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Abstract

This paper presents a condition equivalent to the existence of a Riskless Shadow

Asset that guarantees a minimum return when the asset prices are convex functions of

interest rates or other state variables. We apply this lemma to immunize default free and

option free coupon bonds and reach three main conclusions. First, we give a solution to

an old puzzle: why do simple duration matching portfolios work well in empirical

studies of immunization even though they are derived in a model inconsistent with

equilibrium and shifts on the term structure of interest rates are not parallel, as as

sumed? Second, we establish a clear distinction between the concepts of immunized and

maxmin portfolios. Third, we develop a framework that includes the main results of this

literature as special cases. Next, we present a new strategy of immunization that consists

in matching duration and minimizing a new linear dispersion measure of immunization

risk. Ó 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

This paper develops a general framework to study bond portfolio immu-
nization. This framework includes most models in this literature as special
cases, and it allows three main contributions to the literature on immunization.
First, the duration puzzle, presented in the literature years ago, is explained
and resolved. Second, a clear distinction between the concepts of an immunized
portfolio and a maxmin portfolio is made. Third, a theoretically sound new
strategy for immunization is presented.

Denote the investor planning period by m, and let R be the return on a zero
coupon bond that matures in m years. A portfolio is said to be immunized, if it
guarantees a return R at m, regardless of changes in interest rates. All immu-
nization strategies involve the use of a ``duration measure'', or vector of du-
ration measures, and all of these measures depend on the assumed shocks to
interest rates, or on the factors that determine the term structure of interest
rates. 2

The immunization literature also presents a well-de®ned puzzle. In empirical
immunization studies, Macaulay duration matching portfolios often work as
well as more complex immunizing strategies, despite two strong criticisms.
First, the Macaulay duration is derived from a model that implies arbitrage
opportunities (Ingersoll and Skelton (1978)), and therefore, it is inconsistent
with equilibrium (see also Cox et al., 1979). Second, shifts in the term structure
of interest rates are far from parallel, as assumed. Although a solution to the
®rst part of the puzzle is given, for instance, in Bierwag (1987), where it is
shown that this duration measure may be also derived from an equilibrium
process, 3 the second problem is still unsolved. 4

2 For instance, Macaulay (1938) and Fisher and Weil (1971) assume additive shocks on the

interest rates. Bierwag (1977), Bierwag et al. (1981), Khang (1979), Chambers et al. (1988), Prisman

and Shores (1988), Prisman and Tian (1993), Paroush and Prisman (1997), and others assume other

more general shocks. Cox et al. (1979), Brennan and Schwartz (1983), Nelson and Schaefer (1983)

and others study immunization strategies in equilibrium models of the term structure. Finally, a

more recent approach is to study empirically the factors that move the term structure as in Elton et

al. (1990), Litterman and Scheinkman (1991), Ilmanen (1992), D'ecclesia and Zenios (1994) and

others.
3 We thank a referee for pointing out this reference.
4 Brennan and Schwartz (1983) and Schaefer (1992) have also attacked the duration puzzle from

a more empirical point of view. They showed that in a two factor empirical model, one factor is

similar to duration, and the relationship between both factors is approximately linear in duration

for a coupon bonds example. This fact implies, among other things, that the portfolio hedging both

empirical factors will be a matching duration portfolio. However, this answer is only partial. First,

because it does not recognize that among matching duration portfolios there is a better portfolio, as

Fong and Vasicek (1984) and this paper show theoretically, and Bierwag et al. (1993) and others

show empirically. Furthermore, as these authors themselves recognize, this result depends on the

empirical linear relationship between factors and duration.
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Bierwag and Khang (1979) show that an immunized portfolio is a maxmin
portfolio, i.e., it guarantees the highest return, under the assumption of parallel
shocks on the interest rates. Later, Prisman (1986) extends this maxmin result
to a more general context, and recently, Bowden (1997) points out that both
concepts are not equivalent in more general models.

To study the immunization problem, in Section 2 of this paper, we assume
three very simple and general hypotheses that are veri®ed by most immunization
models. These hypotheses allow us to prove Lemma 2.1 and, from this lemma,
we establish three main results on immunization. First, Theorem 2.3 shows that
there always exists a maxmin portfolio in an immunization model. Second,
Theorem 2.6 yields a new condition equivalent to the existence of an immunized
portfolio, the weak immunization condition, which does not require any duration
measure. Third, Proposition 2.8 makes a distinction between the concepts of an
immunized portfolio and a maxmin portfolio, showing that a maxmin portfolio
is an immunized portfolio only if immunization is feasible. The concept of a
maxmin portfolio includes and extends the concept of an immunized portfolio.

To explain the duration puzzle we need to introduce Lemma 2.1. Let us as-
sume a set of feasible shocks K to the term structure of interest rates. This lemma
says that there exists a portfolio that guarantees a return l at m if and only if, for
each feasible shock, there exists a bond, which depends on the shock, such that
the return of the bond at m, when this shock occurs, is at least l. This lemma
invites a second look. There does not exist a portfolio that guarantees a return l,
if and only if, there exists a feasible shock k� such that the last condition fails.

Lemma 2.1 has two main implications.
· First, there exists a portfolio that guarantees a return l at m not only against

the feasible set K, but maybe against a wider set of shocks. Therefore, we are
hedged against a wider set of shocks. If l is the highest value that may be
guaranteed, then this portfolio is the maxmin portfolio.

· Second, the set of shocks K contains a subset of worst shocks such that the
latter should be the only shocks to take into account in an immunization
problem. The shock k�, which makes the weak immunization condition to
fail, belongs to the subset of worst shocks.
Ingersoll and Skelton (1978) have pointed out that the convexity hypotheses

is the reason for a well-known arbitrage violation since the return of an im-
munized portfolio dominates the return of the zero coupon bond. Therefore, to
solve this caveat under convexity assumptions, we have to assume that an
immunized portfolio does not exist in the model. 5

5 Prisman and Shores (1988) have a similar argument considering polynomial shocks since in this

case immunization is not feasible either. This is the kind of arbitrage attributed to duration models

and, of course, in order to prove that there are no arbitrage opportunities in the model, we should

allow short positions. This is a very important point, but it is beyond the scope of this paper, and it

is a line for future research.
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To solve the second caveat, changes in interest rates are far from parallel, we
return to Lemma 2.1. Divide the analysis to two steps. In the ®rst one, consider
additive shocks, so that, a matching duration portfolio guarantees a return R.
In the second step incorporate a wider set of additive and non-additive shocks,
which includes worst shocks k�, such that an immunized portfolio does not
exist. How does the matching duration portfolio work against this wider set of
shocks? Of course, one cannot guarantee a return R, but from Lemma 2.1, if
the e�ect of these worst shocks k� are small, or if the probability that they will
happen is also very small, then the matching duration portfolio should behave
in a manner close to that of an immunized portfolio. 6

In Section 3 of the paper we introduce the set of worst shocks in models
where immunization is not feasible. One can set an upper bound on the pos-
sible loss on a non-immunized bond portfolio through Theorem 3.2. This
theorem includes remarkable immunization strategies, such as those derived in
Fong and Vasicek (1984), Chambers et al. (1988), Prisman and Shores (1988)
and others. This upper bound is obtained applying the concept of Gateaux
di�erential, which has also been used by Bowden (1997) to show how to
compute the worst shocks.

In Section 4 of the paper we introduce a new set of shocks, and from the
theory developed in the previous sections, we present a new strategy of im-
munization. We argue that this new set of shocks is more reasonable than any
of the previous set of shocks considered in the literature, and it is specially
related to the shocks introduced by Fong and Vasicek (1984). This new strategy
consists in matching duration and in minimizing a new linear dispersion
measure, the ~N measure. With an example, we also show that this strategy can
include a maturity matching bond, and therefore, we can explain the empirical
results of Bierwag et al. (1993).

Furthermore, we will show the tie between Theorem 2.6 and the strategy of
minimizing the ~N dispersion measure. By minimizing the ~N dispersion measure
we are minimizing the e�ect of the worst shock, among the shocks previously
discussed, which causes the weak immunization condition to fail.

2. The riskless shadow asset and the weak immunization condition

Let [0,T ] be the time interval with t� 0 the present moment, and let m be
the investor planning period, 0 < m < T . We model the problem as if only one

6 At the end of this paper we will introduce a set of shocks from which we will propose a new

strategy of immunization that includes shocks far from parallel. This set of shocks contains a shock

such that the weak immunization condition fails, and therefore, the model will be consistent with

equilibrium. For this set of shocks, we will show with an example a speci®c duration matching

portfolio performing close to an immunized portfolio. We interpret this example as a con®rmation

of the ideas previously discussed and a proof that we have given a solution to the puzzle.
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shock occurs at t� 0. Consequently, if many shocks are going to take place
between t � 0 and t � m, we should rebalance the portfolio and hedge against
the shock ocurring at that time.

Let us consider n default-free and option-free bonds with maturities less
than or equal to T , and with prices P1; P2; . . . ; Pn; respectively. We will let K be
the set of admissible shocks over the term structure of instantaneous forward
interest rates, and therefore, K will be a subset of the vector space of real valued
functions de®ned on �0; T �. If the elements of K are only constant functions, we
will be working with additive shocks like Fisher and Weil (1971). If these el-
ements are polynomials we will have polynomial shocks like the ones consid-
ered by Chambers et al. (1988) or Prisman and Shores (1988) amongst others,
and if these elements are continuously di�erentiable functions we are under the
hypotheses of Fong and Vasicek (1984). Clearly, K may be a very general set of
shocks.

Consider n real valued functionals:

Vi : K ! R; i � 1; 2; . . . ; n;

such that Vi�k� (where k 2 K is any admissible shock) is the ith bond value at
time m, which includes the coupons paid before m, 7. if the shock k takes place.

We will assume the following three hypotheses.

Hypothesis 1 (H1). K is a convex set.

Hypothesis 2 (H2). Vi is a convex functional for i � 1; 2; . . . ; n.

Hypothesis 3 (H3). Vi�k� > 0 for i � 1; 2; . . . ; n and for any k 2 K.

H1 is a regularity hypothesis. We assume that the value of any bond veri®es
H2 since convexity holds in most models on immunization. Some discussion
about this hypotheses, however, will be presented at the end of this section.
Finally, H3 is a necessary condition, if we do not want arbitrage to exist, since
a bond only pays positive amounts.

Although we are working in an abstract and general context, concrete
representations by basis (for instance: polynomials, or Fourier series) of the
function space where K is included would be possible. It would allow trans-
lating conditions H1, H2 and H3 to conditions on the coe�cients of the linear
combinations. Moreover, one could substitute these coe�cients for the variable
k in K.

7 As usual, the coupons paid before m will be reinvested by purchasing the considered n bonds or

the new bonds appearing in the market
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If C > 0 represents the total amount of investment, and the vector
q � �q1; q2; . . . ; qn� gives us the number of units qi of the ith bond that the
investor has bought, then the portfolios satisfying the following constraints:Xn

i 1

qiPi � C; qi P 0; i � 1; . . . ; n; �1�

will be called feasible portfolios. The functional

V �q; k� �
Xn

i 1

qiVi�k� �2�

gives us the value at time m of portfolio q if the shock k takes place. Obviously,
V is a convex functional in the k variable since Eq. (1) guarantees that it is a
non-negative linear combination of convex functionals. 8

Let us introduce the guaranteed value by portfolio q which will be

V �q� � InffV �q; k�; k 2 Kg; �3�
that is, the in®mum of all possible values (at m) of portfolio q depending on the
shocks k 2 K.

The following lemma forms the central result, which is the basis of the rest
of the paper.

Lemma 2.1. Let l0 P 0. Then, there is a feasible portfolio q� such that

V �q��
C

P l0

if and only if for every admissible shock k 2 K there is at least a bond ith (which
depends on k) such that

Vi�k�
Pi

P l0:

Proof. See Appendix A. �

As can be seen, Lemma 2.1 establishes a necessary and su�cient condition
to guarantee the existence of a Riskless Shadow Asset 9 such that its return is at
least l0. This number is said to be a Riskless Shadow Return. The lemma is
proved under the techniques of convex analysis, which were also applied to
immunization theory by Prisman (1986).

8 In order to avoid the loss of the convexity property, short positions are excluded from the

analysis. With short positions the functional V �q; k� is not a convex functional of k, and therefore,

the separation theorems do not apply and we cannot prove Lemma 2.1.
9 We have taken this name from Ingersoll (1987, p.48).
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We should be interested in the greatest values for which the lemma is ver-
i®ed. For instance, if immunization is feasible, l0 would be any number be-
tween 0 and the return on the zero coupon bond with m years to maturity.

A portfolio is called maxmin if it guarantees as much as possible. To for-
mally introduce this concept we will consider the optimization program

Max V �q�
q subject to �1�:

)
�P1�

De®nition 2.2. A feasible portfolio q� is maxmin if it solves program (P1).

The ®rst interesting consequence which can be derived from Lemma 2.1 is
that under hypotheses H1, H2 and H3 one can always ®nd a maxmin portfolio.

Theorem 2.3. Program (P1) has a solution, i.e., there always exists a maxmin
portfolio.

Proof. See Appendix A. �

The above theorem gives us the highest value of l0 for which it is possible to
®nd a Riskless Shadow Asset. This value is given by l�0 � V �q��=C, where q� is
a maxmin portfolio.

We are now in a position to answer the question posed by the title of this
paper. Let us denote R as the return of the zero coupon bond with m years to
maturity that we observe in the initial term structure of the interest rates. Then,
we will say that RC is the promised amount. A portfolio q� is said to be im-
munized when it guarantees at least RC. Formally we have the following def-
inition.

De®nition 2.4. A feasible portfolio q� is immunized if V �q��P RC.

Let us now introduce the ``weak immunization condition''.

De®nition 2.5. We will say that the set of admissible shocks K and the n
considered bonds verify the weak immunization condition if for any shock
k 2 K there exists at least one bond, the ith (which depends on k), such that

Vi�k�
Pi

P R:

We could interpret this concept as follows. Let us consider an investor in-
terested in an immunized portfolio, i.e., a portfolio which guarantees the
promised amount RC. If our investor knew the real future shock k then he or
she would buy the bond which does not lose value, i.e., a bond such that
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Vi�k�P RPi. If the investor can ®nd this bond for any feasible shock, the weak
immunization condition is achieved.

The following results show that the weak immunization condition is nec-
essary and su�cient to guarantee the existence of an immunized portfolio. This
condition does not need any kind of duration measure, and we will show that it
is very easy to apply in practice.

Theorem 2.6. The weak immunization condition is necessary and su�cient to
guarantee the existence of an immunized portfolio.

Proof. It is an immediate consequence of Lemma 2.1. taking l0 � R. �

The latter theorem has another interpretation. ``Immunization is not pos-
sible, if and only if, there is an admissible shock for which all the bonds lose
value at m, i.e., do not reach the value RPi; i � 1; 2; . . . ; n; at m''.

Theorem 2.3 and the latter theorem have interesting consequences on the K
set of admissible shocks. Let us assume for example that in addition to the n
considered bonds, the zero coupon bond with m maturity is available on the
market. Consider that its present price is P and let 1 be its value at maturity.
Ingersoll and Skelton (1978) showed that in convex models of immunization,
an immunized portfolio, i.e. a portfolio q such that V �q�=C P 1=P , cannot be
found because otherwise the investor can buy it and sell the zero coupon bond.
Clearly, this would be an arbitrage. On the other hand, in Theorem 2.3, we
have just proved that the highest riskless shadow asset does exist, and the
hypotheses under which it has been proved are general enough to ensure that
they will always hold in practice. Therefore, since this arbitrage cannot be
accepted, there must be at least a shock k� in the set K such that

Vi�k��
Pi

<
1

P
i � 1; 2; . . . ; n:

The latter condition rules out riskless and pro®table arbitrage and therefore
gives a solution to the ®rst caveat of the puzzle.

Let us denote by l�0; l�0 < R; the return of the maxmin portfolio for a given
set of shocks K. Lemma 2.1 is saying that we can guarantee the return l�0 not
only against K, but against any convex set that contains the set K and for which
the lemma's hypotheses are veri®ed. Therefore, we are immunizing or hedging
against a wider set of shocks than K, although we do not realize it. 10

10 An example of this result could be Bierwag (1987), where it is shown that a one to one

correspondence between a duration measure and a stochastic process does not obtain. It is possible

then for several stochastic processes (or sets of shocks, K) to imply the same immunizing durations.

Combining the sets; and permitting convex combinations of them would then expand set K.
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This fact has important implications in order to solve the second caveat of
the puzzle. It would be now necessary to show that l�0 is close to R, and that the
portfolio that guarantees l�0 is close to a duration matching portfolio. We will
do that at the end of paper, where the discussion about the puzzle will be
continued.

Once we know that a maxmin portfolio always exists and the conditions
under which there exists an immunized portfolio, we can analyze the rela-
tionship between both concepts. We require an additional hypothesis in the
model, which will be maintained until the end of this paper.

Hypothesis 4 (H4). The set K contains the zero shock (denoted by k� 0), and
there exists a number R > 0 such that Vi�0� � RPi for i � 1; 2; . . . ; n.

Hypothesis H4 is veri®ed in most immunization models, and if investors
believe that forward rates will be the future actual rates, then H4 means that
any shock to the term structure is the di�erence between futures rates and
forward rates.

Let us ®rst verify the following relationship.

Proposition 2.7. The following expressions hold for any feasible portfolio q.

06 V �q�6RC:

Proof. The ®rst inequality follows from H3. Furthermore

V �q� � InffV �q; k�; k 2 Kg6 V �q; 0� �
Xn

i 1

qiVi�0�

�
Xn

i 1

qiRPi � R
Xn

i 1

qiPi � RC: �

Again one can see that RC is the promised return. The exact relationship
between an immunized and a maxmin portfolio can now be stated.

Proposition 2.8. If q� is an immunized portfolio, then it is maxmin.

Proof. De®nition 2.4 and Proposition 2.7 imply V �q�� � RC, and by applying
Proposition 2.7 to any feasible portfolio q we have

V �q�6RC � V �q��
and therefore q� solves (P1). �

The above result has been proved in an extraordinarily simple way and in a
very general context because of the apparent power of the introduced notation.
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This was initially established by Bierwag and Khang (1979) in a model where
the shocks are additives. The model of Bierwag and Khang (1979), where an
immunization strategy always exists, was extended by Prisman (1986), who
relaxed hypothesis H4, allowing Vi�0�6RPi for i � 1; 2; . . . ; n, to take into
account a bond market with tax. However, because we focus on a model where
an immunized portfolio does not necessarily exist and a maxmin portfolio
always exists, we prefer not to relax hypothesis H4 and separate the tax e�ects
on immunization in the model. Nevertheless, Propositions 2.7 and 2.8 would
still be true in our model with hypothesis H4 relaxed, and the distortions ob-
served by Prisman (1986) would also be present in such a model.

There are other assets, whose price is a convex functional that we are not
considering (for instance options on bonds) and for which the Lemma 2.1 is
also veri®ed. However, they do not verify the hypothesis H4. Anyway, Prop-
ositions 2.7 and 2.8 still hold if we relax this hypothesis and impose Vi�0�6RPi

for i � 1; 2; . . . ; n. This would allow the main results of this second section to
be extended to more general models that incorporate bonds, and some deriv-
ative securities on the bonds.

Let us point out that the converse of Proposition 2.8 is generally false. In
fact, the maxmin portfolio (i.e. a portfolio that maximizes the guaranteed
amount at time m) always exists but it will be seen later that the weak im-
munization condition is not always satis®ed, and therefore an immunized
portfolio does not exist. Moreover, it is well known that in the literature one
can ®nd many models where immunization is not possible. In any case, it can
be easily proved in our general context that if an immunized portfolio does
exist, then immunized and maxmin portfolios are equivalent. The weak im-
munization condition may be interpreted as a necessary and su�cient condi-
tion to guarantee that R is the highest riskless shadow return. When this
condition fails, this riskless shadow return is smaller than R.

Bierwag and Khang (1979), working with additive shocks, proved that a
bond with a duration greater than m increases (decreases) its value at m if there
is a negative (positive) shock. The converse holds for bonds of a shorter du-
ration. Therefore, if we have both bonds, we are under the hypotheses of
Theorem 2.6, and so we can conclude (as Bierwag and Khang showed under
other arguments) that an immunized portfolio does exist because the weak
immunization condition holds.

Prisman and Shores (1988) proved that the model for polynomial shocks
proposed by Chambers et al. (1988) has no solution if the polynomials have a
degree equal or greater than one. Thus, immunization against polynomial
shock is not possible. Their proof is based on the fact that it is not possible to
match a duration vector without short sales. However, we will o�er a simple
but very di�erent proof. An example of an admissible polynomial shock is
given by k��t� � k�t ÿ m� where k is any positive number. Since k��t� < 0 if
t < m and k��t� > 0 if t > m, the instantaneous forward interest rates are going
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to decrease from t � 0 to t � m and they are going to increase for t > m. Thus,
the coupons we have to re-invest (the coupons paid before m) will lose value at
m and so will the ones we have to discount (the ones paid later than m). In this
situation, only the zero coupon bond with maturity m would not lose value at
m, but if this bond were not on the market, immunization would not be pos-
sible because the weak immunization condition fails.

3. The set of worst shocks. An upper bound to the loss of a non-immunized

portfolio

This section is devoted to an analysis of the set of worst shocks, which
contains a shock such that the weak immunization condition fails. It seems
clear that in an immunization context, the worst shocks in the set of feasible
shocks are the only ones to be worried about. Furthermore, these shocks can
help to approximate the maxmin portfolio and its guaranteed return l�0.

In general, any hedging model has to explain which are the worst states that
can arise. The other states would be irrelevant. Fisher and Weil (1971) and
Bierwag and Khang (1979) have already worked with the concept of worst
shock, since for an immunized bond portfolio, the worst shock is the null
shock.

Given this concept and that a convex function is bound from below by its
tangent, one can derive very simply the upper bound to the possible losses from
a non-immunized portfolio. Results has been obtained in this manner by many
authors including the outstanding immunization strategies of Fong and Vas-
icek (1984) and Prisman and Shores (1988).

De®nition 3.1. We will say that a set k1; k2; . . . ; kh, of feasible shocks is a set of
worst shocks, if given any shock k 2 K there exist h real numbers, which de-
pend on k; k1�k�; k2�k�; . . . ; kh�k�, such that

Xh

j 1

kj�k�kj 2 K;

Vi�k�P Vi

Xh

j 1

kj�k�kj

 !
; i � 1; 2; . . . ; n:

This concept simply means that the value at m of the n considered bonds is
always bound from below by their values by considering linear combinations of
elements in the set of worst shocks.

From now on, we take into account the following additional assumption.
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Hypothesis 5 (H5). The set K of admissible shocks is a subset of a normed
space X whose elements are real valued functions over the interval [0,T ]. The
zero shock is interior to the set K. The functionals Vi ; i � 1; 2; . . . ; n, are
Gateaux di�erentiable with respect to their k variable in an open set containing
the zero shock.

The concepts of normed space and Gateaux di�erential may be found for
example in Luenberger (1969). The hypothesis of being Vi Gateaux di�eren-
tiable may be more easily written if we consider shocks k which depend on
p � 1 parameters (for instance, polynomial shocks with p degree). If this de-
pendence is linear, then it means that Vi is di�erentiable with respect to the
parameters. 11 As is well known, a convex function is always bound from
below by its tangent plane. This is also true for convex functionals in normed
spaces (see Luenberger, 1969) and we can apply this fact to obtain some
properties for functional V .

Let q be a feasible portfolio and let mj; j � 1; 2; . . . ; h be the value of the
Gateaux di�erential of V �q; k� with respect to its variable k, evaluated at k � 0,
and applied over kj (see Luenberger, 1969). Then we have the following result.

Theorem 3.2. Under assumptions H1 H5 the following inequality holds for
every feasible q and every feasible k 2 K:

V �q; k� ÿ RC
RC

P
Xh

j 1

mj

RC
kj; �4�

where k1; k2; . . . ; kh are the values given by De®nition 3.1, where the dependence
of k has been omitted.

Proof. It obviously follows from De®nition 3.1 and expression (2) that

V �q; k�P V q;
Xh

j 1

kjkj

 !
:

Since V is convex in its second variable, it is bound from below by its di�er-
ential.

V q;
Xh

j 1

kjkj

 !
P V �q; 0� �

Xh

j 1

mjkj:

And the result obviously follows from the equality V �q; 0� � RC. �

11 Gateaux di�erentiable is also assumed in Bowden (1997).
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De®nition 3.1 and Theorem 3.2 can be used to explain some of the results
from the immunization literature.

First, consider the shocks with the derivative bound by k > 0 of Fong and
Vasicek (1984). That is, dk�t�=dt6 k for every t 2 �0; T �. It is easily shown that
the weak immunization condition fails because there exists a shock k�t ÿ m�
such that every bond loses value when this shock takes place. Furthermore, it is
immediately deduced from the Taylor formula that

k�t�P k�m� � k�t ÿ m� if t6m;

k�t�6 k�m� � k�t ÿ m� if t > m:

Since the latter inequalities show that the shock k�m� � k�t ÿ m� has a more
negative e�ect on all the coupons than the shock k�t�, we have

Vi�k�P Vi�k�m� � k�t ÿ m��:
Then, De®nition 3.1 holds, f1; k�t ÿ m�g is a set of worst shocks, and their
linear combinations are given by the lines k��t� � k0 � k�t ÿ m� where k0 is any
real number. Now, by applying Theorem 3.2, one may easily prove the upper
bound of Fong and Vasicek 12 which contains the M2 measure.

Considering polynomial shocks with a degree not greater than p, the upper
bound obtained in Prisman and Shores (1988) may be also deduced from
Proposition 4.2. In this case, a set of worst shocks is given by the polynomials
f1; t; t2; . . . ; tpg.

Prisman and Shores (1988) and Bierwag et al. (1993) showed that the upper
bound of the Fong and Vasicek (1984) model, and of a polynomial shocks of
degree one model are related because both upper bounds depend on the ®rst
and second duration measures. Lacey and Nawhalka (1993) showed empiri-
cally that hedging against both factors of a degree 1 polynomial turns out an
immunized portfolio. It can be observed that although the shocks of Fong and
Vasicek (1984) are much more general than a polynomial of degree one with a
bound derivative, their worst shocks are just given by a polynomial of degree
one. This shows why both upper bounds are related and points out that the
worst shocks are the only relevant shocks in this immunization context. Oth-
erwise, Lemma 2.1 says that when we are immunizing against a degree one
polynomial shock with bound derivative, in fact, we are hedging against a
wider convex set of shocks that are all the shocks with bound derivative in-
troduced by Fong and Vasicek (1984).

12 The results of Fong and Vasicek (1984) were extended in Montrucchio and Peccati (1991) for

non di�erentiable shocks, but shocks with bounded Dini's derivative. See also Shiu (1987).
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4. Working with bound shocks. A new dispersion measure

The previous analysis suggests a new methodology for immunizing a bond
portfolio. In previously developed immunization strategies, a particular du-
ration strategy pursued depend on the set of shocks considered. If the set of
shocks is changed, then the strategies for achieving immunization may also
change.

As Fong and Vasicek (1984) argue, the factor models i.e., Fisher and Weil
(1971), Bierwag (1977), Khang (1979) and others, or the equilibrium models,
i.e., Cox et al. (1978), Brennan and Schwartz (1983), Nelson and Schaefer
(1983) and others, are too constrained because they only permit hedging
against the shocks which are compatible with the model.

The polynomial multifactorial models of Chambers et al. (1988) and
Prisman and Shores (1988) seem appropriate because a polynomial can ap-
proximate whatever continuous function. However, these models are too un-
constrained. A simple polynomial of degree one contains a shock given by
k��t� � k�t ÿ m�, which is unreal if k!1 or j t ÿ m j is big. If k is bound, then
we are in the Fong and Vasicek (1984) situation, but the second problem still
holds.

The empirical factor models, such as Litterman and Scheinkman (1991),
would also be appropriate. Nevertheless, they require no short selling
constraints, and they depend on the fact that the estimated factors are sta-
tionary.

The latter section has shown that, in a general context, if an immunized
portfolio does not exist, one may look for the set of worst shocks in order
to obtain an upper bound on possible capital losses. Let us consider the case
were the set of admissible shocks is the set of bound and integrable func-
tions de®ned on �0; T � and let us prove that there is not an immunized
portfolio.

Since we are working with bound and integrable functions k�t�, an admis-
sible shock is given by

k�t� � ÿk1 if t < m;

k1 if t P m;

�
�5�

where k1 is arbitrary but positive. This shock is negative before m and positive
after m, and assuming that the zero coupon bond with m maturity is not on the
market, the weak immunization condition does not hold, and therefore, an
immunized bond portfolio does not exist.

Let us consider a constant k > 0 and let us assume that the set of admissible
shocks consists of the set of bound and integrable functions:

K � fk�t�; j k�t1� ÿ k�t2� j 6 k; 06 t16 t26 Tg: �6�
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In this situation, the set

k0�t� � 1;

k1�t� � ÿ k
2

if t < m;
k
2

if t P m;

�
is a set of worst shocks in the sense given by De®nition 3.1 since given any k�t�
we have that

k�t�P k0 ÿ k
2

if t6m;
k�t�6 k0 � k

2
if t > m;

�7�

being

k0 � supfk�t�; t 2 �0; T �g � inffk�t�; t 2 �0; T �g
2

: �8�

Following the usual assumptions, let portfolio q pays a continuous coupon
c�t�P 0; 06 t6 T , and assume the balloon payment at maturity is zero. If
g�t�; 06 t6 T , represents the instantaneous forward interest rates and k�t� is a
shock on g�t�, then the q portfolio value at m is given by

V �q; k� �
Z T

0

c�t� exp

Z m

t
�g�s� � k�s�� ds

24 35 dt: �9�

Denoting the return between 0 and m by

R � exp

Z m

0

g�s� ds

24 35 �10�

and the coupon's present value by

c�t; 0� � c�t� exp ÿ
Z t

0

g�s� ds

24 35 �11�

we have

V �q; k� � R
Z T

0

c�t; 0� exp

Z m

t
k�s� ds

24 35 dt: �12�

The di�erential of functional V with respect to its variable k evaluated at the
zero shock and applied over the shock k (i.e., the derivative of functional V
evaluated on the zero shock and in the direction given by shock k) will be given
as
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R
Z T

0

c�t; 0�
Z m

t
k�s� ds

0@ 1A dt: �13�

Theorem 4.1. For any feasible portfolio q and for any admissible shock k the
following inequality holds:

V �q; k� ÿ RC
RC

P k0�mÿ D� ÿ k
2

~N ; �14�

where k0 is given by Eq. (8), D is the Macaulay duration of the q portfolio and ~N
is the dispersion measure given by

~N �
Z T

0

c�t; 0�
C
j t ÿ m j dt: �15�

Proof. See Appendix A. �

It immediately follows that for a portfolio q with duration equal to m, we
have the following upper bound on the possible losses after a shock on the
forward interest rates

V �q; k� ÿ RC
RC

P ÿ k
2

~N : �16�

The development in (14) (16) shows a new strategy for immunizing a bond
portfolio, i.e., picking the portfolio with the minimum ~N measure from the
duration matching portfolios. By buying a duration matching portfolio, the
investor is immunized against additive shocks, which have an important per-
centage of the total changes on the interest rates, as shown empirically by
Litterman and Scheinkman (1991) and others.

We can also note the tie between this strategy and Theorem 2.6; by mini-
mizing the ~N measure, we are minimizing the e�ect due to the shock, for which
the weak immunization condition does not hold. The e�ect of this shock on the
coupon paid in t is given by �k=2� j t ÿ m j, and such e�ect is weighed by c�t; 0�.
We have a parallel situation for the M2 measure of Fong and Vasicek (1984)
and their worst shocks.

If we work with di�erentiable shocks with a bound derivative by a param-
eter k, then we can follow the strategy proposed by Fong and Vasicek (1984).
But we think there are three important reasons to work with the previously
proposed bound and integrable shocks, which depend on parameter k.

First, the bound shocks have a theoretical argument in their favor with
respect to the Fong and Vasicek shocks. In the case of bound shocks, the
parameter k can be understood as a volatility measure, as how much the shocks
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on the forward instantaneous interest rates can di�er between two time dates.
This parameter can be estimated. On the other hand, the Fong and Vasicek
shocks parameter, a derivative, has a more complex economic meaning and it is
more di�cult to estimate.

Second, shocks with a bound derivative are also bound, but the converse is
false. Shocks with small variations could have a very big derivative. Then, we
have that bound shocks include most of the Fong and Vasicek shocks, but,
once again, the converse is false.

Third, the worst shocks in the Fong and Vasicek situation are unreal be-
cause it entails very big values when t is far from m. In the bound case the worst
shocks on the Term Structure of Interest Rates are given by

1

t

Z t

0

k0 ÿ k
2

if s6m

k0 � k
2

if s > m

(
ds � k0 ÿ k

2
if t6m;

k0 � k
2
ÿ k m

t if t > m;

(
�17�

and in the Fong and Vasicek situation

1

t

Z t

0

�k0 � k�sÿ m�� ds � k0 � k
t
2
ÿ m

� �
: �18�

We can also observe for both sets that the worst shocks are twists of the term
structure of interest rates at the term 2m. 13

In short, the bound shock which depends on a parameter k can be consid-
ered as the sum of two components. A parallel shift of all interest rates and a
second change such that the interest rates move in a band of width k. This
parameter k can represent a volatility measure. These two components seem an
appropriate scenario to describe the changes in the interest rates in this im-
munization context.

To throw more light on the developed strategy, we now present a simple
example to see the portfolios that minimize both dispersion measures. We will
take an investor planning period of ®ve years, m � 5, and we will assume a ¯at
term structure on the interest rates, r � 10%, to make it easier.

Let us consider the set of coupon bonds presented in Table 1. The ®rst
column in Table 1 is the bond number, the second one is its maturity, the third
is the coupon (as a percentage), the fourth is the coupon periodicity (in
months), the ®fth is the bond duration (in years), the sixth is its M2 measure,
and the last one is its ~N measure.

In Table 2 we give the duration matching portfolios. The ®rst column is the
portfolio number, the second is the ®rst bond in the portfolio, the third is the
second bond in the portfolio, the fourth is the ®rst bond percentage and the last

13 Now, one can refer to almost any empirical paper on the factors that move the term structure

of interest rates, as in Litterman and Scheinkman (1991), to see if in fact these twists are in term 2m,

or if they are not.
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columns are their M2 and ~N dispersion measures. The portfolios are arranged
according to their ~N measure.

We can observe that the portfolio 1, which is a bullet portfolio, minimizes
both dispersion measures, and therefore, it would be a very interesting port-
folio. However, portfolios 3, 5 and 6 also minimize the ~N measure. They in-
clude a maturity matching bond, and they are not a bullet portfolio.

The proposed strategy can be empirically tested and would explain both
empirical results of Bierwag et al. (1993) and others. First, they point out that
the best strategy for immunization consists of matching duration but including
a maturity matching bond. This maturity matching bond would be in the
duration matching portfolio that minimizes the ~N measure. Second, they also
show that the latter strategy and a bullet portfolio perform very close. Both
strategies would minimize the ~N dispersion measure.

It is worthwhile to point out that, in general, the bound shocks include the
shocks described by the empirical factors that move the term structure, as in
Litterman and Scheinkman (1991). Furthermore, they also include the GAP
management approach that consists of dividing the yield curve into sections
and shifting independently to each one of the sections. 14 However, we have
shown that it is only necessary to take into account the worst shocks.

14 Hull (1993, pp. 103, 408).

Table 2

Matching duration portfolios

Number 1st bond 2nd bond % (1st) M2 N

1 3 4 59.77 3.901 1.6846132

2 3 5 78.88 4.116 1.6846172

3 2 4 28.40 4.252 1.6846198

4 3 6 85.23 4.323 1.6846211

5 2 5 49.93 5.027 1.6846342

6 2 6 60.64 5.775 1.6846482

7 1 4 17.98 4.614 1.9297429

8 1 5 35.54 5.965 2.1690124

9 1 6 46.00 7.268 2.3115433

Table 1

Set of bonds

Bond

number

Maturity

(years)

coupon

(%)

coupon

(monthly)

Duration

(years)

M2 N

1 4 10 12 3.48232 3.27130 1.51767

2 5 10 12 4.16101 2.59822 0.83898

3 6 10 12 4.77597 3.22315 1.45880

4 7 10 12 5.33285 4.90932 2.02011

5 8 10 12 5.83689 7.45157 2.52818

6 9 10 12 6.29287 10.6728 2.98782
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Let us get back to the puzzle. It is necessary to show that a matching du-
ration portfolio performs as an immunized portfolio in a model that includes
shocks far from parallel. Let us take the set of bonds previously described, and
let us suppose that the bound shocks are an adequate framework that describes
the shocks on the interest rates. Let us assume that our volatility measure is not
very high, for example k � 2%. Then the interest rates can su�er a additive
movement and further they can move in any way in a 2% wide band. If we now
use the bound developed in Theorem 3.2, then the six ®rst portfolios guarantee
a 98.32% of the promised value at m. This corresponds to a continuous com-
posed yield of 9.66% against the 10.00% promised. If furthermore this shock
has very small probability, then the yield could be closer to the R� 10.00%
promised.

Finally, let us point out that the proposed set of shocks and the developed
dispersion measure are a natural consequence of the results obtained in Sec-
tions 2 and 3. However, these sections prove important results that should be
taken into account.

First, the Riskless Shadow Asset or the maxmin portfolio does exist and it is
an interesting task to obtain it. Furthermore, the weak immunization condition
easily shows why total immunization is not possible in most models. But this
condition also shows that immunization against shocks (which could be non
additive) in very general convex sets may be possible if there are appropriate
bonds on the market. Consequently, the results of section two will allow one to
obtain upper bounds for possible capital losses if the real shock on the forward
interest rate is not in the considered convex set.

When we immunize against additive shocks and minimize the ~N measure, we
are choosing one possible way amongst many others that should be analyzed.
To minimize the ~N measure, we have taken into account many considerations
about the possible shocks on the interest rates, but another analysis would be
welcome.

5. Conclusions

This paper presents in a very general framework a condition equivalent to
the existence of a Riskless Shadow Asset that guarantees a minimum return
when the assets prices are convex functions of interest rates or other state
variables. We show that the weak immunization condition is equivalent to the
existence of an immunized portfolio. Furthermore, this new condition does not
require any duration measure and is easy to use in practice.

To introduce the weak immunization condition we have applied convex
analysis methods, which also allow us to prove the existence of maxmin port-
folios in these models. We have distinguished between the concepts of a maxmin
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and an immunized portfolio, showing that both concepts are equivalent only if
immunization is feasible. Therefore, the concept of maxmin portfolio is more
general and includes immunized portfolios.

The existence of maxmin portfolios also allows us to solve some of the
problems originated by immunization models. For instance, the existence of
maxmin portfolios, in models where immunization is not feasible, should not
be inconsistent with equilibrium since it does not create the arbitrage oppor-
tunities attributed to immunization models.

Studying maxmin portfolios in immunization is a very important choice, but
it is not the only one. We show that the weak immunization condition leads
also to the set of worst shocks, whose existence also allows us to reconcile
immunization theory with equilibrium. They are the shocks that a�ect more
negatively each bond return and, consequently, produce the greater risk on
bond portfolios. By means of this concept, we give an upper bound on the
possible loss on a non-immunized bond portfolio that includes outstanding
immunization strategies previously proposed in the literature.

Both ideas, maxmin portfolios and the set of worst shocks, are comple-
mentary and, probably, related. This should be an important research topic for
the future.

Finally, we have introduced a new set of shocks. These shocks depend on a
parameter k that can be understood as a volatility parameter for interest rates.
This set of shocks includes most sets previously studied in the literature and
seems to be a more reasonable set to describe changes in interest rates. These
changes can be considered as the sum of two components: a parallel shift in
interest rates and a second change where the interest rates move within a band
of width k.

From these shocks, and taking into account the theory developed, a new
linear dispersion measure ~N is introduced, and a new strategy to minimize the
immunization risk is proposed; to match duration and to minimize the ~N
measure. Following this strategy, the investor has an upper bound for a pos-
sible loss on the portfolio. With an example, we also show that this portfolio
can include a maturity matching bond, and therefore, we can explain the em-
pirical results of Bierwag et al. (1993). In addition, this example shows that this
portfolio guarantees a return close to an immunized portfolio and, thus, it
could be a solution to the duration puzzle.

Furthermore, we show the tie between the theorems of this paper and the
strategy of minimizing the ~N measure. By minimizing the ~N measure, we are
minimizing the e�ect of the worst shock (among the bounded shocks previously
discussed), which causes the weak immunization to fail.

The set of shocks considered and the measure are developed bearing in mind
the weak immunization condition, but it is not the only application, since the
theory developed is quite general and the upper bound of Theorem 3.2 should
allow us to analyze many other situations.
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Appendix A

Proof of Lemma 1. Let us assume the existence of portfolio q�. Then

V �q�; k�P l0C

for any admissible shock k. From Eqs. (1) and (2)Xn

i 1

q�i Vi�k�P
Xn

i 1

q�i l0Pi

for any k. Since the terms in both sides of last inequality are non-negative, this
is only possible if at least for one ith we have

Vi�k�P l0Pi:

Conversely, let us consider that the given condition holds and let us prove the
existence of q� portfolio.

The following set is obviously convex in Rn

A � f�a1; a2; . . . ; an�; aj6 l0Pj; j � 1; 2; . . . ; ng:
Also consider the set

B � f�b1; b2; . . . ; bn�; 9k 2 K with bj P Vj�k�; j � 1; 2; . . . ; ng:
Let us prove that B is a convex set. In fact, if �b1; b2; . . . ; bn� and �b01; b02; . . . ; b0n�
are in B, we can ®nd two shocks k and k0 in K such that

bj P Vj�k�; b0j P Vj�k0�; j � 1; 2; . . . ; n:

Since K is a convex set, given s with 06 s6 1, sk � �1ÿ s�k0 2 K and being Vj a
convex functional for any j, we have that

sbj � �1ÿ s�b0j P sVj�k� � �1ÿ s�Vj�k0�P Vj�sk � �1ÿ s�k0�;
j � 1; 2; . . . ; n;
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s�b1; b2; . . . ; bn� � �1ÿ s��b01; b02; . . . ;b0n� 2 B:

We will prove now that there are no points in A0 (interior of A) and B si-
multaneously. In fact, if �a1; a2; . . . ; an� were in both A0 and B, then
aj < l0Pj; j � 1; 2; . . . ; n and we could ®nd a shock k such that

aj P Vj�k�; j � 1; 2; . . . ; n:

Therefore

l0Pj > aj P Vj�k�; j � 1; 2; . . . ; n;

and it is a contradiction with the assumptions.
The separation theorems (see Luenberger, 1969) show that we can ®nd n real

numbers q01; q
0
2; . . . ; q0n such that q0i is not zero for at least one ith andXn

j 1

q0jaj6
Xn

j 1

q0jbj

if �a1; a2; . . . ; an� is in A and �b1; b2; . . . ; bn� is in B. In particular, taking
aj � l0Pj and bj � Vj�k� � rj; j � 1; 2; . . . ; n, where k is any admissible shock
and rj is any non-negative number,

l0

Xn

j 1

q0jPj6
Xn

j 1

q0j�Vj�k� � rj�: �A:1�

We have q01 P 0 because if we had q01 < 0 then the right side in last inequality
would tend to ÿ1 if r1 tends to in®nite and this is not compatible with the
inequality. Analogously q02 P 0; . . . ; q0n P 0. Since at least one q0i is not zero,

S �
Xn

j 1

q0jPj > 0

and then, taking q�j � �C=S�q0j; j � 1; 2; . . . ; n, we have that �q�1; q�2; . . . ; q�n�
veri®es Eq. (1) and from Eqs. (2) and (A.1) (with rj � 0 for any j)

l0C6 V �q�; k�
for any shock k. �

Proof of Theorem 2.3. Let us consider the following real valued functional over
the admissible shocks:

U�k� �Max
V1�k�

P1

;
V2�k�

P2

; . . . ;
Vn�k�

Pn

� �
for k 2 K:

De®ne

l�0 � InffU�k�; k 2 Kg;
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then, for any shock k we have U�k�P l�0 and then there exists a ith bond
(which depends on k) such that

Vi�k�
Pi

P l�0:

Lemma 2.1 shows that we can ®nd a portfolio q� such that V �q�; k�P l�0C for
any k 2 K and then

V �q�� � InffV �q�; k�; k 2 KgP l�0C:

We will have proved that q� is a solution of P1 if we show that V �q�6 l�0C for
any portfolio q � �q1; q2; . . . ; qn� subject to Eq. (1).

Clearly, for any feasible shock k we have

V �q�6 V �q; k� �
Xn

i 1

qiVi�k� �
Xn

i 1

qiPi
Vi�k�

Pi
6U�k�

Xn

i 1

qiPi � CU�k�:

Therefore

V �q�6C InffU�k�; k 2 Kg � Cl�0: �

Proof of Theorem 4.1. Since fk0�t�; k1�t�g is a set of worst shocks, it follows
from Eq. (7) and Proposition 3.2 that

V �q; k� ÿ RC
RC

P k0

m0

RC
� m1

RC
; �A:2�

where k0 is given by Eq. (8) and mi � limh ! 0�V �q; hki� ÿ V �q; 0�=h; �; i � 0; 1.

From Eq. (13)

m0 � R
Z T

0

c�t; 0��mÿ t� dt � RC�mÿ D�; �A:3�

m1 � R
Z T

0

c�t; 0� ÿ k
2
j mÿ t j

� �
dt � ÿRC

k
2

~N ; �A:4�

and Eq. (14) trivially follows. �
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