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Abstract
In this paper we provide a framework that explains how the market risk premium, defined as the difference between forward prices
and spot forecasts, depends on the risk preferences of market players and the interaction between buyers and sellers. In commodities
markets this premium is an important indicator of the behavior of buyers and sellers and their views on the market spanning between
short-term and long-term horizons. We show that under certain assumptions it is possible to derive explicit solutions that link levels of
risk aversion and market power with market prices of risk and the market risk premium. We apply our model to the German electricity
market and show that the market risk premium exhibits a term structure which can be explained by the combination of two factors.
Firstly, the levels of risk aversion of buyers and sellers, and secondly, how the market power of producers, relative to that of buyers,
affects forward prices with different delivery periods.
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1. Introduction and live stock. The physical nature of commodities is per-
haps one of their most defining characteristics specifically
Commodities are a very different asset class from the because it plays an important role in the behavior of their

more traditional classes of traded assets such as equities
and bonds. Commodities normally encompass physical
goods such as oil, gas, electricity, metals, agriculturals
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prices in both the spot and forward markets.
Let us contrast equity forwards with commodity for-

wards. For example, if interest rates and dividends are
assumed to be deterministic, the pricing of equity forwards
is a straightforward exercise. Simple no-arbitrage arguments
are employed and the pricing is principally based on the abil-
ity to borrow money to purchase the underlying equity and
hold it until delivery. As a result, the arbitrage-free forward
price is the cost of borrowing net of dividends yielded by the
equity. With commodities one can in principle apply a sim-
ilar strategy to price forward contracts. However, the phys-
ical nature of commodities makes it very difficult for two
reasons. First, the cost-of-carry (interest plus ‘storage’ costs)
is not straightforward to calculate or measure. Second, it is
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necessary to account for the convenience yield (equivalent to
collection of dividends on equities), but this is also excep-

risk diversification. Producers have made large investments
with the aim of recouping them over a long period of time
as
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tionally difficult to quantify or model.
The shape of commodities’ forward curves for different

delivery periods has always been of utmost importance to
understand market players’ (producers, consumers and
speculators) ‘attitudes’ towards bearing risk in these mar-
kets. Forwards exhibit peculiar behavior depending on
the time or delivery period. A situation where forward
prices are above current spot prices is labeled contango
and it is normally associated with circumstances where
the immediate supply of the commodity is plentiful relative
to demand. Similarly, the situation where forward prices
are below spot prices is known as backwardation and it
is generally associated with circumstances of low current
supply levels and/or low inventory levels. One can deter-
mine whether contango or backwardation exists by simple
observation of the forward markets. For example, in elec-
tricity and gas markets one normally observes that, for
‘long’ dated forward contracts, markets are in backwarda-
tion and for ‘shorter’ maturities the market is in contango
(Cartea and Figueroa, 2005; Cartea and Williams, 2007).

Another quantity of importance that relates forward
and expected spot prices is the market risk premium or for-
ward bias p(t,T). This is defined as the difference, calcu-
lated at time t, between the forward price F(t,T), at time
t with delivery at T, and the expected spot price:

pðt; T Þ ¼ F ðt; T Þ � EP ½SðT ÞjFt�: ð1Þ

Here EP is the expectation operator, under the historical
measure P, with information up until time t and S(T) is
the spot price at time T.2

To the best of our knowledge, recent literature on com-
modities has not addressed the connection between the
market risk premium and market players’ behavior and
risk preferences. Moreover, it has not dealt with the ques-
tion of why and how in some commodities markets we
expect the market risk premium p(t,T) to change signs in
time T. The main contribution of this article is therefore
to address these questions and propose a framework that
allows us to establish explicit relationships between the
market risk premium, the market price of risk and market
players’ risk preferences. By doing so, this allows us to
explain the interesting connections between forward price
formation and its deviations from spot forecasts based on
the consumers’ and producers’ attitudes to risk.

To understand the importance of the market risk pre-
mium, it is important to point out that forward curves
are not forecasts of the commodity spot price in the future.
The clearing prices of forwards are the result of demand
and supply, which in turn are determined by the individual
characteristics of market players. Indeed the main motiva-
tion for players to engage in forward contracts is that of

2 Note that it is incorrect to say that when p(t,T) < 0 (resp. p(t,T) > 0)
the forward curve is in contango (resp. backwardation). Moreover, S(t) is
not generally a martingale under P.
well as making a return on them. As with any other
vestments, there is an incentive for producers to reduce
riability in their profits by trading in instruments with

ayoffs that covary with their profits. Similarly, consumers
hich might be intermediaries and/or use the commodity
their production process) also have an incentive to hedge
eir positions in the market by contracting forwards that

elp diversify their risks.
The relative appetite of producers and consumers for

sk-diversification has a temporal dimension to it. Varia-
ons in this appetite for risk diversification will be evident
the different levels of market exposure chosen by produc-
s and consumers and in the different levels chosen by
embers within each of these groups. For example a pro-

ucer will generally be exposed to market uncertainty for
longer period of time, perhaps determined by the remain-
g life of its assets, whilst consumers will tend to make

ecisions based on a shorter time scale. In other words,
e gains in terms of risk-diversification for consumers
d producers will vary across time, therefore having a first

rder impact on forward clearing prices.
In this article we argue that it is precisely these differ-
ces in the desire to hedge positions and diversify risk that
plain the market risk premium and its sign. Intuitively,
e further out one looks into the market, the less incentiv-
ed consumers are to contract commodity forwards; how-
er the producers’ desire to hedge does not diminish as

uickly. We associate situations where p(t,T) > 0 (a posi-
ve market risk premium) with markets where the consum-
s’ desire to cover their positions ‘outweighs that of the

roducers. Conversely situations where p(t,T) < 0 (a nega-
ve market risk premium) result when the producers’ desire

hedge their positions outweighs that of the consumers.
In order to explain the market risk premium and the

riving forces that give rise to it we organize the rest of
e article as follows. Section 2 discusses the notion of a rep-
sentative producer and a representative consumer. Based

n their preferences we calculate an attainable set of for-
ard prices where the two representative agents are willing
trade forward contracts. Section 3 discusses clearing mar-

et forward prices and the relative ‘market power’ agents
ave over these prices. Section 4 examines the market price
f risk and market risk premium implied by our model
nder different assumptions. Section 5 applies our model

German electricity data and Section 6 concludes.

Representative agents, price dynamics and forward price

unds

In this section we describe producers’ and consumers’
references via the utility function of two representative
ents. As an example we look at the wholesale electricity
arkets where we model the dynamics of the spot price as
stochastic process. Agents must decide how to manage
eir exposure to the spot and forward markets for every



future date T. A key question for the producer is how much
of his future production, which cannot be predicted with

dX iðtÞ ¼ �aiX iðtÞdt þ riðtÞdBiðtÞ; ð2:2Þ
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total certainty, will he wish to sell on the forward market
or, when the time comes, sell it on the spot market. Simi-
larly, the consumer must decide how much of her future
needs, which cannot be predicted with full certainty either,
will be acquired via the forward markets and how much
on the spot. Clearly, as described above, both agents have
the incentive to enter the forward market in the interest of
risk diversification. We approach this financial decision
and equilibrium price formation in two steps. First, we
determine the forward price that makes the agents indiffer-
ent between the forward and spot market and, second, we
discuss how the relative willingness of producers and con-
sumers to hedge their exposures determines market clearing
prices.

We assume that the risk preferences of the representative
agents are expressed in terms of an exponential utility func-
tion parameterized by the risk aversion constant c > 0;

UðxÞ ¼ 1� expð�cxÞ:

We let c : = cp for the producer and c : = cc for the con-
sumer. The two agents can choose whether to act in the
spot or the forward market. The forward market consists
of contracts delivering the spot (physically, or in money
terms) over a given delivery period. Typical examples can
be the electricity or gas markets. In the latter the forward
contracts have a monthly delivery period, while in the elec-
tricity market, which will be the particular case discussed in
the remaining of this article, the contracts may have differ-
ent periods of settlement, ranging from daily, through
weekly and up to even yearly.

We want to derive bounds for forward prices through
the principle of certainty equivalence between the two mar-
kets. In particular, we will obtain an upper bound, given by
the maximum price the consumer is willing to pay before
switching to the spot market, and a lower bound given
by the producer’s lowest forward price he is willing to trade
at before switching to the spot market. These two bounds
restrict forward prices to a set of feasible forward equilib-
rium prices and we postpone until Section 3 the discussion
of how market clearing forward prices are singled out from
this feasible set.

2.1. Producers and consumers forward price bounds

Let ðX;F; P Þ be a probability space equipped with a fil-

tration F . Following Lucı́a and Schwartz (2002) and
t

Benth et al. (2007) we assume that the electricity spot price
follows a mean-reverting multi-factor additive process

St ¼ KðtÞ þ
Xm

i¼1

X iðtÞ þ
Xn

j¼1

Y jðtÞ; ð2:1Þ

where K(t) is the deterministic seasonal spot price level,
while Xi(t) and Yj(t) are the solutions to the stochastic dif-
ferential equations
and

dY jðtÞ ¼ �bjY jðtÞdt þ dLjðtÞ: ð2:3Þ

Here, Bi(t), i = 1, . . . ,m, are standard independent Brown-
ian motions and Lj(t), j = 1, . . . ,n are independent Lévy
processes.3 Let ri(t) be (possibly seasonal) deterministic
volatility functions. The processes Yj(t) are zero-mean
reverting processes responsible for the spikes or large devi-
ations which revert at a fast rate bj > 0, while Xi(t) are zero-
mean reverting processes that account for the normal
variations in the spot price evolution with mean-reversion
ai > 0.

We suppose that the Lévy processes are exponentially
integrable in the sense that there exists a constant j > 0
such thatZ
jzjP1

eejz‘jðdzÞ <1; ð2:4Þ

for all ej 6 j and j = 1, . . . ,n. This implies that the spot
price process S(t) has exponential moments up to order
j, and that the log-moment generating functions defined by

/jðxÞ ¼ ln E exLjð1Þ
� �

; j ¼ 1; . . . ; n; ð2:5Þ

exist for jxj 6 j, where ‘j is the Lévy measure of the process
Lj(t). In the sequel we shall assume that j is sufficiently
large to make the necessary exponential moments of Lj(t)
finite.

Assume that the producer will deliver the spot over the
time interval [T1,T2]. He has the choice to deliver the pro-
duction in the spot market, where he faces uncertainty in
the prices over the delivery period, or to sell a forward con-
tract with delivery over the same period. The producer
takes this decision at time t 6 T1.

We determine the forward price that makes the producer
indifferent between the two alternatives, denoted by
Fpr(t,T1,T2), from the equation

1� EP exp �cp

Z T 2

T 1

SðuÞdu
� �

jFt

� �
¼ 1� EP exp �cpðT 2 � T 1ÞF prðt; T 1; T 2Þ

� 	
jFt

� �
;

or equivalently,

F prðt; T 1; T 2Þ ¼ �
1

cp

1

T 2 � T 1

� ln EP exp �cp

Z T 2

T 1

SðuÞdu
� �

jFt

� �
;

ð2:6Þ

where for simplicity we have assumed that the risk-free
interest rate is zero. Note that

R T 2

T 1
SðuÞdu is what the pro-

3 In commodities markets one can expect to observe seasonal jumps. In
this case we may use inhomogeneous Lévy or Sato processes which are
processes with independent increments (Cont and Tankov, 2004; Sato,
1999). Only minor technical changes in what follows are required.



ducer collects from selling the commodity on the spot
market over the delivery period [T ,T ], while he receives E exp �cpr

Z T 2

SðuÞdu
� �

jFt
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(T2�T1)Fpr(t,T1,T2) from selling it on the forward market.
In the Proposition below we employ the spot dynamics

(2.1) to explicitly calculate the indifference forward price.
For ease of presentation we introduce the notation for
the following functions. For i = 1, . . . ,m and j = 1, . . . ,n,

�aiðs; T 1; T 2Þ ¼
1
ai

e�aiðT 1�sÞ � e�aiðT 2�sÞ� 	
; s 6 T 1;

1
ai

1� e�aiðT 2�sÞ� 	
; s P T 1:

(
ð2:7Þ

and

�bjðs; T 1; T 2Þ ¼
1
bj

e�bjðT 1�sÞ � e�bjðT 2�sÞ� 	
; s 6 T 1;

1
bj

1� e�bjðT 2�sÞ� 	
; s P T 1:

8<:
ð2:8Þ

Proposition 2.1. The price for which the producer is indif-

ferent between the forward and spot market is given by
T
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F prðt; T 1; T 2Þ

¼ 1

T 2 � T 1

Z T 2

T 1

KðuÞduþ
Xm

i¼1

�aiðt; T 1; T 2Þ
T 2 � T 1

X iðtÞ

þ
Xn

j¼1

�bjðt; T 1; T 2Þ
T 2 � T 1

Y jðtÞ �
cp

2ðT 2 � T 1Þ

�
Z T 2

t

Xm

i¼1

r2
i ðsÞ�a2

i ðs; T 1; T 2Þds� 1

cp

1

T 2 � T 1

�
Z T 2

t

Xn

j¼1

/j �cp
�bjðs; T 1; T 2Þ

� 	
ds;

where �ai and �bj are given by (2.7) and (2.8), respectively.

Proof. Suppose for simplicity that m = n = 1. We calculate
the conditional expectation in (2.6). First observe thatZ T 2

T 1

SðuÞdu ¼
Z T 2

T 1

KðuÞduþ
Z T 2

T 1

X ðuÞduþ
Z T 2

T 1

Y ðuÞdu:

Inserting the explicit dynamics of X(u) and appealing to the
stochastic Fubini Theorem (see e.g. Protter, 1992), we findZ T 2

T 1

X ðuÞdu ¼
Z T 2

T 1

X ðtÞe�aðu�tÞ þ
Z u

t
rðsÞe�aðu�sÞdBs


 �
du

¼ X ðtÞ�aðt; T 1; T 2Þ þ
Z T 2

T 1

Z u

t
rðsÞe�aðu�sÞdBsdu

¼ X ðtÞ�aðt; T 1; T 2Þ þ
Z T 2

t
rðsÞ�aðs; T 1; T 2ÞdBs:

A similar calculation for
R T 2

T 1
Y ðuÞdu yields,Z T 2

T 1

Y ðuÞdu ¼ Y ðtÞ�bðt; T 1; T 2Þ þ
Z T 2

t

�bðs; T 1; T 2ÞdLðsÞ:

Thus, since X(t) and Y(t) are measurable with respect to Ft

and using the independent increment properties of the
Brownian motion and the Lévy process, we get,
T 1

¼ exp �cpr

Z T 2

T 1

KðuÞduþ X ðtÞ�aðt; T 1; T 2Þ
��

þ Y ðtÞ�bðt; T 1; T 2Þ
��

� E exp �cpr

Z T 2

t
rðsÞ�aðs; T 1; T 2ÞdBs

� �� �
� E exp �cpr

Z T 2

t

�bðs; T 1; T 2ÞdLðsÞ
� �� �

;

¼ exp �cpr

Z T 2

T 1

KðuÞduþ X ðtÞ�aðt; T 1; T 2Þ
��

þ Y ðtÞ�bðt; T 1; T 2Þ
��

� exp
1

2
c2

pr

Z T 2

t
r2ðsÞ�a2ðs; T 1; T 2Þds

� �
� exp

Z T 2

t
/ð�cpr

�bðs; T 1; T 2ÞÞds
� �

:

hus, the Proposition is proved after taking logarithms and
ividing by the risk aversion and length of the delivery per-
Before proceeding we can interpret how jumps in the
odel affect the indifference price calculated in Proposition
1 for the producer. For simplicity, if we assume that for
e jump processes LjðtÞ; j ¼ 1; � � � ; n, each process can only
mp either up or down it is straightforward to see how

prðt; T 1; T 2Þ is affected by each jump process. Suppose

jðtÞ is a process of only positive jumps. Then, the log-
oment generating function /jðxÞ of LjðtÞ is an increasing
nction with /jð0Þ ¼ 0. Thus, when x < 0, /jðxÞ < 0, and
nce �bj is positive, we have that the argument of /jð�Þ in
e indifference price of the producer is negative, and thus
e jump process LjðtÞ causes an increase in the indifference
rward price. On the other hand, if LjðtÞ only exhibits neg-
ive jumps, we see that the indifference price is pushed

ownwards. This is intuitively clear, because the producer
willing to accept lower forward prices when there is a risk

f price drops in the spot market, whereas positive price
ikes work to the advantage of the producer, and he will

e more reluctant to enter forward contracts that miss
pportunities where he might be better-off selling in the
ot market.
The consumer will derive the indifference price from the

curred expenses in the spot or forward market, which
tails

� EP exp �cc �
Z T 2

T 1

SðuÞdu
� �� �

jFt

� �
¼ 1� EP exp �ccð�ðT 2 � T 1ÞF cðt; T 1; T 2Þð ÞÞjFt½ �; ð2:9Þ



or, 3. Forward price and the market power
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F cðt; T 1; T 2Þ ¼
1

cc

1

T 2 � T 1

� ln EP exp cc

Z T 2

T 1

SðuÞdu
� �

jFt

� �
: ð2:10Þ

We calculate the following price for the consumer.

Proposition 2.2. The price that makes the consumer indif-

ferent between the forward and the spot market is given by

F cðt; T 1; T 2Þ ¼
1

T 2 � T 1

Z T 2

T 1

KðuÞduþ
Xm

i¼1

�aiðt; T 1; T 2Þ
T 2 � T 1

X iðtÞ

Xn �bjðt; T 1; T 2Þ cc
þ
j¼1

T 2 � T 1

Y jðtÞ þ
2ðT 2 � T 1Þ

�
Z T 2

t

Xm

i¼1

r2
i ðsÞ�a2

i ðs; T 1; T 2Þdsþ 1

cc

1

T 2 � T 1

�
Z T 2

t

Xn

j¼1

/j cc
�bjðs; T 1; T 2Þ

� 	
ds:

Proof. The proof is similar as in the producer’s case. h
Note that the producer prefers to sell his production in
the forward market as long as the market forward price
F ðt; T 1; T 2Þ is higher than F prðt; T 1; T 2Þ. On the other hand,
the consumer prefers the spot market if the market forward
price is more expensive than his indifference price
F cðt; T 1; T 2Þ. Thus, we have the bounds

F prðt; T 1; T 2Þ 6 F ðt; T 1; T 2Þ 6 F cðt; T 1; T 2Þ: ð2:11Þ
Letting the risk aversion of the producer go to zero, we

end up with the expected earnings from selling in the spot
market, also known as the forecasted forward price. We
observe the same with the indifference price of the con-
sumer when her risk aversion tends to zero.

Proposition 2.3. It holds

lim
cp;c#0

F pr;cðt; T 1; T 2Þ

¼ EP 1

T 2 � T 1

Z T 2

T 1

SðuÞdujFt

� �
¼ 1

T 2 � T 1

Z T 2

T 1

KðuÞdu

þ
Xm

i¼1

�aiðt; T 1; T 2Þ
T 2 � T 1

X iðtÞ þ
Xn

j¼1

�bjðt; T 1; T 2Þ
T 2 � T 1

Y jðtÞ

þ
Xm

j¼1

/0jð0Þ
T 2 � T 1

Z T 2

t

�bjðs; T 1; T 2Þds:

Moreover, we find that

F prðt; T 1; T 2Þ 6 EP 1

T 2 � T 1

Z T 2

T 1

SðuÞdujSðtÞ
� �

6 F cðt; T 1; T 2Þ:

Proof. The first part is straightforward. The second part
results from applying Jensen’s inequality. h
Inequality (2.11) clearly indicates a range of prices
where the producer and consumer are willing to attain a
deal. Aggregate demand and supply will ultimately deter-
mine the clearing forward prices within this range.
Previously we mentioned that the ‘appetite’ for risk diver-
sification varies across consumers and producers, depend-
ing on their degree of risk-aversion. Moreover, it seems
reasonable to assume that the desire to hedge exposure to
market uncertainties will also vary with the horizon agents
are looking at. In circumstances where there are not a large
number of consumers hedging long-term positions, whilst
at the same time producers are eager to hedge their expo-
sure, we say that consumers have market power. Similarly,
in situations (usually short-term horizons) where a large
amount of consumers come to market to cover their posi-
tions, the balance of power tilts over to the producers.

We introduce the deterministic function pðt; T 1; T 2Þ 2
½0; 1� describing the market power of the representative pro-

ducer which therefore depends on time t and delivery per-
iod. If the producer has full market power, corresponding
to pðt; T 1; T 2Þ ¼ 1, he can charge the maximum price possi-
ble in the forward market. This will be equal to the maxi-
mum price that the consumer can accept, namely
F cðt; T 1; T 2Þ, since the consumer will leave the forward mar-
ket for any higher price. On the other hand, if the consumer
has full power, ie pðt; T 1; T 2Þ ¼ 0, she will drive the forward
price as far down as possible which corresponds to
F prðt; T 1; T 2Þ. For any market power 0 < pðt; T 1; T 2Þ < 1,
the forward price F pðt; T 1; T 2Þ is defined to be

F pðt; T 1; T 2Þ ¼ pðt; T 1; T 2ÞF cðt; T 1; T 2Þ
þ ð1� pðt; T 1; T 2ÞÞF prðt; T 1; T 2Þ: ð3:1Þ

In the most general setting, it would be possible to allow
for a stochastic market power, being for instance depen-
dent on the spot price dynamics. However, in this paper
we shall constrain ourselves to the much simpler case of
a deterministic market power. In some examples we con-
sider it as a constant for simplicity, but in the empirical
study of Section 5 we find evidence of a term structure
for the market power.

The explicit dynamics for the forward price are easily
stated as:

Proposition 3.1. The forward price dynamics are given by

F pðt; T 1; T 2Þ ¼
1

T 2 � T 1

Z T 2

T 1

KðuÞduþ
Xm

i¼1

�aiðt; T 1; T 2Þ
T 2 � T 1

X iðtÞ

þ
Xn

j¼1

�bjðt; T 1; T 2Þ
T 2 � T 1

Y jðtÞ

þ
pðt; T 1; T 2Þðcpr þ ccÞ � cpr

2ðT 2 � T 1Þ

�
Z T 2

t

Xm

i¼1

r2
i ðsÞ�a2

i ðs; T 1; T 2Þds



þ pðt; T 1; T 2Þ
Z T 2 Xn

/jðcc
�bjðs; T 1; T 2ÞÞds

price of risk may be either positive or negative depending
on the time horizon considered. In Schwartz (1997) the cal-
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ccðT 2 � T 1Þ t j¼1

� 1� pðt; T 1; T 2Þ
cprðT 2 � T 1Þ

�
Z T 2

t

Xn

j¼1

/jð�cc
�bjðs; T 1; T 2ÞÞds

for 0 6 t 6 T 1 < T 2.

Given the market power pðt; T 1; T 2Þ, F pðt; T 1; T 2Þ is the
price that the consumer and producer agree upon in the
market. Since pðt; T 1; T 2Þ 2 ½0; 1�, this forward price will
be in between the producer’s and the consumer’s indiffer-
ence price, so both are willing to accept such a price.

Let us discuss the correlation structure between forward
contracts with different delivery periods. For simplicity we
start with the case of no jumps (m = 0), and consider for-
ward prices for two contracts with non-overlapping deliv-
ery periods ½T 1; T 2� and ½T 3; T 4�. By the explicit form of
F pðt; T 1; T 2Þ and the independence of the Brownian
motions, we easily calculate

Cov F pðt; T 1; T 2Þ; F pðt; T 3; T 4Þð Þ

¼
Xm

i¼1

�aiðt; T 1; T 2Þ�aiðt; T 3; T 4Þ
ðT 2 � T 1ÞðT 4 � T 3Þ

Z t

0

r2
i ðsÞe�2aiðt�sÞds:

The correlation between two contracts can be estimated
from market price data, and thus we can estimate the
speeds of mean reversion ai by calibrating the theoretical
correlation to the empirical. Taking jumps into account
will give rise to a structure where we can include the possi-
bility of jump correlation between forward contracts. We
see that it is the multi-factor spot model which implies
the correlation structure for the forward contracts. This
resembles the market models in fixed-income theory, the
so-called LIBOR models, where one models each LIBOR
rate separately, and include a correlation structure among
the different rates. Further, it is also a known fact that for-
ward contracts in energy markets are not perfectly corre-
lated, but each contract has its intrinsic risk. Note that
the market power function is not contributing to the corre-
lation between two contracts.

4. The market price of risk and market risk premium

The standard way to price a forward contract is to find

th
ha

ZB

w
i ¼
ch
tr
the conditional risk-neutral expected value of the future
delivery from the contract. The risk-neutral probability is
usually chosen to be related to what is called the market
price of risk, which can be seen as a drift adjustment in
the dynamics of an asset to reflect how investors are com-
pensated for bearing risk when holding the asset.4 One of
the peculiarities of commodities markets is that the market

4 Note that the market price of risk is not what we have defined as the
market risk premium.
ration of one-factor models to futures prices of oil and
pper delivered negative market prices of risk in both
ses. Cartea and Figueroa (2005) model England and
ales wholesale electricity prices and estimate a negative
arket price of risk. Cartea and Williams (2007) model
s prices and forward contracts where a positive market
ice of risk for long-term contracts is observed and for
ort-term contracts the market price of risk, although
sitive on average, changes signs across time. In this sec-
n we want to relate the market power pðt; T 1; T 2Þ to the

arket price of risk. By working with a parametrization of
e market price of risk via a class of risk-neutral probabil-
es introduced by an Esscher transform, we shall see that
ere are explicit connections between the market power
d both the market price of risk and the market risk pre-
ium. Further, to ensure an arbitrage-free forward mar-
t, we need to have certain conditions on the number of
ctors and contracts traded in the market. In commodities
arkets, especially electricity models, the connection
tween the physical and risk-neutral measure is usually
rformed by introducing a correction in the drift of the
ysical process to reflect how market participants are
mpensated for bearing risk, see for example (Schwartz,
97; Schwartz and Smith, 2000; Lucı́a and Schwartz,
02; Cartea and Figueroa, 2005; Cartea and Williams,
07). We point out that this widely employed change of
easure in the literature is the result of applying the
sscher transform to the physical measure which is what
e propose to use in this article.
Suppose that we want to price a forward contract with
livery over the period [T1,T2]. The forward price is
fined as

Qðt; T 1; T 2Þ ¼ EQ 1

T 2 � T 1

Z T 2

T 1

SðuÞdujFt

� �
;

here we use FQ to indicate the dependency on the chosen
sk-neutral probability Q.

We parameterize the market price of risk by introducing
probability measure Qh :¼¼ QB � QL, where QB is a

irsanov transform of the Brownian motions BiðtÞ, QL is
Esscher transform of the jump processes LjðtÞ, and h

an Rnþm-valued function describing the market price of
sk. We define the measure change as follows. For t 6 T ,
ith T P T 2 being a finite time horizon encapsulating all
e delivery periods in the market, let the probability QB

ve the density process

ðtÞ ¼ exp �
Z t

0

Xm

i¼1

hB;iðtÞ
riðsÞ

dBiðsÞ �
1

2

Z t

0

Xm

i¼1

h2
B;iðsÞ
r2

i ðsÞ
ds

 !
;

here we have supposed that the functions hB;i=ri,
1; . . . ;m, are square integrable over ½0; T �. This measure

ange in the Wiener coordinates is given by the Girsanov
ansform,



dW iðtÞ ¼ �
hB;iðtÞ
r ðtÞ dt þ dBiðtÞ;

prices, and from the explicit representation of X ðtÞ under
Qh as
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where W iðtÞ become Brownian motions on ½0; T �; i ¼
1; . . . ;m. The functions hB;i represent the compensation
market players obtain for bearing the risk introduced by
the non-extreme variations in the market, i.e. the diffusion
component. We let it be time dependent to allow for vari-
ations across different seasons throughout the year. Later,
we shall see that it could even be dependent on the delivery
period, indicating that the market price of diffusion risk de-
pends on the forward under consideration. This Girsanov
change gives the dynamics (for 1 6 i 6 m)

dX iðtÞ ¼ hB;iðtÞ � aiX iðtÞð Þdt þ riðtÞdW iðtÞ;
and thus we have added a time-dependent level of mean-
reversion to the processes X iðtÞ.

Further, define for bounded functions hL;j; j ¼ 1; . . . ; n,

ZLðtÞ ¼ exp

Z t

0

Xn

j¼1

hL;jðsÞdLjðsÞ �
Z t

0

Xn

j¼1

/jðhL;jðsÞÞds

 !
;

for t 6 T 2, and let the density process for the Radon–Niko-
dym derivative of the measure change in the jump compo-
nent be

dQL

dP

����
Ft

¼ ZLðtÞ:

This is the so-called Esscher transform, and the time depen-
dent functions hL;jðtÞ are the market prices of jump risk. We
let h :¼ ðhB; hLÞ, where hB :¼ ðhB;iÞmi¼1 and hL :¼ ðhL;jÞnj¼1.
The density process of the probability Qh becomes
ZðtÞ :¼ ZBðtÞZLðtÞ. Further, we denote by EQh

the expecta-
tion with respect to the probability measure Qh.

The forward price F h resulting from the market price of
risk specification given by Qh is derived in the next
Proposition.

Proposition 4.1. The forward price F hðt; T 1; T 2Þ is given by

F hðt; T 1; T 2Þ ¼
1

T 2 � T 1

Z T 2

T 1

KðuÞdu
Xm �aiðt; T 1; T 2Þ

þ
Z T 2 Xm

hB;iðsÞ
�aiðs; T 1; T 2Þ

ds:
þ
i¼1

T 2 � T 1

X iðtÞ

þ
Xn

j¼1

�bjðt; T 1; T 2Þ
T 2 � T 1

Y jðtÞ

þ
Z T 2

t

Xm

i¼1

hB;iðsÞ
�aiðs; T 1; T 2Þ

T 2 � T 1

ds

þ
Z T 2

t

Xn

j¼1

/0jðhL;jðsÞÞ
�bjðs; T 1; T 2Þ

T 2 � T 1

ds: ð4:1Þ

for 0 6 t 6 T 1 < T 2.

Proof. For simplicity suppose m ¼ n ¼ 1. In line with the
calculations for the producer’s and consumer’s indifference
X ðuÞ ¼ X ðtÞeaðu�tÞ þ
Z u

t
hBðsÞe�aðu�sÞds

þ
Z u

t
rðuÞe�aðu�sÞdW ðsÞ;

for u P t, we find

EQh 1

T 2 � T 1

Z T 2

T 1

SðuÞdujFt

� �
¼ 1

T 2 � T 1

Z T 2

T 1

KðuÞduþ X ðtÞ �aðt; T 1; T 2Þ
T 2 � T 1

þ Y ðtÞ
�bðt; T 1; T 2Þ

T 2 � T 1

þ 1

T 2 � T 1

Z T 2

T 1

Z u

t
hBðsÞe�aðu�sÞdsdu

þ 1

T 2 � T 1

Z T 2

T 1

EQL

Z u

t
e�bðu�sÞdLsjFt

� �
du:

By Bayes’ Theorem and the independent increment prop-
erty of the Lévy process, we see that the expectation in
the last integral is

EQL

Z u

t
e�bðu�sÞdLðsÞjFt

� �
¼ EP

Z u

t
e�bðu�sÞdLðsÞ ZLðuÞ

ZLðtÞ
jFt

� �
¼ EP

Z u

t
e�bðu�sÞdLðsÞe

R u

t
hLðsÞdLðsÞ�

R u

t
/ðhLðsÞÞds

� �
¼ d

dx
EP e

R u

t
xe�bðu�sÞþhLðsÞð ÞdLðsÞ

� �
jx¼0 � e

�
R u

t
/ðhLðsÞÞds

¼ d

dx
e
R u

t
/ xe�bðu�sÞþhLðsÞð Þdsjx¼0 � e

�
R u

t
/ðhLðsÞÞds

¼
Z u

t
/0ðhLÞe�bðu�sÞds:

After reorganizing the integrals the result follows. h

To gain insight into how the market risk premium
depends on diffusion and jump risk we look at the follow-
ing two corollaries. The first one assumes that the market
price of jump risk be zero. The second one assumes that
the market price of diffusion risk is zero.

Corollary 4.2. Suppose that the market price of jump risk is

zero, i.e. hL;jðsÞ ¼ 0 for j ¼ 1; . . . ; n. Then

F hðt; T 1; T 2Þ ¼ EP 1

T 2 � T 1

Z T 2

T 1

SðuÞdujFt

� �
t i¼1
T 2 � T 1

Proof. This is straightforward from the results above. h

Thus, from this we see that when market players are not
compensated for bearing jump risk, the market risk pre-
mium is positive as long as



pðt; T 1; T 2Þ ¼
Z T 2 Xm

hB;iðsÞ
�aiðs; T 1; T 2Þ

T � T
ds

Z T 2 Xm

hB;iðsÞ�aiðs; T 1; T 2Þds
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is positive. As a particular case we can assume all hB;iðtÞ’s to

be positive constants which yields a positive market price

W
i
tr
a
ti
o
is
of risk since �ai are positive functions for all s 6 T 2. How-
ever, in the more general setting, one can obtain a change
in the sign of the market risk premium over time t by
appropriate specification of the functions hB;iðtÞ. Further-
more, although changes in the sign of the market price of
risk are also of particular interest, it is clear that a change
in the sign of the market prices of risk hB;iðtÞ does not al-
ways imply a change in the sign of the market risk
premium.

Now we turn our attention to the case with no diffusion
market price of risk, i.e. hB;iðtÞ ¼ 0 for all i ¼ 1; . . . ;m.

Corollary 4.3. Suppose that hB;iðtÞ ¼ 0 for all i ¼ 1; . . . ;m.

Then

F hðt;T 1;T 2Þ ¼ EP 1

T 2�T 1

Z T 2

T 1

SðuÞdujFt

� �

Z n li
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fo
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ex
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d

þ
T 2

t

X
j¼1

/0jðhL;jðsÞÞ�/0jð0Þ
n o�bjðs;T 1;T 2Þ

T 2�T 1

ds:

Proof. Follows from the results above. h

Note that the market risk premium in this case is given
by

pðt; T 1; T 2Þ ¼
Z T 2

t

Xn

j¼1

/0jðhL;jðsÞÞ � /0jð0Þ
n o �bjðs; T 1; T 2Þ

T 2 � T 1

ds;

and even if we assume constant and positive hL;j > 0, the
sign of pðt; T 1; T 2Þ will depend on the monotonicity of /0j.
In general, the sign of the market risk premium will result
from a combination of hL;jðtÞ and the monotonicity proper-
ties of /0j.

Finally, when both the market price of jump and diffu-
sion risk are taken into account, the market risk premium
is given by

pðt;T 1;T 2Þ ¼
Z T 2

t

Xm

i¼1

hB;iðsÞ
�aiðs;T 1;T 2Þ

T 2 � T 1

ds
Z T 2 Xn
0 0

n o �bjðs;T 1;T 2Þ co
si
d
at

4.

ju
þ
t j¼1

/jðhL;jðsÞÞ �/jð0Þ T 2 � T 1

ds:

Now we proceed to relate the market risk premium (4.2) to
the market power pðt; T 1; T 2Þ. Comparing the expressions
of F h given by (4.1) and F p calculated in Proposition 3.1,

p
we have that the sum of the last two terms of F must
h

with weekly delivery. The market power is supposed to be

match the sum of the two last terms of F . Hence, we must
find a solution h ¼ ðhB; hLÞ to the equation
t i¼1

þ
Z T 2

t

Xn

j¼1

/0jðhL;jðsÞÞ�bjðs; T 1; T 2Þds

¼ 1

2
pðt; T 1; T 2Þðcpr þ ccÞ � cpr

� �
Z T 2

t

Xm

i¼1

r2
i ðsÞ�a2

i ðs; T 1; T 2Þdsþ pðt; T 1; T 2Þ
ccZ T 2

t

Xn

j¼1

/jðcc
�bjðs; T 1; T 2ÞÞds� 1� pðt; T 1; T 2Þ

cprZ T 2

t

Xn

j¼1

/jð�cpr
�bjðs; T 1; T 2ÞÞds: ð4:3Þ

e have nþ m unknown functions hB;i and hL;j,
¼ 1; . . . ;m; j ¼ 1; . . . ; n. If the market consists of k con-
acts with non-overlapping delivery periods, we may find
solution as long as k 6 mþ n. We need at least one solu-
on h ¼ ðhB; hLÞ in order to have an arbitrage-free market
f forward contracts. Suppose for instance that n ¼ 0, that
, there are no jumps in the market. In this case we have k

near equations for the m unknown functions where we
nd at least one solution as long as k 6 m and the mean
version coefficients ai are different. If m > 0 and n > 0
e have both diffusion and jumps in the model, and we
ay simply choose hL;j freely, and then solve for the
maining unknowns hB;j given by Eq. (4.3) for each k

elivery periods. There is at least one solution when
6 m for this situation whenever the ai’s are different.
ne way is to choose hL;jðtÞ ¼ 0, which means that there
no price for jump risk incurred by the market, see for
ample (Merton, 1990). We remark in passing that if we
ose a spot model with just two factors (for example
¼ n ¼ 1), and the market trades in more than two for-

ard contracts, there may be no solution to the Eq. (4.3)
r all the different contracts at once. Solving the equations
(4.3) for each contract separately leads to solutions

hich are dependent on the delivery period, and will not
ve one risk neutral measure for the market as a whole,
ut one measure for each contract separately; allowing
r arbitrage opportunities.
In the rest of this section we look at two illustrative

amples to gain further insights into the model before
plying it to German data in Section 5. First we shall

emonstrate that for a simple Poisson jump model and
nstant market power, the market risk premium changes

gn across time. Second, we explore the case of fixed time
elivery without the presence of jumps and look explicitly

how pðt; T Þ depends on the parameters pðt; T Þ, cpr and cc.

1. An example with constant market power and poisson

mps

We consider a forward market consisting of 52 contracts



constant pðt; T 1; T 2Þ ¼ p 2 ½0; 1�. Assume that the spot
model has m ¼ 52 diffusion components X ðtÞ, and one

curves have very different shapes in the short end. As
expected, market clearing forward prices are increasing

sitiv
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(n ¼ 1) jump component Y ðtÞ. Suppose that the seasonal
function is

KðtÞ ¼ 150þ 20 cosð2pt=365Þ;

and the mean-reversion parameters for the diffusion com-
ponents are ai ¼ 0:067=i, with volatility ri ¼ 0:3=

ffiffi
i
p

, for
i ¼ 1; . . . ; 52. We mimic here a sequence of mean-reverting
processes with decreasing speeds of mean reversion and
with decreasing volatility. Note that a speed of mean rever-
sion equal to 0.067 means that a shock will be halved over
10 days. The jump process is driven by LðtÞ ¼ gNðtÞ, where
NðtÞ is a Poisson process with intensity k and the jump size
is constant, equal to g. The mean-reversion for the jump
component is b ¼ 0:5, meaning that a jump will, on aver-
age, revert back in two days. Thus, we have a combination
of slow mean reverting normal variations and fast mean
reverting spikes in the spot market. The frequency of spikes
is set to k ¼ 2=365, i.e. two spikes, on average, per year.
Time t ¼ 0 corresponds to January 1, and we assume that
the initial spot price is Sð0Þ ¼ 172. In our empirical inves-
tigations, we let X 1ð0Þ ¼ 2, and X ið0Þ ¼ Y ð0Þ ¼ 0 for
i ¼ 2; . . . ; 52 to achieve this. The risk aversion coefficients
of the producer and consumer are set equal to
cc ¼ cpr ¼ 0:5. In the examples below we derive forward
curves for weakly settled forward contracts over a year.
We remark that this model is chosen for its simplicity
and to illustrate the approach in this paper.

Consider first a positive jump of size g ¼ 10. In Fig. 1 we
have plotted the indifference forward curves for the pro-
ducer and consumer (‘�’), together with the forward curves
with constant market power equal to p = 0.25, 0.5 and 0.75
(marked as dashed lines, in increasing order). Finally, we
have included the forecasted spot price curve as ‘+’. We
clearly see that the forecasted price curve follows a shape
similar to the seasonal function, while the indifference price

300
Po
0 10 20

50

100

150

200

250

week o

Fig. 1. The indifference price curves together with the forward curves for ma
forecasted curve is depicted ‘+’. The jumps are positive of size 10.
with increasing market power, since the producer will com-
mand higher prices with more power. Note also that for a
low market power of 0.25, we still observe that the fore-
casted price curve is below the forward curve in the shorter
end, while in the medium to long end we see the opposite.
This corresponds to a positive market risk premium in the
shorter end, whereas it becomes negative in the medium
and longer end. Both players have the same risk aversion,
and the consumer wishes to avoid upward jumps in the
price. Hence, even for a weak producer, the consumer is
willing to accept a positive market risk premium in the
short end. In the long end, the effect of jumps vanish as a
consequence of mean reversion and the consumer will have
more power driving the market risk premium below zero.
To illustrate this particular example with p = 0.5 we have
plotted the difference of the forward curve with market
power 0.25 and the forecasted curve in Fig. 2. For the con-
tracts with delivery up to approximately week 20, the mar-
ket premium is positive. The premium decreases with time
to delivery, and becomes negative in the medium and long
end.

Turning our attention to the case of negative jumps, we
observe the reverse picture. Suppose that jumps sizes are
fixed at g = �10. Fig. 3 shows the corresponding forward
and indifference curves together with the forecasted price.
We observe first of all that all curves are shifted down-
wards, indicating that the producer is willing to accept
lower forward prices to hedge the possibility of sudden
drops in prices. In the short-term we observe, for all cases
of market power, that the forecasted spot price is above
forward prices, i.e. negative market risk premium. In the
long-term, only when producer’s market power is high,
that is 0.75, we have the situation where the forecasted
curve is below the forward curve signaling that the con-
sumer bears a positive risk premium. Moreover, Fig. 4

e jumps
30 40 50
f delivery

rket powers equal to p ¼ 0:25; 0:5 and p ¼ 0:75, in increasing order. The



shows the difference between the forward curve and the
forecasted curve when the producer’s market power is
p = 0.75.

We now proceed to analyze more closely the implica-

Consider Eq. (4.3). One way to solve this is to separate
the Wiener and jump part, and solve the two resulting
equations. We find the solution

hB
1 � 	

fo
pð
h

p

If
n
su
p
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20
Market risk premium

Week of delivery

Fig. 2. The market risk premium given by the difference of the forward curve with market power 0.25 and the forecasted curve.
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50

100

150

200

250

300
Negative jumps

Week of delivery

Fig. 3. The indifference price curves together with the forward curves for market powers equal to p ¼ 0:25; 0:5 and p ¼ 0:75, in increasing order. The
forecasted curve is depicted with ‘*’. The jumps are negative of size 10.
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tions of jumps and normal variations of the model. We
consider the case with m = n = 1 and constant market
power pðt; T 1; T 2Þ ¼ p for p 2 ½0; 1�. Further, let
LðtÞ ¼ NðtÞ, a Poisson process with constant jump intensity
k > 0. Note that this model has only two factors, and in
general it will not give an arbitrage-free forward curve
dynamics for a market which trades in contracts with many
different delivery periods. However, this simplification pro-
vides us with some insight into how the sign of the market
risk premium may change, and we include it with the
assumption that we have one forward contract with deliv-
ery period ½T 1; T 2� traded in the market.
ðt; T 1; T 2Þ ¼
2

pðcpr þ ccÞ � cpr r2ðtÞ�aðt; T 1; T 2Þ; ð4:4Þ

r t 6 T 2. Note that the sign of hB depends on the sign of
cpr þ ccÞ � cpr, since r2ðtÞ and �aðt; T 1; T 2Þ are positive. We

ave a negative market price of risk hB whenever

<
cpr

cpr þ cc

: ð4:5Þ

for instance cpr ¼ cc, the market price of risk hB becomes
egative whenever p < 0.5, which corresponds to the con-
mer being the strongest. If the producer is stronger, i.e.
> 0.5, he is the superior power in forming prices and the



market price of risk becomes positive. If cpr 6¼ cc, the market
power needs to be less than the relative risk aversion of the
producer against the total risk aversion for hB to be negative.

Lemma 4.4. The non-negative function f :¼ Rþ7!Rþ
defined by

0 10 20 30 40 50
−20

−15

−10

−5

0

5

10
Marke trisk premium

Week of delivery

Fig. 4. The market risk premium given by the difference of the forward curve with market power 0.75 and the forecasted curve.
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Let us consider the market price of jump risk. Since LðtÞ
is assumed to be a Poisson process, the log-moment gener-
ating function is given by

/ðxÞ ¼ kðex � 1Þ and /0ðxÞ ¼ kex:

Note that

/0ðhLðtÞÞ � /0ð0Þ ¼ kðehLðtÞ � 1Þ

which is positive whenever hLðtÞ > 0, and negative if
hLðtÞ < 0, as expected following the interpretation of Cor-
ollary 4.3. The equation for the jump risk derived from
splitting (4.3) into two equations becomes (after differenti-
ating with respect to t)

kehLðtÞ�bðt; T 1; T 2Þ ¼
p
cc

k ecc
�bðt;T 1;T 2Þ � 1

� �
� 1� p

cpr

k e�cpr
�bðt;T 1;T 2Þ � 1

� �
:

Or, equivalently,

�bðt; T 1; T 2ÞehLðt;T 1;T 2Þ ¼ p
cc

ecc
�bðt;T 1;T 2Þ � 1

� �
þ 1� p

cpr

1� e�cpr
�bðt;T 1;T 2Þ

� �
: ð4:6Þ

Note that the right-hand side of (4.6) is positive since
�bðt; T 1; T 2Þ > 0. Thus, the market price of jump risk is neg-

ative whenever

p
cc

ecc
�bðt;T 1;T 2Þ � 1

� �
þ 1� p

cpr

1� e�cpr
�bðt;T 1;T 2Þ

� �
< �bðt; T 1; T 2Þ;

and positive otherwise. The following Lemma is helpful in
understanding when the market price of jump risk is
negative.
f ðzÞ ¼ p
cc

ðeccz � 1Þ þ 1� p
cpr

ð1� e�cprzÞ;

satisfies f ðzÞP z for all z P 0 when

p >
cpr

cpr þ cc

:

Moreover, if

p <
cpr

cpr þ cc

;

then f ðzÞ < z for z 6 z0, and f ðzÞP z otherwise, where z0 is

defined by f ðzÞ ¼ z.

Proof. Observe that f ð0Þ ¼ 0, and f ðzÞ ! 1 whenever
z!1. Moreover, f is monotonically increasing since

f 0ðzÞ ¼ peccz þ ð1� pÞe�ccz P 0:

Consider f 00ðzÞ:
f 00ðzÞ ¼ pcce

ccz � ð1� pÞcpre
�cprz;

which is positive whenever p > cpr=ðcc þ cprÞ. In that case,
f 0ðzÞ is an increasing function, and since f 0ð0Þ ¼ 1, we find
that f 0ðzÞP 1, and therefore f ðzÞP z for all z P 0. This
proves the first claim. When p < cpr=ðcc þ cprÞ, we will have
that f 00ðzÞ < 0 for z 6 bz, where bz is some positive constant,
while f 00ðzÞ > 0 elsewhere. Thus, f 0ðzÞ is decreasing, and
next increasing. Since it goes to infinity as an exponential,
we need to have that there exists z0 > 0 for which
f ðz0Þ ¼ z0. The second claim follows. h

Let z ¼ �bðt; T 1; T 2Þ in the Lemma above, and recall that
by the definition of �bðt; T 1; T 2Þ it is increasing in t 6 T 1 and
decreasing in T 1 < t 6 T 2. Its maximum is in t ¼ T 1, where
it takes the value �bðT 1; T 1; T 2Þ ¼ ð1� e�bðT 2�T 1ÞÞ=b. If this
maximum is less than z0, the jump risk hLðt; T 1; T 2Þ will



be negative for all t 6 T 2. Consider the situation where the
maximum is greater than z . Observe that �bð0; T ; T Þ ¼

A straightforward calculation gives
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ðe�bT 1 � e�bT 2Þ=b and �bðT 2; T 1; T 2Þ ¼ 0. If �bð0; T 1; T 2ÞP
z0, there exists one t0 such that �bðt0; T 1; T 2Þ ¼ z0. In this
case we find that hLðt; T 1; T 2Þ > 0 for t < t0, and
hLðt; T 1; T 2Þ < 0 for t > t0. If �bð0; T 1; T 2Þ < z0, we have
the existence of t0 < t1 being such that �bðt; T 1; T 2Þ ¼ z0,
t ¼ t0; t1. Then hLðt; T 1; T 2Þ is negative for t 6 t0, positive
on the interval t 2 ðt0; t1Þ and negative again on t 2 ðt1; T 2Þ.

Therefore, we may have a situation where the market
price of jump risk becomes positive giving a positive con-
tribution to the forward price which makes it larger than
the forecasted spot, even in the presence of a negative
contribution to the forward price coming from hB. It is
also interesting to see that on the forward curve we can
have different signs of the market risk premium depending
on how far away from maturity we are on the curve. This
change of sign in the market risk premium may only take
place when jumps are present in the model, and when the
market power of the producer is weaker than his relative
risk aversion to the sum of both risk aversion coefficients,
see (4.5). Note that when jumps are not present in the
spot price, and we have assumed that the market price
of risk is constant, the market risk premium will only
be either positive or negative, depending on the size of
the market power. In general, if we assume that there is
only one factor driving the dynamics of the spot price,
then the market price of risk ought to change signs in
order to get a change in the sign of the market risk pre-
mium. Furthermore, if we assume that the market price
of risk (per factor) is constant, then we need at least
two factors to observe a change in the sign of the market
risk premium.

4.2. Fixed-delivery forwards without spike risk
To gain further insight into the forward curves implied
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tr
th
by the certainty equivalence principle and market power,
we consider a spot market without spikes and with a con-
stant level to which the prices mean-revert. Thus, we con-
sider the spot price model

dSðtÞ ¼ ðl� aSðtÞÞdt þ rdBðtÞ;

where l is a constant, a > 0, r P 0, which yields the expli-
cit solution

SðT Þ ¼ SðtÞe�aðT�tÞ þ l
a

1� e�aðT�tÞ� 	
þ r

Z T

t
e�aðT�sÞdBðsÞ:

The indifference price of the producer and consumer are
defined as

F
cp
prðt; T Þ ¼ �

1

cp

EP exp �cpSðT Þ
� 	

jFt

� �
and

F cc
c ðt; T Þ ¼

1

cc

EP exp ccSðT Þð ÞjFt½ �:
cp
prðt; T Þ ¼ SðtÞe�aðT�tÞ þ l

a
1� e�aðT�tÞ

� cp

r2

4a
1� e�2aðT�tÞ� 	

ð4:7Þ

d

cc
c ðt; T Þ ¼ SðtÞe�aðT�tÞ þ l

a
1� e�aðT�tÞ� 	

þ cc

r2

4a
1� e�2aðT�tÞ� 	

: ð4:8Þ

For fixed delivery contracts the analogous expression to
.1) becomes

pðt; T Þ ¼ pðt; T ÞF cc
c ðt; T Þ þ ð1� pðt; T ÞÞF cp

prðt; T Þ ð4:9Þ

d a simple calculation implies that

pðt; T Þ ¼ SðtÞe�aðT�tÞ þ l
a

1� e�aðT�tÞ� 	
� pðt; T Þcp

r2

4a
1� e�2aðT�tÞ� 	

þ ð1� pðt; T ÞÞcc

r2

4a
1� e�2aðT�tÞ� 	

;

d the market risk premium becomes

ðt; T Þ ¼ cc � pðt; T Þðcp þ ccÞ
� 	 r2

4a
1� e�2aðT�tÞ� 	

:

is straightforward to see that the sign of pðt; T Þ is given
y the sign of ðcc � pðt; T Þðcp þ ccÞÞ. Therefore, when
t; T Þ < cc=ðcp þ ccÞ we have that pðt; T Þ > 0 and vice
rsa.
Note that we may also write the expression of the for-

ard as:

pðt;T Þ ¼ l
a
þ r2

4a
ðpðt;T Þðcpþ ccÞ � cpÞ

þ SðtÞ � l
a

� �
e�aðT�tÞ pðt;T Þðcpþ ccÞ � cp

� 	
e�2aðT�tÞ;

d observe that the forward price consists of three terms,
‘‘constant” level, a ‘‘slow” mean-reversion level

pð�aðT � tÞÞ and a ‘‘fast” mean-reversion level
pð�2aðT � tÞÞ. Moreover, if we assume a constant mar-

et power p with

<
cpr

cpr þ cc

;

en the last term in (4.10) will be exponentially increasing
wards zero. Further, if SðtÞ > l=a, then the
pð�aðT � tÞÞ-term will be ‘‘slowly” decreasing to zero.
effect, we produce a hump in the forward curve. This

ump will be in the short end of the curve.

Empirical evidence: The German market

In this section we apply our model to the German elec-
icity market. We do this in two steps. First we estimate
e physical parameters of a two-factor model. Second,



using forward market data, denoted by F ðt; T 1; T 2Þ, we esti-
mate the risk-aversion coefficients for both producers and

where the indicator function is acting on the different days
of the week. The parameter estimates for the seasonal com-
ponent are shown in Table 1 and the estimates for the OU

Table 1
Estimated coefficients of KðtÞ
a0 a1 a2 a3 a4 a5 a6 a7 Squared

error

19.43 �11.43 0.78 2.13 �6.13 1.2 53.64 0.016 39420.74

Table 2
Parameter estimates for OU and jump components

a r p k k1 k2 b

0.44 5.2 0.72 0.054 0.031 0.053 0.2

Table 3
Empirical ad simulated moments (1000 paths)

Mean Standard deviation Skewness Kurtosis

Empirical SðtÞ 31.6 15.2 2.7 14.5
Simulated SðtÞ 32.1 15.6 2.2 13.8
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consumers and estimate the producer’s market power.
We employ daily spot prices, the so-called Phelix base

load traded at the EEX, and prices for forward contracts
with different delivery periods: monthly, quarterly and
yearly. Our data covers the period January 2 2002 to Jan-
uary 1 2006 where we have 1461 spot price observations.
The forward data consist of 108 contracts with monthly
delivery, 35 contracts with quarterly delivery and 12 con-
tracts with yearly delivery.

We apply the model to

SðtÞ ¼ KðtÞ þ X ðtÞ þ Y ðtÞ

where, as described above, KðtÞ is the seasonal component,

dX ðtÞ ¼ �aX ðtÞdt þ rdBðtÞ
dY ðtÞ ¼ �bY ðtÞdt þ dLðtÞ

where a P 0, b P 0 r P 0, BðtÞ is a standard Brownian
motion and

LðtÞ ¼
XNðtÞ

i

J i ð5:1Þ

is a compound Poisson process. NðtÞ is a homogeneous
Poisson process with intensity k and J i’s are i.i.d. with
exponential density function

f ðjÞ ¼ pk1e�k1j1j>0 þ ð1� pÞk2e�k2jjj1j<0;

where k1 > 0 and k2 > 0 are responsible for the decay of
the tails for the distribution of positive and negative jump
sizes and 1 is the indicator function. Finally we assume that
NðtÞ, J and BðtÞ are independent.

We remark in passing that a two-factor model as we
consider here will in general violate the no-arbitrage condi-
tion for the forward market if this consists of more than
two contracts (recall the discussion in Section 4). However,
the purpose of the empirical study is to provide an insight
into the market power and the market risk premium, and
thus we choose a simple and tractable model to analyze.
We may, on the other hand, to be consistent with the no-
arbitrage conditions mentioned above, split the Brownian
motion part of X ðtÞ into several factors to ensure an arbi-
trage-free market as required by our conditions above.
Therefore, this means that we must choose the same num-
ber of Brownian motions as number of contracts and our
results to follow will not change with this modification.

To be able to estimate the seasonal component and the
parameters of the OU and jump processes we follow a pro-
cedure similar to that in Cartea and Figueroa (2005) and
Lucı́a and Schwartz (2002). Therefore, for the seasonal
component we assume

KðtÞ ¼ a0 þ a11 t¼Suf g þ a21 t¼Mof g þ a31 t¼Tu;We;Thf g þ a41 t¼Saf g

þ a5 cos
6p
365

t þ a6ð Þ
� �

þ a7t;
and Jump components are shown in Table 2.5 Moreover,
Table 3 shows the mean, standard deviation, skewness
and kurtosis of the spot prices and those resulting from
10,000 paths using our model and Fig. 5 shows the realized
and a simulated path. It is clear that our model captures
both statistical and trajectile properties.

In order to calculate the market power pðt; T 1; T 2Þ and
the forward premium pðt; T 1; T 2Þ we need to choose the risk
aversion coefficients for the consumer and the producer, cc

and cpr, respectively. Since F cðt; T 1; T 2Þ (upper bound) and
F prðt; T 1; T 2Þ (lower bound) depend on the choice of cc and
cpr, we estimate cpr and cc by minimizing the distance
between F cðt; T 1; T 2Þ, F prðt; T 1; T 2Þ and the market prices
of forwards F ðt; T 1; T 2Þ, respectively, in the following way.

We examine the time range t ¼ 1 ¼ 02=Jan=2002 until
t ¼ 1461 ¼ 31=Dec=2005. For most days (excluding week-
ends and holidays) we have prices for forward contracts
with delivery one month, three months (quarter) and
twelve months (year). As long as there is a price on day
t, we determine all values of cpr and cc such that

F prðt; T 1; T 2Þ 6 F ðt; T 1; T 2Þ 6 F prðt; T 1; T 2Þ ð5:2Þ
and introduce intervals which contain the risk aversion
parameters. For all trading days t 2 ½1; 1461�, we define
the intervals I t

pr and I t
c containing values for cpr and cc by

guaranteeing that (5.2) holds. Thus, to find the ranges for
the parameters of risk aversion we implement the following
algorithm:

� t ¼ 1: Determine valid intervals I1
pr and I1

c such that
F prð1; T 1; T 2Þ 6 F ð1; T 1; T 2Þ 6 F cð1; T 1; T 2Þ, for all deliv-
ery periods ½T 1; T 2�, traded on day 1.

5 For more details on the estimation procedure see (Metka, 2007).



� t ¼ 2: Determine valid intervals I2
pr and I2

c such that
F prð2; T 1; T 2Þ 6 F ð2; T 1; T 2Þ 6 F cð2; T 1; T 2Þ, for all deliv-

To calculate pðt; T 1; T 2Þ and pðt; T 1; T 2Þ we split the data
in three non-overlapping periods. Table 4 lists the contracts
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Fig. 5. Spot and simulated spot prices.
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ery periods ½T 1; T 2�, traded on day 2.
� . . .
� t ¼ 1461: Determine valid intervals I1461

pr and I1461
c such

that F prð1461;T 1;T 2Þ6F ð1461;T 1;T 2Þ6F cð1461;T 1;T 2Þ,
for all delivery periods ½T 1;T 2�, traded on day 1461.

This algorithm guarantees that no forward prices
F ðt; T 1; T 2Þ will lay outside the bounds F prðt; T 1; T 2Þ and
F cðt; T 1; T 2Þ. Consequently the results show that
cpr 2 ½0:421;1Þ and cc 2 ½0:701;1Þ. In our calculations
we choose cpr ¼ 0:421 and cc ¼ 0:701 which seems a rea-
sonable working assumption where producers are less
risk-averse than consumers.

We continue by recalling that the market power and
market risk premium are given by

pðt; T 1; T 2Þ ¼
F ðt; T 1; T 2Þ � F prðt; T 1; T 2Þ
F cðt; T 1; T 2Þ � F prðt; T 1; T 2Þ

and

pðt; T 1; T 2Þ ¼ F ðt; T 1; T 2Þ � EP 1

T 2 � T 1

Z T 2

T 1

SðuÞdujFt

� �
:

Table 4
Forward contracts
t Type # Contracts

01/Jan/2002 Monthly 18
01/Jan/2002 Quarterly 7
01/Jan/2002 Yearly 3
03/Mar/2003 Monthly 7
03/Mar/2003 Quarterly 7
03/Mar/2003 Yearly 3
04/Oct/2005 Monthly 7
04/Oct/2005 Quarterly 7
04/Oct/2005 Yearly 6
e employ in every period. The key criterion is to include
the first period all contracts that were being traded on

nuary 2 2002. Then the second period starts when all
ntracts that were being traded on January 2 2002 are

o longer traded. Finally, the third period is defined in a
milar way.

Figs. 6–8 show our results when all forward contracts
at were being traded on January 2 2002 are taken into
count. In other words we show the results from 18
onthly contracts, 7 quarterly contracts and 3 yearly con-
acts (see Table 4).
In particular, Fig. 6 shows the results for the 18 monthly
ntracts that were trading on January 2 2002. As expected

e observe a decline in the producer’s market power as
me to delivery increases. For example, in the contract
ith delivery period closest to January 2 2002 the pro-
ucer’s market power is slightly over 0.80 and decreases

values below 0.30 corresponding to contracts that start
elivery on or after March 2003. Moreover, Figs. 7 and 8
ow the same behavior: a decaying market power for pro-

ucers, as time to delivery increases, for both quarterly and
arly forward contracts.

Delivery periods F ðt; T ; T Þ
1 2

Jan 2002–May 2003 F ð2; T 1; T 2Þ
2nd qtr 2002–4th qtr 2003 F ð2; T 1; T 2Þ
2003–2005 F ð2; T 1; T 2Þ
Feb 2003–Aug 2003 F ð400; T 1; T 2Þ
2nd qtr 2003–4th qtr 2004 F ð400; T 1; T 2Þ
2004–2006 F ð400; T 1; T 2Þ
Oct 2005–Apr 2006 F ð1373; T 1; T 2Þ
1st qtr 2006–3rd qtr 2007 F ð1373; T 1; T 2Þ
2006–2011 F ð1373; T 1; T 2Þ
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Fig. 6. Producer’s market power and market risk premium, 18 monthly contracts with t = January 2 2002.
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Fig. 7. Producer’s market power and market risk premium, 7 quarterly contracts with t = second quarter 2002.
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Fig. 8. Producer’s market power and market risk premium, 3 yearly contracts with t = 2002.
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Moreover, as predicted by our theoretical examples
above, the producer’s market power is much higher in

cit analytical connection between the market prices of risk
and market power with the degrees of risk aversion of the
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the short end for monthly contracts, Fig. 6, than for quar-
terly and yearly, Figs. 7 and 8. In the short-term, the pres-
ence of jumps incentivies consumer’s to hedge against risk
produced by upward spikes, i.e. exert upward pressure on
demand for forwards, whilst at the same time, producer’s
have less incentives to sell forwards when positive spikes
are present. Hence, we see that monthly forward contracts,
that start delivery relatively soon, trade at a high market
risk premium which in our framework is also reflected in
a high market power for producers. Furthermore, the fur-
ther away the start of the delivery period is, the presence of
price spikes, due to the fast mean reverting nature of the
spot price, poses negligible risks. This situation is evident
in the term structure of the producer’s market power and
market risk premium obtained from the quarterly and
yearly contracts which are roughly the same in both cases
(see Figs. 7 and 8).

We also depict results for the market risk premium. We
see that the risk premium pðt; T 1; T 2Þ shows a clear term
structure. As expected, pðt; T 1; T 2Þ is decreasing in
½T 1; T 2�, i.e. the further the delivery of the contract is, the
smaller the risk premium. In our model, this result can be
explained by the decreasing market power that producers
have; the larger the difference T 1 � t, the keener producers
will be, relative to consumers, to trade forwards. Hence,
forward prices will move away from the upper bound
F cðt; T 1; T 2Þ. As a result, the risk premium pðt; T 1; T 2Þ is
decreasing, and at some point in time, it becomes negative.
Finally, it is interesting to compare the point in time where
the risk premium changes its sign. When looking at the
term structure of pðt; T 1; T 2Þ obtained from monthly and
quarterly contracts we see that the change of sign occurs
around the months of April and May.

6. Conclusions
In this article we address the important question of what
C

L

M
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Sc
gives rise to the market risk premium. We provide a frame-
work that allows us to explain how risk preferences of mar-
ket players explain the sign and magnitude of the market
risk premium across different forward contract maturities.
A crucial step in our framework is to be able to incorporate
the relative eagerness consumers and producers show, via
their respective representative agents, to enter forward con-
tracts. We show that there is an attainable set where con-
sumers and producers are willing to strike a deal, but it is
this eagerness to hedge risk across different points in time,
which we label market power, what singles out a unique
equilibrium price for each forward contract.

Furthermore, these equilibrium prices that belong to the
attainable set must clearly correspond to those obtained
from pricing forwards under a risk-neutral measure. There-
fore, as an illustration of our approach, we looked at
wholesale electricity prices and were able to make an expli-
presentative agents. To exemplify our methodology fur-
er, we looked at particular examples where it was
raightforward to see how different sources of risk, for
stance jump or diffusion risk, contribute to the market
sk premium and we were able to obtain and explain the
ry distinctive characteristics observed in electricity mar-

ets as well as in other markets such as gas, oil, etc.
We apply our model to the German electricity market.

ur empirical results endorse our theoretical predictions.
or instance, we find that over short-term horizons, and

the presence of spike risk, producer’s market power is
its highest. For example, in the contracts with delivery

eriod closest to January 2 2002 the producer’s market
ower is around 0.80 and decreases to values below 0.30
rresponding to contracts that start delivery on or after
arch 2003. This situation is also reflected in the market

sk premium. Monthly contracts that mature in the near
ture, trade at a high premium, figures in excess of 15
uros. And monthly contracts that start delivery in a rela-
vely long period of time, for instance in 6 months or
nger, trade most of the time, at a high discount.
Finally, we generally observe that for each class of con-

act (monthly, quarterly or yearly) the producer’s market
ower and the market risk premium show a term structure
at is decreasing as time to maturity of the forward con-
act increases.
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