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Abstract
The standard approach to modelling consumption/saving problems is to assume that the
decisionmaker is solving a dynamic stochastic optimization problem. However, under re-
alistic descriptions of utility and uncertainty, the optimal consumption/saving decision is
so difficult that only recently have economists have managed to find solutions, using nu-
merical methods that require previously infeasible amounts of computation. Yet empirical
evidence suggests that household behavior conforms fairly well with the prescriptions of
the optimal solution, raising the question of how average households can solve problems
that economists, until recently, could not. This paper examines whether consumers might
be able to find a reasonably good ’rule-of-thumb’ approximation to optimal behavior by
trial-and-error methods, as Friedman (1953) proposed long ago. We find that such indi-
vidual learning methods can reliably identify reasonably good rules of thumb only if the
consumer is able to spend absurdly large amounts of time searching for a good rule.
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1 Introduction

The last decade has seen an explosion of research on learning and evolutionary dynamics
in the game theory literature (for recent surveys see, e.g., Young (1997), Samuelson (1997),
or Gale (1996)), and the development of substantial literatures on learning and strategy
evolution in macroeconomic models (for surveys see Sargent (1993), Marimon (1997), or
Evans and Honkapohja (1999)) and finance (Arthur et. al. (1997); Lettau (1997)). But
there has been remarkably little work on the role of learning in the realm of intertemporal
choice problems like consumption/saving and investment decisions.1

The traditional approach to modelling intertemporal decisions has been to assume that
economic agents are solving a mathematical dynamic programming problem. Long ago,
Milton Friedman (1953) defended the optimization assumption by arguing that agents
could learn roughly optimal behavior by a process of trial and error. Yet nearly fifty years
later, in the domain of intertemporal choice Friedman’s proposition remains a largely un-
examined assertion rather than a conclusion based on either empirical evidence or models
of learning.

The principal reason there has been little examination of Friedman’s ‘learning hy-
pothesis’ in the context of intertemporal problems is probably that such problems are
astonishingly difficult to solve. Only in the last ten years or so, starting with the work of
Zeldes (1989), have economists finally managed (using numerical methods requiring pre-
viously infeasible amounts of computer time) to solve the optimal consumption problem
under realistic specifications of uncertainty and plausible assumptions about the utility
function. Solving and understanding these models, and discovering that their implications
fit the data surprisingly well, has occupied the minds and time of consumption researchers
for much of the last decade.

The purpose of this paper is to begin an investigation of whether consumers who do
not understand dynamic stochastic optimization theory and do not have access to very
fast computers might still be able to learn roughly optimal behavior by trial and error, as
Friedman argued so long ago.

The first contribution of the paper is to show that, although finding the exactly correct
nonlinear consumption policy rule (as economists have done) is an extraordinarily diffi-
cult mathematical problem, the exactly correct rule can be very closely approximated (in
utility terms) by a linear form which seems simple enough that consumers could plausibly
learn it by trial and error, because both the slope and intercept have highly intuitive inter-
pretations (the intercept determines the target level of wealth, and the slope determines
‘how hard’ the consumer tries to get back to his target wealth when away from it). The
conceptual and mathematical simplicity of the linear approximate solution to the buffer-
stock saving problem makes it a natural framework to use as a proving ground for models
of learning about intertemporal choice under uncertainty, just as the deceptively simple
Prisoner’s Dilemma problem is the prototype for models of learning in a game theory

1The principal example we are aware of is Lettau and Uhlig (1999); Sargent and Marcet (1991) examine
an investment problem, but assume that consumers know dynamic optimization theory and are only
learning about the distribution of shocks.
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context (or, ranging farther, as E. Coli is a simple proving ground for biological research).
The second contribution of the paper, however, is to show that even the simplified

linear consumption function is enormously difficult to find by trial and error. The difficulty
stems from our assumption that the consumer cannot directly perceive the value function
associated with a given consumption rule, but instead must evaluate the consumption rule
by living with it for long enough to get a good idea of its performance. In the consumption
problem, the decision to consume a bit more this year implies lower wealth next year, and
the year after, and so on into the distant future. Because the consequences of today’s
actions are spread out over a very long time horizon, it is necessary to experience a long
time horizon in order to reliably determine the value of any candidate consumption rule.
Furthermore, empirically plausible amounts of uncertainty make the problem much more
difficult, because the effects of a given shock are spread out over time as well. Thus, it takes
a very large amount of experience with each potential consumption rule to get an accurate
sense of how good or bad that rule is. This situation is a strong contrast with most of
the existing literature on learning in both macroeconomics and game theory, where the
typical assumption is that all of the consequences of a choice made at time t are observed
immediately. Intertemporal problems are evidently orders of magnitude harder.

Despite the extraordinary difficulty of finding a reasonably good consumption rule, em-
prical evidence suggests that typical households do engage in buffer-stock saving behavior.2

The question of how consumers come by their consumption rules therefore remains. Per-
haps the most plausible answer involves ‘social learning’: rather than relying solely on
their own (insufficient) experience, people observe the experiences of others and can learn
from such observation and direct social communication. However, the existing literature
on social learning (for surveys see Bikhchandani, Hirshleifer, Welch (1998) or Gale (1996))
suggests that social learning mechanisms are by no means guaranteed to converge on
the optimum. Exploring the circumstances under which social learning processes do and
do not lead a population to converge on reasonably optimal behavior promises to be an
interesting task for future work.

2 Background and Literature Summary

Because the optimal consumption/saving problem does not have an analytical solution
under plausible specifications of utility and uncertainty, until very recently economists
usually solved versions of the model in which consumers either had unrealistic (quadratic)
preferences for which uncertainty does not affect consumption, or had plausible (Constant
Relative Risk Aversion (CRRA)) preferences but faced no uncertainty.

This Certainty Equivalent (CEQ) model has been tested exhaustively. An influential
summary of the literature (Deaton (1992)) suggested that the model fails in at least
three ways. First, a large literature dating from the 1950s and 1960s and extending
through Hall and Mishkin (1982), McCarthy (1995), Parker (1999), and Souleles (1999),

2See Deaton (1991) and Carroll (1997), Gourinchas and Parker (1999), Cagetti (1999) and the papers
cited therein for evidence.
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has consistently estimated a marginal propensity to consume greater than 0.2; since the
CEQ model generally implies MPC’s of less than 0.05, these results have been interpreted
as suggesting the presence of some consumers who always consume their entire income,
either because they are rational but liquidity constrained or because they are simply
irrational. Second, another large literature has tested the CEQ model’s prediction that
the marginal propensity to consume out of human wealth is the same as the MPC out of
current wealth, and consistently found consumption and saving to be largely unresponsive
to information about future income.3 Third, a vast literature estimating Euler equations
arose from Hall (1978). A recent survey article in the Journal of Economic Literature
by Browning and Lusardi (1996) summarized over 25 studies using microeconomic data
to estimate an Euler equation derived from standard versions of the model. Most of the
studies rejected the Euler equation, usually in favor of a model in which some consumers
simply blindly set consumption equal to income. A final failure of the CEQ model is that
it provides no explanation for one of the central and robust findings from household wealth
surveys: all such surveys, from the early 1960s to the most recent (1998) triennial Survey
of Consumer Finances, have found that the median household at every age before about
50 typically holds total non-housing net assets worth somewhere between a few weeks’
worth and a few months’ worth of income (Carroll (1997)).

Ironically, when advances in computer technology finally permitted numerical solution
of the optimal consumption problem under realistic assumptions about uncertainty and
preferences,4 all of these supposed rejections of rationality turned out to be consistent
with dynamic optimization after all! Under some plausible combinations of parameter
values, optimal behavior is for consumers to aim to hold a target buffer-stock of liquid
assets equivalent to a few weeks or months’ worth of consumption, and once the target
wealth is achieved to set consumption on average equal to average income. Even with a
time preference rate as low as 0.04, the marginal propensity to consume out of transitory
income can be 40 percent or higher, the propensity to consume out of human wealth
can be close to zero, and standard Euler equation tests of consumption behavior ‘fail’ in
ways that can replicate the whole range of empirical failures of the Euler equation. (See
Carroll (1992, 1997, 2001a) for details). Uncertainty and the consequent precautionary
saving motive thus turn out to modify optimal behavior profoundly from what was taken
by economists to embody “rationality” from the 1950s through the late 1980s.

In a way, the recent findings can be interpreted as a potential vindication of Fried-
man’s argument that people can grasp the solution to difficult mathematical problems
even without mathematical training. Perhaps the embarrassment is that economists for

3Perhaps the most common test of this kind has been in the context of determining the effects of Social
Security and of other defined benefit pension schemes on personal saving. See Carroll (1994, 1997) for
other examples.

4Carroll (1996) shows that the relevant condition is RβEt(GÑt+1)−ρ < 1, where R is the interest
rate, β is the time preference factor, G is the growth rate of income, ρ is the coefficient of relative risk
aversion, and N is the mean-one multiplicative shock to permanent income. Parameter values used in
Carroll (1997) were a time preference rate of 4 percent annually, household income growth of 3 percent,
coefficient of relative risk aversion of 3, and a real after-tax interest rate of 0 percent; results were robust
to plausible variation in these parameters.
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so long failed to see what consumers apparently implicitly know: that buffer-stock saving
behavior works reasonably well. But these findings also raise rather urgently the question
of how ordinary consumers appear to solve, even approximately, problems whose solution
even now, and even in versions much simpler than the actual problems people face, con-
tinue to strain the capabilities powerful modern computers.5 One possible answer is that
people may have a powerful inbuilt intuition about the solution to dynamic optimization
problems. But this explanation founders on the observation that economists are people
too. If anything, inbuilt mathematical intuitions ought to be stronger for economists than
for average consumers, since economists are much better mathematicians; yet economists
did not discover the optimality of buffer-stock behavior until fast computers made it pos-
sible to solve the problem numerically. Friedman’s ‘learning hypothesis’ seems to be the
natural alternative explanation.

3 Buffer-Stock Saving: An Approximation

One of the attractive features of the buffer-stock theory of saving is that optimal behavior
can be articulated in very simple and intuitive terms: Consumers have a target level for
a buffer-stock of liquid assets that they use to smooth consumption in the face of an
uncertain income stream. If their buffer stock falls below its target, they will consume less
than their expected income and liquid assets will rise, while if they have assets in excess
of their target they will spend freely and assets will fall.

Despite its heuristic simplicity, the exact mathematical specification of optimal behav-
ior is given by a thoroughly nonlinear consumption rule for which there is no analytical
formula. While certain analytical characteristics of the rule can be proven,6 it is hard to
see how a consumer without a supercomputer and a Ph.D. could be expected to determine
the exact shape of the nonlinear and nonanalytical decision rule.

3.1 An Approximation

Fortunately for consumers, it turns out not to matter much whether they get the fine
details of the rule right: Simple and intuitive approximations to the optimal rule can
generate utility streams that are only trivially smaller than the utility yielded by the
exact and fully nonlinear solution.

For example, consider a consumer in the following circumstances. Utility is derived
entirely from consumption and is CRRA, u(c) = c1−ρ/(1 − ρ), with ρ = 3. Income Y
is stochastic with a 3-point distribution (.7, 1, 1.3) with probabilities (.2, .6, .2), a process
chosen to match (very roughly) empirical evidence on the amount of transitory variation
in annual household income observed in the Panel Study of Income Dynamics (see, e.g.,

5Hubbard, Skinner, and Zeldes (1994, 1995) had to use a supercomputer to solve the optimal life cycle
problem when it was enhanced to incorporate a modest degree of realism about health and mortality risk
and the structure of social insurance programs.

6For example, the limiting MPC as wealth goes to infinity or zero can be calculated (see Carroll (1996)),
and Carroll and Kimball (1996) prove that the consumption rule is strictly concave.
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Carroll (1992)). The consumer cannot borrow, but can save at an interest rate of zero.
Finally, the consumer geometrically discounts future utility at the rate β = .95. The
traditional approach to modelling consumer behavior is to suppose that the consumer
solves the problem:

max
{Cs}∞t

Et

[ ∞∑
s=t

βs−tu(Cs)

]

s.t.

Xs+1 = Xs − Cs + Ys+1

Cs ≤ Xs ∀ s

whereXs is total resources available for consumption (henceforth, following Deaton (1991),
‘cash-on-hand’). Of course, as is well known, the objective in this problem can be rewritten
in the recursive form:

V (Xt) = max
{Cs}

u(Cs) + βEt[V (X̃t+1)] (1)

where V (Xt) is the value function reflecting the expected discounted utility that will result
if the consumer behaves optimally now and in all future periods.

As noted above, one interesting feature of the solution to this problem is that there
will exist a target level of cash-on-hand X̄∗. Formally, Carroll (1996) shows that if the
parameters of the problem satisfy a certain ‘impatience’ condition7 then an X̄∗ will exist
such that if Xt > X̄∗ then Et[Xt+1] < Xt and if Xt < X̄∗ then Et[Xt+1] > Xt. Assuming
X̄∗ ≥ 1, for some f the optimal consumption rule can be rewritten, without loss of
generality, as:

C∗(X) = 1 + f(X − X̄∗). (2)

Using the fact that Et[Ỹt+1] = 1 we know that Et[Xt+1] = Xt − Ct + 1. But at the point
where X = X̄∗ we have Et[Xt+1] = Xt which implies that Xt−Ct+1 = Xt which implies
that Ct = 1. Hence we know that f(0) = 0. Calling γ∗ = f ′(0), a first-order Taylor
expansion of equation (2) around the point X = X̄∗ is therefore

C∗(X) ≈ 1 + γ∗(X − X̄∗). (3)

Define a variable θ = {γ, X̄} and define a function

Cθ(X) =

{
1 + γ(X − X̄) if 1 + γ(X − X̄) ≤ X,

X if 1 + γ(X − X̄) > X.

7See footnote 4 for the condition (where here N = 1 because we have assumed there are no permanent
shocks).
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where the second case implements the liquidity constraint.8 Now choose the values of γ and
X̄ that correspond to the Taylor approximation to equation (2), θ∗ = {γ∗, X̄∗}, yielding
the rule Cθ∗(X). The attraction of this rule, in comparison with the exact nonlinear
solution C∗(X), is that it produces a complete plan of behavior that is characterized by
only two parameter values, X̄∗ and γ∗. Furthermore, it is an approximation that will by
construction be close to the true consumption rule in the neighborhood of the target level
of wealth; if actual wealth tends to stay relatively close to target wealth (as Carroll (1992)
shows is true if consumers are behaving optimally), we can expect the approximation to
be relatively good. It does not seem implausible that people could learn about two such
parameters – especially since they are learning about parameters that can be given highly
intuitive interpretations: X̄ is how much target wealth to try to have on hand, and γ
indicates how quickly you try to return to that level of wealth when you are away from it.

3.2 How Good Is the Best Approximation?

The better an approximation is in utility terms, the more plausible it is that consumers
would settle for the approximation rather than attempting a more exact solution. One
way to measure approximation quality is to ask how much consumers who do know how
to solve the full optimization problem would be willing to sacrifice to avoid being forced
to switch permanently to the best possible approximate rule.

Answering this question requires us to define the value function associated with a rule
θ. The definition is straightforward:

V θ(Xt) = Et

[ ∞∑
s=t

βs−tu(Cθ(Xs))

]
, (4)

and it is relatively easy to compute the value of this function recursively (much easier than
solving the full nonlinear optimization problem).

We can then define the ‘sacrifice value’ as the maximum amount that a perfectly
rational consumer with initial wealth Xt who is currently using the optimal rule C∗(X)
would be willing to pay to avoid being switched permanently to using the approximate
rule Cθ(X), i.e. the sacrifice value is the ε such that9

V θ(X) = V (X − ε) (5)

implying

εθ(X) = X − V −1(V θ(X)). (6)

It is obvious from this equation that consumers at different levels of initial X would
be willing to pay different amounts to avoid being switched. In order to make the sacrifice

8We consider a model with explicit liquidity constraints here because it is somewhat simpler than
the model without constraints. Carroll (2001b) shows that in many important respects the optimization
models with and without constraints are essentially the same, because the precautionary saving motive
serves as a kind of self-imposed liquidity constraint.

9This definition is inspired by the definition of the equivalent risk premium from consumption theory.
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value concept operational, it is therefore necessary to make some assumption about how
consumers are distributed across levels of X when the threat to switch them to Cθ(X)
occurs. Fortunately, there is a uniquely appropriate distribution to use: the ergodic dis-
tribution toward which any arbitrary initial cash-on-hand distribution will converge. (See
Carroll (2001a) for a description of the methodology for calculating the ergodic distribu-
tion). Thus, defining the ergodic cumulative distribution function for X as F (X) we can
calculate the average sacrifice value for a given choice of parameters θ as

ε̄θ =

∫ Xmax

Xmin

εθ(X)dF (X).

Figure 1 presents a contour plot showing ‘isosacrifice’ contours for sacrifice values of
ε̄ = {0.05, 0.20, 0.40, 0.57} and shows the point with the lowest sacrifice value, ε̄ = 0.003
for θ = {0.233, 1.243}.10 Note that the sacrifice value associated with {γ, X̄} = {1, 1} (the
rightmost point on the horizontal axis) corresponds to the rule C(X) = X; the isosacrifice
curve ε̄ = 0.57 intercepts the horizontal axis at this point, indicating that the sacrifice
value associated with the ‘spend everything’ rule is about 0.57.

It may seem remarkable that the best sacrifice value is as low as 0.003. Figure 2 explains
the mystery by showing C∗(X) and Cθ∗(X) along with the locations of the 5th and 95th
percentiles in the ergodic distribution of X under C∗(X). As the figure illustrates, the
linear approximation to the optimal consumption rule is quite close to the truly optimal
rule over essentially the entire range from the 5th to the 95th percentiles. Furthermore,
small deviations from the optimal consumption function will by definition result in second-
order losses of utility.

4 Buffer-Stock Saving and Individual Learning

With these preliminaries out of the way, we can now turn to the central question, which is
how to model the consumer’s learning process. Many models of learning in the economics
literature have had a structure that can be crudely summarized as follows. The set Θ is a
list of all possible actions that are available to the agent. In period t the agent chooses a
particular option, indicated by θt. He then observes an outcome vt that is usually a noisy
measure of the ‘true’ value associated with choice θt. The agent notes the outcome, and
uses it in some manner to update his ‘beliefs’ about the true value associated with that
specific choice θt. After sampling a variety of θ’s, the individual’s choices converge on the
θ which the learning process has concluded yields the highest true value.11

Our approach to individual learning will essentially follow this standard broad outline.
However, in the intertemporal choice context the primary difficulty is in a step that is

10The θ that minimizes the sacrifice value is not exactly the same as the θ = {γ∗, X̄∗} which constitutes
the first order Taylor approximation to the optimal rule, though the two θ’s are close.

11This summary does not encompass what might be termed ‘general equilibrium’ learning problems in
which the average choices of the collection of agents actually affect the payoff that each individual choice
provides.
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Figure 1: Isosacrifice Contours
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Figure 2: The Exact Consumption Rule (solid) and the Best Approximation (dashing)
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assumed to be costless and immediate in most of the existing literature: Observing (even
a noisy measure of) the value associated with a given choice of θ.12

4.1 Estimating the Value of Alternative Consumption Rules

Suppose that the consumer wishes to compare a set of potential consumption rules Θ
individually designated θi where in principle the θi could index alternative consumption
rules of any kind (though in practice we will later take the θi to reflect alternative com-
binations of γ and X̄). Suppose further that, for any initial level of cash-on-hand Xt, the
consumer has some method by which she can make an exactly correct assessment of the

12Several previous authors in the macroeconomics literature have assumed that consumers understand
dynamic stochastic optimization theory and that their ‘learning problem’ is to discover the properties of
the stochastic processes that impinge on their optimization problem (see, e.g., Sargent (1993), pp. 93-107,
and Marcet and Sargent (1991)). The only paper we are aware of that examines agents’ ability to learn how
to solve a true dynamic stochastic optimization problem is that of Lettau and Uhlig (1999), who examine
the (in)ability of artificial intelligence constructs called ‘classifier systems’ developed by Holland (1986) to
learn the dynamic programming solution to an optimal consumption problem. Unfortunately, in order to
use Holland’s classifier systems Lettau and Uhlig must drastically reduce the complexity of the optimal
consumption problem. Their central example is one in which consumers have a choice of only two possible
levels of consumption, and there are only three possible levels of wealth. They find that a ‘rule of thumb’ of
always spending all available resources is not driven out of the classifier system in the long run, essentially
because the mechanism for updating the strengths of the different classifier rules does not correspond to
the prescriptions of dynamic stochastic optimization. While this is an important and interesting paper,
it appears to have little relevance to the approach we pursue here.
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expected discounted utility each rule would yield, if used henceforth and forever more; call
this value V θi(Xt) (we will relax this assumption of observability of V θi(Xt) momentarily).
The consumer’s goal is to find the θi which, if used forever afterward, yields the highest
V θi(Xt).

An immediate problem with this procedure is the evident possibility that the optimal
θi could be different for different starting values Xt. If so, how would the consumer choose
between two rules θj and θk, if, say, rule j performs better than rule k if Xt = 2 (i.e.,
V θj (2) > V θk(2)) but rule k outperforms rule j if Xt = 3 (V θk(3) > V θj (3))? Note,
however, that if one of the rules indexed by θi is the exactly optimal rule (i.e. the true
solution to the dynamic program), the expected value yielded by that rule will exceed
the expected value yielded by any other rule for any initial value of Xt, and so the truly
optimal rule would always be picked regardless of the starting Xt. Of course, if the rules
indexed by θi do not include the exactly optimal rule, the kinds of reversals just outlined
would be possible. Below we will implicitly examine the importance of this problem by
having our consumers search for the optimal θi for several possible initial levels of wealth.

Holding initial Xt fixed for the time being, we are now in position to set forth our
model of the consumer’s process for estimating the value associated with any particular
θi. Imagine that for each θi the consumer forms an estimate of V θi(Xt) by living through
the experience of using that rule for n periods. That is, in period t the consumer spends
Ct = Cθi(Xt), leaving Xt−Ct in savings for the next period and generating period-t utility
ut = u(Ct); in period t + 1 the consumer draws a random income shock Yt+1 from the
distribution outlined above, constructs Xt+1 = (Xt−Ct)+Yt+1, and consumes Cθi(Xt+1),
generating period t+1 utility ut+1. This process is repeated until period t+ n is reached.
As she goes, the consumer keeps track of a variable we will call ‘partial value’

Ws =Ws−1 + βs−tUs, (7)

from a starting value of Wt−1 = 0, which cumulates to

Ws = Ut + βUt+1 + β2Ut+2 + . . .+ βs−tUs (8)

=
s∑
q=t

βq−tUq.

and when she reaches period t + n she will have an estimate of the value generated by
this program Ṽ θi(Xt) = Wt+n. Of course, if n < ∞ the value constructed in this manner
will be missing a term that reflects Et[β

n+1V θi(Xt+n+1)], but for n sufficiently large the
omitted term should be relatively small. One purpose of our simulations is to determine
the meaning of ‘sufficiently large’ and ‘relatively small’ in this context.

The most naive model of the individual search process would be simply to have con-
sumers execute the foregoing procedure for a variety of potential θi’s and pick the one
with the highest experienced value Ṽ θi(Xt). However, this procedure would produce a
very noisy estimate of the true value of each possible rule, because discounting by β
means that the actual value experienced will be heavily influenced by the particular se-
quence of stochastic income draws the consumer receives early in her experience with each

10



rule. Even if we let n approach infinity, the consumers’ estimates of the value associated
with each rule do not converge to the true values because utility from the additional later
periods is discounted at an ever-higher rate and cannot overcome the initial impression
made by early experience.

The only way the consumer can form a consistent estimator of the true value associated
with each rule starting at Xt is to live through the experience of using each rule starting
from the same Xt multiple times. That is, if the estimated value obtained the first time
the consumer runs through the foregoing procedure is Ṽ θi

1 (Xt) the consumer will need to
begin again with the same initial Xt and form a second Ṽ θi

2 (Xt) and so forth. We assume
that the consumer runs through this experience m times and estimates the true value of
policy θi starting from Xt as the average of the m experiences,

V̂ θi(Xt) = (1/m)

m∑
j=1

Ṽ θi
j (Xt). (9)

It is easy to show that as m and n jointly go to infinity, the foregoing procedure will
yield an arbitrarily accurate estimate of the true value function V θi(Xt) for any given
Xt.

13 The question that can be answered only by simulations is how large m and n need
to be for the consumer to be able to have a reasonably high degree of confidence in the
accuracy of her estimate V̂ θi(Xt). The answer to that question, of course, depends on the
metric used to evaluate V̂ ’s accuracy. In this context, the logical metric is whether the V̂ ’s
generated by a given (m,n) combination will reliably lead the consumer to choose a good
consumption rule from among the candidate rules indexed by θi. Before that question
can be answered, however, we need to specify the process by which the set of rules to be
considered is constructed.

4.2 Choosing a Set of Rules to Evaluate

Our assumption is that the θi simply enumerate the nodes in a grid determined jointly
by the set of potentially ‘reasonable’ values of γ and X̄. For the marginal propensity
to consume, the natural space of possible values is γ ∈ [0, 1]. Since X includes current
income and the expected value of income is 1, a lower bound for X̄ is 1. The range of
‘reasonable’ maximum values for X̄ is less obvious. Our admittedly arbitrary decision was
to choose X̄ ∈ [1, 3]. The final assumption we need to make is about the fineness of the
grid. We choose the interval between grid points for γ to be 0.05, and the interval for
grid points of X̄ to be 0.1, for a total of 20x20=400 combinations of rules.14 The best of
these rules is (γ, X̄) = (.25, 1.2) for which the sacrifice value is 0.007. (We are aware that
a grid search is highly inefficient; we discuss robustness of our results to alternative, more
efficient search procedures below.)

13We have verified that the estimates of the value obtained for very large values of m and n are extremely
close to the estimates obtained through our completely independent theoretical exercise of constructing
the value function directly.

14We exclude the value γ = 0 from the set under consideration because all rules with γ = 0 are identical
regardless of the value of X̄ . This is why there are 20 rather than 21 possible values of γ. In order to
obtain 20 rather than 21 values of X̄ we exclude X̄ = 3.0 from the list.
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4.3 Results

We are now in position to specify how we will evaluate the effectiveness of various choices
of m and n. We construct a population of 1000 consumers each of whom enters the first
period of simulation with the same initial level of savings St−1 (for technical reasons this
is slightly easier than starting out all consumers with the same initial values of Xt as
exposited above). For each combination of m and n we simulate the experience of each
of the 1000 consumers executing the alogrithm described above and calculating their own
estimated value of V̂ θi for each of the 400 possible θi, and at the end of the simulations
each consumer picks the rule with the maximum estimated value V̂ θi(Xt) among the rules
he has tried.

Table 1 presents the results. The table is divided into three panels corresponding
to different assumptions about the initial resources with which the consumers begin the
simulations, S0 = [0, 1, 2]. For each (m,n) combination, three statistics are reported:
the average sacrifice value of the rules picked by our 1000 consumers, the fraction of the
consumers who picked a ‘good’ θi, defined as a rule with a sacrifice value of less than
5 percent,15 and the total number of model simulation periods each consumer has lived
through in the course of searching for the rule (which will be 400mn).

The overwhelming conclusion from this table is that, while it is possible for this ‘learn-
ing by experience’ method to reliably identify good consumption rules, the amount of
experience required is staggering. The only (m,n) combination that can identify a good
rule at least 80 percent of the time is (m = 200, n = 50) which implies a serch time
of 4 million (=200*50*400) periods! Even if the criterion is merely that the (m,n) pair
should produce rules with an average sacrifice value of 0.05 or less, the minimum number
of simulation periods required is roughly a million. Interpreting the model period as a
year (the appropriate interpretation for the calibration β = .95), it takes a million years
of experience to reliably identify a reasonably good consumption rule by personal experi-
ence!16 Even reinterpreting the model period as a two-week pay-period rather than a year
(a reinterpretation that is problematic because the true biweekly income process is very
different from our assumed income process) leaves the required time to find a good rule
absurdly long. Conclusions are roughly the same regardless of the starting values for S.

Of course, it is possible that we have not endowed our agents with enough intelligence.
For instance, rather than blindly searching every point on the (γ, X̄) grid, intelligent
consumers could do an ordered search in which they choose a very coarse initial grid of,
say, two possible choices for each of (γ, X̄), pick the best of the four choices, then center a
new search grid around this optimum, and so on. Or they could use a Newton algorithm,
or some other hill-climbing procedure. But even if the search could be reduced so that
only, say, 4 different rules needed to be evaluated, it would still be necessary to use values
of (m,n) large enough to distinguish good rules from bad. Given that the minimum (m,n)
combination that appears capable of producing the necessary accuracy is (50, 50), even

15Out of a total of 400 rules, there were 20 for which the sacrifice value was less than 5 percent.
16Note that this assumes that consumers do not need to explore alternative starting values for St−1.

If we were to assume that they search over three values of St−1 as presented in the table, search times
would triple.
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such a highly efficient hill climbing routine could not reduce the number of periods required
to less than 10000 = 50 ∗ 50 ∗ 4.

Hence, rather than alleviating the mystery of how ordinary consumers seem to have
managed to learn nearly optimal consumption behavior, our exploration of the possibility
of learning by experience has only deepened the mystery. On reflection, this result is not
as surprising as it at first may appear. One fact that is known by any economist who
has attempted numerical solution of consumption models is that finding optimal behavior
in these models is an extraordinarily computation-intensive task. If there were some
learning-by-experience method that could identify nearly optimal rules with vastly less
computational effort, some clever economist would probably have identified that method
long ago and it would now be the standard method used to solve such problems. The
finding here that learning by experience requires a large amount of experience can therefore
be recast as a finding that a search algorithm based on learning by experience does not
drastically reduce the computational input required to find a nearly optimal rule.

5 Buffer Stock Saving and Social Learning

If it takes an individual agent a million periods of experience to reliably find a good con-
sumption rule, a population of a million consumers scattered across the (γ, X̄) landscape
should collectively obtain essentially the same amount of information in a single period.
If there were a mechanism by which all of that information could be efficiently combined,
the number of model periods required for finding the optimal rule could surely be radically
reduced (though computing demands remain formidable because for each model period
calculations must now be made for many agents rather than one).

A potential mechanism to accomplish this purpose is ‘social learning’ in which individ-
uals encounter each other and communicate the results of their own experience to others.17

Even if the social learning process is less than perfectly efficient it still seems plausible that
it might lead a population of consumers to converge on the optimum relatively quickly.

However, the existing literature on social learning has found that even fully rational
social learning processes do not always result in the population as a whole reaching an
optimal outcome. If each agent’s actions do not fully reveal the individual’s private infor-
mation, the population can end up making choices little better than the choices that would
be made by individual agents acting in isolation. Thus, the most interesting question to
be addressed in a future literature on social learning about intertemporal choice is under
what circumstances the population does and does not settle on a reasonably good set of
rules.

17We know of only two papers that present any empirical evidence on social learning and saving behavior.
Lusardi (1999) finds that consumers are more likely to have thought about and prepared for retirement
if they have an older sibling who has already retired. Bernheim (1996) finds that workplace retirement
education courses changed worker behavior with respect to 401(k) retirement accounts in directions that
most economists would identify as more rational.
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6 Conclusion

Until recently, economists spent little time or effort trying to understand the cognitive
processes which led to observed economic behavior, relying instead, either implicitly or
explicitly, on the assumption articulated by Friedman that people could easily learn op-
timal behavior through trial and error. While several economic literatures have recently
begun to explore the implications of learning and evolutionary dynamics, there has been
little work on the role of learning in the realm of intertemporal choice.

In part, the lack of research in this area has probably been attributable to the great
complexity of finding and executing optimal plans for intertemporal problems. Given this
complexity, it may have seemed hopeless for consumers to learn exactly optimal behavior
by experience. The first contribution of this paper is to provide an example in which
the true solution can be very closely approximated (in utility terms) by a simple linear
model of behavior where both slope and intercept have intuitive (and plausibly learnable)
interpretations.

The second contribution of the paper is to show that even when the goal is to learn only
this simple approximation, pure trial-and-error learning requires an enormous amount of
experience to allow consumers to distinguish good rules from bad ones - far more experience
than any one consumer would have over the course of a single lifetime.

These results suggest that the learning model proposed here is not an adequate de-
scription of the process by which consumers learn about consumption behavior. It remains
possible, of course, that consumers employ an individual learning mechanism that is much
more efficient than the one postulated here, and the search for an improved individual
learning algorithm is a possible direction for future research. Such a learning mecha-
nism, if found, should also constitute an important advance in the technology for solving
dynamic optimization problems.

More intriguing, however, is the possibility that consumers come by their behavior by
a process of social learning, in which rules of thumb that are successful in utility terms
are passed along from one consumer to another, or through other mechanisms such as the
advice of personal finance experts or advice in personal finance books. In fact, personal
finance books often give advice that sounds very much like buffer-stock saving behavior
with respect to liquid assets (see Carroll (1997) for a typical reference in a personal finance
book). Elucidating the circumstances under which a process of social learning can be
expected to lead the population to reasonably optimal behavior will be an interesting task
for future work.
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Individual Search Results

m = 1 m = 10 m = 50 m = 200

St−1 = 0
n = 10 Mean Sacrifice: 0.289 0.197 0.160 0.135

Success Rate: 0.07 0.17 0.18 0.13
Total Periods: 4000 40000 200000 800000

n = 20 Mean Sacrifice: 0.218 0.110 0.073 0.060
Success Rate: 0.17 0.34 0.47 0.53
Total Periods: 8000 80000 400000 1600000

n = 50 Mean Sacrifice: 0.172 0.074 0.045 0.028
Success Rate: 0.24 0.46 0.68 0.86
Total Periods: 20000 200000 1.00E+06 4.00E+06

St−1 = 1
n = 10 Mean Sacrifice: 0.269 0.122 0.100 0.102

Success Rate: 0.09 0.23 0.29 0.24
Total Periods: 4000 40000 200000 800000

n = 20 Mean Sacrifice: 0.226 0.079 0.053 0.047
Success Rate: 0.18 0.45 0.62 0.68
Total Periods: 8000 80000 400000 1600000

n = 50 Mean Sacrifice: 0.187 0.058 0.036 0.024
Success Rate: 0.26 0.58 0.76 0.91
Total Periods: 20000 200000 1.00E+06 4.00E+06

St−1 = 2
n = 10 Mean Sacrifice: 0.204 0.092 0.100 0.108

Success Rate: 0.20 0.38 0.28 0.18
Total Periods: 4000 40000 200000 800000

n = 20 Mean Sacrifice: 0.179 0.058 0.050 0.054
Success Rate: 0.27 0.58 0.64 0.58
Total Periods: 8000 80000 400000 1600000

n = 50 Mean Sacrifice: 0.169 0.053 0.037 0.030
Success Rate: 0.32 0.62 0.75 0.85
Total Periods: 20000 200000 1.00E+06 4.00E+06

n is the number periods the consumer uses a rule for each trial.
m is the number of trials
‘Success’ is defined as finding a rule with sacrifice value < 0.05.

Table 1: Search Success Rate and Number of Periods
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