen; 

0211 =−− yy otherwise.  

The log likelihood function for the three response categories is: 
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  (6) 

We impose an identification restriction 12 kk −=  in equation (6), which implies the two 

thresholds are symmetrically placed around zero in the net-utility space. Assuming 
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|||| 21 kkk ==  we map the preferences of the respondent accordingly to: 21 UU   ( 1U  is 

preferred to 2U ) if kUU +> 21 ; 12 UU   if kUU +> 12  and 21 ~ UU  (perceived as 

equal) if kUU ≤− || 21 . The threshold k  maps what is “too similar” in the utility space 

and identifies the indecision-indifference responses. The standard binary logit model is a 

special case with 0=k . If the threshold is incorrectly neglected the variance will 

increase as || *U∆  decreases.4

Third, we use Monte Carlos simulations to explore the relative validity of the 

benchmark binary logit and ordered logit choice models. The benefit of the simulations is 

that the true parameters and thresholds of the utility function are known. The choices are 

simulated based on the difference in utility from the deterministic part and a randomly 

drawn error term from a standardized logistic distribution. Except for when the absolute 

difference in utility was smaller than the threshold value, a value of 1 was assigned to the 

choice alternative that produced the greatest utility and 0 to the other choice 

alternative(s). When the absolute difference in utility was smaller than the threshold, one 

of the alternatives in the binary choice models were randomly assigned the value of 1. In 

the ordered logit model, a value of 1 was assigned to the indifferent/indecisive alternative 

and 0 to the other choice alternative(s). These steps were repeated 2000 times using two 

sample sizes: 1152 and 2304 observations.  

   

We ran the Monte Carlo study assuming a linear and additive utility function. 

Equation (7) reflects the true difference in utility between the two alternatives:    

CostxxUUU 01,00,10,20,2)(* 2112 −++=−=∆     (7) 

                                                 
4 It is well-known that heteroscedasiticty in non-linear models is problematic and results in inconsistent 
parameters (Yatchew and Griliches, 1984). 
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The choice sets were created from the collective factorial (Louviere 1988). The first two 

attribute ),( 21 xx are dummy variables; followed by the cost attribute taking the levels 

100, 200, 300, 400, 600, and 800.  Based on the utility function, economic measures of 

value is retrieved using Hanneman’s (1984) classic formula to calculate (a) total 

willingness to pay (TWTP) for both attributes; the (b) willingness to pay for each attribute 

separately (WTP1 and WTP2); and (c) the relative willingness to pay (RWTP = 

WTP2/WTP1) to illustrate relative values, which can be useful for public policy 

decisions.5

We have two indicators of success— bias and precision.   We calculate bias by 

taking the difference of the average welfare estimates and the true value, in which we 

calculate the average welfare estimates from the 2000 simulated welfare observations. As 

a measure of precision the distribution of the 2000 simulated welfare observations is 

used, where a wider distribution indicates less precision.  

  The validity of the choice models are evaluated by comparing the true 

welfare values with the estimated.   

 
 
3. Result  

Tables 1 and 2 summarize the simulation results based on sample size, n = 2304 

or n = 1152.  Three key findings emerge.   First, as the share of indifferent/indecisive 

choices is increased, the standard binary model produces welfare estimates with more 

noise, i.e., more variance and wider distributions (see Table 1).  This is intuitive and 

expected—as more respondents cannot decide between alternatives, methods that assume 

they can decide become more imprecise.  

                                                 
5 TWTP = -(2+2+1)/-0.01=500, WTP1=-(2/-0.01)=200, WTP2=-(1/-0.01)=100 and RWTP=2/1=2 
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Second, in contrast, the precision of the ordered logit model remains good.  The 

reason is that the ordered logit model includes an additional alternative that captures the 

indecisive responses. Those that worry that including a no-opinion response will reduce 

the amount of yes and no responses will be pleased to see the model is fairly accurate 

even when the amount of no-opinion responses increases. 

Third, the additional noise has more impact on RWTP relative to WTP and 

TWTP.  Also note that the bias in TWTP never exceeds 5 percent. The bias in WTP is 

slightly greater, with an upper-limit of 13 percent. In either case, it could be concluded 

that the bias in TWTP and WTP is relatively small. If share of randomized choices is 

more than around 40 percent (see column 11 in Table 2) the bias in RWTP is 

considerable. 6

 

 This suggests resource allocation advice (i.e. share of a budget to spend on 

different attributes) could be misleading. In practice, however, it seems plausible to avoid 

such high share of randomized choices by designing a good survey through focus groups 

and pilot studies.  

4.  Conclusions 

People might have a sense of what they are willing to pay for a quart of milk, but 

for more complex goods such as environmental services it seems plausible that they only 

know their WTP within an order of magnitude (also see Hanley et al. 2009 on how some 

respondents prefer to give a range of values).  In this note we illustrate how to estimate 

such preferences by including a no-opinion alternative and compare it with a traditional 

                                                 
6 The welfare estimates are unbounded, meaning that when the parameter in the denominator goes to zero, 
the welfare measure goes to infinity. Increased error variance because of neglected threshold implies higher 
risk for this to occur, which explains the occurrence of extreme RWTP estimates. 
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CE model that assumes complete preference orderings.  A useful feature of the suggested 

CE model is that it is straightforward to apply.  

Our results show how a CE model that does not address the no-opinion alternative 

could suffer from unnecessarily noisy welfare measures. This noise can produce 

misleading conclusions on the significance of WTP, and on significant difference of 

WTP across attributes and differences across treatments. On the positive side, we show 

the problem is less serious when the amount of no-opinion responses is low and the 

sample size is high.  
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Table 1: Large Sample: Logit and Ordered Logit model (2304 observations).  

 
True TWTP = 500, True WTP1=200, True WTP2=100, True RWTP=2.  
 

 
 
Threshold 

 
 

Nr. 
Obs. 

 
 
Random 
Choices (%) 

TWTP 
(100 & 90 % CI) 

Bias  
(%) 

WTP1 
(100 & 90 % CI) 

 
 

Bias  
(%) 

 
 

WTP2 
(100 & 90 % CI) 

 
 

Bias  
(%) 

Relative part-whole value (RWTP) 
(100 & 90 % CI) 

 
 

Bias  
(%) 

Binary Logit,  
0,00 2304 0 500 0 200 0 100 0 2,03 1,5 

   (464 - 542)  (160 - 238)  (54 - 140)  (1,29 -  3,56)  
   (482 - 519)  (179 - 220)  (80 - 119)  (1,64 -  2,55)  

1,50 2304 36 498 -0,4  200 0 101 1 2,04 2,0 
   (457 - 545)  (152 - 250)  (52 - 154)  (1,25 - 4,14)  
   (476 - 520)  (175 - 225)  (76 - 125)  (1,55 - 2,70)  

3,00 2304 65 489 -2,2 203 1,5 103 3 2,12 6,0 
   (410 - 558)  (121- 307)  (3 - 194)  (1,00 - 54,33)  
   (454 - 523)  (163- 246)  (65 - 142)  (1,36 - 3,22)  

4,50 2304 84 480 -4,0 219 9,5 111 11 0,44*10^11 2,2*10^12 
   (339 - 632)  (54 - 440)  (-48 - 328)  (-0,73*10^15 - 0,81*10^15)  
   (410 - 551)  (137 - 311)  (35- 194)  (1,00 - 5,91)  

Ordered Logit 
1,50 2304 37 500 0 200 0 100 0 2.03 1,5 

   (472 - 529)  (166 - 232)  (70 - 132)  (1,43 - 2.87)  
   (486 - 514)  (185 - 216)  (83 - 116)  (1,70 - 2.43)  

3,00 2304 65 500 0 200 0 100 0 2,02 1,0 
   (472 - 530)  (164 - 240)  (53 - 137)  (1,47 - 3,70)  
   (486 - 515)  (181 - 218)  (83 - 218)  (1,67 - 2,46)  

4,50 2304 84 500 0 200 0 100 0 2,05 2,5 
   (460 - 544)  (148 - 261)  (56 - 152)  (1,14 - 3,84)  
   (481 - 519)  (173 - 229)  (77 - 123)  (1,59 - 2,65)  
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Table 2: Small Sample: Logit and Ordered Logit model (1152 observations). 

 
True TWTP = 500, True WTP1=200, True WTP2=100, True RWTP=2.  
 

 
 

Threshold 
 

 
 

Nr. Obs. 

 
 
Random 
Choices (%) 

TWTP 
(100 & 90 % CI) 

 
Bias  
(%) 

WTP1 
(100 & 90 % CI) 

 
 

Bias  
(%) 

 
 

WTP2 
(100 & 90 % CI) 

 
 

Bias  
(%) 

Relative part-whole value (RWTP) 
(100 & 90 % CI) 

 
 

Bias  
(%) 

Binary Logit 
0,00 1152 0 499 -0,2  200 0 99 -1 2,08 4 

   (451 - 550)  (147 - 259)  (45 - 164)  (1,19 - 5,37)  
   (474 - 526)  (171 - 228)  (71 - 127)  (1,52 - 2,86)  

1,50 1152 38 498 -0,4 200 0 101 1 2,10 5 
   (428 - 563)  (130 - 275)  (29 - 186)  (1,05 - 7,08)  
   (467 - 530)  (165 - 238)  (66 - 136)  (1,40 - 3.18)  

3,00 1152 64 491 -1,8 206 3 104 4 0,19*10^13 9,5*10^13 
   (398 - 606)  (85 - 332)  (-2 - 221)  (-93,48 - 0,39*10^16)  
   (443 - 543)  (145 - 269)  (48 – 163)  (1,16 - 4,42)  

4,50 1152 83 483 -3,4 224 12 113 13 0,15*10^12 7,5*10^12 
   (254 - 720)  (12 - 534)  (-143 - 441)  (-0,74*10^16 - 0,16*10^17)  
   (386 - 585)  (109 - 353)  (4 - 231)  (0,46 - 8,93)   

Ordered Logit 
1,50 1152 35 500 0 200 0 99 1 2,05 2,5 

   (458 - 534)  (138 - 248)  (54 - 144)  (1,09 - 4,17)  
   (480 - 519)  (179 - 224)  (77 - 121)  (1,61 - 2,65)  

3,00 1152 64 500 0 200 0 100 0 2,06 3 
   (463 - 542)  (150 - 258)  (43 - 151)  (1,30 - 4,37)  
   (479 - 521)  (174 - 227)  (75 - 151)  (1,57 - 2,75)  

4,50 1152 83 500 0 201 0 100 0 2,10 5 
   (451 - 562)  (131 - 291)  (29 - 181)  (0,94 - 5,28)  
   (474 - 527)  (164 - 242)  (68 - 133)  (1,45 - 3,02)  
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