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Abstract

This paper provides sufficient conditions for the nonparametric identification of the

regression function m (·) in a regression model with an endogenous regressor x and an

instrumental variable z. It has been shown that the identification of the regression func-

tion from the conditional expectation of the dependent variable on the instrument relies

on the completeness of the distribution of the endogenous regressor conditional on the

instrument, i.e., f(x|z). We provide sufficient conditions for the completeness of f(x|z)

without imposing a specific functional form, such as the exponential family. We show

that if the conditional density f(x|z) coincides with an existing complete density at a

limit point in the support of z, then f(x|z) itself is complete, and therefore, the regression

function m (·) is nonparametrically identified. We use this general result provide specific

sufficient conditions for completeness in three different specifications of the relationship

between the endogenous regressor x and the instrumental variable z.
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1. Introduction

We consider a nonparametric regression model as follows:

y = m(x) + u, (1)

where the regressor x may be correlated with a zero mean regression error u. The parameter

of interest is the nonparametric regression function m(·). In a random sample of {y, x, z} ,

an instrumental variable z is conditional mean independent of the regression error u, i.e.,

E(u|z) = 0, which implies

E[y|z] =

∫ +∞

−∞
m(x)f(x|z)dx. (2)

This paper provides sufficient conditions on the conditional density f(x|z) under which the

regression function m (·) is nonparametrically identified from, i.e., uniquely determined by,

the conditional mean E[y|z]. We show that if the conditional density f(x|z) coincides with

an existing complete density at a limit point in the support of z , then f(x|z) itself is com-

plete, and consequently, the regression function m (·) is nonparametrically identified. Our

sufficient conditions for completeness impose no specific functional form on f(x|z), such as

the exponential family.

We assume the regression function m (·) is in a Hilbert space H of functions defined on X

the support of regressor x. For example, we may define L2(X ) = {h(·) :
∫
X |h(x)|2dx <∞, }

be a L2 space with the following inner product 〈f, g〉 ≡
∫
X f(x)g(x)dx. We may define the

corresponding norm as: ‖f‖2 = 〈f, f〉. The completion of L2(X ) under the norm ‖ · ‖ is a

Hilbert space. One may show that the uniqueness of the regression function m(·) is implied

by the completeness of the family {f(·|z) : z ∈ O} in H, where O ⊆ Z is a subset of Z the

support of z. The set O may be Z itself or some subset of Z. In particular, we consider

the completeness with the set O being a sequence {zk : k = 1, 2, 3, ...} in Z. The latter case

corresponds to a sequence of functions {f(·|zk) : k = 1, 2, ...}. We start with the definition of

the completeness.

Definition 1. The family {f(·|z) ∈ H : z ∈ O} for some set O ⊆ Z is said to be complete in
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H if for any h (·) ∈ H ∫
X
h(x)f(x|z)dx = 0 for all z ∈ O

implies h(x) = 0 for any x ∈ X . When it is a conditional density function with support X×Z,

f(x|z) is said to be a complete density.

The completeness introduced in Definition 1 is equivalent to L2- completeness considered in

Andrews (2011) since a L2 space is also a Hilbert space.1

The uniqueness (identification) of the regression function m(·) is implied by the complete-

ness of the family {f(·|z) : z ∈ O} in H for some set O ⊆ Z. This sufficient condition may be

shown as follows. Suppose that m(·) is not identified so that there are two different functions

m(·) and m̃(·) in H which are observationally equivalent, i.e., for any z ∈ Z

E[y|z] =

∫
X
m(x)f(x|z)dx =

∫
X
m̃(x)f(x|z)dx. (3)

We then have for some h(x) = m(x)− m̃(x) 6= 0

∫
X
h(x)f(x|z)dx = 0 for any z ∈ Z

which implies that {f(·|z) : z ∈ O} for any O ⊆ Z is not complete in H. Therefore, if

{f(·|z) : z ∈ O} for some O ⊆ Z is complete in H, then m(·) is uniquely determined by E[y|z]

and f(x|z), and therefore, is nonparametrically identified.

The following two examples of complete f(x|z) are from Newey and Powell (2003) (See

their Theorem 2.2 and 2.3 for details.):

Example 1: Suppose that the distribution of x conditional on z is N(a + bz, σ2) for

σ2 > 0 and the support of z contains an open set, then E [h(·)|z] = 0 for any z ∈ Z implies

h(x) = 0 for any x ∈ X ; equivalently, {f(x|z) : z ∈ Z} is complete in L2(X ).

Another case where the {f(x|z) : z ∈ O} is complete in H is that f(x|z) belongs to an

exponential family as follows:

Example 2: Let f(x|z) = s(x)t(z) exp [µ(z)τ(x)], where s(x) > 0, τ(x) is one-to-one in

x, and support of µ(z), Z, is an open set, then E [h(·)|z] = 0 for any z ∈ Z implies h(x) = 0

1Closely related definitions of L2-completeness can also be found in Florens, Mouchart, and Rolin (1990),
Mattner (1996), and San Martin and Mouchart (2007).
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for any x ∈ X ; equivalently, the family of conditional density functions {f(x|z) : z ∈ Z} is

complete in L2(X ).

These two examples show the completeness of a family {f(x|z) : z ∈ O}, where O is an open

set. In order to extend the completeness to general density functions, we further reduce the

set O from an open set to a countable set with a limit point, i.e. a converging sequence in

the support Z.

This paper focuses on the sufficient conditions for completeness of a conditional density.

These conditions can be used to obtain global or local identification in a variety of models

including the nonparametric IV regression model (see Newey and Powell (2003); Darolles,

Florens, and Renault (2002); Hall and Horowitz (2005)), semiparametric IV models (see Ai

and Chen (2003); Blundell, Chen, and Kristensen (2007)), nonparametric IV quantile models

(see Chernozhukov and Hansen (2005); Chernozhukov, Imbens, and Newey (2007); Horowitz

and Lee (2007)), measurement error models (see Hu and Schennach (2008); An and Hu (2009);

Carroll, Chen, and Hu (2010); Chen and Hu (2006)), and dynamic models (see Hu and Shum

(2009); Shiu and Hu (2010)), etc. We refer to D’Haultfoeuille (2011) and Andrews (2011) for

more complete literature reviews.

In this paper, we provide sufficient conditions for the completeness of a general conditional

density without imposing particular functional forms. We show that if the conditional density

f(x|z) is close to a complete density, then f(x|z) itself is complete. We use the results in the

stability of bases in Hilbert space (section 10 of chapter 1 in Young (1980)) to show that a

linearly independent sequence is complete if its deviation from a complete sequence of function

is finite. We then show that two sequences of density functions have a finite deviation when

they have the same limit. Based on this observation, we may deviate from the existing

complete density function without losing the completeness.

We apply the general results to show the completeness in three scenarios. First, we extend

Example 2 to a general setting. In particular, we show the completeness of f(x|z) when x

and z satisfy for some function µ (·) and σ (·)

x = µ(z) + σ (z) ε with z ⊥ ε.
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Second, we consider a general control function

x = h(z, ε) with z ⊥ ε,

and provide conditions for completeness of f(x|z) in this case. Third, our results implies that

the completeness of a multidimensional conditional density, e.g.,

f(x1, x2|z1, z2),

may be implied by the completeness of two conditional densities of lower dimension, i.e.,f(x1|z1)

and f(x2|z2).

This paper is organized as follows: section 2 provides sufficient conditions for complete-

ness; section 3 applies the main results to the three cases with different specifications of the

relationship between the endogenous variable and the instrument; section 4 concludes the

paper and all the proofs are in the appendix.

2. Sufficient Conditions for Completeness

In this section, we show that a sequence {f(·|zk)} is complete if it coincides with a complete

sequence {g(·|zk)} at a limit point z0. We start with the introduction of two well-known

complete families in Examples 1 and 2. Notice that these completeness results are established

on an open set O instead of a countable set with a limit point, i.e., a converging sequence. In

order to extend the completeness to a new function f(x|z), we first establish the completeness

on a sequence of zk.

As we will show below, the completeness of an existing sequence {g(x|zk) : k = 1, 2, ...} is

essential to show the completeness for a new function f(x|z). An important family of condi-

tional distributions which admit completeness is the exponential family. Many distributions

encountered in practice can be put into the form of exponential families, including Gaussian,

Poisson, Binomial, and certain multivariate form of these. Another family of conditional dis-

tribution which implies completeness is in the form of a convolution density function, i.e.,

g(x|z) = g(x− z).

Based on the existing results, such as in Examples 1 and 2 in the introduction, we may
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generate complete sequences from the exponential family or a convolution density function.

We start with an introduction of a complete sequence in the exponential family. Example 2

shows the completeness of the family {g(·|z) : z ∈ O}, where O is an open set in Z. In the

next lemma, we reduce the set O from an open set to a countable set with a limit point, i.e.

a converging sequence in Z.

Lemma 1. Let {zk : k = 1, 2, ...} be a sequence of distinct zk ∈ O converging to z0 in an open

set O ⊆ Z. Define

g(x|z) = s(x)t(z) exp [µ(z)τ(x)]

on X × Z with s(·) > 0 and t(·) > 0. Suppose that g(·|z) ∈ L2(X ) for z ∈ O and

i) µ (·) is continuous with µ′ (z0) 6= 0;

ii) τ(·) is monotonic over X .

Then, the sequence {g(·|zk) : k = 1, 2, ...} is complete in L2(X ).

Proof: See the appendix.

Another case where the completeness of g(x|z) is well studied is when g(x|z) = fε (x− z) ,

which is usually due to a convolution between the endogenous variable x and instrument z as

follows

x = z + ε with z ⊥ ε.

Example 1 suggests that the completeness of the family {g(·|z) ∈ H : z ∈ O}, where O is an

open set in Z and ε is normal. Again, we show the completeness still holds when the set O

is a converging sequence. We summarize the results as follows.

Lemma 2. Let {zk : k = 1, 2, ...} be a sequence of distinct zk ∈ O converging to z0 in an open

set O ⊆ Z. Define

g(x|z) = fε(x− z)

on R×Z. Suppose that g(·|z) ∈ L2(R) for z ∈ O and the Fourier transform φε of fε satisfies

0 < |φε(t)| < Ce−δ|t| (4)

for all t ∈ R and some constants C, δ > 0.

Then, the sequence {g(·|zk) : k = 1, 2, ...} is complete in L2(R).
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Proof: See the appendix.

Equation (4) is equivalent to the following two conditions: i) φε(t) 6= 0 for all t ∈ R; ii)

|φε(t)| < Ce−δ|t| as |t| → ∞ for some constant C and δ > 0. In other words, Equation (4)

implies that the ch.f. does not varnish on the real line and that the ch.f. has exponentially

decaying tails. Notice that |φε(t)| < Ce−δ|t| is not binding for a finite t.

With the complete sequences explicitly specified in Lemma 1 and 2, we are ready to extend

the completeness to a more general conditional density f(x|z). Our sufficient conditions for

completeness are summarized as follows:

Theorem 1. For every z ∈ Z, let f(·|z) and g(·|z) be in a Hilbert space H of functions

defined on X with norm ‖ · ‖. Suppose that there exists a point z0 with its open neighborhood

N (z0)⊆ Z such that

i) for every sequence {zk : k = 1, 2, ...} of distinct zk ∈ N (z0) converging to z0, the corre-

sponding sequence {g(·|zk) : k = 1, 2, ...} is complete in a Hilbert space H;

ii) the relative deviation D(z) = ‖f(·|z)−g(·|z)‖
‖g(·|z)‖ is continuous in z on N (z0) and f(·|z)

coincides with g(·|z) at z0 in H, i.e.,

‖f(·|z0)− g(·|z0)‖ = 0;

iii) there exists a sequence {zk : k = 1, 2, ...} of distinct zk ∈ N (z0) converging to z0 such

that the sequence {f(·|zk) : k = 1, 2, ...} is linearly independent, i.e.,

I∑
i=1

cif(x|zki) = 0 for all x ∈ X implies ci = 0 for all i = 1, 2, ..., I.

Then, the family {f(·|z) : z ∈ N (z0)} is complete in H.

Proof: See the appendix.

Condition i) provides complete sequences, which may be from Lemma 1 and 2. Condition ii)

requires that the relative deviation D(z) = ‖f(·|z)−g(·|z)‖
‖g(·|z)‖ is continuous in z on N (z0). When

the Hilbert space H is the L2 (X ), the relative deviation D(z) is continuous if ‖g(·|z0)‖ > 0

and the first-order derivatives ∂
∂zf (·|z) and ∂

∂zg (·|z) are also in L2 (X ) for z ∈ N (z0). This is

because for some function h(·|z) ∈ L2 (X ) with ∂
∂zh(·|z) ∈ L2 (X ) the derivative of ‖h(·|z)‖2
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w.r.t. z is finite due to the Cauchy-Schwarz inequality as follows:

∣∣∣∣ ∂∂z (‖h(·|z)‖2
)∣∣∣∣ ≤ 2 ‖h(·|z)‖

∥∥∥∥ ∂∂zh(·|z)
∥∥∥∥ .

Furthermore, if X is bounded, we only need ∂
∂zh (·|z) to be bounded. In the proof of Theorem

1, we show that the continuity of D(z) implies that there exists a sequence {zk} converging

to z0 such that the total deviation from the sequence {g(·|zk)} to {f(·|zk)} is finite, i.e.,

∞∑
k=1

‖f(·|zk)− g(·|zk)‖
‖g(·|zk)‖

<∞. (5)

Intuitively, this condition implies that the sequence {f(·|zk)} is close to a complete sequence

{g(·|zk)} so that the former sequence may also be complete.

The linear independence in condition iii) imposed on {f(·|zk)} implies that there are

no redundant terms in the sequence in the sense that no term can be expressed as a linear

combination of some other terms. This condition imposes a mild restriction on f(x|z) because

Equation
∑I

i=1 cif(x|zki) = 0 for all x ∈ X , which implies an infinite number of restrictions

on a finite number of constants ci. When the support of f(·|zk) is the whole real line for all

zk, a sufficient condition for the linear independence is that

lim
x→−∞

f(x|zk+1)

f(x|zk)
= 0, (6)

which implies limx→−∞
f(x|zk+m)
f(x|zk) = 0 for any m ≥ 1. If

∑I
i=1 cif(·|zki) = 0 for all x ∈

(−∞,+∞), we may have

−c1 =
I∑
i=1

ci
f(x|zki)
f(x|zk1)

.

The limit of the RHS is zero as x→ −∞ so that c1 = 0. Similarly, we may show c2,c3, ..., cI = 0

for all i sequentially. Notice that the exponential family satisfies Equation (6). When the

support X is bounded, for example, X = [0, 1], the condition (6) may become

lim
x→0

f(x|zk+1)

f(x|zk)
= 0. (7)

For example, the Corollary (Müntz) on page 91 in Young (1980) implies that the family of
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function {xz1 , xz2 , xz3 , ...} is complete in L2([0, 1]) if
∞∑
k=1

1
zk

= ∞. This family also satisfies

the condition (7) for a strictly increasing {zk}. For an existing function g(x|z) > 0, we may

always have f(x|z) = f(x|z)
g(x|z) × g(x|z). If the existing sequence {g(·|zk)} satisfies Equation (6),

i.e., limx→−∞
g(x|zk+1)
g(x|zk) = 0, then it is enough to have 0 <

(
limx→−∞

f(x|zk)
g(x|zk)

)
<∞.

Furthermore, when f(x|z) = h(x|z)×g(x|z), the condition (6) is implied by limx→−∞
g(x|zk+1)
g(x|zk) =

0 and
(

limx→−∞
h(x|zk+1)
h(x|zk)

)
<∞. We may also consider

f(x|z) = λ (z)h(x|z) + [1− λ (z)] g(x|z). (8)

In this case, the conditional density f(·|z) is a mixture of two continuous conditional densities

h, g and the weight λ in the mixture depends on z. At the limit point z0, f(·|z0) coincides

with g(·|z0) if limzk→z0 λ (z) = 0. The linear independence condition in Equation (6) holds

when h(x|z) and g(x|z) satisfy

lim
x→−∞

g(x|zk+1)

g(x|zk)
= 0 and lim

x→−∞

h(x|zk)
g(x|zk)

<∞. (9)

The advantage of this condition is that there are only mild restrictions imposed on the func-

tional form of h(x|z) and λ (z).

Suppose the function f(x|z) is differentiable up to any finite order. We may consider the

so-called Wronskian determinant as follows:

W (x) = det


f(x|zk1) f(x|zk2) ... f(x|zkI )

f ′(x|zk1) f ′(x|zk2) ... f ′(x|zkI )

... ... ... ...

d(I−1)

dx(I−1) f(x|zk1) d(I−1)

dx(I−1) f(x|zk2) ... d(I−1)

dx(I−1) f(x|zkI )


If there exists an x0 such that the determinant W (x0) 6= 0 for every {zki : i = 1, 2, ..., I}, then

{f(·|zk)} is linear independent. For example, we may have for z > 0 and 0 ∈ X

f(x|z) =
d

dx
F0(z × x)
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with

W (0) = ΠI
i=1

(
zki

d(i)F0(0)

dx(i)

)
× det


1 1 ... 1

zk1 zk2 ... zkI

... ... ... ...

(zk1)I−1 (zk2)I−1 ... (zkI )I−1


.

According to the property of the Vandermonde matrix, the determinant W (x) is not equal to

zero when f0(x) has all the nonzero derivative at x = 0 and zk are nonzero and distinctive.

In general, we may also show {f(·|zk)} is linear independent with

f(x|z) =
d

dx
F0 (µ(z)τ(x))

where µ′(z0) 6= 0 and τ(·) is monotonic with τ(0) = 0. This is because
∑I

i=1 cif(·|zki) = 0

is implied by
∑I

i=1 ciF0(µ(zki)τ(·)) = 0, which holds if and only if
∑I

i=1 ciF0(µ(zki)τ) = 0

for all τ ∈ τ (X ) . We may then show the determinant W (x) of the function F0 is nonzero at

x = 0.

Another sufficient condition for the linear independence is that the so-called Gram determi-

nantGf is not equal to zero for every {zki : i = 1, 2, ..., I} , whereGf = det
([〈

f(·|zki), f(·|zkj )
〉]
i,j

)
.

This condition does not require the function has all the derivatives.

We summarize these results on the linear independence as follows:

Lemma 3. the sequence {f(·|zk)} corresponding to a sequence {zk : k = 1, 2, ...} of distinct

zk ∈ N (z0) converging to z0 is linearly independent if one of the following conditions hold:

1)
∑I

i=1 cif(x|zki) = 0 for all x ∈ X implies ci = 0 for all i = 1, 2, ..., I.

2) for all k, limx→−∞
f(x|zk+1)
f(x|zk) = 0 or limx→x0

f(x|zk+1)
f(x|zk) = 0 for some x0;

3) f(x|z) = d
dxF0(µ(z)τ(x)) with µ′(z0) 6= 0, τ(0) = 0, and dk

dxk
F0(0) 6= 0 for k = 1, 2, ...;

4) for every {zki : i = 1, 2, ..., I}, det
([〈

f(·|zki), f(·|zkj )
〉]
i,j

)
6= 0.

In order to illustrate the relationship between the complete sequence {g(·|zk)} and the

sequence {f(·|zk)}, we present numerical examples of these two functions as follows. Consider

g(x|z) = xz over L2([0, 0.8]) for Z = (25 ,
3
5). We pick zk = 1

2 −
2

(k+1)2
with zk → z0 = 1

2 . Since
∞∑
k=1

1
zk

= ∞, by the Corollary (Müntz) on page 91 in Young (1980) the family of function
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z−axis
 

g(x|z)
f(x|z)

Figure 1: An example of g(x|z) and f(x|z) in Theorem 1.

{xz1 , xz2 , xz3 , ...} is complete in L2([0, 0.8]). Let f(x|z) =
(

1− 2(z− 1
2
)

(z−0.62)(x− 1)
)
xz. Since

lim
x→0

f(x|zk+1)
f(x|zk) = 0, our Theorem 1 implies that {f(·|zk)} is also complete in L2([0, 0.8]) with

g(x|z0) = f(x|z0) =
√
x. Figure 1 presents a 3D graph of g(x|z) and f(x|z) for (x, z) in

[0, 0.8]× (25 ,
3
5) to illustrate the relationship between the complete sequence {g(·|zk)} and the

sequence {f(·|zk)}.

3. Applications

We consider three applications of our main results: first, we show the sufficient conditions

for the completeness of f(x|z) when x = µ(z) + σ (z) ε with z ⊥ ε; second, we consider the

completeness with a general control function x = h(z, ε); finally, we show how to use our

results to transform a multivariate completeness problem to a single variable one.

3.1. Extension of the convolution case

Lemma 2 provides a complete sequence when x = z + ε. Using Theorem 1, we may provide

sufficient conditions for the completeness of f(x|z) when the endogenous variable x and the
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instrument z satisfy a general heterogeneous structure as follows:

x = µ(z) + σ (z) ε with z ⊥ ε.

We summarize the result as follows:

Lemma 4. For every z ∈ Z, let f(·|z) be in L2 (R). Suppose that there exists a point z0 with

its open neighborhood N (z0)⊆ Z such that

i) the characteristic function φz0(t) of f(·|z0) satisfies 0 < |φz0(t)| < Ce−δ|t| for all t ∈ R

and some constants C, δ > 0;

ii) ∂
∂zf (·|z) for z ∈ N (z0) and ∂

∂xf(·|z0) are in L2 (R) ;

iii) the function f (·|z) satisfies conditions iii) in Theorem 1, i.e., there exists a sequence

{zk : k = 1, 2, ...} of distinct zk ∈ N (z0) converging to z0 such that the sequence {f(·|zk) : k =

1, 2, ...} is linearly independent.

Then, the family {f(·|z) : z ∈ N (z0)} is complete in L2 (R).

In particular, when

f(x|z) =
1

σ (z)
fε

(
x− µ (z)

σ (z)

)
on R×Z, we assume

i’) the characteristic function φε(t) of fε satisfies 0 < |φε(t)| < Ce−δ|t|;

ii’) µ (·), σ (·), and fε (·) are continuously differentiable with µ′ (z0) 6= 0, σ (z0) 6= 0 and∫ +∞
−∞ |xf

′
ε(x)|2 dx <∞;

iii’) limx→−∞
fε(x−c)
fε(x)

= 0 for any constant c > 0.

Then, the family {f(·|z) : z ∈ N (z0)} is complete in L2(R).

Proof: See the appendix.

The first part of Lemma 4 implies that one may always make a sequence coincide with a

convolution sequence. Consider a sequence {f(·|zk) : k = 1, 2, ...} with a sequence {zk : k = 1, 2, ...}

of distinct zk ∈ N (z0) converging to z0. We may always generate a convolution sequence

{g(·|zk) : k = 1, 2, ...} where

g(x|zk) = f (x− µ (zk) |z0) with µ (z0) = 0 and µ′ (z0) 6= 0.
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Condition i) implies that the sequence satisfies the conditions in 2 and is complete. Condition

ii) guarantees that the first-order derivatives ∂
∂zf (·|z) and ∂

∂zg (·|z) are in L2 (X ) so that the

relative deviation D(z) = ‖f(·|z)−g(·|z)‖
‖g(·|z)‖ is continuous in z. Since D(z0) = 0 by construction,

the condition ii) in Theorem 1 holds. Thus, the completeness holds for {f(·|z) : z ∈ N (z0)}.

In the heterogeneous case where x = µ(z) + σ (z) ε, a primitive condition for the linear

independence is that limx→−∞
fε(x−c)
fε(x)

= 0.

3.2. Completeness with a control function

We then consider a general expression of the relationship between the endogenous variable x

and the instrument z. Let a control function describe the relationship between an endogenous

variable x and an instrument z as follow:

x = h(z, ε), with z ⊥ ε. (10)

We consider the case where x and ε have the support R. Without loss of generality, we assume

ε has a standard normal distribution with the cdf Φ. It is well known that the function h is

related to the cdf Fx|z as h(z, ε) ≡ F−1x|z (Φ (ε) |z) when the inverse of Fx|z exists. Given the

function h, we are interested in what restrictions on h are sufficient for the completeness of

the conditional density f(x|z) implied by Equation (10).

Lemma 5. Let N (z0) ⊆ Z be an open neighborhood of some z0 ∈ Z. Let Equation (10) hold

with h(z0, ε) = ε, where ε has the support R. Suppose that

i) for z ∈ N (z0), the function h(z, ε) is strictly increasing in ε and twice differentiable in

z and ε;

ii) The density fε(·) = fx|z0 (·) and its characteristic function φε(t) satisfy limx→−∞
fε(x−c)
fε(x)

=

0 for any constant c > 0 and 0 < |φε(t)| < Ce−δ|t| for all t ∈ R and some constants C, δ > 0

iii) ∂
∂zf (·|z) for z ∈ N (z0) and f ′x|z0 (·) are in L2 (R) ;

iv) for any z̃ 6= ẑ in N (z0), limε→−∞ [h(z̃, ε)− h(ẑ, ε)] 6= 0.

Then, the family {f(·|z) : z ∈ N (z0)} is complete in L2(R).

Proof: See the appendix.

13



Condition i) guarantees that the conditional density f(x|z) is continuous in both x and

z around z0. The condition h(z0, ε) = ε is not restrictive because one may always redefine

ε. Therefore, f(x|z) satisfies f(x|z0) = fε (x), which may be considered as a limit point in

the convolution family such as {g(x|z) = fε (x− µ (zk)) : k = 1, 2, ...} with µ (z0) = 0, i.e.

f(x|z0) = g(x|z0). We may then use Theorem 1 to show f(x|z) is complete. Condition iii)

implies that the deviation D(z) = ‖f(·|z)−g(·|z)‖
‖g(·|z)‖ is continuous in z. Condition iv) guarantees

the linear independence of the sequence {f(·|zk)}.

Lemma 5 implies that a key sufficient assumption for the completeness of f(x|z) implied

by the control function in Equation (10) is that the control function h is invertible with respect

to ε around a limit point in the support of z. Our results may provide sufficient conditions

for completeness with a general h. For example, we may have

h (z, ε) = µ (z) + ez−z0ε+
J∑
j=0

(z − z0)2j hj (ε) ,

where hj (·) are increasing functions. The function h may also have a nonseparable form such

as

h (z, ε) = µ (z) + ln
[
(z − z0)2 + exp(ε)

]
.

3.3. multivariate completeness

When the endogenous variable x and the instrument z are both vectors, our main results

in Theorem 1 still applies. In other words, our results can be extended to the multivariate

case straightforwardly. In this section, we show that one can use Theorem 1 to reduce a

multivariate completeness problem to a single variate one. Without loss of generality, we

consider x = (x1, x2), z = (z1, z2), X = X1 × X2, and Z = Z1 × Z2. One may show that the

completeness of f(x1|z1) and f(x2|z2) implies that of f(x1|z1) × f(x2|z2). Theorem 1 then

implies that if conditional density f(x1, x2|z1, z2) coincides with f(x1|z1)× f(x2|z2) at a limit

point in Z then f(x1, x2|z1, z2) is complete. We summarize the results as follows:

Lemma 6. For every z ∈ Z = Z1 × Z2, let f(·|z) and g(·|z) be in a Hilbert space H of

functions defined on X = X1 × X2 with norm ‖ · ‖. Suppose that there exists a point z0 with

its open neighborhood N (z0)⊆ Z such that
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i) for every sequence {zk : k = 1, 2, 3, ...} of distinct zk ∈ N (z0) converging to z0, the

corresponding sequence {fx1|z1(·|z1k) : k = 1, 2, 3, ...} and {fx2|z2(·|z2k) : k = 1, 2, 3, ...} are

complete in Hilbert spaces H of functions defined on X1 and X2;

ii) the relative deviation D(z1, z2) =
‖fx|z(·,·|z1,z2)−fx1|z1 (·|z1)fx2|z2 (·|z2)‖

‖fx1|z1 (·|z1)fx2|z2 (·|z2)‖
is continuous in

z = (z1, z2) on N (z0) with fx|z(·, ·|z10, z20) = fx1|z1(·|z10)fx2|z2(·|z20).

iii) there exists a sequence {zk : k = 1, 2, 3, ...} of distinct zk ∈ O converging to z0 such

that the sequence {fx|z(·, ·|z1k, z2k) : k = 1, 2, 3, ...} is linearly independent,

Then, the sequence {fx|z(·, ·|z1k, z2k) : k = 1, 2, 3, ...} is complete in the Hilbert space H of

functions defined on X1 ×X2.

Proof: See the appendix.

In many applications, it is difficult to show the completeness for a multivariate conditional

density. The results above use Theorem 1 to extend the completeness for the one-dimensional

sequences {fx1|z1(·|z1k) : k = 1, 2, 3, ...} and {fx2|z2(·|z2k) : k = 1, 2, 3, ...} to the multiple

dimensional sequence {fx|z(·, ·|z1k, z2k) : k = 1, 2, 3, ...}. The key assumption is that the

endogenous variables are conditionally independent of each other for some value of the instru-

ments, i.e.

fx|z(x1, x2|z10, z20) = fx1|z1(x1|z10)fx2|z2(x2|z20).

We may then use the completeness of one-dimensional conditional densities fx1|z1(x1|z10) and

fx2|z2(x2|z20) to show the completeness of a multi-dimensional density fx|z(x1, x2|z10, z20).

Therefore, Lemma 6 may reduce the dimension as well as the difficulty of the problem.

4. Conclusion

We provide sufficient conditions for the nonparametric identification of the regression function

in a regression model with an endogenous regressor x and an instrumental variable z. The

identification of the regression function from the conditional expectation of the dependent

variable is implied by the completeness of the distribution of the endogenous regressor con-

ditional on the instrument, i.e., f(x|z). We provide sufficient conditions for the completeness

of f(x|z) without imposing a specific functional form, such as the exponential family. We

use the results in the stability of bases in Hilbert space to show that if the relative deviation
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from a complete sequence of function is finite then f(x|z) itself is complete, and therefore,

the regression function is nonparametrically identified.

5. Appendix: Proofs

5.1. Preliminaries

Let L2(X ) = {h(·) :
∫
X |h(x)|2dx < ∞, } be a L2 space with the following inner product

〈f, g〉 ≡
∫
X f(x)g(x)dx. We define the corresponding norm as: ‖f‖2 = 〈f, f〉. The completion

of L2(X ) under the norm ‖ ·‖ is a Hilbert space, which may be denoted as H. The conditional

density of interest f(x|z) can be considered as a sequence of functions {f1, f2, f3, ...} in H

with

fk ≡ f(·|zk),

where {zk : k = 1, 2, 3, ...} is a sequence in Z. The property of the sequence {fk} determines

the identification of the regression function in (2).

We then introduce the definition of a basis in a Hilbert space.

Definition 2. A sequence of functions {f1, f2, f3, ...} in a Hilbert space H is said to be a basis

if for any h ∈ H there corresponds a unique sequence of scalars {c1, c2, c3, ...} such that

h =

∞∑
k=1

ckfk.

The identification of a regression function in Equation (2) actually only requires a sequence

{f1, f2, f3, ...} containing a basis, instead of a basis itself. Therefore, we consider a complete

sequence of functions {f1, f2, f3, ...} which satisfies that 〈g, fk〉 = 0 for k = 1, 2, 3... implies

g = 0.

In fact, one can show that a basis is complete and that a complete sequence contains a

basis. Since a basis has a unique representation of every element in a Hilbert space, there is

redundancy in a complete sequence. Given a complete sequence in a Hilbert space, we can

extract a basis from the complete sequence. One of the important properties of a complete
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sequence for a Hilbert space is that every element can be approximated arbitrarily close by

finite combinations of the elements. We summarize these results as follows.

Lemma 7. (1) A basis in the Hilbert space H is also a complete sequence.

(2) Let W be a closed linear subspace of a Hilbert space. Set W⊥ = {h ∈ H : 〈h, g〉 =

0 for all g ∈W}. Then W⊥ is a closed linear subspace such that, W
⊕
W⊥ = H.

(3) Given a complete sequence of functions {f1, f2, f3, ...} in a Hilbert space H, there exist

a subsequence {r1, r2, r3, ...} which is a basis in the Hilbert space H.

(4) Given a complete sequence of functions {f1, f2, f3, ...} in a Hilbert space H, the comple-

tion of the subspace span({f1, f2, f3, ...}) is H. That is: for any h ∈ H there exists a sequence

of scalars {c1, c2, c3, ...} such that

h =

∞∑
k=1

ckfk;

in other words, ‖h−
n∑
k=1

ckfk‖ → 0 as n→∞.

Proof of Lemma 7(1): Given a basis {f1, f2, f3, ...} in a Hilbert space H, apply-

ing Gram-Schmidt process to the basis yields an orthonormal sequence {g1, g2, g3, ...} and

span({f1, f2, f3, ...}) = span({g1, g2, g3, ...}). This implies that {g1, g2, g3, ...} is also a basis of

the Hilbert space H and f =
∞∑
k=1

〈f, gk〉gk for any f ∈ H. Suppose that
∫
fk(x)h(x)dx = 0

for all k. It follows that 〈h, gk〉 = 0 for all k. Thus, h =
∞∑
k=1

〈h, gk〉gk = 0. {f1, f2, f3, ...} is a

complete sequence. QED.

Proof of Lemma 7(3): We will choose rk using Gram-Schmidt procedure. First, let

r1 = f1 and g1 = r1
‖r1‖ . Then r2 = fs2 where s2 is the smallest index among {2, 3, 4, ...}

such that g̃2 ≡ fs2 − 〈fs2 , g1〉g1 6= 0. Denote g2 = g̃2
‖g̃2‖ . Keep the selection process go-

ing, in the k-th step, we have rk = fsk where sk is the smallest index among {sk−1 +

1, sk−1 + 2, sk−1 + 3, ...} such that g̃k ≡ fsk −
k−1∑
i=1
〈fsi , gi〉gi 6= 0 and gk = g̃k

‖g̃k‖ . This selection

procedure produces three sequences with the same span space, i.e., span({f1, f2, f3, ...}) =

span({r1, r2, r3, ...}) = span({g1, g2, g3, ...}). In addition, {g1, g2, g3, ...} is an orthonormal

sequence. To prove {r1, r2, r3, ...} is a basis, it is sufficient to show (i) the completion of

span({r1, r2, r3, ...}) = H, and (ii) every finite linear combinations of elements in {r1, r2, r3, ...}

has a unique representation. Let W be the completion of the subspace span({r1, r2, r3, ...})
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under the norm ‖ · ‖. Let W⊥ = {h ∈ H : 〈h, g〉 = 0 for all g ∈ W}. By Lemma 7 ,

W
⊕
W⊥ = H. Since the sequence {f1, f2, f3, ...} is complete and span({f1, f2, f3, ...}) =

span({r1, r2, r3, ...}) then W⊥ = {0} and W = H. On the other hand, suppose that
n∑
i=1

ckrk =

0 for some scalars c1, .., cn. From the selection of rk, we have rk =
k−1∑
i=1
〈fsi , gi〉gi + ‖g̃k‖gk ≡

k∑
i=1

aikgi where akk = ‖g̃k‖ 6= 0. Plugging the expression into the previous equation,
n∑
i=1

ckrk =

n∑
i=1

ck

(
k∑
i=1

aikgi

)
= 0. Consider the inner products of this term with gk, k = 1, ..., n. We

obtain the system of linear equations

n∑
k=1

cka1k = 0,

n∑
k=2

cka2k = 0,

...

n∑
k=n

ckank = 0.

The matrix expression of the above system is


a11 a12 . . . a1n

0 a22 . . . a2n

0 0 . . .
...

0 0 0 ann




c1

c2
...

cn


= 0.

Since akk = ‖g̃k‖ 6= 0 for all k, using backward induction results in ck = 0 for all k. This

proves the condition (ii). Therefore, the sequence {r1, r2, r3, ...} is a basis. QED.

Proof of Lemma 7(4): Let W be the completion of the subspace span({f1, f2, f3, ...})

under the norm ‖ · ‖. Set W⊥ = {h ∈ H : 〈h, g〉 = 0 for all g ∈ W}. By Lemma 7,

W
⊕
W⊥ = H. Since the sequence {f1, f2, f3, ...} is complete then W⊥ = {0} and W = H.

QED.

Notice that the sequence of scalars corresponding to a complete sequence in Lemma 7

may not be unique. However, any function f in a Hilbert space can be expressed as a linear
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combination of the basis function with a unique sequence of scalars {c1, c2, c3, ...}. Therefore,

we can consider cn as a function of f . In fact, cn (·) is the so-called coefficient functional.

Definition 3. If {f1, f2, f3, ...} is a basis in a Hilbert space H, then every function f in H

has a unique series {c1, c2, c3, ...} such that

f =

∞∑
n=1

cn(f)fk.

Each cn is a function of f . The functionals cn (n = 1, 2, 3, ...) are called the coefficient

functionals associated with the basis {f1, f2, f3, ...}.

It is clear that cn is a linear function of f . Although these functionals are defined in

a Hilbert space, they can also be defined in Banach space and are useful tools in Banach

space theory. The following results regarding the coefficient functionals are from Theorem 3

in section 6 in Young (1980).

Lemma 8. If {f1, f2, f3, ...} is a basis in a Hilbert space H. Define cn as coefficient functionals

associated with the basis. Then, there exists a constant M such that

1 ≤ ‖fn‖ · ‖cn‖ ≤M, (11)

for all n.

In our proofs, we limit our attention to linearly independent sequences when providing

sufficient conditions for completeness. We introduce the linear independence of an infinite

sequence as follows. We first introduce the finite linear independence

Definition 4. A sequence of functions {fn (·)} of a Hilbert space H is said to be linearly

independent if the equality for any finite K

K∑
i=1

cifni (x) = 0 for all x ∈ X

is possible only for ci = 0, (i = 1, 2, ...,K).

The linear independence of an infinite sequence is considered as follows.
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Definition 5. A sequence of functions {fn (·)} of a Hilbert space H is said to be ω−independent

if the equality
∞∑
n=1

cnfn (x) = 0 for all x ∈ X

is possible only for cn = 0, (n = 1, 2, 3, ...).

It is obvious that the ω−independence implies that linear independence. But the converse

argument does not hold. A complete sequence may not be ω−independent, but it contains a

basis, and therefore, contains an ω−independent subsequence.

Our proofs also need a uniqueness theorem of complex differential functions. Let w = a+ib,

where a, b are real number and i =
√
−1. Define C = {w = a+ ib : a, b ∈ R} and it is called

a complex plane. The complex differential function is defined as follows.

Definition 6. Suppose f is a complex function defined in Ω. If z0 ∈ Ω and

lim
z→z0

f(z)− f(z0)

z − z0

exists, we denote this limit by f ′(z0) and call it the derivative of f at z0. If f ′(z0) exists for

every z0 ∈ Ω, f is called a complex differential function in Ω.

A complex differential function has a large number of interesting properties which are different

from a real differential function. One of them is the following uniqueness theorem, as stated

in a corollary on page 209 in Rudin (1987).

Lemma 9. If g and f are complex differential functions in an open connect set Ω and if

f(z) = g(z) for all z in some set which has a limit point in Ω, then f(z) = g(z) for all z ∈ Ω.

5.2. Proofs of completeness of existing sequences

Proof of Lemma 1: In order to use the above uniqueness result of complex differential

functions, we consider a converging sequence {zk : k = 1, 2, ...} in Z as the set with a limit

point. Since µ (·) is continuous with µ′ (z0) 6= 0 for some limit point z0 ∈ Z, there exists δ > 0

and a sequence {zk : k = 1, 2, ...} converging to z0 such that {µ(zk) : k = 1, 2, ...} ∈ (µ(z0) −
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δ, µ(z0) + δ) ⊂ µ(N (z0)) be a sequence of distinct numbers converging to an interior point

µ(z0) ∈ µ(N (z0)). Suppose that
∫∞
−∞ s(x)t(z)eµ(zk)τ(x)h0(x)dx = 0 for some h0 ∈ L2(X ).

Notice that t(z) > 0 is irrelevant to completeness, hence we may set t(z) = 1 for simplicity.

Consider a complex function with the following form

f(w) =

∫
X
s(x)ewτ(x)h0(x)dx, (12)

where w ∈ C the set of complex numbers. Let w = a + ib, where a, b are real numbers.

Applying Cauchy-Schwarz inequality along with the assumption (i) and h0 ∈ L2(X ), we have

for a ∈ (µ(z0)− δ, µ(z0) + δ)

∣∣f(w)
∣∣2 ≤ ∣∣∣ ∫

X
s(x)ewτ(x)h0(x)dx

∣∣∣2 (13)

≤
(∫
X
s(x)eaτ(x)|h0(x)|dx

)2
≤
(∫
X
s(x)2e2aτ(x)dx

)(∫
X
h0(x)2dx

)
<∞.

This suggests that f(w) defined in Equation (12) exists and is finite on the vertical strip

{w : µ(z0)−δ < Re (w) < µ(z0)+δ}. Since the integration in Equation (12) is with respect to

x instead of w, f(w) is a complex differential function on {w : µ(z0)− δ < Rew < µ(z0) + δ}

according to the definition introduced above. The condition
∫
X s(x)eµ(zk)τ(x)h0(x)dx = 0

is equivalent to f(µ(zk)) = 0 by Equation (12). This implies that the complex differential

function f is equal to zeros in the sequence {µ(z1), µ(z2), µ(z3), ...} which has a limit point

µ(z0). Applying the uniqueness theorem (Lemma 9) quoted above to f results in f(w) = 0

on {w : µ(z0)− δ < Re (w) < µ(z0) + δ}. If X is a finite domain, we extend h0 to a function

in L2(R) by

h̃0(x) =

 h0 if x ∈ X ,

0 otherwise.
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In particular, choose w = µ(z0) + it for any real t, we have

f(w) =

∫
X
s(x)eµ(z0)τ(x)eitτ(x)h0(x)dx = 0

=

∫ ∞
−∞

s(τ−1(x))eµ(z0)xeitxh̃0(τ
−1(x))

1

τ ′(x)
dx

≡
∫ ∞
−∞

eitxĥ0(x)dx.

The second step is due to the monotonicity of τ(·). The last step implies that the Fourier

transform of ĥ0(x) is zero on the whole real line. And Eq. (13) implies ĥ0 ∈ L1(R). By the

uniqueness Theorem 9.12 in Rudin (1987) for ĥ0 ∈ L1(R), we have ĥ0 = 0 and therefore the

function h0 = 0. This shows that the sequence {g(·|zk) = s(·)t(zk)eµ(zk)τ(·) : k = 1, 2, ...} is

complete in L2(X ). QED.

Proof of Lemma 2: Choose a sequence of distinct numbers {zk} in the support Z

converging to z0 ∈ Z . Suppose that
∫∞
−∞ fε (x− zk)h0(x)dx = 0 for some h0 ∈ L2(R).

Consider

g (z) ≡
∫
X
h0(x)fε (x− z) dx,

which is a convolution. Let φg stands for the Fourier transformation of g as follows:

φg(t) =

∫ ∞
−∞

eitzg (z) dz

=

∫ ∞
−∞

eit(x−(x−z))
∫
X
h0(x)fε (x− z) dxdz

=

∫
X
eitxh0(x)

(∫ ∞
−∞

eit(z−x)fε (−(z − x)) dz

)
dx

= φh0(t)φ−ε(t)

= φh0(t)φε(−t).

We have g(z) = 1
2π

∫∞
−∞ e

−itzφh0(t)φε(−t)dt. We define

f(w) =

∫ ∞
−∞

e−itwφh0(t)φε(−t)dt,

for

w = z + ib for z ∈ R and b around zero.
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Consider |b| < δ for δ in Equation (4), we have

∣∣f(w)
∣∣2 =

∣∣∣ ∫ ∞
−∞

e−itwφh0(t)φε(−t)dt
∣∣∣2

≤
(∫ ∞
−∞
|φε(−t)| ebt|φh0(t)|dt

)2
≤
(∫ ∞
−∞
|φε(−t)|2 e2btdt

)(∫ ∞
−∞
|φh0(t)|2dt

)
≤ C2

(∫ ∞
−∞

e−2(δ−b)|t|dt
)(∫ ∞

−∞
|φh0(t)|2dt

)
<∞,

by φh0(t) ∈ L2(R) since h0 ∈ L2(R).2 Since RHS is finite, then f(w) is analytic (complex

differentiable) in Ω = {z + ib : |b| < δ}. Consequently, the fact that f(w) equals zero for

a sequence {z1, z2, z3, ...} converging to z0 implies that f(w) is equal to zero in Ω by the

uniqueness theorem cited in the proof of Lemma 1. This suggests that f(w) is equal to

zero for all w = z on the real line, i.e.,
∫∞
−∞ e

−itzφh0(t)φε(−t)dt = 0 for all z ∈ R. Since∫∞
−∞ |φh0(t)φε(−t)|dt ≤ (

∫∞
−∞ |φh0(t)|2dt)1/2(

∫∞
−∞ |φε(−t)|

2dt)1/2 < ∞, φh0(t)φε(−t) ∈ L1(R).

Thus, the ch.f. φh(t)φε(−t) = 0 for all t.3 By Eq. (4), i.e., φε(t) 6= 0, we have φh(t) = 0 for

all t ∈ R so h = 0. The family {g(x|z) = fε(x− zk) : k = 1, 2, ...} is complete in L2(X ). QED.

5.3. Proof of Theorem 1

We prove Theorem 1 in four steps:

1. We prove that if the total deviation from a basis to an ω− independent sequence is

finite, then the latter sequence is also a basis. This result is summarized in Lemma 10

as the cornerstone of the proof of Theorem 1.

2. Condition ii) implies that the total deviation from a complete sequence {g(·|zk)} to the

corresponding sequence {f(·|zk)} is finite in the sense that

∞∑
j=1

‖f(·|zk)− g(·|zk)‖
‖g(·|zk)‖

<∞, (14)

2See Theorem 9.13 on page 186 in Rudin (1987).
3See Theorem 9.12 on page 185 in Rudin (1987).
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3. A linearly independent sequence {f(·|zk)} in a normed space contains an ω− indepen-

dent subsequence {f(·|zkl)}. Finally, for a complete sequence {g(·|zkl)} and the ω−

independent sequence {f(·|zkl)} , Equation (14) and Lemma 10 imply that the sequence

{f(·|zkl)} is complete, and therefore, {f(·|z) : z ∈ N (z0)} is complete.

Step 1: We prove that if the total deviation from a basis to an ω− independent sequence

is finite, then the latter sequence is also a basis. This result is summarized in the following

lemma as the cornerstone of the proof of Theorem 1.

Lemma 10. Suppose that

i) the sequence {en (·) : n = 1, 2, ...} is a basis in a Hilbert space H;

ii) the sequence {fn (·) : n = 1, 2, ...} in H is ω−independent;

iii)
∑∞

n=1
‖fn(·)−en(·)‖
‖en(·)‖ <∞.

Then, the sequence {fn(·) : n = 1, 2, ...} is a basis in H.

Proof of Lemma 10: As in the proof of Theorem 15 on page 45 of Young (1980), we

consider for any function f ∈ H

f =
∞∑
n=1

cn(f)en,

where cn(f) is the so-called coefficient functional corresponding to the basis {en}. It is clear

that cn(f) is a linear function of f . Define an operator T : H → H as

Tf =

∞∑
n=1

cn(f) (en − fn) .

It is clear that T is linear. Since cn(en) = 1 and ck(en) = 0 for k 6= n, we have

Ten =
∞∑
n=1

cn(en) (en − fn) = en − fn.

24



By using the triangle inequality and the definition of functional, we have

‖Tf‖ =

∥∥∥∥∥
∞∑
n=1

cn(f) (en − fn)

∥∥∥∥∥
≤

∞∑
n=1

‖cn(f) (en − fn)‖

≤

( ∞∑
n=1

‖en − fn‖ ‖cn‖

)
‖f‖ .

Lemma 8 suggests that

1 ≤ ‖en‖ ‖cn‖ ≤M.

Therefore, we have

‖Tf‖ ≤

( ∞∑
n=1

‖en − fn‖
‖en‖

‖en‖ ‖cn‖

)
‖f‖

≤ M

( ∞∑
n=1

‖en − fn‖
‖en‖

)
‖f‖

The relationship above implies that the linear operator T is bounded if

∞∑
n=1

‖en − fn‖
‖en‖

<∞,

which will be shown in the next step to be implied by condition (ii). We then show that T is

a compact operator. Set

TNf =
N∑
n=1

cn(f) (en − fn) .

Since each TN has finite dimensional range and ‖T − TN‖ → 0 as N → ∞, T is an compact

operator.4

4If an bounded linear operator T is the limit of operators of finite rank, then T is compact. See Exercise
13 on page 112 in Rudin (1991).
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Next, we show that Ker(I − T ) = {0}, i.e., (I − T ) is invertible. Consider

0 = (I − T ) f

= f −
∞∑
n=1

cn(f) (en − fn)

=
∞∑
n=1

cn(f)en −
∞∑
n=1

cn(f)en +
∞∑
n=1

cn(f)fn

=
∞∑
n=1

cn(f)fn

Since {fn (·)} is an ω−independent sequence, we have cn(f) = 0 for all n, and therefore,

0 = (I − T ) f implies f = 0.

Therefore, T is a compact operator defined in a Hilbert space H with Ker(I − T ) = {0}.

By the Fredholm alternative, this shows that (I − T ) is a bounded invertible operator.5

Since T is bounded, (I − T ) is also bounded. Therefore, we have shown that (I − T ) is a

bounded invertible operator. Clearly, we have (I − T ) en = fn. Consider any h ∈ H. Then,

(I − T )−1h has an unique series expression (I − T )−1h =
∞∑
n=1

cnen since {en (·)} is a basis.

Since (I − T ) is bounded, applying (I − T ) to the expression above results in h =
∞∑
n=1

cnfn.

The argument above shows that every element h ∈ H has a unique series expansion in term

of fn. Thus, {fn (·)} is also a basis for H. QED

Step 2: We show condition ii) implies Equation (14), i.e.,

∞∑
k=1

‖f(·|zk)− g(·|zk)‖
‖g(·|zk)‖

<∞. (15)

We choose a sequence {zk : k = 1, 2, ...} ⊂ N (z0) converging to z0 ∈ N (z0). In other words,

z0 is a limit point in N (z0). Define

D(z) ≡ ‖f(·|z)− g(·|z)‖
‖g(·|z)‖

5See the Fredholm alternative in Rudin (1991), Exercise 13 on page 112.
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for z close to z0. Condition ii) imply that D(z) is continuous at z0 with D(z0) = 0. Then, we

have for some constant C and z close to z0

‖f(·|z)− g(·|z)‖
‖g(·|z)‖

= D(z)−D(z0) ≤ C |z − z0| .

Therefore, we may choose |zk − z0| = O(k−p) for p > 1 so that Equation (14) holds with∑∞
k=1D(zk) = O(

∑∞
k=1 k

−p) <∞. Thus, there exists a sequence {zk : k = 1, 2, ...} converging

to z0 such that Equation (14) holds.

Step 3: Condition iii) implies that there exists a linearly independent sequence in

{f(·|zk)}. According to the second Theorem in Erdos and Straus (1953), any linearly in-

dependent sequence in a normed space contains an ω− independent subsequence. We obtain

an ω− independent subsequence {f(·|zkl)} in {f(·|zk)}.

We then show that the ω− independent subsequence {f(·|zkl)} is complete in the Hilbert

spaceH. Since the sequence {zkl} corresponding to {f(·|zkl)} is a subsequence of {zk} and also

converges to z0, condition i) implies that the corresponding sequence {g(·|zkl)} is complete in

the Hilbert space defined on X . The two sequences also satisfies Equation (14) i.e.,

∞∑
l=1

‖f(·|zkl)− g(·|zkl)‖
‖g(·|zkl)‖

<∞. (16)

Let {en} denote a basis contained in the complete sequence {g(·|zkl)} and {fn} be the cor-

responding subsequence in {f(·|zkl)}, which is also ω− independent. Then {en} and {fn}

also satisfies
∑∞

n=1
‖fn(·)−en(·)‖
‖en(·)‖ < ∞. Lemma 10 implies that {fn} is a basis and therefore

{f(·|zkl)} is complete in the Hilbert space H. Since the sequence {zk} is in N (z0), the family

{f(·|z) : z ∈ N (z0)} is complete in the Hilbert space H. QED.

5.4. Proof of completeness in applications

Proof of Lemma 4: Let N (z0) be an open neighborhood of z0. Since the characteristic

function φz0(t) of f(·|z0) satisfies Equation (4) in Lemma 2, we may generate a complete

sequence {g(x|zk) = f (x− µ (zk) |z0) : k = 1, 2, ...} satisfying condition i) in Lemma 2 with

µ (z0) = 0 and µ′ (z0) 6= 0. We have f(·|z0) = g(·|z0) and ‖g(·|z0)‖ > 0 due to |φz0(t)| > 0.
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As discussed below Theorem 1, when the Hilbert space H is the L2 (X ), the relative

deviation D(z) is continuous if ‖g(·|z0)‖ > 0 and the first-order derivatives ∂
∂zf (·|z) and

∂
∂zg (·|z) are also in L2 (X ) for z ∈ N (z0). This is because the derivative of ‖f(·|z)‖2 w.r.t. z

is bounded by the Cauchy-Schwarz inequality as follows:

∣∣∣∣ ∂∂z (‖f(·|z)‖2
)∣∣∣∣ =

∣∣∣∣ ∂∂z
∫
f(x|z)2dx

∣∣∣∣
=

∣∣∣∣∫ 2f(x|z) ∂
∂z
f(x|z)dx

∣∣∣∣
≤ 2 ‖f(·|z)‖

∥∥∥∥ ∂∂z f(·|z)
∥∥∥∥ .

For g(x|z) = f (x− µ (z) |z0), we have

∂

∂z
g(x|z) =

∂

∂z
f (x− µ (z) |z0)

=
∂

∂x
f (x− µ (z) |z0)

(
−µ′ (z)

)
.

The condition ii) of Lemma 4 implies that ∂
∂zg (·|z) is in L2 (X ) so that the relative deviation

D(z) = ‖f(·|z)−g(·|z)‖
‖g(·|z)‖ is continuous in z. Since D(z0) = 0 by definition, the condition ii) in

Theorem 1 holds. Thus, the completeness holds for {f(·|z) : z ∈ N (z0)}.

We then consider the special case f(x|z) = 1
σ(z)fε

(
x−µ(z)
σ(z)

)
. WLOG, we set σ (z0) =

1 because we may always redefine 1
σ(z0)

fε

(
x

σ(z0)

)
as fε (x). Since µ (·) is continuous with

µ′ (z0) 6= 0, the sequence {µ (zk) : k = 1, 2, 3, ...} ⊂ µ (N (z0)) may be a distinct sequence

converging to µ (z0) ∈ µ (N (z0)). Applying the results in Lemma 2 with the sequence {µ (zk) :

k = 1, 2, 3, ...}, we may show that {g(x|zk) = fε (x− µ (zk)) : k = 1, 2, ...} is complete. We

then extend the completeness of {g(x|zk) = fε (x− µ (zk)) : k = 1, 2, ...} to {f(x|zk) =

1
σ(zk)

fε

(
x−µ(zk)
σ(zk)

)
: k = 1, 2, ...}. Since σ (z0) = 1, we have f(x|z0) = g(x|z0).

We then check f(·|z) ∈ L2(R) for any z ∈ N (z0). We have for some constant C

‖f(·|z)‖ =

∫
X

∣∣∣∣ 1

σ (z)
fε

(
x− µ (z)

σ (z)

)∣∣∣∣2 dx
=

∫
X

∣∣∣∣ 1

σ (z)
fε (ε)

∣∣∣∣2 σ (z) dε

≤ C

σ (z0)

∫
R
|fε (ε)|2 dε.
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The last step is due to the continuity of σ (·) and σ (z0) > 0. Since |φε(t)| < Ce−δ|t|, we have∫
R |φε(t)|

2 dt <∞, the last expression is finite, and therefore, f(·|z) is in L2(R) for z ∈ N (z0).

In order to show the continuity of D(z), we show ∂
∂zf (·|z) is also in L2 (X ) . We have

∂

∂z
f(x|z) =

−σ′ (z)
σ2 (z)

fε

(
x− µ (z)

σ (z)

)
+ f ′ε

(
x− µ (z)

σ (z)

)(
−µ′ (z)
σ2 (z)

)
+
x− µ (z)

σ (z)
f ′ε

(
x− µ (z)

σ (z)

)(
−σ′ (z)
σ2 (z)

)
.

The function ∂
∂zf(·|z) for z ∈ N (z0) is in L2 (R) because of condition ii’). Therefore, the total

deviation

D(z) =

∥∥∥ 1
σ(z)fε

(
x−µ(z)
σ(z)

)
− fε (x− µ (z))

∥∥∥
‖fε (x− µ (z))‖

is continuous in z.

We show the linear independence of {f(·|zk)} as follows:

lim
x→−∞

f(x|zk+1)

f(x|zk)
= lim

x→−∞

∣∣∣ 1
σ(zk+1)

∣∣∣ fε (x−µ(zk+1)
σ(zk+1)

)
∣∣∣ 1
σ(zk)

∣∣∣ fε (x−µ(zk)σ(zk)

) ,

where

fε

(
x−µ(zk+1)
σ(zk+1)

)
fε

(
x−µ(zk)
σ(zk)

) =
fε

(
x−µ(zk)
σ(zk)

−
(
x−µ(zk)
σ(zk)

− x−µ(zk+1)
σ(zk+1)

))
fε

(
x−µ(zk)
σ(zk)

)
=

fε

(
x−µ(zk)
σ(zk)

−
(
[σ(zk+1)−σ(zk)]x−σ(zk+1)µ(zk)+σ(zk)µ(zk+1)

σ(zk)σ(zk+1)

))
fε

(
x−µ(zk)
σ(zk)

)
<

fε

(
x−µ(zk)
σ(zk)

− c
)

fε

(
x−µ(zk)
σ(zk)

) .

If σ′ (z) = 0, i.e., σ (zk+1) = σ (zk), we may pick zk such that µ (zk+1) > µ (zk) so that the

last inequality holds because fε (x) decreases as x→ −∞. If σ′ (z) 6= 0, we may pick zk such

that σ (zk+1) < σ (zk) and therefore
(
[σ(zk+1)−σ(zk)]x−σ(zk+1)µ(zk)+σ(zk)µ(zk+1)

σ(zk)σ(zk+1)

)
> c > 0 for

some constant c as x → −∞. Therefore, condition iii’) implies that condition (2) in Lemma

3 holds.

Finally, Theorem 1 implies that the family {f(·|z) : z ∈ N (z0)} is complete in L2(R).
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In fact, the proof of Theorem 1 suggests that the sequence {f(·|zk) : k = 1, 2, ...} is also

complete. QED.

Proof of Lemma 5: We choose distinct zk ↑ z0 such that |zk − z0| < 1
kp for some p > 2.

We use the complete sequence {g(x|zk) = fε (x− µ (zk)) : k = 1, 2, ...} with µ (z0) = 0 and

µ′ (z0) 6= 0 from Lemma 4. Condition iii) implies that g(x|z0) = fε (x) = f(x|z0). We may

check that the family {f(x|zk) =
∣∣ ∂
∂xh

−1(zk, x)
∣∣ fε (h−1(zk, x)

)
: k = 1, 2, ...} is in L2(R).

Consider for some constant c1 and z ∈ N (z0)

∫
R
|f(x|z)|2 dx =

∫
R

∣∣∣∣∂h−1(z, x)

∂x
fε
(
h−1(z, x)

)∣∣∣∣2 dx
=

∫
R

∣∣∣∣∣
(
∂h(z, ε)

∂ε

)−1
fε (ε)

∣∣∣∣∣
2
∂h(z, ε)

∂ε
dε

=

∫
R

∣∣∣∣∂h(z, ε)

∂ε

∣∣∣∣−1 |fε (ε)|2 dε

≤ c1
∫
R

∣∣∣∣∂h(z0, ε)

∂ε

∣∣∣∣−1 |fε (ε)|2 dε

=
c1
C

∫
R
|fε (ε)|2 dε <∞

The last step is because conditions i) and ii) implies
∣∣∣∂h(z0,ε)∂ε

∣∣∣ > C > 0 and
∫
R |fε (ε)|2 dε <∞.

That means f(x|z) ∈ L2(R) for z ∈ N (z0).

The condition iii) of Lemma 5 implies that ∂
∂zf (·|z) and ∂

∂zg (·|z) are in L2 (R) so that

the relative deviation D(z) = ‖f(·|z)−g(·|z)‖
‖g(·|z)‖ is continuous in z. Since D(z0) = 0 by definition,

the condition ii) in Theorem 1 holds.

We show the linear independence of {f(·|zk)} and the corresponding CDF sequence {F (·|zk)}

as follows. We consider

lim
x→−∞

Fε(x|zk+1)

Fε(x|zk)
= lim

x→−∞

Fε(h
−1(zk+1, x))

Fε(h−1(zk, x))

= lim
x→−∞

Fε(h
−1(zk, x)− (h−1(zk, x)− h−1(zk+1, x)))

Fε(h−1(zk, x))
.
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Since the function h(z, ε) is strictly increasing in ε for z ∈ N (z0), condition iv) implies that

h−1(zk, x)− h−1(zk+1, x)

≡ εk − h−1(zk+1, h(zk, εk))

= εk − h−1(zk+1, h(zk+1, εk) + [h(zk, εk)− h(zk+1, εk)]).

WLOG, we let [h(zk, εk)− h(zk+1, εk)] = c′ 6= 0 for εk →∞. We have

h−1(zk, x)− h−1(zk+1, x)

= εk − h−1(zk+1, h(zk+1, εk) + c′)

= εk − h−1(zk+1, h(zk+1, εk)) + c

= εk − εk + c 6= 0

for some constant c 6= 0 as εk → −∞. Given Fε is increasing, we may pick zk such that c > 0

to have

lim
x→−∞

Fε(x|zk+1)

Fε(x|zk)
< lim

x→−∞

Fε(h
−1(zk, x)− c)

Fε(h−1(zk, x))
= 0.

The last step is because Fε satisfies limx→−∞
Fε(x−c)
Fε(x)

= limx→−∞
fε(x−c)
fε(x)

= 0. Therefore,

condition (2) in Lemma 3 holds. Theorem 1 then implies that completeness of {f(·|z) : z ∈

N (z0)} in L2 (R). QED.

Proof of Lemma 6: Without loss of generality, we consider x = (x1, x2), z = (z1, z2),

X = X1 × X2, and Z = Z1 × Z2. Condition i) implies that {fx1|z1(·|z1k) : k = 1, 2, 3, ...} and

{fx2|z2(·|z2k) : k = 1, 2, 3, ...} are complete in their corresponding Hilbert spaces.

We then show the sequence {fx1|z1(·|z1k)fx2|z2(·|z2k) : k = 1, 2, 3, ...} is complete because

{fx1|z1(·|z1k) : k = 1, 2, 3, ...} and {fx2|z2(·|z2k) : k = 1, 2, 3, ...} are complete in corresponding

Hilbert spaces. Consider

∫ ∫
h(x1, x2)f(x1|z1)f(x2|z2)dx1dx2 =

∫ (∫
h(x1, x2)f(x1|z1)dx1

)
f(x2|z2)dx2

≡
∫
h′ (x2, z1) f(x2|z2)dx2.

If the LHS is equal to zero for any (z1, z2) ∈ Z1×Z2, then for any given z1
∫
h′ (x2, z1) f(x2|z2)dx2
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equals to zero for any z2. Since f(x2|z2) is complete, we have h′ (x2, z1) = 0 for any x2 ∈ X2

and any given z1 ∈ Z1. Furthermore, for any given x2 ∈ X2, h
′ (x2, z1) = 0 for any z1 ∈ Z1

implies h(x1, x2) = 0 for any x1 ∈ X1. Therefore, the sequence {fx1|z1(·|z1k)fx2|z2(·|z2k) : k =

1, 2, 3, ...} is complete. We then apply Theorem 1 to show that the sequence {fx1,x2|z1,z2(·, ·|z1k, z2k) :

k = 1, 2, 3, ...} is complete because it is close to a complete sequence {fx1|z1(·|z1k)fx2|z2(·|z2k) :

k = 1, 2, 3, ...}. QED.
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