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Resumen: Presentamos nuevos resultados en relación con la fuerte incompatibi­
lidad entre caos y paciencia en modelos macroeconómicos de acumu­
lación de capital. Los resultados son aplicaciones no triviales y ex­
plícitas del teorema general probado en Guerrero-Luchtenberg (2000), 
en cuyo trabajo el concepto (teorema 2) 'el caos desaparece a medida 
que el factor de descuento tiende a uno', es formalizado y probado. 
Aquí, exponemos en detalle cómo dicho resultado se aplica a algunos 
importantes conceptos de caos no analizados anteriormente. Precisa­
mente, mostraremos que, dada una familia de modelos de crecimiento 
óptimo, existe un valor del factor de descuento, digamos <5, tal que, 
para cualquier otro valor 6 mayor que 6, cualquier tipo de caos es 
irrelevante. 

Abstract: We present in this paper some new results on the strong incompatibil­
ity between chaos and patience in a macroeconomic model of capital 
accumulation. These results are explicit and non-trivial applications of 
the general theorem proven in Guerrero-Luchtenberg (2000), in which 
the statement (Theorem 2) 'Chaos vanishes as the discount factor tends 
to one', is formally presented. Here, we show precisely how this state­
ment applies to some important indicators of chaos not analyzed before. 
Furthermore, we will show that, for a given family of optimal growth 
models, there is a bound on the discount factor, say 6, such that, for 
any 6 larger than 6, any type of chaos is negligible. 
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1. Introduction 

Consider a deterministic, reduced form of optimal growth models with 
discounting, given by: 

sup y ^ 6 t + 1 u ( x t , x t + i ) 
t=0 

s.t. ( x t , x t + i ) € D V i > 0 

x0 given, 

where D is the feasible set, x0 is the initial state, 6 is the discount 
factor (a real number between zero and one) and it is the felicity 
function. 1 

It is well known that, in this type of models, chaos is precluded 
under strong concavity assumptions over the felicity function, if the 
felicity function is fixed (the standard turnpike theorems; see, espe­
cially, McKenzie (1986) and Sheinkman 1976). More precisely, if the 
discount factor is large enough, the optimal path of capital accumula­
tion converges to the steady state, g i v e n the f e l i c i t y f u n c t i o n . On the 
other hand, it is also well known that chaos is possible in that type of 
models. See, for example, Boldrin and Montrucchio (1986) and, espe­
cially, Nishimura and Yano (1995) and Nishimura, Sorger and Yano 
(1994). Furthermore, in these last papers it is shown that there exist 
families of strictly concave felicity functions, such that for any value 
of the discount factor, there is a member of the family that displays 
chaos. These results highlight the necessity of an appropriate justifi­
cation of the uniform comparative analysis used in empirical works, 
because it is impossible to find an upper bound on the discount factor 
in such a way that in all members of the family there is convergence 
to the steady state. 2 

Indeed, in applications, the set-up is typically a family of models 
instead of a single model, in such a way that the felicity functions 
are not fixed. Therefore, the standard turnpike theorems cannot be 
cited in order to ensure the existence of a single value of the discount 
factor such that there is convergence to the steady states for all the 

1 Note that the model presented here is much more general than the Ramsey-
Solow model of capital accumulation. 

2 See, for more studies on the presence of chaotic behavior in economics, the 
special issue of the J o u r n a l of E c o n o m i c Theory (2001). 
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family. Hence, the typical dynamic comparative analysis, by means 
of the steady states, cannot be used without further justification. 

To justify that type of comparative analysis, we may cite some 
works that show the existence of upper bounds for the discount factor 
in order for a given type of chaos to be possible, for instance, Mi t ra 
(1996) and (1998), Montrucchio and Sorger (1996), Nishimura and 
Yano (1995), and Sorger (1994), among others. Nevertheless, in all 
these studies, the type of chaos is fixed, and hence the upper bounds 
cannot preclude other types of chaos. 

On the other hand, in order to find a global justification of the 
comparative analysis, we can appeal to the uniform turnpike theorem 
proven in Guerrero-Luchtenberg (2000), the theorem 3 in that paper. 
That theorem, nonetheless, is proven under strong assumptions of the 
type 'uniform strong concavity over the family' (assumption A '7 in 
that paper). Now, that assumption, however, is notable relaxed in 
the theorem 2 in Guerrero-Luchtenberg (2000), a result that can be 
interpreted as 'quasi uniform convergence to the steady states all over 
the family', and that can also be used to find a global justification of 
the comparative analysis. Nevertheless, that last theorem does not 
explicitly show how it can be applied to minimize specific concepts 
of chaos.3 For this reason, in Guerrero-Luchtenberg (2000), the case 
of the ergodic chaos is treated in detail. Furthermore, in that paper 
it is suggested that the uniform neighborhood turnpike theorem can 
also be used to explicitly study other types of chaos. 

The purpose of this study is, therefore, to show explicitly how 
theorem 2 in Guerrero-Luchtenberg (2000) is applied in order to min­
imize —in the sense expressed above— some well known and impor­
tant indicators of chaos. Furthermore, we will show that, for a given 
family of optimal growth models, there is a bound on the discount 
factor 6 such that, for any 6 > 6, any type of chaos is negligible for 
all the family, providing a general justification for the comparative 
analysis used in empirical works. 

The rest of the paper is as follows. In section 2, for the sake of 
completeness, we roughly introduce the model and the basic defini­
tions, and we announce the theorem 2 given in Guerrero-Luchtenberg 
(2000). Section 3 presents some basic definitions about dynamical 
systems. In section 4, we formally present and prove the statement 

3 Informally, we understand 'minimize' in the sense that the chaos is irrelevant, 
in such a way that the typical dynamic comparative analysis can be applied (see 
the remark 1 bellow). The formal expression of this idea is the content of our 
theorem 2. 
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'chaos vanishes as the discount factor tends to one', our theorem 2; 
also, we prove the theorems 3 and 4, which are the applications of 
theorem 2 to some indicators of chaos presented in section 3. Finally, 
we conclude in section 5. 

2. The Model 

As our work is heavily based on Guerrero-Luchtenberg (2000) and 
McKenzie (1986), we refer to these studies for the details on the 
model and the proofs of the results used in this paper. 

Take £> C 5R+ x 9?" where n > 1, u : D - • 3?, and 6 € (0,1]. The 
set D is the t e c h n o l o g y , the function u is the f e l i c i t y f u n c t i o n and 6 
is the d i s c o u n t f a c t o r . We say that a sequence {x(} C 5R£ is a p a t h 
if ( x u x t + i ) € D , for all t € AT. 4 We define an o p t i m a l p a t h from a 
capital stock x 6 9?£, as a path {A:t} such that: k0 = x, and 

T 
limsup V [ 6 t + 1 u ( x t , x t + 1 ) - S t + 1 u ( k u k t + 1 ) ] < 0 

T - ° ° fco 

for all paths {x (}, such that x 0 = x. 
A stationary optimal path kt = k for all t € N is called an 

OpiimaZ Steady State, OSS. 
A l l members of the family of optimal growth problems that we 

wil l define later are assumed to satisfy the assumptions AO-A" 7-A8 
given in Guerrero-Luchtenberg (2000). It is important to notice that 
those assumptions are standard in optimal growth theory. 

Notice that for any 5 € (s, l ] 5 and (u, D ) satisfying A0-A5, there 
exists ( k u ' s , q u ' 6 ) e 3*+™, qu'6 ^ 0 and ( k u ' 6 , k u ' s ) e D , such that the 
path kf's = ku's for all t e N , is an OSS supported by f u l l Weitzman 
p r i c e s 6 of the form pfs := i V ' 4 . Furthermore, for any k0 G R^. there 
exists an optimal path jfc"' Ä j from k0. If A;0 S {0} , any optimal 
path from fc0 is bounded and can be supported by full AVeitzman 
prices pt's : = S^"'6. 

4 N = {0,1,2,...} 
5 For the definition of the number 6, see Guerrero-Luchtenberg (2000). 
6 This is a standard concept in optimal growth theory. For a precise definition 

see Guerrero-Luchtenberg (2000). 
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Under A0-A"7-A8 it is possible to show that there is a well de­
fined function h : K —> K , called the policy function, where K is a 
compact non-empty set of 3t\. This function is continuous and sat­
isfies that { k t } is an optimal path from x if and only if it satisfies 
that 

k t + i = h ( k t ) V « 6 N with kQ = x 

For the sake of exposition, we will reproduce some notation and 
definitions given in Guerrero-Luchtenberg (2000). Once again, we 
refer to that paper for the details. 

Let { k t } be an optimal path from k0 € K £ \ {0} and 

frq?'6} be the corresponding supporting prices. 

Let 

Q u ( k o , U ' S } ) : = sup { l^l , 9H) 
1 J s e ( i , i ] ; t > o K u 

Take any family as follows, 

U = { u : D - 5ft | ( u , D ) satisfying AO - A " 7 - A 8 } (1) 

Now we define7 

V ( k 0 , { { q ? - s } \ u € U , 6 e ( 6 , l ) } ) 

= \ u : D ^ ^ \ u = ! L _ _ £ € i / l ( 2) 

7 Notice that we write U ( k 0 , {{if'*} \u€U,6€ ( 6 , 1)}) in order to 
emphasize the fact that the family depends on A;0, and 

provided that for a given U € U and &o, the prices {<?"'*} are not necessarily 

unique. 
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In what follows we wil l consider any family as in (1) such that 

for any k0 € » i \ {0} and for any optimal path from k0 with { t f ' g ^ } 

as a corresponding supporting prices for 6 € (*, 1), 

U ( k 0 , { { q ? ' S } \ u € U , 6 e ( 6 , l ) } ) 

satisfies the concavity condition and is relatively compact. In this 
case, we say that U satisfies the c o n c a v i t y c o n d i t i o n u n i f o r m l y a n d 
t h a t i t i s u n i f o r m l y r e l a t i v e l y compact. 

All our results are based on the following 

THEOREM 1. ( A U n i f o r m N e i g h b o r h o o d T u r n p i k e T h e o r e m ) Take any 
V as i n ( 1 ) t h a t satisfies the c o n c a v i t y c o n d i t i o n u n i f o r m l y a n d t h a t 
i s u n i f o r m l y r e l a t i v e l y compact. Take a l s o any k0 e B £ \ { 0 } , a n d 

denote by {fc" , 6(fc 0)} the o p t i m a l p a t h f r o m k0 6 5RJ\ {0} f o r a g i v e n 

u e U a n d 6 G [0,1]. Then, f o r any e > 0 t h e r e exists N ( e ) a n d 

0 < 6(s) < 1 such t h a t we have |fc t

t t , 4(* 0) - fcu'*| < e f o r a l l t > N ( e ) , 

f o r a l l 6 ( e ) < 6 < 1, u € V a n d k0 € M % \ {0}. 

PROOF. It follows at once from theorem 2 in Guerrero-Luchtenberg 
(2000). I 

3. Dynamical Systems 

In this section we will give some basic definitions about dynamical sys­
tems. Nevertheless, before we start with these definitions, we would 
like to make one more general comment about the concepts of chaos 
that we will consider. Most definitions are made for the sake of study­
ing the long run behavior of optimal solutions and chaos is then de­
fined by using concepts entailing, essentially, some kind of uncertainty 
about the 'final future' of the dynamical system under consideration. 
So the precise formulation of our basic results will be made following 
this basic idea, that is, that chaos vanishes if uncertainty vanishes, 
in the sense that in spite of any theoretical presence of some kind of 
chaos, the 'long run future' of the system is not uncertain: It will be 
possible to say that the system, in the long run, is so close to the 
OSS, that any theoretical comparative analysis made by means of the 
corresponding steady states is justified, which constitutes one of the 
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main objectives of this study. The formal expression of this idea is 
precisely the content of the following theorem 2. 

A point y € is called a n u - l i m i t p o i n t of k0 € R£ if 
there is an optimal sequence { k t } from k0 and a subsequence { k t } 
of { k t } such that Urn kt, = j / . Denote by W ( k 0 ) the set of all w -

. J £ ' » n U . S i n n f r ™ IT T k L L ^ ' i c 

/ - •a l lor i f Vi*> at nip c n n r > t > 

I T t a i Hpf inP 1 ,0 / , X _ „ a n f 1 f n r a n v t > l i t e W l 

r u i <uiy x t /\ , utuiiic n. ^xj — x, diiu 101 diiy n. ^ i ^ t iv j 

ftfe(x) = ft(ft*-I(*))-

We say that the sequence { h \ x ) } is generated by the i t e r a t i o n s 
of h f r o m x, and that h% is the i t e r a t i o n of h up to o r d e r k. Also, 
the sequence { h * ( x ) } is called the o r b i t f r o m x. A point x € K is 
called a p e r i o d i c p o i n t of h, if { h * ( x ) } is finite and h " ( x ) = x for some 
p > 1. The smallest such p is called the p e r i o d of x. If there exists 
a periodic point of period *, then we say that the dynamical system 
( K , h ) hasperiod-k cycles. 

For the sake of the exposition, we present the following defini­
tions. 

DEFINITION 1. F o r any 6 € (s,ljand u e U, l e t Wu'S(k0) denote 

the u> - l i m i t set o f k0; take any f a m i l y U a n d define the f u n c t i o n 

f 0 : (S, 1 ) -» 3? U {oo} given by 

f 0 ( 6 ) = sup / sup | j , - * - 4 | l 
* o € ^ \ { 0 } ; u e i / [veW"-i(ko) J 

DEFINITION 2. Take any U as i n ( 1 ) t h a t satisfies the concavity c o n ­
d i t i o n u n i f o r m l y a n d t h a t is u n i f o r m l y r e l a t i v e l y compact. Take, f o r 
a given u £U a n d 6, any t w o points x a n d y i n a n d the c o r r e ­
sponding w - l i m i t sets, WuS(x) a n d WuS(y). Now take d ( W u S ( x ) , 
WuS(y)) = sup{| z - v || z € WuS(x),v€ WuS(y)} (the maximum 
distance between any t w o possible w - l i m i t points of x a n d y respec­
t i v e l y ) . D e f i n e now D { u , 6 ) = s a p { d ( W u j ( x ) , Wuj(y)) | ( x , y ) € 

(the maximum distance between any t w o possible w - l i m i t points 
of the system [ u , D , 6 ) ) a n d 
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D¿j(6) = sup{¿>(M) u e £ / j sup 

(i/ie maximum distance between any t w o possible w - l i m i t points of 
the f a m i l y of systems). 

Now we can prove the main results of this paper. 

4. The Main Results 

4.1. The G e n e r a l Statement 'Chaos Vanishes as the D i s c o u n t F a c t o r 
Tends to One' 

As we have commented above, the chaos vanishes if the uncertainty 
vanishes, in the sense that in spite of any theoretical presence of some 
kind of chaos, the 'long run future' of the system is not uncertain: It 
wil l be possible to say that the system, in the long run, is so close to 
the OSS that any theoretical comparative analysis made by means of 
the corresponding steady states is justified, which constitutes one of 
the main objectives of this study. 

Formally: 

THEOREM 2. Take any U as i n ( 1 ) t h a t satisfies the concavity c o n d i ­
t i o n u n i f o r m l y a n d t h a t is u n i f o r m l y r e l a t i v e l y compact. Then, 

( i ) 

a n d 

( i i ) 

lim f 0 ( S ) = 0 
¿-»1 u 

lim f 0 { 6 ) = 0 i f a n d only i f l im D 0 { 6 ) = 0 
¿—•i ¿—»1 

PROOF. First, we prove (i). The proof is by contradiction. Suppose 
the theorem is false, then there exists a family Ù satisfying the con­
ditions of the theorem, such that lim f,-,(6) ^ 0. Then there is an 

i->i 

£ > 0, a sequence { S i } C (è, 1̂  such that Si -» 1, and a sequence kl

0 

£ 9?" \ {0} such that there exists y i € WUi'il(ko) such that 
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\ y i - k u , A I > e V / large enough 

for some sequence {u/} C U. 
Now, by construction of the set K , for any kl

0 € 8 £ \ {0}, if 
{ M * o ) } denotes the optimal path from kl

0, then there exists an in­
teger t i such that k t l ( k l

0 ) will belong to K . 
Let x l

0 e K denote such a point, that is, we write 

*o : = *t,(*o) V / € TV 

Notice that from the definition of w - limit sets, one can prove 
that 

Wu,'ei(xl

0) = WVl'6l{kl

0) 

Therefore, for all I € N we have that y i £ W " 1 ' * ' ^ ) , implies 

W € W * " * > ( x l

0 ) 

then there exists a sequence {fc^ ' 6 '} from xl

0 and a sub-sequence 

{fct"''*1} C jfct"''*'} such that 

lim A;"1'*' = 
K—»00 

Therefore, 

k u t A _ jfc»«.*i| > e V fc and I large enough, (3) 

a contradiction with the theorem 1. This completes the proof of the 
part (i). 

Now we prove (ii). First we prove the implication if lim f„(6) = 

0, then l i m i _ i D & ( 6 ) = 0. 
Take any pair (u,S). Now, take any two possible initial states 

( x , y ) £ and any two possible to-l imit points of x and y respec­
tively, say z(x) € WUtS(x) and v ( y ) € Wu,6(y). Recall that for 6 > 6, 
k u < 6 is well defined (the lemma 1 and the theorem 1). Hence, suppose 
that 6 > 6. Now we have 

I z(x) - v { y ) \ < \ z { x ) - ku's | + | v ( y ) - ku'S | . 

Consequently, 
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D ( u , S ) < sup \ y - k u ' s \ + sup | y - ku'S | . 
yewu,s(x) y e w u , c ( y ) 

Therefore, 

D 0 { 6 ) < f 0 ( S ) + f 0 { S ) = ^ f 6 ( 6 ) . 

Hence, l im Dy(tf) = 0. 

Finally, we prove the implication, if l im«_i = 0, then 
Jim f 0 { 6 ) = 0. Suppose the implication is false. In this case, l i m a - i 

D 0 ( 6 ) = 0, but lim f 0 ( 6 ) ? 0. Now, if lim f 0 ( 6 ) # 0, we can reason 

as in part (i) and find, for a given s > 0, a sequence 

{ 6 i } C ( s , l ) 

such that St -» 1 and optimal sequences 

{ k i t " 6 1 } 

and subsequences 

in such a way that (3) holds for some sequence { u t } c U . Now for a 
nx t in \" J j ooserve tn^t 

{*£**} 

is a bounded sequence, and then there exists a point zt <E R?. that is 
the limit of a subsequence of 

consequently, z\ is an w-limit point of \k"lM} hence, D ( u u Si) > e for 

all I large enough, which would imply that l i r n ^ Dç(6) > e a con­
tradiction. Inis ends the proot ot the implication, it lim^—i VQ(Ù) -
0, then lim /y(<5) = 0. I 
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REMARK 1. O b s e r v e t h a t t h e o r e m 2 c o n s t i t u t e s a n e x p r e s s i o n of o u r 
g e n e r a l statement 'chaos vanishes as t h e d i s c o u n t f a c t o r tends t o one': 
Indeed, if p o i n t ( i ) i n t h e o r e m 2 h o l d s , g i v e n any a r b i t r a r y e > 0, f o r 6 
l a r g e e n o u g h , a l l t h e w - l i m i t p o i n t s of a l l t h e systems w i l l be i n s i d e a 
b a l l of r a d i u s e a b o u t t h e c o r r e s p o n d i n g steady states. I n o t h e r w o r d s , 
b u t i n f o r m a l l y , we c a n say t h a t no m a t t e r t h e type of chaos a f a m i l y 
of systems d i s p l a y s , i n t h e l o n g r u n , t h e chaos i s shut i n a n e - b a l l 
(because a l l t h e w - l i m i t p o i n t s a r e shut i n a n e - b a l l a b o u t t h e steady 
s t a t e s ) , if t h e d i s c o u n t f a c t o r i s l a r g e r t h a n a u n i f o r m S, i n such a 
way t h a t f o r a l l t h e f a m i l y t h e chaos w i l l be i r r e l e v a n t , p r o v i d e d t h a t e 
i s chosen s m a l l e n o u g h . T h i s s i t u a t i o n i s q u i t e a n a l o g o u s t o t h e co.se 
i n w h i c h t h e r e i s c o n v e r g e n c e t o t h e steady s t a t e , b u t t h e steady state 
i s never reached. 

REMARK 2. T h e r e i s a n i m p o r t a n t f a c t i n t h e proof of t h e t h e o r e m 
2 t h a t has t o be n o t i c e d : I n t h e i m p l i c a t i o n t h a t if \ \ m S - > i D 0 { 6 ) = 0 
then l im f 0 ( 6 ) = 0, i t i s h e a v i l y used t h a t a l l t h e o p t i m a l s o l u t i o n s a r e 

bounded. W i t h o u t t h i s p r o p e r t y o v e r t h e o p t i m a l s o l u t i o n s , o u r a r g u ­
ment f a i l s . I t i s o u r c o n j e c t u r e t h a t t h e i m p l i c a t i o n need n o t h o l d . 
The f a c t t h a t a l l o p t i m a l s o l u t i o n s a r e b o u n d e d i s a l s o b e h i n d o u r i n ­
t u i t i v e i n t e r p r e t a t i o n of t h e o r e m 2 g i v e n i n t h e r e m a r k 1 . Indeed, t a k e 
a n o p t i m a l s o l u t i o n . N o w , g i v e n t h a t i t i s bounded, one c a n decom­
pose t h e o p t i m a l p a t h i n c o n v e r g e n t subsequences ( c o n v e r g e n t t o some 
w - l i m i t p o i n t ) , i n t h e sense t h a t t h e u n i o n of a l l those subsequences 
c o i n c i d e s w i t h t h e o r i g i n a l o p t i m a l p a t h . S i m p l y , t a k e t h e f a m i l y of 
t h e w - l i m i t p o i n t s of t h e o p t i m a l s o l u t i o n a n d then c o n s i d e r t h e c o r ­
r e s p o n d i n g f a m i l y of subsequences c o n v e r g i n g t o those w - l i m i t p o i n t s . 
Thus, g i v e n t h a t t h e o p t i m a l p a t h i s bounded, t h e r e c a n n o t r e m a i n a 
subsequence t h a t i s n o t c o n v e r g e n t . T h e r e f o r e , i n f o r m a l l y , one c a n 
say t h a t t h e o p t i m a l s o l u t i o n , i n t h e l o n g r u n , i s c l o s e c l o s e t o some 
w- l i m i t p o i n t . C o n s e q u e n t l y , g i v e n t h a t a l l t h e w - l i m i t p o i n t s a r e 
c l o s e t o t h e steady s t a t e , t h e o p t i m a l s o l u t i o n itself, i n t h e l o n g r u n , 
i s c l o s e t o t h e steady s t a t e . 

Now we treat the case of the topological chaos. 

4.2. T o p o l o g i c a l Chaos 

We wil l say that a dynamical system ( K , h ) displays t o p o l o g i c a l chaos 
or that is t o p o l o g i c a l ^ c h a o t i c if there exists a subset E C K such 
that: 

http://co.se


5 6 ESTUDIOS ECONÓMICOS 

T l E is uncountable, 
T2 E does not contain any periodic point of h , 
T3 For any (x, y ) € E x E such that x / y , 

\ \ m - m i \ h t ( x ) - h t ( y ) \ = 0 
t—>oo 

and 
limsup | /i '(x) - |> 0, 

i—oo 

T4 For any periodic point y e K and any x € E , 

limsup | h \ x ) - fc'(y) |> 0. 
t-too 

A set E C K is called a s c r a m b l e d set if it satisfies T1-T4. 
Also, we say that a n o p t i m a l g r o w t h p r o b l e m ( u , D , 6 ) d i s p l a y s 

t o p o l o g i c a l chaos if the dynamical system ( h , K ) displays topological 
chaos, where h is the policy function of (tt, D , 6 ) . 

Note that T3 and T4 are indeed a way to describe some type of 
uncertainty about final states, because it may be possible that two 
optimal paths from different points do not converge to the same point; 
further, they may not even converge to the same periodic point; also, 
no periodic point can be globally stable, again, a very undesirable fact 
regarding final states. Nevertheless, the relevance of this type of chaos 
depends on how "big" is the scrambled set in terms of probabilistic 
concepts. Indeed, it has been proven that the scrambled set may have 
zero Lebesgue measure (see Collet and Eckmann, 1986), in which case 
there is zero probability of choosing points satisfying T3 or T4. Notice 
that this may not imply that there is zero probability of observing 
topological chaos. Think of the case when the scrambled set is a 
global attractor. 

Now we wil l show that the uncertainty implied by topological 
chaos vanishes as the discount factor tends to one. The intuition of 
the result is the following. As we have commented in the paragraph 
above, the concept of topological chaos entails the impossibility of 
certain predictions in the long run. Therefore, if we have a family 
such that for any value of the discount factor there is a member of the 
family such that the corresponding optimal growth problem displays 
topological chaos, the expression 'chaos vanishes as the discount factor 
tends to one', means that if the discount factor is large enough, the 
distance from any two possible final states is very close to zero, and 
then any uncertainty in the long run would be irrelevant. Formally: 
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THEOREM 3. Take any U as i n ( 1 ) t h a t satisfies the c o n c a v i t y c o n d i ­
t i o n u n i f o r m l y a n d t h a t is u n i f o r m l y r e l a t i v e l y compact. Suppose t h a t 

f o r every 6 € (0,1) t h e r e exists ug € U such t h a t the o p t i m a l g r o w t h 
p r o b l e m { u s , D , 6 ) d i s p l a y s t o p o l o g i c a l chaos. L e t h u * denote the p o l ­
i c y f u n c t i o n of o p t i m a l g r o w t h p r o b l e m { u s , D , 6 ) . L e t S f t " denote the 
s c r a m b l e d set o f ( h u * , K ) . 

Let CT3(S) 

sup i\imsup\(h<»)t(x)-(hUi)t(y)\} 
(x,y)€E"Ui xE k "» such that x ^ y I J 

a n d 
C T A { 6 ) g i v e n by 

sup ( l i m s u p | { h U 6 ) \ x ) 
yeK p e r i o d i c p o i n t of h " t a n d a n y x e W * I «-«> 

- ( h U i Y ( y ) | } • 

Then we have 

l im C T 3 ( 6 ) = 0 (4) 

a n d 

lim C T i { 6 ) = 0. (5) 

PROOF. It follows at once from corollary 1. Simply, if you assume 
the contrary, for a given e > 0, it will be possible to find, for any 6, 
w- limit points for which the distance between them is larger than e, 
contradicting the part (ii) in theorem 2. | 

Now we consider the concept of sensitive dependence on initial 
conditions. 

4.3. Sensitive Dependence on I n i t i a l C o n d i t i o n s 

We say that a dynamical system ( K , h ) has, for a given s > 0, 
e - s e n s i t i v i t y or that it displays e- sensitive dependence on i n i t i a l 
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c o n d i t i o n s if there is a set E C K of strictly positive Lebesgue mea­
sure such that, for every y e E and every neighborhood B of y , there 
exists a z € B and a t € N such that 

! / , » ( » ) > e 

Intuitively, the general idea of this definition is that if y € E , no 
matter how close to y we are studying the behavior of the system, 
there exists a point z that wi l l be e-separated sooner or later. So, 
if for some reason we are not able to distinguish between two points 
that are not e-separated at the beginning of period of consideration, 
we wil l be able to distinguish between them after some time. Clearly, 
this is a way to describe some undesirable behavior of a dynamical 
system regarding final states, in the sense that minor changes in the 
initial conditions result, probably, in significant differences after some 
time. 

We wil l say that a n o p t i m a l g r o w t h p r o b l e m ( u , D , 6 ) d i s p l a y s 
e - s e n s i t i v i t y if the dynamical system ( h , K ) displays e - s e n s i t i v i t y , 
where h is the policy function of («, D , 6 ) . 

Now we will prove that if there is a family U as in (1) that satisfies 
the concavity condition uniformly and that is uniformly relatively 
compact, such that for every 6 € (0,1) there is a member ug of U 
and an eU6 > 0 such that ( u , D , 6) displays s U ( - sensitive dependence 
on initial conditions, then for every e > 0, there is number 6 { e ) , such 
that if 6 is larger than 6 ( e ) , we have that eUi cannot be larger than 
e. This means precisely that the eUs-sensitive dependence on initial 
conditions is no longer relevant for a 6 that is large enough. Formally: 

THEOREM 4. Take any U as i n ( 1 ) t h a t s a t i s f i e s t h e c o n c a v i t y c o n d i ­
t i o n u n i f o r m l y a n d t h a t i s u n i f o r m l y r e l a t i v e l y c o m p a c t , such t h a t f o r 
every 6 € (0,1) t h e r e exists a member us € U a n d a n e s > 0 such t h a t 
t h e o p t i m a l g r o w t h p r o b l e m ( u s , D , 6 ) d i s p l a y s e g - s e n s i t i v i t y , then 

l im eg = 0. 
i — l 

PROOF. Suppose that the corollary is false. In this case there is a 
family U, an e > 0, a sequence { 6 t } C (0,1) a sequence { u i } C U and 
a sequence { e t } C 5R+ such that 6i -» 1, ei > t for all I large enough 
and for all I , the dynamical system ( h l , K ) displays et- sensitivity, 
where h l denotes the policy function of the optimal growth problem 
( u l , D , 6 i ) . 
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Now, notice that if K is compact and h is continuous, then if ( K , h ) 
has e - s e n s i t i v i t y , then for any / <E N there exist y t £ E \ { 0 } , zt £ 
K \ {0} and tt € N with tt > I, such that 

\ h t ' { y l ) - h t ' { z i ) \ > e 

because given e > 0, for any I € N fixed, there exists a Q > 0 such 
that [ y , z ) £ K x K and \ y - z \ < a , implies | A'fo) - h\z) \ < e for 
all t < I 

Consequently, for every / e N there exist y i € £? \{0} , zi e 
/ i \ {0} and tt€N with i ( > i , such that 

\ { h l ) t l ( y i ) - { h l ) t ' ( z i ) \ > e , > e 

Therefore, 

l i m i n f K / i ' ) ' ' ^ ) - ^ ) 4 ' ^ ) ! ^ ^ 
i —* OO 

and thus 

l i m i n f / f j ^ i ) > e 

a contradiction with theorem 2. Then the theorem 4 is proven. | 

5. Conclusions 

As commented in the introduction, in order to justify what we called 
'the uniform comparative analysis' used in empirical works, neither 
the standard turnpike theorems nor the specific lower bound found in 
relation to some fixed type of chaos can be cited. In this paper, we 
show how the theorem 2 in Guerrero-Luchtenberg (2000) can be ap­
plied in order to minimize the topological chaos and the e- sensitive 
dependence on the initial conditions, two concepts not analyzed in 
previous studies. Furthermore, we prove theorem 2, in which no spe­
cial concept of chaos is considered. Therefore those results are an ap­
propriate justification for the uniform comparative analysis. It rests 
then to study if another result of this type is possible under weaker 
conditions. Also, it would be interesting to find the necessary con­
ditions for the theorem 2 to hold. Both questions are left for future 
research. 



60 ESTUDIOS ECONÓMICOS 

References 

Boldrin M. and L. Montrucchio (1986). "On the Indeterminacy of Capital Ac­
cumulation Paths, J o u r n a l of Economic Theory, Vol. 40, pp. 26-39. 

Collet P. and J. P. Eckmann (1986). I t e r a t e d M a p s on the I n t e r v a l as D y n a m i c a l 
Systems. Progress i n Physics, Boston, Birkhauser. 

Guerrero-Luchtenberg, C. L. (2000). "A Uniform Neighborhood Turnpike The­
orem and Applications", J o u n a l of M a t h e m a t i c a l Economics, Vol. 34, pp. 
329-355. 

Mitra, T. and K. Nishimura (eds.) (2001). I n t e r t e m p o r a l E q u i l i b r i u m Theory: 
Indeterminacy, B i f u r c a t i o n s , and Stability, J o u r n a l of Economic Theory, 
special issue, Vol. 96, No. 1/2, February. 

Mitra, T. (1998). "On the Relationship between Discounting and Complicated 
Behavior in Dynamic Optimization Models, J o u r n a l of Economic Behavior 
and O r g a n i z a t i o n , Vol. 33 (3-4), special issue, pp. 421-434. 
(1996). "An Exact Discount Factor Restriction for Period-Three Cycles in 

Dynamic Optimization Models", J o u r n a l of Economic Theory, Vol. 69, pp. 
281-305. 

McKenzie, L. W. (1986). "Optimal Economic Growth, Turnpike Theorems and 
Comparative Dynamics", in K. Arrow (ed.), Handbook of M a t h e m a t i c a l E c o ­
nomics, Vol. Ill, pp. 1281-1355. 

Montrucchio L. and G. Sorger (1996). "Topological Entropy of Policy Func­
tions in Concave Dynamic Optimization Models", J o u r n a l of M a t h e m a t i c a l 
Economics, Vol. 25, pp. 181-194. 

Nishimura, K. and M. Yano (1996). "On the Least Upper Bound of Discount 
Factors that Are Compatible with Optimal Period-Three Cycles, J o u r n a l of 
Economic Theory, Vol. 69, pp. 306-333. 

(1995). "Nonlinear Dynamics and Chaos in Optimal Growth: An Exam­
ple", Econometrica, Vol. 63, pp. 981-1001. 

Nishimura, K., G. Sorger and M. Yano (1994). "Ergodic Chaos in Optimal 
Growth Models with Low Discount Rates", Economic Theory, Vol. 4, pp. 
705-717. 

Scheinkman, J. A. (1976). "On Optimal Steady States of n-sector Growth Mod­
els when Utility is Discounted", J o u r n a l of Economic Theory, Vol. 12, pp. 
11-30. 

Sorger, G. (1994). "Period Three Implies Heavy Discounting, Mathematics of 
Operations Research, Vol. 19, pp. 1007-1022. 

Stokey, N. L. and R. Lucas (1989). Recursive Methods i n Economics Dynamics, 
Harvard University Press, Cambridge. 


