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Preface

The optimal regulation of safety is a popular topic, both for academics and for

the wider public. On the one hand, technological progress has multiplied the

destructive potential of human action. The debates about nuclear technology

or genetically modified organisms give daily proof to this statement. On the

other hand, the same progress has increased human capability to guard against

dangers while rising incomes have increased the demand for safety. What for-

mer generations might have mourned as a “stroke of fate” will today be de-

nounced as a “preventable tragedy”.

The three chapters in this dissertation all deal with the optimal regulation of

safety. By safety we mean the prevention of accidents, i.e. events which cause

significant harm but occur with a low probability. The last criterion distin-

guishes accidents from bad outcomes that are considered “normal”. For exam-

ple, the failure of a company to produce an important innovation will not be

considered as an accident. Still, this definition of accidents might be broader

than the ordinary use of the word. For example, consider the case of a physician

who fails to perform an important test. This failure might cause a bad outcome

for the patient, albeit with a low a probability. If the bad outcome is realised,

our definition of an accident is fulfilled.

Consider an agent whose activity might lead to an accident. There are usually

many actions that the agent can take to lower the probability of an accident.

According to the usual criterion of cost-benefit analysis, an action should be

taken if the benefits of this action – the decrease in expected damage from ac-

cidents – are greater than or at least equal to the costs of the action.

6



Preface 7

If the performance of these actions can be observed by a regulator or a court,

the optimal regulation of safety is straightforward. All actions that pass the

cost-benefit test should be prescribed by law or regulation. We will call this

approach “standard setting”. But in many cases, the observation of these ac-

tions will be impossible or at least very expensive. This means that a strategy

of “standard setting” will be infeasible or at least very expensive. In such a sit-

uation the regulator can still implement all preventive actions which pass the

cost-benefit test if he is able to impose on the agent all costs that arise from a

potential accident. This strategy, the use of “incentives”, makes the agent the

“residual claimant” on the risk. It will induce the agent to voluntarily imple-

ment all actions that pass the cost-benefit test. The legal institution of “strict

liability”, either on a statutory or a contractual basis, can be seen as an attempt

to make the agent the residual claimant.

In practice it is often very difficult to shift all potential costs of an accident to

the agent. The financial assets of the agent might be far below the amount that

is necessary to pay for all accidental damages in the worst case. It might also

be very difficult to find all victims of an accident and to accurately estimate

the damages they have suffered. Finally, the agent might be able to escape the

reach of the law. If the liability of the agent is limited in such a way, he is no

longer induced to take all preventive activities that pass the cost-benefit test.

So in practice neither standard setting nor incentives will work perfectly. Stan-

dard setting can only affect actions which are easily observable, while incen-

tives can shift only parts of the costs of accidents to the agent. We will therefore

investigate the optimal combination of these two approaches. We will assume

that preventive actions can be separated into two distinct categories, observ-

able actions and unobservable actions. Examples of actions that we think of

as observable are conformance with technical norms in the construction of a

plant, or whether a physician has access to adequate equipment. Another ex-

ample of an observable action is the acquisition of human capital by the per-

sons who will control the risk, e.g. whether he has a relevant academic degree

or has passed a prescribed examination. Examples of actions that we think of
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as unobservable are the mental alertness of the person who controls the risk or

whether safety procedures are actually followed in day-to-day work.

Given this distinction, it will be a natural outcome of our models that most of

the time it is optimal to use standards and incentives at the same time. Our

main interest will be the optimal level of standard setting in such a situation.

In the following chapters we show that inadequate incentives for unobservable

actions will also influence the optimal level of standards for observable actions.

Often this optimal level will differ from the optimal use of observable actions

in a first-best world. This has the consequence that a cost-benefit analysis of

standards that ignores the interaction between observable and unobservable

preventive actions might be flawed.

The first chapter is an application of this idea to contract theory. We consider a

model of moral hazard with limited liability of the agent and effort that is two-

dimensional. One dimension of the agent’s effort is observable and the other is

not. The principal can thus make the contract conditional not only on outcome

but also on observable effort. In this chapter we make the assumption that

there is no interaction between the costs or returns of the two kinds of effort;

nevertheless, the limited liability of the agent will influence the levels of both

kinds of effort. The principal’s optimal contract gives the agent no rent and –

in contrast to the first-best solution – uses too much observable effort and too

little unobservable effort. This distortion in the relative use of the two kinds of

effort increases if the agent’s liability becomes more limited.

The second chapter integrates two-dimensional care into the model of acci-

dent prevention first formulated in Shavell (1980). In analogy to the first chap-

ter, one dimension of care is observable while the other is not.1 We consider

a situation where the firm’s liability is limited and analyze the use of strict lia-

bility combined with ex-ante regulation of observable care. In comparison to

other approaches to model the combination of liability and regulation, joint

use of the two instruments is a natural outcome in our model. In contrast to

the first chapter, we allow for technical interactions between the two dimen-

1In accordance with much of the literature in Law & Economics, we use the term “care” in-
stead of effort.
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sions of care.2 If the two kinds of care are independent (the level of one kind

of care does not influence the marginal cost or the marginal return of the other

kind of care), it is optimal to regulate observable care at the (socially optimal)

first-best level. If the two dimensions of care are complements or substitutes,

the optimal level of regulation is influenced by two considerations. An increase

in observable care has direct benefits because it decreases the probability of an

accident but has also indirect effects because it influences the firm’s incentive

to take unobservable care. We show that if the moral hazard problem is serious

enough, regulated observable care will be below its first-best level in the case of

complements and above its first-best level in the case of substitutes.

The third chapter deals with a controversial instrument to prevent accidents,

namely minimum education requirements for professional services. Many crit-

ics allege that these requirements are unnecessary or at least excessively strict.

We provide a partial justification for these requirements, by demonstrating how

they can induce high quality of work, even though they only regulate education,

which is just one input for this work. In our model, minimum education re-

quirements serve as an hostage to ensure high quality. The threat of losing their

occupation-specific human capital makes professionals more sensitive to the

punishment of being excluded from the profession, but the same human capi-

tal makes it also easier for them to do high quality work. We compare education

requirements with an alternative method that works in a similar way, namely

quantitative entry restrictions. We show that under certain parameters min-

imum education requirements achieve the first-best solution. Furthermore,

when social welfare is given by consumer surplus, education requirements are

always preferable to quantitative entry restrictions.

The reader will find that limited liability is a crucial assumption in all three

chapters. This poses the question whether there is an easy way to lift such a

limit by another mechanism. For example, a regulator could demand that an

agent who wants to undertake the dangerous activity “posts a bond”, i.e. de-

posits an amount of money equal the potential damage with the regulator.

2In addition, the social welfare function is different: the principal does also care about the
payoff of the agent.
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For such “bonding” to work perfectly, the deposited money has to come out

of the private wealth of the person who controls the risk. For example, if the

agent is a corporation, the deposit should be payed by the executive who con-

trols the corporation’s safety policy. If someone else, like a bank, an insurance

company or the corporation’s shareholders provide the money, a new principal-

agent problem arises between these financiers and the person who controls the

risk. The first-best will only be implemented if a financier can perfectly observe

this person’s safety actions. If he cannot do so, the financier will probably im-

pose his own safety standards on the agent – the financier will become the reg-

ulator. For example, an insurance company might make coverage conditional

on the insuree’s compliance with certain technical regulations or his proof of

an adequate education level.

If the bond has to come out of the private wealth of the person who controls

the risk, many occupations will be reserved for the rich, which raises serious

issues of social justice and the allocation of talent in society. In the extreme, a

position like CEO of a firm operating nuclear power stations might not be filled

at all. So while bonding can play an important role in alleviating problems of

moral hazard, it does not render the mechanisms discussed here irrelevant.



Chapter 1

Standards and Incentives under Moral

Hazard with Limited Liability

1.1 Introduction

Consider a principal-agent relationship with moral hazard. There will probably

be many actions that the agent can take to further the principal’s project. Some

of these actions will be observable, some not. In the following, we will subsume

all actions that are observable under the term observable effort, and all actions

that are not observable under the term unobservable effort. In the first-best,

without moral hazard, the optimal mix of efforts will in general include a mix

of both kinds of effort. The contract that is usually assumed in situations of

moral hazard is conditional on the observed outcome only. In this chapter we

will look at a contract that is also conditional on the level of observable effort.

This means that the contract will stipulate a specific level of observable effort

and the principal will only pay if he observes at least this level of observable

effort.

Our main interest in this chapter is the level of the contractually specified ob-

servable effort and its relation to the induced level of unobservable effort. We

assume that there is no direct interaction between the costs or returns of the

11



Chapter 1. Moral Hazard with Limited Liability 12

two kinds of effort; nevertheless, the limited liability of the agent will influence

the levels of both kinds of effort. Moral hazard problems with limited liability

of the agent usually have the following outcome: if the principal cannot extract

the whole surplus at the first-best level of effort, he will lower the implemented

effort below the first-best level.1 In contrast, in our model the specified level

of observable effort will be above the first-best level, while unobservable effort

will still be below the first-best level. This will also mean that the combina-

tion of observable and unobservable effort will not be cost-minimizing, i.e. the

given amount of total effort is produced with too much observable effort and

too little unobservable effort. In other words, the agent would be able to pro-

duce the same level of total effort with lower costs.

For an application, think about a situation where the principal wants the agent

to undertake a project that can fail with catastrophic consequences. Consider

a government that licenses a firm to operate an hazardous technology, like a

chemical factory or a nuclear reactor. The government wants the firm to un-

dertake effort that increases the probability that the firm operates safely. Some

of this effort, like the compliance with technical regulations for the construc-

tion of the plant, or the education level of the operating personnel can be con-

trolled rather easily. But other elements essential to safe operation will be very

hard to observe, like the workload and alertness of the personnel or whether the

firm’s management exerts pressure on them to “bend the rules”. The “regulatory

contract” in such situations usually includes both standards for observable ef-

fort (“regulation”) and monetary payments that depend on the outcome of the

project (“fines” and “liability”). The compliance with the standards can and

will be enforced ex-ante, while the ex-post payments give the firm incentives to

undertake unobservable effort. A similar problem exists if a big firm subcon-

tracts part of a project to a small firm. If the small firm produces bad quality,

the damage for the big firm might be immense. Contractual arrangements in

such situations will usually not only include payments that are conditional on

final outcomes but will also authorise the big firm to monitor whether the work

of the small firm is in compliance with contractual standards. In addition, the

1This may or may not imply a rent for the agent.
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big firm might demand that the small firm will have its operations “certified” by

a third party.

Our result suggest that in such situations the principal will set standards that

demand observable effort which is above the first-best level, but the level of

total effort will be below the first-best. For example, the work of a small sub-

contractor will be more oriented toward observable effort compared to the case

where the big firm would do the work itself. To generalize, we suggest a possi-

ble inefficiency existing under moral hazard with limited liability, which does

not lie in the amount of total effort but in the way this effort is produced. This

inefficiency has seen scant attention in theory but is often complained about

in practice.

Many employees of big organizations complain about “bureaucracy”. They feel

that their work is inefficiently organized – it would be more productive if there

were fewer regulations to observe and more time could be spend on doing “real

work”. Regulatory regimes for hazardous activities are criticized for putting too

much emphasis on compliance with technical standards rather than on soft

factors like “safety culture”. And many observers question whether a firm’s de-

cision to seek certification for use of a “quality management systems” is mainly

motivated by customer pressure, while the real effect on quality is question-

able.2

This work is related to a number of papers which all exploit a similar effect: if

the solution to the moral hazard problem calls for granting the agent a rent,

the principal will try to expropriate this rent by forcing the agent to undertake

some other activity that benefits the principal. This activity might be socially

inefficient, but because its costs come out of the agent’s rent, it is still advanta-

geous for the principal to implement it. The activity in question might be an-

other principal-agent project (Laux, 2001), reporting activities like “paperwork”

2The question whether firms introducing ISO 9000 quality management systems are mainly
motivated by external reasons (customer pressure etc.) or by internal reasons (concern for
quality and cost improvements) has been the subject of numerous studies, which have come
to conflicting results. A overview of previous studies can be found in Heras Saizarbitoria et al.
(2006); the Delphi study described in their paper finds that external reasons are dominating. In
a similar vein, Buttle (1997) describes a survey of ISO 9000 certified firms; the highest scoring
motivation for certification is “anticipated demand from future customers for ISO 9000”.
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(Strausz, 2006) or the effort in a preceding period of the principal-agent rela-

tionship (Kräkel and Schöttner, 2010). Our model is the first that applies this

effect to the choice between observable effort and unobservable effort. This

setting is not only of great practical importance, it does also allow for a sharp

characterization of the trade-off that is responsible for the implementation of a

socially inefficient activity.

In the “Law & Economics” literature, Bhole and Wagner (2008) analyze a setting

where a firm can take observable effort as well as unobservable effort to prevent

an accident.3 They find that in many situations only the combined use of both

liability and regulation will lead to optimal levels of effort in both dimensions.

There are two important differences to our approach. First, in a tort law set-

ting the principal has a different objective function (total welfare) and usually a

restricted choice of policy measures. Second, Bhole and Wagner only consider

a binary choice of observable effort; because in their model a high level of ob-

servable effort is first-best, the question of excessive regulation of observable

effort is ruled out by assumption.

Multi-dimensional effort has been studied in number of other settings in the

literature. In the most prominent treatment by Holmstrom and Milgrom (1991),

different dimensions of effort interact through the agent’s cost function. In our

model, there is no such interaction; observable effort and unobservable effort

influence each other only because of the shared limited liability constraint.

The rest of the chapter is structured as follows: Section 1.2 sets up the model. In

section 1.3, we discuss a benchmark case, namely a contract that is conditional

on outcome only. The main part of the chapter is section 1.4, which analyzes a

contract that does also regulate the agents effort, while section 1.5 concludes.

Proofs can be found in the Appendix.

3In an article on liability for nuclear accidents, Trebilcock and Winter (1997) sketch a tort-law
model with observable and unobservable effort but do not fully solve it.
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1.2 Setup of the Model

There are two kinds of effort, observable effort o ∈ [0,omax] and unobservable

effort u ∈ [0,umax] with omax,umax > 0 and omax +umax ≤ 1. The agent’s project

has two outcomes, it can either succeed or fail, s ∈ {0,1}. The probability of suc-

cess (s = 1) depends on the agents effort and is given by p(o,u) = o+u. At times

we will denote this probability as total effort. If the agent exerts effort, he suffers

costs of co(o)+ cu(u). Note that under this setup there is no direct interaction

between the two kinds of effort: the level of one kind of effort does not influ-

ence the marginal cost or the marginal return of the other kind of effort.4 We

further need the following technical assumptions for the cost functions:

Assumption 1.1. co (o) and cu(u) are continuous, three times differentiable, strictly

increasing and strictly convex.

Assumption 1.2. co (omax) = cu(umax) =∞.

Assumption 1.3. c ′o (0)= c ′u(0) = 0.

Assumption 1.4. c ′′′o (o),c ′′′u (u) > 0.

Assumption 1.5. co (0)= cu(0) = 0.

Assumptions 1.2 and 1.3 ensure that the agent’s problem has an interior solu-

tion, while Assumption 1.4 makes the principal’s problem concave (the condi-

tion on c ′′′o (o) is only needed for the benchmark case).

The benefit for the principal if the project succeeds is set to B > 0. Both parties

are risk neutral. To induce effort, the principal will write a contract that speci-

fies a transfer scheme t (s,o) that can depend on the outcome of the project and

the observed effort. The agent faces a liability limit L ≥ 0, which can either be

interpreted as the maximum fine that can be imposed on the agent ex-post, or

the maximum bond that can be posted by the agent ex-ante.5 This liability limit

is expressed by:

4In reality those direct interaction will often exist, making the two kinds of efforts either
complements or substitutes. In this chapter, we assume no direct interaction to isolate those
effects that are due to limited liability.

5We assume that the liability limit does not depend on the level of efforts.
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Assumption 1.6. t (s,o) ≥−L ∀s ∈ {0,1},o ∈ [0,omax].

We have to distinguish two concepts. On the one hand, we have the socially

optimal first-best effort levels o∗ and u∗, which are given by c ′o(o∗) = B and

c ′u(u∗) = B . On the other hand, for a given level of total effort p, we can find the

least expensive combination of observable and unobservable effort that pro-

duces p. Such a cost-minimizing combination of efforts will be characterized

by c ′o(o) = c ′u(u).6 It is easy to see that first-best effort levels are also a cost-

minimizing combination of efforts, but that there are also many other cost-

minimizing combinations of efforts that are not first-best.

1.3 Benchmark Case: Incentives only

To establish a benchmark case, we will first consider a contract that conditions

only on outcome. This contract can be described by the transfer scheme:

t (s,o) =

{

b +w if s = 1

w if s = 0

It has the usual property that the principal sets a base wage w and a bonus b.

It follows that the profit function of the principal is given byΠ(o,u,b, w) = (B −

b)·p(o,u)−w , while the payoff function of the agent is V (o,u,b, w) = bp(o,u)+

w −co (o)−cu(u). The principal has to solve the problem:

max
o,u,b,w

Π(o,u,b, w)

subject to:

V (o,u,b, w) ≥ 0 PC

w ≥−L, w +b ≥−L LLCs

(o,u) ∈ argmax
(o,u)

V (o,u,b, w) IC

(1.1)

6This condition results from min
o,u

co (o)+cu(u), subject to p(o,u) = p. Formally, the marginal

rate of technical substitution between these two kinds of effort must be equal to the ratio of
respective marginal costs.
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The fact that u is unobservable does not necessarily mean that the first-best will

not be implemented. In fact, if the principal sets b = B , the agent will deliver

effort levels o∗ and u∗. The wage w∗ that extracts all the agent’s surplus is then

given by V (o∗,u∗,B , w∗) = 0, which can be written as w∗ = co(o∗)− cu(u∗)−

B p(o∗,u∗).

But this extraction of surplus is feasible only if w∗ ≥−L; in this case, the princi-

pal can “sell the project” to the agent. If w∗ <−L, the principal faces a tradeoff

between incentivizing effort and extracting rent. In the following, we will al-

ways assume that the first-best will not be implemented, namely

Assumption 1.7. w∗ <−L.

We will find the optimal effort levels obm and ubm by using the so-called first-

order approach. The following proposition shows that this approach is valid in

our setting because the agent’s optimal choice of effort levels is at a stationary

point.

Proposition 1.1. The optimal solution to (1.1) has b > 0 and obm,ubm will be

given by the agent’s first-order order conditions b − c ′o (o) = 0 and b − c ′u (u) = 0,

with obm ∈ (0,omax), ubm ∈ (0,umax) and total effort p(o,u) > 0.

We can therefore replace the incentive constraint with the agent’s first-order

conditions. Additionally, because b > 0, one of the limited liability constraints,

w +b ≥−L, is superfluous. The Lagrangian for the principal’s problem can now

be written as:

L (o,u,b, w,λ,η,µo ,µu) =

(B −b) ·p(o,u)−w +λ
(

b ·p(o,u)+w −co (o)−cu (u)
)

+η (w +L)+µo

(

b −c ′o (o)
)

+µu

(

b −c ′u(u)
)

(1.2)

In the optimal solution, the limited liability constraint w ≥ −L will always be

binding, while the participation constraint may be binding or not.

Proposition 1.2. The optimal solution to (1.2) has w =−L and

b = B −
(1−λ)p(o,u)

1
c′′o (o) +

1
c′′u (u)

(1.3)
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with 0 ≤λ< 1. If the agent will get a rent, we have λ= 0.

The optimal contract can be found be trying out two cases. In the first case

with λ= 0, the optimal effort levels are given by the trade-off between the costs

of incentives and the principal’s benefit from having more effort, ignoring the

PC (this will usually mean a rent for the agent). But if those effort levels and

w =−L do not satisfy the PC, we have the case λ> 0. The principal sets w =−L

and chooses the unique level of b that makes the PC binding. This will mean

higher effort levels than in the first case and no rent for the agent.7

In both cases we will have c ′o (obm) = c ′u(ubm) = b < B . This implies that both

kinds of effort are below the first-best level (obm < o∗ and ubm < u∗ ), but be-

cause c ′o(obm) = c ′u(ubm), they form a cost-minimizing combination.

1.4 Joint Use of Incentives and Standards

We now look at a contract that makes the principal’s payments conditional not

only on outcome, but also on observable effort. At first glance the problem of

finding the optimal contract looks quite simple: set the observable effort to o∗

and optimize over u (because we assume p(o,u) = o+u, there is no interaction

between the two kinds of effort). But it will turn out that the optimal contract

will have a level of observable effort that is above o∗.

We consider contracts of the following form:8

t (s,o) =







b +w if s = 1 and o ≥ o

w if s = 0 and o ≥ o

−L if o < o

7Which case obtains depends on the severity of the liability limit. Define L∗ by
V (o∗,u∗,B,−L∗) = 0 and L̃ by V (obm,ubm,B,−L̃) = 0 (where obm and ubm are given by (1.3)
with λ= 0). If 0 ≤ L < L̃ the agent gets a rent, if L̃ ≤ L < L∗ there will be no rent.

8The principal cannot improve his profit by using a more general contract that distinguishes
between more levels of o, because, besides his effort level, the agent has no other private infor-
mation.
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where o is contractually specified level of observable care. The principal’s ex-

pected profit is given by

Πo(o,u,b, w) =

{

(B −b) ·p(o,u)−w if o ≥ o

B ·p(o,u)+L if o < o

while the agent’s payoff has the form:

Vo(o,u,b, w) =

{

bp(o,u)+w −co (o)−cu(u) if o ≥ o

−L−co (o)−cu(u) if o < o

The principal’s problem is given by:

max
o,u,b,w,o

Πo(o,u,b, w)

subject to:

Vo(o,u,b, w) ≥ 0 PC

w ≥−L, w +b ≥−L LLCs

(o,u) ∈ argmax
(o,u)

Vo(o,u,b, w) IC

(1.4)

Denote by ô and û the effort levels that are implemented in the optimum. The

first problem is again to show that the first-order approach is valid here.

Proposition 1.3. The optimal solution to (1.4) has ô = o and b > 0. Effort level

û will be given by the agent’s first-order order condition b − c ′u(u) = 0, with ô ∈

(0,omax), û ∈ (0,umax) and total effort p(ô, û) > 0.

We can again use the agent’s first order condition for u and ignore the con-

straint w + b ≥ 0. The Lagrangian for the principal’s problem can be written

as:

L (o,u,b, w,λ,η,µ) =

(B −b) ·p(o,u)−w +λ
(

b ·p(o,u)+w −co (o)−cu (u)
)

+η (w +L) + µ
(

b −c ′u(u)
)

(1.5)
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Proposition 1.4. In the optimal solution to (1.5), both the participation con-

straint Vo(o,u,b, w) ≥ 0 and the limited liability constraint w ≥−L are binding.

The optimal effort levels ô and û are given by

c ′o(o) = B +
1−λ

λ
(B −c ′u(u)) (1.6)

and c ′u(u) = B − (1−λ) ·p(o,u) ·c ′′u (u) (1.7)

with 0 <λ< 1.

It is quite intuitive that the principal will not give the agent a rent. Suppose the

principal would choose some o and some b < B so that the agent gets a rent.

The principal could then increase observable effort and get a marginal benefit

of B −b while letting the agent take the additional costs out of his rent. So the

principal will transform the agent’s rent into his own benefit.

From (1.6) and (1.7) and 0 <λ< 1 we can conclude that c ′u(u) < B and c ′o(o) > B .

This implies that ô > o∗ and û < u∗, so observable effort is above and unob-

servable effort is below the first-best level. We also note that ô and û are not a

cost-minimizing combination of efforts (because c ′o (ô) 6= c ′u(û)), meaning that

p(ô, û) could be produced more cheaply by a different combination of efforts.

It is also clear that ô > obm, but we cannot tell whether û is greater or smaller

than ubm. In fact, numerical simulations show that both cases can occur.

The principal is willing to set observable effort above the first-best level be-

cause stipulating more observable effort has the additional benefit of inducing

more unobservable effort. When the principal demands additional observable

effort, he must compensate the agent for the additional cost (because the PC

is binding), but does so by increasing b, thereby increasing the agent’s incen-

tive for providing unobservable effort. This can bee seen if we combine the two

implicit equations (1.6) and (1.7) by eliminating λ:

c ′o(o)−B = (B −b) ·
1

c ′′u(u)
·

1

p(o,u)
(c ′o(o)−b) (1.8)

Equation (1.8) can interpreted as the trade-off facing the principal at the margin

when he increases ô beyond o∗. The term on the left-hand-side is the princi-
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pal’s cost of increasing observable effort further above the first-best level. Be-

cause the PC is binding, he has to compensate the agent for the marginal cost

of additional effort but receives additional expected benefit of only B (which is

smaller than c ′o(o) because ô > o∗). The right hand side is his marginal benefit

and can be interpreted as follows (read from right to left): if o is increased, the

agent has marginal costs of c ′o(o) but receives a marginal increase in expected

payoff of only b. To compensate the agent for a small loss in payoff, the prin-

cipal has to marginally increase b by 1
p(o,u) . An marginal increase in b will in-

crease unobservable effort by 1
c′′u (u) , while a marginal increase in u will give the

principal an marginal benefit of B −b. These effects can be labeled as follows:

c ′o(o)−B

︸ ︷︷ ︸

−
dΠ

do

= (B −b)

︸ ︷︷ ︸

dΠ

du

·
1

c ′′u(u)
︸ ︷︷ ︸

du

db

·
1

p(o,u)
︸ ︷︷ ︸

db

dV

(c ′o(o)−b)

︸ ︷︷ ︸

−
dV

do

In our model, the agent’s limited liability causes a combination of the two kinds

of effort that is not cost-minimizing, namely too much observable and too little

unobservable effort. This suggests that a decrease in L – the problem of limited

liability becomes worse – will increase this distortion. The next proposition

shows that this is indeed the case.

Proposition 1.5. If L decreases (the agent’s liability becomes more limited), ô in-

creases and û decreases.

This result looks more obvious than it is. Because if L decreases, it changes

not only the optimal combination of o and u that implements a given level of

p(o,u) (substitution effect), but it may also change the level of p(o,u) that is

optimal for the principal to implement (scale effect).9 Proposition 1.5 shows

that the first effect dominates. This result also suggests a possible way to test

our theory: for agents with a stricter liability limit we should observe standards

that prescribe a higher level of observable effort.

9The terminology is taken from Nagatani (1978). It can be shown that if L decreases, the
substitution effect is positive for o and negative for u. But if the optimal p(o,u) decreases, the
scale effect will be negative for both kinds of effort.
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1.5 Conclusion

The chapter analyzes a model of moral hazard with limited liability of the agent

where the agent’s effort has one observable and one unobservable dimension.

For simplicity, we only consider the case where the two kinds of efforts do not

interact with each other. We consider different contracts with regard to two

questions: whether each of the two kinds of effort is above or below its first-

best level and whether the two levels form a cost-minimizing combination.

With a contract that is conditional on outcome only, both kinds of effort are be-

low their first-best levels but they form a cost-minimizing combination. With

a contract that is conditional on both outcome and observable effort, unob-

servable effort will still be below its first best level while observable effort will

be above the first-best level. This combination of efforts will not be cost-mini-

mizing. The distortion between the two kinds of efforts increases if the agent’s

liability becomes more limited.

1.6 Appendix

Proof of Proposition 1.1

We first show that all b ≤ 0 give the principal the same profit. If the principals
sets b ≤ 0, the agent will always choose o = 0 and u = 0, and w = 0 will make the
PC binding. This will give the principal a profitΠ= 0, for all b ≤ 0. Thus to show
that b ≤ 0 is not optimal it is sufficient to show that b = 0 is not optimal

We now show that for a given b ≥ 0 and w , the maximum of V (o,u,b, w) =
bp(o,u)+ w − co(o)− cu(u) will be characterized by the first-order conditions
b −c ′o (o) = 0 and b −c ′u (u) = 0. Because V (o,u,b, w) is strictly concave in o and
u, an interior maximum will be characterized by the first-order conditions. As
regards to corner solutions, o = omax or u = umax cannot be a maximum be-
cause the costs would be infinite, so zero effort would be better. A possible cor-
ner solution with o = 0 and u = 0 would have b−c ′o(0) ≤ 0. Because of b ≥ 0 and
c ′o (0) = 0 this implies b = 0 and this maximum would also fulfill the first-order
condition with equality.
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Now we show that b = 0 cannot be an optimum. Suppose otherwise: then the
agent would choose o = 0 and u = 0, and w = 0 would make the PC binding. If
the principal would marginal increase b he would get:

dΠ

db
= −p(o,u)+ (B −b)

(
do

db
+

du

db

)

(1.9)

= B

(
1

c ′′o (o)
+

1

c ′′u(u)

)

> 0 (1.10)

where the values of do
db

and du
db

come from implicitly differentiating the agent’s

first-order conditions; at the same time, at this point, dV
db

= p(0,0)− c ′o (0) do
db

−

c ′u(0) du
db

= 0 so the PC will still be satisfied. Because this implies obm,ubm > 0,
we must have p(o,u) > 0.

Proof of Proposition 1.2

The first order conditions for a maximum are:

∂L

∂o
= (B −b)+λ(b −c ′o (o))−µo c ′′o (o) = 0 (1.11)

∂L

∂u
= (B −b)+λ(b −c ′u (u))−µuc ′′u(u) = 0 (1.12)

∂L

∂b
=−p(o,u)+λp(o,u)+µo +µu = 0 (1.13)

∂L

∂w
=−1+λ+η= 0 (1.14)

λ,η,µo ,µu ≥ 0 (with complementary slackness)

It cannot be the case that both the PC and the LLC are slack. In this case, the
principal could always increase his profit by decreasing w (formally, equation
(1.14) can never be fulfilled). Furthermore, it cannot be the case that the PC is
binding and the LLC is not binding: Because this would imply η = 0, and from
(1.14) we would get λ = 1. Then (1.13) and complementary slackness give us
µo = 0,µu = 0 and from this we get o = o∗ and u = u∗ (using equations (1.11)
and (1.12)). But this contradicts Assumption 1.7.

By using the agent’s first order conditions we can simplify the equations to

b +µo c ′′o (o) = B

b +µuc ′′u(u) = B

µo +µu = (1−λ)p(o,u)
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with 0 ≤λ< 1. Solving this system of equations for b yields:

b = B −
(1−λ)p(o,u)

1
c′′o (o) +

1
c′′u (u)

.

This implies b < B and µo , µu > 0.

For this solution to be a maximum, the Lagrange function evaluated with the
Lagrange-multipliers found above must be concave. This function is given by:

L
∗(o,u,b, w) = B p(o,u)+ (1−λ)L−λ[co (o)+cu(u)]−µoc ′o (o)−µuc ′u(u)

which is concave in o, u, b and w (because c ′′′o (o),c ′′′u (u) > 0).

Proof of Proposition 1.3

We first show that o = o by contradiction. Consider the case o < o. If the agent
would like to disobey the contract, his optimal choice of efforts is o = 0 and
u = 0, which would give him a payoff of −L < 0. But this cannot be optimal for
the agent because obeying and delivering o = o would give him a non-negative
payoff (because the principal has to fulfill the PC).

Now consider the case o > o. This would be optimal for the agent if the effort
level given by c ′o(o) = b is higher than o, or c ′o(o) < b. To show the opposite
first note that in the principal’s optimum it must be the case that c ′o(o) ≥ B . If
not, the principal could marginally increase o while holding the agent’s payoff
constant by increasing w . This would increase the principal’s profit marginally
by B − c ′o(o) > 0. Second, it cannot be optimal for the principal to set b > B .
Consider

dΠ

db
=−p(o,u)+ (B −b)

1

c ′′u(u)

which is negative for b > B . If the LLC is binding, this shows that decreasing
b will increase Π. If the LLC is not binding, the principal could extract the in-
crease in the agent’s surplus

dV

db
= p(o,u)+b

1

c ′′u (u)
−c ′u(u)

1

c ′′u(u)
= p(o,u)

where the last equality results from using the agent’s first-order condition. So
the principal’s profit would increase by dΠ

db
+

dV
db

= (B −b) 1
c′′u (u) which is still neg-

ative for b > B . So we have c ′o (o) ≥ B and B ≥ b which implies c ′o(o) ≥ b which
means that in the optimum o will be greater than the effort level implied by
c ′o (o) = b.
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We next show that all b ≤ 0 give the principal the same profit. Suppose the
principal chooses some o ∈ [0,omax] and sets b ≤ 0. Then the agent will choose
u = 0. For the PC to hold the principal has to set w =−bo+co (o) > 0≥−L. This
will give him the same profitΠ= Bo −co (o) for all b ≤ 0.

The proof that for all b ≥ 0 the optimal u will be given by the agent’s first-order
condition b−c ′u(u) = 0 is analogous to the argument in the proof of Proposition
1.1. Because ô > o∗ > 0 we will also have p(o,u) > 0.

Proof of Proposition 1.4

The first order conditions for a maximum are:

∂L

∂o
= (B −b)+λ

(

b −c ′o (o)
)

= 0 (1.15)

∂L

∂u
= (B −b)+λ

(

b −c ′u(u)
)

−µc ′′u(u) = 0 (1.16)

∂L

∂b
=−p(o,u)+λp(o,u)+µ= 0 (1.17)

∂L

∂w
=−1+λ+η= 0 (1.18)

λ,η,µ≥ 0 (with complementary slackness)

We show that a solution to these conditions must have both the PC and the
LLC binding. If the PC is not binding, we will have λ = 0. Then (1.15) gives
us b = B . But from (1.17) we get µ = p(o,u) and plugging into (1.16) gives us
b = B −p(o,u)c ′′u(u) < B , a contradiction. If only the PC is binding but the LLC
is not, we will have η= 0. From (1.18) we get λ= 1 and from (1.17) we get µ= 0.
Plugging into (1.15) and (1.16) gives us c ′o(o) = B and c ′u(u) = B respectively.
This implies, that the first best can be achieved with a bonus contract without
violating the LLC. But this contradicts Assumption 1.7.

From (1.18) we get λ = 1−η and with λ,η > 0, we must have 0 < λ < 1. From
(1.17) we get µ= (1−λ)p(o,u) > 0. Substituting for µ into (1.16) and rearranging
gives us

c ′u(u) = b = B − (1−λ) ·p(o,u) ·c ′′u (u) < B

and substituting b = c ′u(u) into (1.15) gives us:

c ′o(o) = B +
1−λ

λ
(B −c ′u(u)) > B.
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For this solution to be a maximum, the Lagrange function evaluated with the
Lagrange-multipliers found above must be concave. This function is given by:

L
∗(o,u,b, w) = B p(o,u)+ (1−λ)L−λ[co (o)+cu(u)]−µc ′u(u)

which is concave in o, u, b and w (because c ′′′u (u) > 0).

Proof of Proposition 1.5

We have to show that do
dL

< 0 and du
dL

> 0. The optimal values for o,u,b and w

are given by the solution to the four equations:

b ·p(o,u)+w −co (o)−cu (u) = 0 (1.19)

L+w = 0 (1.20)

b −c ′u = 0 (1.21)

(c ′o −B)c ′′u ·p(o,u)+ (b −B)(c ′o −b) = 0 (1.22)

where (1.22) is a rewritten form of (1.8). If we differentiate these four equation
with respect to L, we get:

p(o,u)
db

dL
+1 ·

d w

dL
+ (b −c ′o )

do

dL
+ (b −c ′u )

du

dL
= 0 (1.23)

1+
d w

dL
= 0 (1.24)

db

dL
−c ′′u

du

dL
= 0 (1.25)

((c ′o −b)+ (B −b))
db

dL
+ (c ′′o c ′′u p(o,u)+ (c ′o −B)c ′′u + (b −B)c ′′o )

do

dL

+((c ′o −B)c ′′′u p(o,u)+ (c ′o −B)c ′′u )
du

dL
= 0

(1.26)

We can now solve (1.24) for dw
dL

= −1 and (1.25) for db
dL

= c ′′u
du
dL

. Plugging these
results into (1.23) and using (1.21) gives us

p(o,u)c ′′u
du

dL
+ (b −c ′o )

do

dL
= 1 (1.27)

while plugging the results into (1.26) gives us:

(c ′′o c ′′u p(o,u)+ (c ′o −B)c ′′u + (b −B)c ′′o )
do

dL

+((c ′o −B)c ′′′u p(o,u)+2(c ′o −b)c ′′u)
du

dL
= 0

(1.28)
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To simplify calculations, we make the following substitutions:

e = b −c ′o

f = p(o,u)c ′′u

g = [c ′′o c ′′u p(o,u)+ (c ′o −B)c ′′u + (b −B)c ′′o ]

h = [(c ′o −B)c ′′′u p(o,u)+2(c ′o −b)c ′′u ]

The two equations can then be written as

[
e f

g h

]

·

[ do
dL
du
dL

]

=

[
1
0

]

Using Cramer’s Rule we can solve for

do

dL
=

h

eh − f g
and

du

dL
=

−g

eh − f g
.

Because at the optimum c ′o > B > b, we will have e < 0, f > 0 and h > 0. To sign
g , we rewrite (1.22) and get

B −b

c ′′u p(o,u)
=

c ′o −B

c ′o −b
< 1

where the inequality follows again from c ′o > B > b. Because c ′′u p(o,u) > 0, this
implies c ′′u p(o,u) > B −b. Now we can easily show g > 0. These results imply
eh − f g < 0 and finally do

dL
< 0, du

dL
> 0.



Chapter 2

Regulation and Liability as

Complements and Substitutes

2.1 Introduction

The relationship between liability and regulation as instruments for control-

ling hazardous technologies has been a long-standing question for Law & Eco-

nomics scholars. The literature has mainly concentrated on two questions:

first, whether – if one uses only one instrument – it is better to use regulation or

liability, second, whether the joint use of regulation and liability is better than

using only one of these instruments.

In this chapter, it will always be optimal to use both regulation and liability.1

Our main interest is the stringency of regulation, namely whether the care de-

manded by regulation differs from the one that is implemented in the first-best.

The main feature of our model – in comparison to most of the literature – is that

the care that can be exercised to lower the probability of an accident is two-

dimensional, where only one dimension of care can be subject to regulation.

For some action to be subject to regulation, it must fulfill the following require-

ments. First, the action must be describable in a regulation. Second, the regula-

tor must be able to measure whether the firm has complied with the regulation

1In the case where liability alone can implement the first-best, using regulation is superflu-
ous but will also do no harm.

28



Chapter 2. Complements and Substitutes 29

and third, a possible breach must be verifiable in a court of law.2 Even if an ac-

tion could be subject to regulation in principle, it might often not be practical to

do so, because the regulator’s cost of enforcing the regulation are prohibitively

high. For example, a certain safety procedure might be easily describable, but

might only be enforceable if every worker has a safety inspector at his side.3

In this chapter we consider a firm that operates a hazardous technology. To de-

crease the probability of an accident, the firm can take care in two dimensions.

One dimension of care can be regulated and will be called “observable care”.

The other dimension of care cannot be regulated and will be called “unobserv-

able care”. An example of observable care is the compliance with a technical

regulation that can easily be controlled by inspections. Examples of unobserv-

able care are the workload and alertness of the operators, or whether manage-

ment exerts pressure on staff to “bend the rules”. We also assume that in case

of an accident the legal system is not able to impose the full costs of the acci-

dent on the firm. So the use of liability alone will not induce the firm to take the

optimal levels of observable and unobservable care.

In such a situation it will always be optimal to use both liability and regulation.

Our main focus will be the optimal level of regulation. Existing regulations are

often criticized for being excessively strict, meaning that their costs outweigh

their benefits, and also for encouraging carelessness in matters not subject to

regulation.

If both dimensions of care are independent, meaning that the level of care in

one dimension does not influence the marginal cost or the marginal return

of care in the other dimension, regulation should simply impose the first-best

2For example, experts analyzing disasters like the Chernobyl accident or the destruction of
the Space Shuttle Columbia have stressed deficits in the “safety culture” of the responsible or-
ganizations (INSAG, 1992; CAIB, 2003). According to one definition, the safety culture of an
organization is “the product of individual and group values, attitudes, perceptions, competen-
cies and patterns of behavior that determine the commitment to, and the style and proficiency
of, an organization’s health and safety management” (ACSNI, 1993). Because “values”, “atti-
tudes” and “perceptions” are hard to measure, it seems difficult to enforce a regulation that
simply prescribes a good safety culture.

3A solution to this problem are “stochastic inspections”. But even an unannounced inspec-
tion might not uncover all day-to-day behavior.
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level of observable care. Things become more complicated if we allow for in-

teractions between the marginal returns of the two dimensions of care.4

For example, consider the case where the two dimensions of care are comple-

ments, meaning that the marginal return of one dimension of care increases

in the level of the other dimension of care. Because the level of unobservable

care will be too low compared to the first-best, a natural intuition in this case

suggests that the regulated level of observable care should be higher than in

the first best, to induce the firm to take more unobservable care. But there is

a countervailing effect. Because the level of unobservable care is too low and

both dimensions are complements, the marginal return of observable care will

be lower than in the first-best, making a high level of observable care less bene-

ficial. Which of the two effects dominates depends on the curvature of the cost

curve for unobservable care. If the moral hazard problem is serious enough, we

can show that regulated observable care will be below its first-best level.

The model in this chapter is most applicable to the question of avoiding en-

vironmental accidents, like major oil spills or the uncontrolled emission of ra-

dioactive or toxic material. The victims of those accidents will be numerous and

widespread, making Coasian bargaining very costly. Furthermore, there are not

many cost-effective avoidance activities which can be undertaken by victims,

so we can ignore victims’ incentives. But it should be noted that the idea of

two-dimensional care should also be relevant to bilateral accidents, where vic-

tims’ care decisions are important. Environmental accidents are also distinct

from other environmental problems like the regulation of certain, observable

effluents like carbon dioxide, which is at the center of current debates or prob-

lems where the emission is observable but uncertainty exists whether a certain

damage has been caused by this emission.

A number of papers have modeled the problem of joint use of regulation and

liability in a framework that was first developed by Shavell (1984). In this frame-

work, care is one-dimensional and observable by the regulator, but regulation

does not implement the social optimum because the firm has some private in-

formation. In Shavell’s setup, this private information is about the potential

4To simplify, we do not consider interactions in the marginal costs.
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harm that can be caused by an accident. But because liability is uncertain (un-

derenforcement) and tortfeasor’s assets are limited, liability alone does not im-

plement the social optimum either. Shavell shows that it can be optimal to

use both regulation and liability. In this case the optimal level of regulation

is below the level that would be optimal if regulation is used alone. Schmitz

(2000) shows that the optimality of joint use disappears if there is no underen-

forcement; then, either regulation or liability should be used. But joint use can

become optimal again if there is heterogeneity in asset limitations. Rouillon

(2008) extends these results to the case where agents differ in their probability

of getting sued, while Hiriart et al. (2004) embed the problem in a contract-

theoretic setting where the regulator gives the firm incentives to reveal its pri-

vate information about potential harm. A different framework is used in Kol-

stad et al. (1990). In contrast to Shavell, they assume that the firm is only liable

if it is found to have acted with negligence; regulation is welfare increasing be-

cause it reduces the firm’s uncertainty about the legal standard that determines

negligence.

There are some papers that model care as two-dimensional. In an article on li-

ability for nuclear accidents, Trebilcock and Winter (1997) sketch a model with

observable and unobservable care but do not fully solve it. In the setting an-

alyzed by Bhole and Wagner (2008), a firm can take observable care as well

as unobservable care to prevent an accident. They find that in many situa-

tions only the combined use of both liability and regulation will lead to opti-

mal levels of effort in both dimensions. In contrast to us, Bhole and Wagner do

only consider a binary choice of observable care; because in their model a high

level of observable care is socially optimal, the question of excessive regulation

is ruled out by assumption. In Hutchinson and van ’t Veld (2005), unobserv-

able care will lower the probability of an accident, while observable care will

only lower the damage if an accident occurs. Finally, Bartsch (1997) consid-

ers two-dimensional care where one dimension is perfectly observable and the

other only imperfectly and analyzes the firm’s choice of care under a negligence

regime.
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The rest of the chapter is structured as follows. In section 2.2 we describe the

setup of the model and distinguish the possible interactions between the two

kinds of care. Section 2.3 characterizes the socially optimal care levels, while

section 2.4 shows that liability alone will induce care levels that are too low, if

the liability limit is below potential harm. The main part is section 2.5, where

we describe the regulator’s optimization problem under joint use of liability

and regulation. In that section we also analyze whether observable effort will

be above or below the first-best level, while section 2.6 concludes. All proofs

can be found in the appendix.

2.2 Setup of the Model

There is a firm that uses a production process that could cause an accident.

The firm can invest in two dimensions of care, observable care o ∈ [0,omax)

and unobservable care u ∈ [0,umax) with omax,umax < 1. Define X := [0,omax)×

[0,umax).

The firm’s costs for those investments in care are given by co(o)+ cu(u). The

probability that the accident is avoided depends on both levels of care and is

given by p(o,u). In the following we will sometimes call this probabilitiy the

“level of safety”. If an accident happens, the damage to society is D.

We make the following assumptions for p(o,u) (subscripts denote partial deriva-

tives):

Assumption 2.1. 0 ≤ p(o,u) ≤ 1 for all (o,u) ∈ X , p(0,0)= 0.

Assumption 2.2. po , pu > 0.

Assumption 2.3. poo , puu = 0.

Assumption 2.4. pou ∈ [−1,1].

If pou = 0, we say that the two dimensions of care are independent, if pou > 0 we

say that they are complements, and if pou < 0 we say that they are substitutes.
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A functional form that fulfills the assumptions above is given by:

p(o,u) =αoo +αuu +αou ou (2.1)

with 0 ≤αo ≤ 1, 0 ≤αu ≤ 1, αu +αu ≤ 1 and |αou | < min{αo ,αu}.

We can interpret this functional form as follows: Because both o and u are be-

tween zero and unity, they can be interpreted as probabilities. We can associate

each with some distinct piece of equipment or process involved in avoiding an

accident. Then o and u are the probabilities that the respective process work

properly, while 1−o and 1−u are the respective probabilities of failure. It is now

easy to interpret three extreme cases:

independence contingent on the state of the world, one or the other process

has to work to avoid the accident; the accident is avoided with probability

αoo +αuu with αo ,αu ≥ 0 and αo +αu ≤ 1;

pure complements both processes are needed to avoid an accident; the acci-

dent is avoided with probability o ·u;

pure substitutes at least one process has to work to avoid the accident; the

accident is avoided with probability o +u −o ·u.

The functional form given in (2.1) can be understood as a convex combination

of the three functions, where the case of pure complements (p(o,u) = o ·u) is

not allowed to happen.

We make the following technical assumptions for the cost functions:

Assumption 2.5. co (o) and cu(u) are continuous, three times differentiable, strictly

increasing and strictly convex.

Assumption 2.6. co (omax) = cu(umax) =∞.

Assumption 2.7. c ′o (0)= c ′u(0) = 0.

Assumption 2.8. co (0)= cu(0) = 0.
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These conditions are rather standard, e.g. Assumptions 2.6 and 2.7 ensure that

the firm’s problem has an interior solution. The next assumption is a little bit

more intricate:

Assumption 2.9. For all u ∈ [0,umax) we have poc ′′u(u) > |pou | · c ′u(u). For all

o ∈ [0,omax) we have puc ′′o (o) > |pou | ·c
′
o (o).

This assumption rules out cases where the complementary or substitutive na-

ture of o and u is “too strong”. Note that this assumption implies that the func-

tion p̃(ko ,ku) := p
(

c−1
o (ko),c−1

u (ku)
)

is strictly concave. Furthermore, it rules

out the possibility that one dimension of care is an “inferior factor”, meaning

that the socially optimal use of this factor decreases when D is increased.

2.3 The First-Best Care Levels

The socially optimal levels of o and u minimize the expected social costs of the

hazardous technology, formally

min
(o,u)∈X

CD (o,u) =
(

1−p(o,u)
)

D +co(o)+cu(u). (2.2)

Proposition 2.1. The problem given by (2.2) has an unique, interior solution,

where the socially optimal care levels o∗ and u∗ are given by poD = c ′o(o∗) and

puD = c ′u(u∗).

If we compare other outcomes with this first-best, we have to distinguish two

concepts. On the one hand, we have the socially optimal first-best care levels

o∗ and u∗, which are given by c ′o(o∗) = poD and c ′u(u∗) = poD. On the other

hand, for a given level of safety p, we can find the least expensive combination

of observable and unobservable care that produces p. Such a cost-minimizing

combination of care will have po

pu
=

c′o (o)
c′u (u) .5 It is easy to see that first-best care

levels are also a cost-minimizing combination of care, but that there are also

5This condition results from min
o,u

co (o)+cu(u), subject to p(o,u) = p. Formally, the marginal

rate of technical substitution between these two kinds of care must be equal to the ratio of
respective marginal costs.
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many other cost-minimizing combinations of care that are not first-best. How

can we interpret the cost-minimizing combination? Consider a safety specialist

who is give the task of implementing a specific level of safety and is not aware of

any incentive problem. He will recommend this combination of the two levels

of care. If he finds – for example – that
c′o (o)

po
>

c′u (u)
pu

he will diagnose an over-

reliance on the observable dimension of care.

2.4 Care Levels with Liability only

This section considers the outcome if the firm is only subject to strict liability.

Strict liability means that in case of an accident the firm has to pay out com-

pensation to the victim’s of the accident, regardless of the level of care it has

taken. The amount of compensation is given by L, with 0 ≤ L ≤ D.

There exist a number of institutional reasons why L might be below damages

D. First, there exists the possibility that if the accident occurs, the firm has

insufficient funds to cover all damages.6 Second, often the legal system itself

limits the amount of compensation. This might happen either explicitly, with

numerical liability caps,7 or implicitly, if certain categories of damages, like

“pain and suffering” are excluded or underestimated when computing damage

amounts. Third, there might be some uncertainty whether in case of an acci-

dent the firm can be sued successfully (by all victims). Let q be the probability

of a successfull law-suit, then L = qD can be interpreted as the expected dam-

age payment.8 These considerations suggest another interpretation, namely

that L is the amount of compensation that the firm has to pay in expectation,

6A regulator might take measures to prevent this from happening, like requiring insurance
coverage, which we will not consider. But note that this leads to the question of moral hazard in
the relation between firm and insurer. The insurer’s problem might be very similar to regulator’s
problem considered here.

7For example in the US, the Oil Pollution Act of 1990 limits the liability for natural resource
and economic damages to $75 million per offshore oil spill; only direct cleanup cost are ex-
cepted. However, there may be ways for plaintiffs to suspend those limits (see Richardson,
2010).

8Theoretically, this problem could be remedied by the use of “damage multipliers”.
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conditional that an accident has occured. Our model requires that this expec-

tation does not depend on p(o,u).9

The firm which is faced with strict liability and a liability limit L minimizes its

expected cost of accidents:

min
(o,u)∈X

CL(o,u) =
(

1−p(o,u)
)

L+co (o)+cu(u). (2.3)

Proposition 2.2. For all 0 < L ≤ D, the problem given by (2.3) has an unique,

interior solution, where the firm’s privately optimal care levels ô and û are given

by poL = c ′o(ô) and puL = c ′u(û).

If L = D, strict liability will implement the first-best care levels, because then

the firm’s problem is indentical to the government’s. What if L < D? Unfortu-

nately, this question cannot be answered by simply inspecting the first-order

conditions. Consider poL = c ′o(ô); if L decreases, it will lower poL directly but a

change in u might also increase po if pou 6= 0. We have to do comparative statics

with respect to L. Define p̂(L) := p(ô(L), û(L)), the privately optimal safety level

as a function of the liability limit L.

Proposition 2.3. The privately optimal safety level p̂(L) is strictly increasing in L.

So a higher liability level causes a higher level of safety implemented by the

firm.

Proposition 2.4. For all L < D, the social costs of accidents
(

1−p(o,u)
)

D +

co (o)+cu(u) are decreasing in L.

So the higher liability level, the lower will be the social costs of the hazardous

technology. The higher liability level induces more care by the firm, but be-

cause care levels are still lower than socially optimal, the savings in accident

cost will outweigh the increased cost of care.

9In contrast, in Hutchinson and van ’t Veld (2005) observable care reduces the amount of
damage and therefore influences the amount of liability.
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2.5 The Optimal Combination of Liability and

Regulation

We now consider the problem of a regulator who has to choose the optimal

level of regulation, given the firm’s liability limit L. Regulation takes the form

of postulating a minimum amount of observable care o that the firm has to ex-

ert. Given this amount of regulated observable care and its liability L, the firm

will choose the amount of unobservable care that minimizes its private costs.

This restricted problem seems to be quite realistic for many regulatory agen-

cies. Those agencies can do little about the general legal framework that gov-

erns liability but often have a great amount of discretion regarding the technical

details of regulation.

Formally the regulator has to solve:

min
o∈[0,omax), (o,u)∈X

(

1−p(o,u)
)

D +co(o)+cu(u)

subject to: (o,u) ∈ argmin
(o,u)∈X

[1−p(o,u)]L+co (o)+cu (u)

subject to: o ≥ o.

(2.4)

As we show below, the firm’s minimization problem has a unique solution that

is characterized by the first-order condition puL = c ′u(u). So we can replace the

constraint above with this first order condition and use the so-called first-order

approach.

Proposition 2.5. For all 0 < L ≤ D, a solution to the problem given by (2.4) will

have o = o ≥ ô and u > 0. Such a solution is characterized by the first-order

condition:

c ′o(o) = poD +pu(D −L)
pouL

c ′′u(u)
.

The intuition for this result is as follows. If the government chooses a level of

regulation below ô, the regulation is not a binding constraint on the firm and

it will choose its privately optimal levels ô and û. So we can assume that the
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government sets regulatory level of at least ô. We can now show that the firm’s

maximization problem has a unique solution given by puL − c ′u(u) = 0. So we

can define u(o) as the firm’s best response in unobservable care for every level

of regulation o ≥ ô. If we differentiate the firm’s first order condition with re-

spect to o we get:

du

do
=

pouL

c ′′u(u)
.

Then a marginal increase in observable care changes the social costs of acci-

dents as follows

dCH

do
= c ′o(o)−poD + (c ′u(u)−Dpu)

du

do
(2.5)

= c ′o(o)−poD −pu(D −L)
pouL

c ′′u(u)
(2.6)

This is negative at ô so it will always be worthwhile to increase observable effort

above the level which is privately optimal for the firm. At the optimal point, the

cost of additional effort will be just equal to its direct and indirect benefits.

If pou = 0, the regulator demands the first-best level of observable care while

unobservable care is at the same level as without regulation. If pou 6= 0, inspect-

ing the first order-conditions will not give us definitive information whether o

and u are above or below the first-best values, because po and pu will be dif-

ferent from their values at the first-best. We can only make the following local

statements:

• because puD > c ′u(u), for the given amount of o, the level of u is too

low, so if the firm would voluntarily increase u marginally, social welfare

would increase;

• if o and u are complements, we have poD < c ′o(o), if they are substitutes,

we have poD > c ′o (o); so a safety expert who evaluates the regulation only

with regard to its direct costs and benefits – excluding its effect on unob-

servable care – would conclude that the regulation is too strict in the case

of complements and too lenient in the case of substitutes.



Chapter 2. Complements and Substitutes 39

To get information on the absolute level of o and u we need to do a compara-

tive statics analysis with regard to L. There are three countervailing effects that

happen if L decreases. Let’s consider the case of complements. The decrease in

liability means that the firm has less powerful incentives to exert unobservable

care, so u will fall. How should the regulator react to this development? Because

the two dimension of care are complements, the regulator might consider in-

creasing the level of o by regulation, thereby increasing the marginal return to

u and the firm’s incentives to take unobservable care. But the decrease in u will

also lower the marginal return to o, which suggests to lower the level of regula-

tion. Finally, the lower level of L will decrease the effectiveness of the channel

whereby more o gives more incentives for u, which also suggests lowering reg-

ulation of o. The change in o if L decreases depends on the sum of these three

effects, which depends on the curvature of the cost curve for unobservable care.

Define

M(u) = 2
c ′′u(u)

c ′u(u)
−

c ′′′u (u)

c ′′u (u)
.

Proposition 2.6. Assume that if problem (2.4) has more than one solution, the

regulator chooses the one which has the lowest o. If L decreases, the change of o

depends on the signs of pou and M(u).

1. If o and u are complements (pou > 0), a decrease in L will cause o to de-

crease if M(u) > 0 and to increase if M(u) < 0.

2. If o and u are substitutes (pou < 0), a decrease in L will cause o to increase

if M(u) > 0 and to decrease if M(u) < 0.

To clarify this proposition, assume M(u) > 0 on [0,u∗]. Then if L < D the level

of regulation will be as follows:

• if o and u are complements (pou > 0), the level of regulated observable

care will be below the first-best level;

• if o and u are substitutes (pou < 0), the level of regulated observable care

will be above the first-best level.
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Clearly the sign of M(u) depends on the curvature of cu(u). But we can make

more general statements than that. Because c ′u(0) = 0, we have M(u) → ∞ if

u → 0. So we will have M(u) > 0 if u is low enough. We can also consider the

situation at L = 0: in case of substitutes the optimal level of observable care will

be higher than in the first-best and in case of complements it will be lower than

in the first-best.10 This means that – in the case of substitutes – even if there

exists a neighbourhood where a lower L causes a decrease in o, this decrease

will be more than reversed as L goes to zero (an analogous argument applies

to complements). This suggests that M(u) > 0 can be treated as the “normal”

case.11

0 1 2 3 4 5
L

0.0

0.2

0.4

0.6

0.8

1.0

ob
se

rv
ab

le
 e

ff
or

t

Substitutes

o with liability only
o under regulation
p(o,u) under regulation
p(o,u) with liability only

Figure 2.1: Observable Effort with Substitutes

To exemplify the interaction between the two dimensions of care, we show the

result of numerical simulations.12 Figures 2.1 and 2.2 both refer to “normal”

case as defined above. They show the level of o and p(o,u) under liability only

10In this situation, the regulator simply sets the optimal o given that u is zero.
11A cost function that fulfills our assumption and has M(u) > 0 is given by cu(u) = ln

( 1
1−u

)

−u.
12We use the cost function c(x) = ln

( 1
1−x

)

− x for both co (o) and cu(u). For the case of com-
plements we use p(o,u) = 0.1 · o + 0.3 ·u + 0.3 · o ·u and for the case of substitutes p(o,u) =
0.7 · (o +u−o ·u).
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and under regulation and liability, for the case of substitutes and complements

respectively.

In the case of substitutes (Figure 2.1), a lower liability limit L will not affect

p(o,u) too much because the decrease in u will be largely compensated by an

increase in o (this increase will lead to a “second-round effect” where u will be

decreased even more, and so on). So with low levels of L we will see a high level

of regulation which will have crowded out much of the unobservable care. Crit-

ics may complain about this bureaucratic regime but given the low liability it is

the best the regulator can do.
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Figure 2.2: Observable Effort with Complements

In the case of complements (Figure 2.2), regulation will counteract a decrease

in liability only to a small extent. If L is very low, unobservable care will be low

but regulation will not be of much use (because observable care does not work

well without unobservable care). It follows that the level of safety may become

very low. In such a situation, it might make sense to explore other policy instru-

ments, even if they are very costly, like trying to increase the liability limit or

restricting the hazardous technology to wealthy individuals. In addition, given

that the private cost of the activity will be much below its social cost, there will
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be a tendency to use this activity above the socially optimal level. A regula-

tor might therefore consider restricting the use of the activities to cases where

it is of high social value;13 as an alternative, mandatory insurance might not

raise the level of care but insurance premia will cause firms to internalize the

expected damage costs and curtail excessive use of the activity.

2.6 Conclusion

In this chapter we have analyzed the optimal use of regulation and liability in a

situation where only one dimension of care can be made subject to regulation.

The optimal level of regulation in this dimension will only be equal to the first-

best level if there is no interaction between the two dimensions of care. If the

two kinds of care are substitutes or complements, the optimal level of regula-

tion depends on the curvature of the cost curve for unobservable care. If the

liability limit is low enough, it will always be the case that the optimal level of

regulation will be above the first-best level for substitutes and below the first-

best level for complements.

This result may appear somewhat counterintiutive if one considers only the

incentive effect. But considered from the perspective of a regulator who “con-

sumes” observable and unobservable care, it actually seems quite natural: if

the regulator gets less unobservable care (because of lower liability) he wants

to consume more observable care if this is a substitute and less observable care

if this is a complement.

13An example for such a “needs test” can be found in the German law on gun ownership.
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2.7 Appendix

Proof of Proposition 2.1

We first show that we can restrict the search for a minimum to

X̃ = {(o,u)|o,u ≥ 0,co(o)+cu(u) ≤ D},

which is a compact subset of X . For a choice of care levels (o,u) that is in X but
not in X̃ we will have

CD (o,u) = (1−p(o,u))D +co(o)+cu (u)

> (1−p(o,u))D +D

> D.

On the other hand, choosing (o,u) = (0,0) which is in X̃ would give us social
costs of D, so a minimum of social costs cannot be outside of X̃ .

We note that CD(o,u) is continuous on X̃ so the Weierstraß Theorem ensures
that social costs will have a minimum on X̃ . This shows the existence of a solu-
tion to problem (2.2).

We next show that we can rule out a solution on the border of X̃ . A point on the
border co (o)+cu(u) = D cannot be a minimum, because choosing (o,u) = (0,0)
would be better (see above). We now consider a point on the border o = 0; at
such a point, increasing o would change social costs by

dCD

do
=−poD +c ′o(0)< 0

(because po > 0 and c ′o(0) = 0). So increasing o would decrease social costs
which rules out a minimum on this border. By an analogous argument we can
rule out a minimum on the border u = 0. Therefore, the minimum must be in
the interior of X̃ and therefore in the interior of X .

As an interior minimum, the solution to problem (2.2) will be given by the first-
order conditions

∂CD

∂o
=−poD +c ′o(o) = 0 and

∂CD

∂u
=−puD +c ′u(u)= 0

and because of because D =
c′o (o)

po
=

c′u (u)
pu

and Assumption 2.9 this minimum is
unique.
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Proof of Proposition 2.2

By analogy to the proof of Proposition 2.1.

Proof of Proposition 2.3

The variables ô, û and p̂ are defined implicitly by the equations

p(o,u)− p̂ = 0
c ′o(o)−po L = 0
c ′u(u)−puL = 0

Differentiating with respect to L gives us

po
do

dL
+pu

du

dL
−

d p̂

dL
= 0

c ′′o (o)
do

dL
−Lpou

du

dL
−po = 0

c ′′u(u)
du

dL
−Lpou

do

dL
−pu = 0

In matrix form:





−1 po pu

0 c ′′o (o) −pouL

0 −pouL c ′′u(u)










dp̂

dL
do
dL
du
dL




=





0
po

pu





Using Cramer’s rule:
d p̂

dL
=

∣
∣
∣
∣
∣
∣

0 po pu

po c ′′o (o) −pouL

pu −pouL c ′′u(u)

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

−1 po pu

0 c ′′o (o) −pouL

0 −pou L c ′′u(u)

∣
∣
∣
∣
∣
∣

.

The denominator has the opposite sign as

∣
∣
∣
∣

c ′′o (o) −pouL

−pouL c ′′u(u)

∣
∣
∣
∣ which is posi-

tive because L =
c′o (o)

po
=

c′u (u)
pu

and Assumption 2.9, so the denominator is nega-

tive. We can also conclude that

(
c ′′o (o) −pouL

−pou L c ′′u(u)

)

is positive definite, i.e. the

quadratic form x′

(
c ′′o (o) −pouL

−pouL c ′′u(u)

)

x is positive for all x ∈ R2. So it must be

positive for all x with

(
po

pu

)′

x = 0. But this implies that the bordered matrix

given in the numerator is negative. Because both denominator and numerator

are negative, dp̂

dL
is positive.
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Proof of Proposition 2.4

dCD

dL
=

d

dL
[D

(

1−p(o,u)
)

+co (o)+cu(u)]

= −D

(

po
do

dL
+pu

du

dL

)

+c ′o(o)
do

dL
+c ′u(u)

du

dL

= −((D −L)+L)

(

po
do

dL
+pu

du

dL

)

+c ′o(o)
do

dL
+c ′u(u)

du

dL

= −(D −L)

(

po
do

dL
+pu

du

dL

)

+ (c ′o (o)−poL)
do

dL
+ (c ′u(u)−puL)

du

dL

= −(D −L)
d p̂

dL
< 0

Proof of Proposition 2.5

If D = L, the regulator can achieve the first-best by setting o = ô; this solution
fulfills the first-order condition. In the following we assume L < D. Let again ô

be the privately optimal observable care level at L. If the regulator sets o < ô,
the regulation is not binding and the firm will choose its privately optimal care
levels (ô, û). So the social cost of accidents are equal for all o ≤ ô, so we can
restrict the search for a maximum to values o ≥ ô.

Given o, the firm minimizes its private costs. The result is given by the first-
order condition −puL+c ′u(u) = 0. Applying the implicit function theorem gives
us:

du

do
=−

−pouL

c ′′u(u)
=

pouL

c ′′u(u)

So an additional marginal amount of o gives us :

dCD

do
=

(

−poD +c ′o(o)
)

+
(

−puD +c ′u(u)
) du

do

=
(

−poD +c ′o(o)
)

+
(

−puD +c ′u(u)
) pouL

c ′′u(u)

= c ′o(o)−po D −pu(D −L)
pouL

c ′′u(u)
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If we evaluate dCH

do
at the lower border ô, where c ′o (o) = poL, we get

dCD (ô)

do
= −po(D −L)−pu(D −L)

pouL

c ′′u(u)

= −(D −L)

(

po +pu
pouL

c ′′u(u)

)

= −(D −L)

(

po +pou
c ′u(u)

c ′′u(u)

)

From Assumption 2.9 we know that c ′′u(u)+pou
c′u (u)

po
> 0, so dCD (ô)

do
< 0. On the

other hand, the optimal o must be smaller than õ, with co(õ) = D. This means
that the government’s problem has an interior solution in (ô, õ), which will ful-
fill the first order condition:

c ′o(o)−po D = pu(D −L)
pouL

c ′′u(u)
(2.7)

Proof of Proposition 2.6

Define du
dL

∣
∣
∣

o fixed
as the change in u induced by a change in L while holding o

fixed. Using the implicit function theorem on puL−c ′u(u) = 0 we get:

du

dL

∣
∣
∣
∣
o fixed

=
pu

c ′′u(u)

Now we consider how dCD

do
(marginal social costs) change, if L increases.14

∂

∂L

dCD

do
= pu

pouL

c ′′u(u)
−pu(D −L)

pou

c ′′u(u)
+

(

−pouD −pu(D −L)
pouL

(c ′′u(u))2 (−1)c ′′′u (u)

)
du

dL

∣
∣
∣
∣
o fixed

= pu
pouL

c ′′u(u)
−pu(D −L)

pou

c ′′u(u)
+

(

−pouD +pu(D −L)
pouL

(c ′′u(u))2 c ′′′u (u)

)
pu

c ′′u(u)

=
pu pou

c ′′u(u)

(

(L−D)− (D −L)+ (D −L)
c ′u (u)c ′′′u (u)

(c ′′u(u))2

)

= (−pou )
pu

c ′′u(u)
(D −L)

(

2−
c ′u(u)c ′′′u (u)

(c ′′u(u))2

)

Consider the case with M(u) > 0; this implies 2−
c′u (u)c′′′u (u)

(c′′u (u))2 > 0. Now the sign

of the change in marginal social costs depends on the sign of pou . If pou > 0,
marginal social costs decrease with L so the optimal o will be higher. If pou < 0,
marginal social cost increase with L so the optimal o will be lower.

14We use the method of increasing marginal returns, see Edlin and Shannon (1998).



Chapter 3

Minimum Education Requirements

for Professions

3.1 Introduction

Many occupations cannot be undertaken by everybody; the classical “learned

professions” like law or medicine have been restricted to persons with a pre-

scribed education for a long time. Today, this policy has been extended to many

other occupations. Recently, Kleiner and Krueger (2009) found that 29 % of the

US workforce is required to have a government issued license to do their job;

for 85 % of those jobs, a specific exam was neccessary to get this licence. The

defenders of such “minimum education requirements” usually argue that with-

out such barriers to entry, the quality of professional services will deteriorate

because consumers are not able to judge this quality at the time of consump-

tion.

Minumum education requirements have been an object of economists’ cri-

tiques for a long time. The main objection seems to be that they restrict con-

sumers’ choices, forcing them to buy high-quality services even if they would

have prefered cheaper low-quality services.1 As an alternative, some critics sug-

gest, the government should restrict itself to certification of education levels,

1The classical critique of minimum education requirements can be found in Friedman
(1962), ch. 9. Recently, this question has come up in European competition policy, comp. Com-

47
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allowing consumers to buy the quality level of their own choice. Other critics

do not advocate abolishing minimum education requirements, but think that

existing requirements are often excessivly high and should be lowered.2

But there exists a problem with these requirements that is even more funda-

mental. They regulate only an input for the production of professional ser-

vices, while a regulator will care about the quality of the output. So if unreg-

ulated professionals will produce low quality output, it needs to be explained

why an input regulation will improve the situation. A well-educated profes-

sional might still produce low quality if he does not pay attention to his work or

accepts too many clients, thereby “spreading himself too thin”. So it seems that

the proper solution to the problem of professional quality does not lie in mini-

mum education requirements, but in the direct regulation of output quality. If

such a regulation is enforcing high quality, professionals have an incentive to

voluntarily acquire the optimal amount of education, so minimum education

requirements seem to be superfluous.

This chapter suggests a reason why minimum education requirements might

still be necessary in addition to a direct regulation of output quality. In our

model, professional education serves as an “hostage” that makes direct quality

regulation enforceable by granting professionals a quasi-rent. We can show that

minimum education requirements will sometimes implement the first-best. In

other cases, they might still be preferable to the alternate policy of granting the

professionals a pure rent by restricting entry to the profession by numerical

limits.

We assume that quality is not observable during purchase and delivery of the

service, but that low quality will – with some probability – lead to a bad out-

come at a later point of time. If such an outcome is observed, the professional

will be excluded from the profession. Minimum education requirements make

professionals more sensitive to this punishment, because exclusion devalues

their occupation-specific human capital by taking away the associated quasi-

mission of the European Communities (2004b) and Commission of the European Communities
(2005a).

2Leland (1979) deals with the optimal level of regulation in a model where quality can be
directly regulated.
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rent. In addition, high education makes it easier to produce high quality. In

other words, education that is specific to the profession is both an “hostage” to

ensure high quality and makes such quality easier to accomplish.

We make the assumption that exclusion is the only possible punishment. While

this is clearly unrealistic, in practice punishments will be restricted by wealth

constraints and the need for marginal deterrence.3 So one might interpret our

assumption in the sense that other punishments are not sufficient to ensure

high quality.

The idea of using education as an hostage to ensure good behavior has been

mentioned in the literature, for example by Svorny (1987) and Shapiro (1986),

but – to our knowledge – has never been formally modeled. On the other hand,

it is a well known property of moral hazard that “limited liability” of the agent

often makes it optimal to grant him a rent. A famous example is found in

Shapiro and Stiglitz (1984) with regard to the relation between workers and em-

ployers; indeed, their “efficiency wages” are in many ways comparable to the

quantitative entry restrictions that we will consider as an alternative to educa-

tion requirements. But in our case, the welfare loss is not due to unemploy-

ment but to increases in the price of the professional service. Scoppa (1997)

considers the use of firm specific human capital as an “hostage” in a moral

hazard model between workers and employers and compares it with the use

of efficiency wages. But, in contrast to us, he concentrates on the problem of

self-enforcing contracts, and does not deal with the question of the efficient

amount of investment in human capital,4 which is central for us.

There exists a parallel literature that deals with the problem of ensuring quality

in competitive markets, where this quality cannot be contracted upon, but cos-

tumers learn about the quality provided by individual firms in the past. Klein

and Leffler (1981) have pointed out the paradox that a firm will only provide

high quality if it is earning a rent which it wants to protect, but that the exis-

tence of such a rent seems to be incompatible with free entry. They suggest a

3Marginal deterrence refers to the problem that in order to efficiently deter very harmful acts
there might be upper bounds for the punishment of less harmful acts.

4In his model, human capital investment is assumed to be either efficient or inefficient on
the relevant range.
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number of possible solutions but do not model them formally.5 Shapiro (1983)

addresses this paradox with a model in which firms invest in the asset of their

reputation. The subsequent work of Shapiro (1986) is, in some ways, most

closely related to ours. Like this study, he models professional quality provision

as a moral hazard problem and interprets education requirements as an input

regulation. But in contrast to us, customers can observe quality, but only after

purchasing the good, so producers can acquire a reputation for good quality.

Education requirements are imposed to make it more attractive for producers

to earn a reputation for high-quality work. Shapiro shows that under certain

parameters education requirements can be welfare improving compared to a

policy of laissez-faire.

In contrast to Shapiro, Svorny (1987) stresses that the threat of losing the fu-

ture returns to their professional education gives professionals an incentive for

good behavior, which is a central idea of this chapter.6 We extend her work by

formally modeling this idea; furthermore, we explicitly differentiate between

“pure” entry restrictions, which only provide a stream of rents to practitioners,

and education requirements, which do provide social benefits by decreasing

the cost of providing good quality.

Another related paper is Donabedian (1995), which studies professional self-

regulation. He stresses that the effectiveness of such regulation depends on

the “exit costs” of leaving the profession; these costs are given by the rents and

quasi-rents earned by practitioners. But in comparison to us, the human capi-

tal investment of the professional is not made explicit, while it is central to our

approach. On the other hand, we abstract from choice between professional

self-regulation and state regulation, which is central to Donabedian.

The rest of the chapter proceeds as follows: While section 3.2 describes the

decision problem of the individual professional, section 3.3 derives the mar-

ket equilibrium without regulation, which results in low quality work. Possible

5The solution nearest to ours are “nonsalvagable productive assets”.
6But she cannot find emprical evidence that stricter licensing requirements for physicians

(in 1965) were quality enhancing. In a later paper (Svorny, 1992) she argues that subsequent re-
cent changes in the US health care market have reduced the need for licensing and its incentive
effects.
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regulatory inventions, namely minimum education requirements and quanti-

tative entry restrictions are discussed in section 3.4. In the following welfare

analysis of section 3.5, we demonstrate the condition for minimum education

requirements to achieve the first-best solution and compare minimum educa-

tion requirements and quantitative entry restrictions in cases where the first

best is not achivable. Section 3.6 concludes with a discussion of the policy rel-

evance of our results.

3.2 Objective Function of the Agent

In the following we will call work producing high qualiy “good work” and work

producing low quality “bad work”. Each agent faces two decisions: the kind of

work he produces and level of investment in human capital. An agent produces

one unit of a service by either doing good work or bad work, w ∈ {0,1}, where

w = 1 means good work. The agent receives price p when he sells the service

on the market.

While the cost of bad work is zero, the cost of good work is given by c(k) > 0,

where k is the investment in human capital. We assume that c(k) is strictly

decreasing in k, so more human capital makes good work easier. We further

assume that c(k) is continuously differentiable, has a second derivative with

c ′′(k) > 0 for all k ≥ 0. To ensure an interior solution we assume lim
k→0

c ′(k) <−r

and lim
k→∞

c ′(k) = 0.

There are two complementary interpretations for the assumption that the cost

of good work decreases with k. First, greater knowledge about their field makes

it easier for professionals to avoid errors which might cause a bad outcome.

Second, professional education does also include indoctrination into the “pro-

fessional” way of doing work, including professional ethics.7 Professionals who

have gone through this kind of education may do good work unthinkingly or

7This indoctrination may happen through formal education but also – in practical training
– through students observing and imitating practitioners.
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may even experience psychological costs when doing bad work that counter-

vail the greater exertion needed for good work.8

The agent is risk-neutral and maximizes expected present value of utility with

discount rate r ∈ (0,1). The timing is as follows (see Figure 3.1): Time is discrete

and goes from zero to infinity. In period t = 0 an agent decides how much to

invest in human capital. In periods t ∈ {1,2,3 . . .} the agent does either good or

bad work. If an agent does bad work in some period t , a bad outcome occurs

with probability φ after the period. If a bad outcome occurs, the bad work of

the agent will be revealed, and the agent is prohibited from offering the service

in the future and earns zero outside the profession. (Bad work in one period

cannot lead to a bad outcome in a later period.)

Invest in human capital (t = 0).

Do good or bad work (t ≥ 1).

Bad outcome with probability φ.

Expulsion from the profession.

good work bad work

bad outcome

no bad outcome

Figure 3.1: Timing of the model

8An explicit model with such psychological costs can be found in Akerlof and Kranton (2005).
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The agent’s payoff depends on his kind of work w , his human capital k, and the

market price p. For an agent, in every period t greater than zero, the present

value of being in the profession V (p,k) is governed by the recursive equation:

V (p,k) = max
w

p −c(k)+

(
1

1+ r

)
(

wV (p,k)+ (1−w)(1−φ)V (p,k)
)

The value of being in the profession is this period’s earnings plus the discounted

expected value of being in the profession in the next period. Because this value

does not depend on the number of the period, the optimal decision on w ∈ {0,1}

must be the same for every period.

So the discounted sum of future earnings for good work is given by:

V1(p,k) = p −c(k)+

(
1

1+ r

)

V1(p,k).

And the discounted sum of future earnings for bad work is given by:

V0(p,k) = p −0+

(
1

1+ r

)

(1−φ)V0(p,k).

If we solve these equations we get:

V1(p,k) =

(
1+ r

r

)
(

p −c(k)
)

and V0(p,k) =

(
1+ r

r +φ

)

·p.

The total payoff of an agent – taking account of the initial investment in human

capital – is given by:

Π(w, p,k) =

(
1

1+ r

)

Vw (p,k)−k.

3.3 Market Equilibrium

There exists an unlimited mass of identical agents willing to enter the profes-

sion. The market demand for the service is given by De(p), where e is the quality

of work expected by costumers. We make the usual assumptions De(p) ≥ 0 and
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D ′
e (p) ≤ 0; furthermore, e ′ > e implies De ′(p) ≥ De(p). We assume that agents

have rational expectations. They only enter the profession if they expect to earn

non-negative profits at the equilibrium price. Furthermore, we assume them to

be price-takers.9 If some agents are forced to leave the profession, they are re-

placed with new agents. Note that those agents face the same decision problem

as agents that have been there from the beginning.

A market equilibrium is characterized by values k̂0, k̂1, p̂, ŵ , that satisfy the

following conditions (all agents choose the same kind of work and the same

level of investment):

1. Profit maximization, i.e. agents choose the optimal capital level (k̂0 or k̂1)

for the kind of work (good/bad) they do:

for both w ∈ {0,1} , k̂w = argmax
k

Π(w, p̂,k).

2. Incentive compatibility, i.e. agents choose the kind of work that gives

them a higher payoff:

Π(ŵ , p̂, k̂ŵ ) ≥Π(ŵ −1, p̂, k̂ŵ−1).

3. Free entry, i.e. agents earn expected profits of zero (given their investment

in education):

Π(ŵ , p̂, k̂ŵ ) = 0.

Condition 1 ensures that all agents choose the optimal amount of human capi-

tal, given the expected market price and the kind of work they plan to do. Con-

dition 2 makes sure that agents prefer to do work of quality ŵ , given the market

price and the amount of human capital that is optimal for each kind of work.

work.10 Condition 3 represents free entry – as long as positive profits can be

earned, further agents will enter the market.

9They also take as given the expectation of customers about quality of work.
10Additional constraints that ensure that the chosen kind of of work is optimal under a sub-

optimal choice of capital are superfluous.
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We begin by determining the optimal choice of human capital. This depends

on the intended kind of work. If the agent plans to do bad work, his objective

function is

Π(0, p,k) =

(
1

1+ r

)

V0(p,k)−k =
p

r +φ
−k

and his optimal human capital is obviously zero, so k̂0 = 0.

The optimal k̂1 maximizes

Π(1, p,k) =

(
1

1+ r

)

V1(p̂,k)−k =
p −c(k)

r
−k.

It is characterized by: −c ′(k̂1) = r (marginal savings from human capital invest-

ment equal the demanded return to capital). Our assumptions on c(k) make

sure that there is an interior solution.

Suppose, agents prefer to do good work. This means, the incentive constraint

must hold, i.e.

Π(1, p̂, k̂1) ≥Π(0, p̂, k̂0)

that is

(
1

1+ r

)

V1(p̂, k̂1)− k̂1 ≥

(
1

1+ r

)

V0(p̂, k̂0)−0

Which is equivalent to:

p̂ ≥

(

1+
r

φ

)
(

c(k̂1)+ r k̂1
)

. (3.1)

On the other hand, we have the zero profit condition:

Π(1, p̂, k̂1) =
1

1+ r
V (1, p)− k̂1 = 0
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which implies

p̂ = c(k̂1)+ r k̂1. (3.2)

But because
(

1+ r
φ

)

> 1, the incentive constraint and zero profit condition can-

not be fulfilled at the same time. On the other hand, for ŵ = 0 and p̂ = 0 all

three equilibrium conditions are fulfilled. So we get the following result:

Proposition 3.1. There is only one market equilibrium, where ŵ = 0, p̂ = 0, k̂0 =

0 and k̂1 > 0.

So without regulation, agents will acquire zero human capital and produce bad

work. The intuition for this is easy. Define C = c(k1)+ r k1 as the long-run costs

of doing good work (i.e. the price that ensures zero profits). As long as the price

is above
(

1+ r
φ

)

C , it is optimal for agents to acquire human capital before en-

tering the market and as long as p does not sink below C , it is profitable to do

so. But entering without human capital is profitable for any positive price, and

with p ≤

(

1+ r
φ

)

C it is optimal to do so. Therefore, agents expect that entry will

drive down prices to zero. At this price, entry with human capital is no longer

profitable, so only agents without human capital will enter in the first place.

This situation is demonstrated in Figure 3.2, whereΠ0 is the expected payoff for

w = 0 and k = k̂0 = 0 and Π1 the expected payoff for w = 1 and k = k̂1. At the

point where good work becomes unprofitable – theΠ1 line crosses the zero-line

– bad work (theΠ0 line) will still give a positive payoff.

3.4 Regulatory Interventions

A regulator may intervene in this situation in several possible ways. He can

restrict entry so that prices reach a level that makes it optimal to produce good

work. He could also impose a level of minimum human capital to achieve the

same aim.
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Π

p

Π1 =Π(1, p, k̂1)

Π0 =Π(0, p,0)

Figure 3.2: Payoffs without regulation

The regulator can simply restrict the entry to the profession so that prices re-

main high enough for agents to prefer good work over bad work, i.e. set entry

numbers so that:

p ≥

(

1+
r

φ

)
(

c(k̂1)+ r k̂1
)

.

Then it is optimal to acquire human capital and produce good work.

Proposition 3.2. The regulator can ensure good work by restricting entry to the

profession at a level so that

p =

(

1+
r

φ

)

·C .

The intuition behind this result is that if entry restrictions set prices to the high

level of p, it is very lucrative to be in the profession, so agents do not want to

risk expulsion by doing bad work.
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The other alternative is to set a minimal level of education k∗ that agents must

aquire before they enter the market; the level has to be set so that it is optimal to

provide good work (the incentive constraint must hold) and must be consistent

with free entry, which implies zero profits.

In this case the regulator solves the problem

min
p,k∗

k∗, subject to

Π(1, p,k∗) ≥Π(0, p,k∗)

and:

Π(1, p,k∗) =
1

1+ r
V (p,k∗)−k∗

= 0 (zero profits)

The two constraints imply:

p −c(k∗)

r
≥

p

r +φ
and

p −c(k∗)

r
−k∗

= 0

which boils down to:

φk∗
≥ c(k∗).

The minimal k∗ that fulfills this condition is given by: φk∗ = c(k∗). Because

c(k) is decreasing, such a k∗ exists, which establishes the following result:

Proposition 3.3. The regulator can ensure good work by setting a minimum hu-

man capital level of k∗, with φk∗ ≥ c(k∗).

The intuition behind this result is that agents do not want to risk leaving the

profession, because they would lose their “quasi-rents”; doing bad work is unattrac-

tive because agents have to invest in “useless” education first. Note that under

entry restrictions, agents earn economic rents. Under minimum education re-

quirements, they earn only “quasi-rents” – the market price will be above short-

run cost, but entry will drive it down to long-run cost.
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Figure 3.3 illustrates the situation under minimum education requirements.

The Π0-line has been shifted down because all agents are required to invest in

human capital, even if it is useless for them because they want to provide bad

work. (In this exampleΠ1-line is unchanged but this need not be the case.)

Π

p

Π1 =Π(1, p,k∗)

Π0 =Π(0, p,0)

Π
′
0 =Π(0, p,k∗)

Figure 3.3: Payoffs with minimum human capital

3.5 Welfare Analysis

In the following we make a welfare comparison of entry restrictions and mini-

mum human capital requirements. We assume that it is optimal to ensure high

quality, and only investigate into the least costly way to do so.

It is not obvious which welfare standard is most appropriate to compare the two

policies. The standard approach in industrial organization is to use total wel-

fare (consumer surplus plus producer surplus). But one could argue that using

only consumer surplus is more appropriate here. If the regulator imposes a

numerical limit of places in the profession and this leads to the professionals
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earning economic rents, applicants may spend resources to get one of those

places. Because of this “rent dissipation” (Posner, 1975), a great part of the pro-

ducer surplus might get lost. Nevertheless, the total welfare seems appropriate

to define the first-best.

Proposition 3.4. Under the total welfare standard the first-best-outcome is:

p =C = c(k̂1)+ r k̂1 (long-run costs of good work)

k = k̂1 (optimal education decision).

Because it is optimal to ensure high quality (by assumption), the first-best w is

good work while the optimal human capital level is given by cost minimization.

The service should be provided to all consumer willing to pay at least the long-

run cost of its provision. There are two relevant kinds of distortion from the

first-best. The price of the service might be higher than the long run costs of

good work and there might be excessive investment in education.

3.5.1 Achieving the First-Best

Under certain parameters, minimum education requirements can achieve good

work costlessly. If the parameters are such that k̂1 ≥ k∗, the socially optimal hu-

man capital is greater than the prescribed minimum human capital. Entrants

to the profession, given that they are forced to acquire at least a capital level

of k∗, will in their own interest choose the higher and socially optimal capital

level of k̂1. So the minimum education requirement does not distort the hu-

man capital decision and free entry will drive down prices to long-run costs.

The following results shows when this is the case:

Proposition 3.5. If c(k̂1) ≤ φk̂1, the first-best can be implemented with educa-

tion requirements.

Proof: From c(k̂1) ≤ φk̂1 follows φk̂1 − c(k̂1) ≥ 0. Because c(k) is decreasing,

φk −c(k) is strictly increasing in k. We know that at k∗ we have φk∗−c(k∗) = 0.

So we must have k̂ ≥ k∗. This implies that the first-best is achievable.
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In comparison, entry restrictions will never implement the first-best because

they imply prices that are higher than long-run costs.

This can also be seen graphically. As long as the imposed minimum capital level

is below the optimal capital level for good work, changes in minimum capital

only affect theΠ0-line (because for agents doing good work, the minimum ed-

ucation requirement is not binding). In these cases, if minimun human capital

increases, only the Π0-line shifts down. Indeed, Figure 3.3 depicts the situa-

tion where education requirements implement the first-best, because only the

Π0-line gets shifted down.

If c(k̂1) > φk̂1, it will not be sufficient to shift down only the Π0-line. Because

in this case, when the imposed minimum human capital reaches the optimal

human capital, it is still preferable to do bad work. And if the imposed mini-

mum capital level exceeds the optimal capital level for good work, changes in

minimum human capital affect both lines. Both the Π0-line and the Π1-line

are shifted down, but the shift is greater for the Π0-line, because increases in

human capital even above the optimal level do still decrease the costs of good

work but are useless if the agent does bad work. This is the situation depicted

in Figure 3.4.

To see how the condition k̂1 ≥ k∗ depends on the parameters r and φ, we make

a comparative statics analysis. Using the first order condition for profit maxi-

mizing human capital, −c ′(k̂1) = r , we get:

dk̂1

dr
=−

1

c ′′(k̂)
< 0

dk̂1

dφ
= 0.

And with the condition for the optimal minimum education requirement,

k∗ =
c(k∗)
φ

, we get

dk∗

dr
= 0
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Π

p

Π1 =Π(1, p, k̂1)

Π
′
1 =Π(1, p,k∗)

Π0 =Π(0, p,0)

Π
′
0 =Π(0, p,k∗)

Figure 3.4: Payoffs with minimum human capital (not costless)

dk∗

dφ
=

k∗

c ′(k∗)−φ
< 0.

With these results we can see that the condition for the first-best being achiev-

able, k̂1 ≥ k∗, is more likely to be fulfilled the greater φ (higher probability of a

bad outcome) and the lower r (greater patience). This can be clearly seen in the

example where we have the cost function c(k) = a
k

. In this case, the first-best

can be implemented if r ≤φ.

3.5.2 Comparisons in the Second Best

In cases where the first-best can not be achieved, i.e. c(k̂1) > φk̂1, the results

depend on the welfare standard employed. If we use the consumer-surplus-

standard, welfare is a decreasing function of price only. It can be shown that
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education requirements imply a lower price than entry restrictions, so we can

state:

Proposition 3.6. If c(k̂1) > φk̂1, and we use the consumer-surplus-standard,

minimum education requirements are at least weakly prefered to entry restric-

tions.

(Proof in the Appendix.)

If we use the welfare standard of total surplus, things are no longer so clear.

Because in this case the social welfare function does also include the profits

earned by the professionals, so social welfare is no longer a function of price

only.

In the first-best, the profits earned by professionals are zero, so social welfare is

given by the area under the demand curve, i.e.
∫∞

p̂ D1(p̃)d p̃. Under minimum

education requirements, the profits are zero again, so social welfare is again

given by consumer demand, albeit at the higher price of p∗, i.e.
∫∞

p∗ D1(p̃)d p̃.

But under entry restrictions, social welfare consists of consumer surplus plus

the profits earned by professionals. The profit per professional is p minus the

cost of good work under optimal capital, which is equal to p̂. So social welfare

is given by:

∫∞

p
D1(p̃)d p̃ + (p − p̂)D1(p)

To compare the two policies, is is convenient to look at the respective welfare

losses relative to the first-best case. Minimum education requirements are bet-

ter, if their welfare loss is smaller than the welfare loss of entry restrictions, i.e.:

∫p∗

p̂
D1(p̃)d p̃ <

∫p

p̂
D1(p̃)d p̃ − (p − p̂)D1(p)

To make further comparision, we need to be more specific about the demand

function. It is fairly intuitive that education requirements are better if demand

is very elastic while entry restrictions are prefered if demand is very inelastic.

This is best seen in extreme cases.
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• Demand is totally inelastic between p̂ and p. This means that D1(p̃) is

constant and equal to D1(p) and the welfare loss of entry restrictions is

(p − p̂)D1(p)− (p − p̂)D1(p) = 0. On the other hand, the welfare loss for

education requirements is D1(p̂)(p∗−p̂), which is strictly positive as long

as D1(p̂) > 0. Thus entry restrictions are at least weakly prefered.

• Demand is very elastic between p∗ and p, i.e. D1(p∗) > 0 and D1(p) = 0.

In this case, the welfare loss of entry restrictions is
∫p

p̂
D1(p̃)d p̃ The dif-

ference between this and the welfare loss of education requirements is
∫p

p∗ D1(p̃)d p̃ which is greater equal zero if D1(p∗) > 0. Education require-

ments are strictly prefered as long as D1(p̃) > 0 in [p∗, p∗ + ǫ] for some

ǫ> 0.

The relation can also be easily be shown in the case of linear demand. If we

assume D1(p) = 1−bp, for every p demand is more elastic the greater b. For

simplicity, we assume that the parameters are such that D1(p̂) ≥ 0. In this case,

it can be shown that education requirements are prefered if

b >
p∗− p̂

1
2 p2

−pp̂ +
1
2 p∗2

(Derivation in the Appendix.)

3.6 Conclusion

In this chapter we have shown that minimum education requirements can

serve as an instrument to make quality regulation enforceable. The profession-

specific human capital that agents acquire to fulfill the requirement will provide

them with a quasi-rent. The fear of losing this quasi-rent will make profession-

als reluctant to disobey the quality regulation. If the human captital level neces-

sary to create this quasi-rent is lower than the level which is optimal to produce

good work, minimum education requirements can implement the first-best. If

the optimal level of human capital is too low to achieve the first-best, minimum

education requirements can still be superior to numerical entry limits for the
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profession, especially if the objective function of the regulator puts little weight

on professionals’ profits or the demand for the service is very elastic.

With regard to policy conclusions, our aim in this chapter is rather modest: to

show that minimum education requirements can be a feasible instrument for

ensuring high quality, but not whether or to what extent their use is optimal.

Nevertheless, the level of real-world minimum education requirements should

not only be evaluated with regard to the knowledge which is necessary to un-

dertake a certain occupation but also with regard to the need to protect a pro-

fession from “fly by night operators” who have “nothing to lose”. Occupations

which require little physical but much human capital seem therefore most ap-

proriate for minimum education requirements. They are very suspectible to

opportunistic entry but minimum education requirements will not distort the

optimal capital level too much.

Our models assumes that bad work is only detected at a very late stage, when

a bad outcome has realised. Customers are assumed to have no other way of

learning about the quality of work. So our model seems appropriate for situa-

tions where the bad effects of low quality services are realised with low prob-

ability or only after some time has passed. Otherwise, the professional’s fear

for his reputation might serve as an adequate instrument to ensure high qual-

ity. Our model seems also appropriate for situations where the professional’s

direct costumers do not fully internalize the quality of work.11 This can be the

case if the quality of the work creates an externality. For example the quality of a

financial audit does not only affect the audited company – the direct customer

of the accountant – but also outside financial investors. In other professions,

it might be the professional’s duty to protect customers from their own self-

destructive impulses. For example, in many countries certain medications can

only be bought if prescribed by a physician or a nurse. The aim of this rules is

to guard against addiction to medical drugs. A pharmacist who refuses to sell a

drug without the necessary prescription will produce “high quality” but might

11In most cases those professionals are “gatekeepers” (Kraakman, 1986) in the sense that their
cooperation is necessary to engage in some other regulated activity. For example, a firm who
wants to raise capital on the stock market needs the cooperation of an auditor who certifies its
accounts.
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create a dissatisfied customer. In such a situation, reputation might not only

be ineffective but could actually be counterproductive: a pharmacist who de-

velops a reputation for bending the rules might be able to acquire additional

customers.12

In cases where minimum education requirements do not achieve the first-best,

one may ask whether there are other institutions which can enforce quality reg-

ulations at lower costs. A possible policy would be for the regulator to require

the cost-minimizing level of human capital and demand an additional mone-

tary deposit by the aspiring professional. If a bad outcome occurs, this deposit

will be seized by the regulator, giving the professional additional incentives for

good work. This policy seems very attractive, because “posting a bond” is a

purely financial transaction that will not not use up real resources. But a full

evaluation should also include negative selection effects that occur if we restrict

the profession to those who can finance this initial monetary investment. Of

course the requirement of an additional investment in human capital will also

exclude some applicants. But there may be significant differences between the

class of applicants who can easily invest in additional human capital (because

of high ability) and the class of people who can easily finance the deposit.

12The same concern applies to physician’s prescription behaviour. Svorny (1992) points out
that licensing boards in the US focus their enforcement on physicians who prescribe narcotics
inappropriately or who have a drug/alcohol problem of their own.
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3.7 Appendix

3.7.1 Proof of Proposition 3.6

Under the consumer surplus standard the regulator’s objective function is given

by:

CS(p) =
∫∞

p
D1(p̃)d p̃

The effect of price changes on consumer surplus is given by:

dCS

d p
=−D1(p)

which is negative if D1(p) > 0. So consumer surplus is a decreasing function of

price, except for prices so high that demand is zero.

That means that under the consumer surplus a policy is at least weakly prefer-

able if it implies a lower price.

The price is greater under entry restrictions if:

(

1+
r

φ

)
(

c(k̂)+ r k̂
)

> c(k∗)+ r k∗

Define

F (r ) =

(

1+
r

φ

)

[c(k̂(r ))+ r k̂(r )]− [c(k∗)+ r k∗]

with

k̂(r ) = argmin
k

c(k)+ r k

The implicit function theorem implies that k̂(r ) exists and is differentiable.
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We have to show that F (r ) > 0.

dF (r )

dr
=

1

φ
[c(k̂(r ))+ r k̂(r )]+

(

1+
r

φ

)

k̂(r )−k∗

=
1

φ
c(k̂(r̃ ))−k∗

+

(

1+
2r

φ

)

k̂(r )

(Because of the envelope theorem we can ignore the effect of r on k̂).

Now choose r ∗ so that k̂(r ∗) = k∗. Then

F (r ) = F (r ∗)+
∫r

r ∗

dF (r̃ )

dr
dr̃

Note that r ∗ must be smaller than r , because we have k∗ > k̂ and k̂(r ) is de-

creasing in r .

1. Step: We show F (r ∗) > 0. Because k̂(r ∗) = k∗, we have

F (r ∗) =

(

1+
r

φ

)

[c(k∗)+ r k∗]− [c(k∗)+ r k∗] =
r

φ
[c(k∗)+ r k∗] > 0

2. Step: We show
∫r

r ∗
dF (r̃ )

dr
dr̃ ≥ 0. This will be the case if dF (r̃ )

dr
dr̃ > 0 (mono-

tonicity of the integral). Because the other terms in dF (r )
dr

are all strictly positive,

this will be the case if 1
φ

c(k̂(r̃ ))−k∗ ≥ 0. But as we can see:

r̃ ≥ r ∗

⇒ k̂(r̃ ) ≤ k̂(r ∗) = k∗

⇒ c(k̂(r̃ )) ≥ c(k∗)

⇒
1
φ

c(k̂(r̃ )) ≥ k∗ because with 0 <φ< 1 we have 1
φ
> 1

⇒
1
φ

c(k̂(r̃ ))−k∗ ≥ 0
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3.7.2 Derivation of equation 3.5.2

[p −
1

2
bp2]p

p∗ − (p − p̂)(1−bp) > 0

p −
1

2
bp2

−p∗
+

1

2
bp∗2

− (p − p̂)+bp(p − p̂) > 0

1

2
bp∗2

−
1

2
bp2

+bp(p − p̂) > p∗
−p + (p − p̂)

b >
p∗− p̂

p(p − p̂)− 1
2 p2

+
1
2 p∗2

b >
p∗− p̂

1
2 p2

−pp̂ +
1
2 p∗2

3.7.3 Example with cost function c(k)= a
k

In this case, k̂1 is given by

−

(

−
a

k̂2
1

)

= r

so

k̂1 =

√
a

r

and k∗ is given by

φk∗
=

a

k∗
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so

k∗
=

√

a

φ

for k∗ ≤ k̂1 to be true, we need

√

a

φ
≤

√
a

r

So this boils down to r ≤φ.
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