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ABSTRACT

Traditional dynamic hedging strategies are basetboal information (ie Delta and
Gamma) of the financial instruments to be hedged. We propose a new dynamic hedg-
ing strategy that employson-localinformation and compare the profit and loss (P&L)
resulting from hedging vanilla options when the classical approach of Delta- and Gamma-
neutrality is employed, to the results delivered by what we label Delta- and Fractional-
Gamma-hedging. For specific cases, such as the FMLS of Carr and Wu (2003a) and
Merton’s Jump-Diffusion model, the volatility of the P&L is considerably lower (in some

cases only 25%) than that resulting from Delta- and Gamma-neutrality.
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Since the seminal work of Black and Scholes (1973), a great deal of effort has been ex-
pended on proposing new models to describe the dynamics of securities under both the risk-
neutral and statistical measures. These models include stochastic volatility or time-changed
models, (Heston (1993), Stein and Stein (1991), Carr and Wu (2004)); jump-diffusion models
(Merton (1990), Kou (2002)); and more general jump processes (Madan and Seneta (1990),
Carr, Geman, Madan, and Yor (2002), Carr and Wu (2003a)).

Non-Gaussian models such as those mentioned above may be very versatile at capturing
some of the main characteristics of the distribution of financial securities, including skewness,
heavy tails and correlation. However, although these are characteristics that any model must
take into consideration, there are also the questions of how to price financial instruments
written on an underlying that follows one of these models and how to estimate the relevant
parameters under both the physical and risk-neutral measures. It is well-known that for the
majority of non-Gaussian models there is no unique equivalent martingale measure (EMM)
under which pricing is performed; exceptions include the fixed jump size Poisson model.
Therefore proposed models must not only look at the range of EMM’s arising from them, but

must also consider how a particular one is chosen, Carr and Wu (2003b).

Although thepricing of derivative instruments is key in financial modelling, trexlgingof
instruments is at least as important. Large market players or market makers are responsible for
the liquidity of instruments that are traded on a regular basis in the different exchanges but they
also trade most over-the-counter instruments such as tailor-made instruments, exotic options,
and other less liquid assets. Critical to the liquidity or availability of these instruments is the
ability to hedge them. Even though the literature seems to have made a great deal of progress
in providing an abundance of models and identifying how to estimate its relevant parameters,

the question of how derivative instruments can be hedged has largely been overlooked.



One of the key insights in the work of Black and Scholes (1973) and Merton (1990) was the
ability to hedge a vanilla optiovh (S t; T1, K1) written on a stocl&, that followed a geometric

Brownian motion, by forming a portfolio

P(St) =Vi(St;T1, K1) —a(S1)§

and making it risk-free by setting(S;t) = 0V (St)/0S at every instant in time. It is well
known that when Ii§ follows a non-Gaussian process it is not possible for the writer of an
option to hedge all the risk by continuously trading in the underlying. Therefore, an alternative
approach has been to hedge the option by trading in the underlying and another instrument,
say V»(St; Tp,Ko), written on the same underlying. This strategy is known as Delta- and

Gamma-hedging. The idea behind this approach is to set up a portfolio

P(St) =Vi(St; Ty, K1) —a(St)S —b(St)Va(St; T2, Ko)

and make it Delta- and Gamma-neutral, in other words, cha@é) andb(S t) so that

PESYH _ g g 0°P(St)

S iz O

Although, on average, Delta- and Gamma-hedging generally performs ‘better’ than Delta-
hedging, it still leaves the writer of the option considerably exposed to large movements in
the underlying stock price. One of the reasons why the traditional Delta- and Gamma-neutral
strategy may offer very little protection against large movements in the underlying stock price
is because the information upon which the hedging strategy operates is based on ‘local’ infor-
mation, ie the first and second derivatives of the portfBli§,t) with respect td&g. Hence, as

long as the stock price does not move by a ‘considerable’ amount over the next time-step, for
which the quantitiea(S t) andb(St) are held constant, then the Delta- and Gamma-hedging
strategy will offer reasonable protection to the writer of the option. However, if the stock price

can jump or exhibit large movements over a small period of time or between rebalances of the



portfolio, a hedging strategy based on local information such as the Delta and Gamma will

perform poorly.

The main contribution of this article is to propose a new dynamic hedging strategy to
hedge financial instruments written on securities that follow a non-Gaussian process. We
generalise the strategy of Delta- and Gamma-hedging by choaé8 andb(S;t) based
on ‘non-local’ information, which is obtained by looking at fractional (non-integer) integrals
and derivatives of the financial instruments in the portfé{& t). We also show that there
is an interesting connection between some of the most popular jump models for equity and
fractional calculus. Furthermore we show for the first time that the pricing equations for
European-style options, where the underlying follows a wide class of Lévy processes, is given
by what we call the Fractional-Black-Scholes (FBS) equation; this is a pricing equation with

non-integer derivatives and integral operators, ie fractional operators.

The rest of the paper is structured as follows: Section | introduces the concepts of fractional
integrals and fractional derivatives and proposes a novel dynamic hedging strategy, based on
fractional derivatives, that can be used to hedge portfolios written on securities that follow non-
Gaussian processes; Section Il describes the family of Lévy processes and looks at specific
cases which have become some of the most important models describing the evolution of
share prices; Section Il tests the dynamic hedging strategies identified in section | when
securities follow non-Gaussian processes, including some of the jump processes discussed in
section II; Section IV shows that when it is assumed that stock prices follow some of the
most popular Lévy-based jump models, for example the CGMY or FMLS (Carr, Geman,
Madan, and Yor (2002) and Carr and Wu (2003b)), then the pricing equation satisfied by
European-style options written on these stocks satisfy a fractional partial differential equation;

and Section V concludes.



|. A Dynamic Hedging Strategy for Non-Gaussian Securities

The principal purpose of this article is to address the question of how financial derivatives can
be hedged when the underlying security follows a non-Gaussian process. We will propose, and
test, a hedging strategy based on the theory of fractional integration and differentiation. We
start by introducing the fundamental concepts of fractional integrals and derivatives as well
as a generalisation of Taylor’s series that we later employ to develop a new dynamic hedging

strategy.

A. Fractional Calculus

Definition 1 The Riemann-Liouville Fractional Integral. The fractional integral of ordey

of a function {x) is given by
D100 = o [0y v>0, )
and
y 1 b 1
D100 = [0 My y>0 @

wherel is the gamma function.

For details we refer the reader to Miller and Ross (1993) and Podlubny (1999).

One way to obtain fractional derivatives is to ‘view’ them as integer derivatives (ie common

differentiation) of a fractional integral.



Definition 2 The Riemann-Liouville Fractional Derivativelf n is the smallest integer larger

than the numbey, then the right and left fractional derivatives of ordgof the function f is

given by
DVf(x)—;d—n X(x— )”‘V‘lf( )d n—1<y<n (3)
alx - r(n_y) dxn a y y y —y )

and
D) f(x) = (=D° dt b(y—x)”_y‘lf(y)dy n—1<y<n (4)
X7b M(n—y)dx" Jx - ’

where n is a Natural number addis the gamma function.

Note that whera = —c andb = o the Fourier transforms of the right and left fractional

derivatives are given by
F{-=DYf(x)} = (-i&)f(§) and 7 {DLF(X}=(i&)'f(?), (5)

where
T{f(x)}:f(i):/_wejzxf(x)dx and EeC.

There are also different Taylor's expansions based on fractional operators. We present an

example which we later use to develop dynamic hedging strategies.

Proposition 1 Fractional Taylor's Expansion, Samko, Kilbas, and Marichev (1993).et
Yo = 0,v1,...,Ym be an increasing sequence of real numbers such @haty, — yk_1 < 1,

k=1,2,....m. Let x>0, f(x) having all continuous derivatives and introduce the notation

DI £(x) = oDy MYVt oDY Mt (x)



and remark that DV f (x) #£ oD¥f(x). Then the generalised fractional Taylor’s expansion is

given by

m-1 p{w} f (0)

f(x) = Mot e ) Oy i )y ©

& T(1+Y) M(1+Ym) Jo

B. Hedging: Delta and Fractional-Gamma neutral strategy

In practice, the pricing of options is as important as the question of how to hedge them. In
the classical Black-Scholes model the hedging of a portfl®t), consisting of a European-

style derivativé/; (S t; Ty, K1) expiring atTy and struck aK1, and the underlyin&, is achieved

by continuous Delta-hedging; that is, holding an amaWatS t; T1, K1) /dSof the underlying

S at every instant in time guarantees that the portfolio is risk-free. In practice however, it
is impossible to employ a dynamic strategy that requires rebalancing the portfolio at every
instant in time; therefore rebalances are done discretely. For example, in the Black-Scholes
framework, the less frequently hedges take place the larger the hedging error will be, due

mainly to the convexity, known as Gamma, of the value of the option.

Therefore, the classical approach of Delta-hedging a portfolio
P(St) =V(St;T1,K1) —a(St)s, )

wherea(St) is the number of share3 held over the time-stejp,t + At), requires thas(St)
is chosen such that the portfolio is Delta-neutralpi¢S,t) /0S= 0. The hedging error will
depend on the size of the higher order terms of the series

1 0°P(Sit)
31 03

RS . PESY o 19°P(SY)
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AP(St) = (AS3+---.  (8)

Hence, ifitis not feasible or if it is too expensive to hedge an option as frequently as one would
desire, one approach is to use a portfolio as shown in (7), which includes another instrument

written on the same underlying, and make this new portfolio both Delta- and Gamma-neutral.



In other words, form a portfolio consisting of the option to be hedged \Vsé$ t; T1, K1),
and then choose an amouwa(iS;t) of the underlying stock and an amouwfiS;t) of another

instrument, say»(St; T2, Ky), that is also written o

P(St) =Vi(St; T, K1) —a(St)S —b(St)V2(St; T2, Kp)

so thatdP(S,t) /0S= 0 andd?P(S;t) /oS = 0.

The rest of this section looks at a new dynamic hedging strategy. We must stress that the
hedging strategies we propose below can be applied to heugnancial instruments and
therefore it is not a pre-requisite that the instruments are written on an underlying that follows
a particular stochastic process. In Section lll, the performance of the hedging strategies will
be assessed for different models through the use of simulations; we will look in detail at the
hedging of call options when the underlying follows a geometric Lévy-Stable (LS) process,
geometric FMLS process (both discussed below in section Il) and Merton’s Jump-Diffusion
(MJD) process. We identify that it is sufficient, using put-call-parity, to set a static hedge
in order to hedge vanilla options; however, our objective is to construct a dynamic hedging
strategy that will provide insight into the question of how to hedge derivatives written on

securities that follow non-Gaussian processes.

Our proposed hedging strategy is based on the generalised Taylor's expansion (6). The
idea is the following. Given that most of the processes we are interested in exhibft large
movements or jumps in the underlying stock price, using the classical Delta-hedging strategy
will, on average, expose the writer of the option to large hedging errors even if Delta-hedging
is performed as often as possible. As mentioned above, one way to proceed is to use a Delta-
Gamma-neutral strategy. As a generalisation of this approach we propose what we call a
Delta- and Fractional-Gamma strategy that instead of making the portfolio Delta-neutral and

Gamma-neutral, makes the portfolio Delta-neutral gD§P(S, t)-neutral with 1< y < 2.



Therefore the aim is to set up a portfoR§S;t) to hedge the optioV;(St; T1,K1) by

trading in the underlying and another option:

P(St) =Vi(St; Ty, K1) —a(St)§ —b(St)Va(St; T2, Ky) (9)

whereV,, i = 1,2, are options written on the underlyilgywith expiry Ty < T, and struck at

Ky andK; respectively. The quantitie§St) andb(St) are the amounts of the underlying
and the optionz(Sit; T, Kz) that must be held in the hedge portfolio. Therefore, if we look

at the change in the value of the portfolio using the generalised fractional Taylor's expansion

presented in (6) above, witly = 0, y1 = 1 andy, = y and with 1< y < 2, we obtain

y
dP(S,t) = apézt)ds-l- OS(S::?-(FS;;) (dS>V+ , (10)
and require
a&iwzzﬁf§§w-—a%§§t%xst) (11)
where y )
b(St) = oDgVi(St) —aVi(St)/0SoDsS (12)

~ oDAVa(X,t) — OVa(x,t) /0SoDES |
such that the portfolio is both Delta- and Fractional-Gamma-neutral, ie

0P(St)

_ y _
s =0 and  oDgP(St) =0.

For the specific instance wheye= 2, the derivativeDLV (S,t) = 82V (S,t)/0<, and this

derives the classical Delta- and Gamma-neutral strategy

_OVi(St) 0Va(St) _ PVy(St)/08?

a(Sit) = b(St) and Db(St)= 3, (S1) [0S

0S oS (13)

The use of ‘non-integer’ derivatives to hedge a portfolio is intuitively appealing because

the fractional derivativeDLP(St), when 1< y < 2, weighs information about the value of



the portfolio in the interval0, S| as opposed to only using localised information at the point
S. Appendix B depicts fractional derivatives of the value of options written on assets that
follow non-Gaussian processes. For example, Figure 10 shows fractional derivatives of an
optionV(Sit;T,K) with T = 10 andK = 100 where the log-stock price follows an FMLS
process of Carr and Wu (2003b) with= 1.5, (see subsection A below where we present the
FMLS model). It is clear from the picture that when the traditional measure of Gamma is
very close to zero for stock prices below 90 or above 120, the fractional derivatives for values

y={2,1.8,1.6,1.4} still have positive values ranging between 0.01 and 0.25.

Before proceeding it should be noted that it is not necessarily true that performing Delta-
and Gamma-hedging is always ‘better’ than performing Delta-hedging. By inspecting series
(8) it may be the case that, even if the second and third terms in the right-hand-side of the
equation are zero at the beginning of the time-step+ At), the higher order terms of the
series are of considerable magnitude; this depends on the high order derivatives of the options
Vi(St; T1, K1) andVa(Sit; To, K2).

lI. Jump models

The purpose of this section is twofold. First, since we are interested in testing the proposed
fractional hedging strategies described above, we introduce a class of jump models known
as Lévy processes and focus on particular members of this class. Second, in section IV, we
show another application of fractional calculus in continuous-time finance by showing the

connection between fractional pricing equations and the processes presented here.

The use of jump processes to model the dynamics of securities has become a very popular
tool over the last decade. Although Brownian motion, the Lévy-Stable (LS) model proposed
by Mandelbrot (1997) and jump diffusion models, (see Merton (1990)), belong to the family
of Lévy processes, the work of Madan and Seneta (1990) was the first to propose the use of

a particular class of Lévy process, known as the Variance Gamma, to model the uncertainty



underlying security prices. A stochastic proc¥gs a Lévy process iKg = 0 and if and only
if it has independent and stationary increments. A simple characterisation of Lévy processes is
given by the Lévy-Khintchine representation or characteristic function of the process, which

we present in Proposition 4 in the Appendix.

One fundamental question that must be answered is what criteria should be employed
when choosing a particular Lévy process to model the evolution of a specific underlying. In
the case of stock prices this question has been asked, and answered, at different points in time.
Arguably the most intuitive and theoretically sound choice of a Lévy model for share prices, is
that of Carr, Geman, Madan, and Yor (2002) which is based on the structure of asset returns.
Their starting point is to replace Brownian motion, as the driving stochastic component in
the formation of prices, with a process that can provide a much richer structure for moments
of high order. The authors justify the choice of the Lévy density), which determines
the frequency and magnitude of jumps in the process, based on simple, yet very important,
characteristics observed in the markets. For example, it seems plausible to expect that the
larger the size of the jump in the stock price, the less frequently they occur. Conversely, the
smaller the jump size the more frequently they occur. Therefore, by restricting the choice of
the density of jumps, and imposing the requirement that exponential moments as well as high
order moments exist, a very simple functional form for the Lévy density is arrived at; they
labelled the resulting process the CGMY process. Boyarchenko and Leveﬁldmﬂﬂ) also
proposed a family of Lévy processes, very similar to the CGMY, called KoBoL or Damped
Lévy (DL), which was based on the work of Mantegna and Stanley (2000) and Koponen
(1995).

Another interesting choice of Lévy process to model equity prices is in the recent work of
Carr and Wu (2003a). They show that one way to capture the term structure of the implied
volatility of S&P 500 option prices is by assuming that the shocks to the log-stock process
follow a maximally skewed LS process; they christened this the Finite Moment Log Stable
process (FMLS).

10



We now proceed to discuss LS processes for the first time and it will become clear that
the other processes (CGMY, DL, KoBoL) can be ‘constructed’ by introducing an exponential

damping in the tails of the LS process.

A. Stock Price Models

We first look at the LS model introduced by Mandelbrot (1997) in the 1960s. His choice of
model was driven by two important considerations. Empirically, Gaussian models do not fit
data well due to the fast decay of the tails. Theoretically, if underlying security prices are the
cumulative outcome of many small independent events then, by the Generalised Central Limit
Theorem, Feller (1966), their cumulative behaviour is characterised by a limiting distribution;
namely the LS distribution. One of the most important shortcomings of working with LS
processes, with the exception of the Gaussian case, is that variance is infinite and exponential
moments, unless the distribution is maximally skewed, do not exisX; i an LS process

then the behaviour of its jumps is determined by the Lévy density

—1-a

Cqlx| for x < 0,

W|_5(X) =
Cpx 1@ forx>0,
and the natural logarithm of its characteristic function is given in terms of the parameters

K, B andm by

—tk9|€|? {1 —iBsign&)tanat/2)} +imtE for a # 1,

INE[¥] =tW(E) = i
NE[eY] =tW(E) _tK|E|{1+2I_nﬁsig,~(§)|n|g|}+imt§ for ot = 1.

(14)

If the random variablX belongs to an LS distribution with parameter, 3, m, we write
X ~ & (K, B, m). The parameten is known as the stability index or characteristic exponent,
is a scaling paramete,is a skewness parameter ands a location parameter. We note that if

Xis an LS random variable with characteristic exponeatd< 2, then for the caseQ a <1

11



the random variabl&X does not have any integer moments and for the casetl< 2 only
the first integer moment exists. When= 2 the random variablX is Gaussian. Moreover,

exponential moments are finite wh¥ns maximally skewed to the left, g= —1.

As mentioned above, another process that has rapidly become a very powerful model for
financial securities is the CGMY. This process is a pure jump Lévy process (ie it has no

Brownian motion component) with Lévy measi&dx) = weemy(X)dX

ceM forx <0,
WeaMy(X) = M (15)
Cémv forx>0,

and log-characteristic function given by
tWeamy(E) = tCT(Y) {(M—i&)Y —MY + (G+i§)" —G'}. (16)

HereC > 0,G >0, M > 0 andY < 2.3 The paramete€ may be viewed as a measure of the
overall level of activity. The paramete@&andM control the exponential decay of the left and

right tail respectively. Moreover, whed = M, the distribution is symmetric.

Finally, the DL or KoBoL process is also a pure jump Lévy process with Lévy density

WDL(X) = (17)

Cajx| 1 %e M forx <O,
Cpx 1% ™  forx>0,

whereas in the LS case,0a <2,C>0,A >0 andp,q > 0 with p+q=1. The log-

characteristic function is given by

tWpy (&) =tk {P(A —i&)% +q(A +i&)* =A%} +imte,

(18)
tWpL (&) =tk {p(A —i&)® +q(A +i&)* — A" —i&ar* }(q— p) } +imtE,

for 0 < a < 1 and for 1< a < 2 respectively.

12



When X belongs to a DL distribution with parametess K, p, g, m and A we write
X ~ DLq(K, p,g,mA) and the parameters have a similar interpretation as in the LS process.
Note thatA introduces an exponential damping in the tails of the distribution and the DL and

LS are the same when= 04

Before testing the proposed fractional hedging strategies we must also discuss the connec-
tion between the risk-neutral and statistical dynamics of the stock price. The pricing of finan-
cial instruments, where the underlying security is modelled via exponential Lévy processes,
is not as straightforward as that based on Brownian motion. Markets are not complete when
there are jumps in the underlying stock price and therefore there is no unique martingale
measure under which prices are calculated. It is the market who ‘chooses’ the correspond-
ing risk-neutral EMM. Moreover, in theory, hedging strategies could be constructed where
every possible jump in the underlying is hedged with another financial instrument. However,
this seems impossible in practice since a continuum of options would be required for such a

strategy to work.

In the Lévy process literature it is generally assumed that the underlying security follows
both a Lévy process under the physical and risk-neutral measures and different EMMs have
been proposed to link these two measures. One simple method to derive an EMM is to assume
that the process under both the physical and statistical measures has the same shape but a
different location. Another method is to use the Esscher transform, see Schoutens (2003),
Cont and Tankov (2004).

In the case of the CGMY process, Carr, Geman, Madan, and Yor (2002) assume that
log-stock prices follow a CGMY process under the statistical and physical measures where
the risk-neutral parameters of the stock process,Gag, M andY, may differ from their

statistical counterparts, G, M andY.

Finally, McCulloch (2003) showed that, if it is assumed that under the physical measure
asset prices follow a geometric LS process (with no restriction on the skewness of the distrib-

ution of the LS shocks), then the pricing of derivatives under the risk-neutral measure can be

13



performed by assuming that the logarithm of the underlying follows a combination of two in-
dependent processes: a maximally negatively skewed process (ie the FMLS) and a maximally

skewed to the right DL process (= 1 in (18)).

l1l. Simulations

In this section we test how our Delta- and Fractional-Gamma-neutral strategy performs. We
have assumed that there are no transaction costs and that the markets are liquid. For illustrative
purposes we will compare the profit and loss (P&L) obtained from hedging a portfolio using
the fractional strategy proposed above, with the results given by performing the more common
Delta- and Gamma-neutral strategy. For completeness, we also show what happens when
only Delta-hedging is employed and in Appendix C we show how to evaluate the fractional
derivatives used in the hedging strategies. We look in detail at the FMLS process, the LS

process, and the MJD process.

A. Hedging in the FMLS model

Here we illustrate how the Fractional-hedging strategy performs when compared to simple
Delta-hedging and to the more common Delta- and Gamma-neutral hedging strategies, when
the log-stock process follows an FMLS process. In this model the statistical dynamics of the
stock price are given by

d(Ing) = udt+odLEMES

and under the risk-neutral measure it follows
d(InS) = (r +0%sedarn/2))dt+ odLf M-S

wherep > 0,dLfMS ~ 5, <dt1/°‘, —1, O) is a maximally skewed LS motion and<la < 2.

14



In order to test the proposed dynamic strategy we must simulate price paths for the maxi-
mally skewed LS motion. The shocks to an LS motion are givenAby®@ where
¢~ S(1,B,0) andAt is the time-step. Skewed LS random variables can be constructed by
combining symmetric LS; Proposition 6 in Appendix D shows how symmetric LS random

variables can be generated.

Figure 1 shows a histogram of the P&L function of a portfolio that has been Delta-hedged
daily for a European call option expiring in one month,Tie= 20 working days. The log-
stock price follows an FMLS process with= .05,0 = 0.20,3 = —1 anda = 1.5. We have
assumed that =0, = 100,K; = 100, that the stock pays no dividends, and we have per-
formed N = 10,000 simulations. As expected, performing Delta-hedging is not enough to
hedge the frequent and often sizeable jumps in the underlying. On average, the P&L of the
Delta-hedged portfolio is £ -0.06 but with a standard deviation of 5.01 and values ranging from
min= £ -94.75 to max= £ 2.43. Although it is impossible to hedge all of the jumps in the
underlying, one possibility is to hedge the portfolio, using a second option written on the
same underlying, by making it Delta- and Gamma-neutral. The second option used in the
hedge portfolio had an expiry date ©f = 25 working days and a strike &, = 100. Fig-
ure 2 shows the results for this strategy. As expected, since we are using two instruments
in the hedging strategy, the results are considerably better than those resulting from simple
Delta-hedging. On average the P&L function of the Delta- and Gamma-neutral portfolio is
£ -0.007 with a standard deviation of 1.58 and values ranging between min= £ -57.69 and
max= £ 46.10. Finally, Figure 3 shows the results from employing our proposed Delta- and
Fractional-Gamma-neutral strategy wjtk- 1.5. The improvement over the traditional Delta-
and Gamma-neutral strategy is substantial. The fractional strategy considerably reduces the
exposure to large movements in the underlying. The mean of the P&L function is £ -0.0004
with a standard deviation of 82 and values ranging from min= £ -8.03 to max= £ 18.16. Ta-
ble | summarises these results and also shows the results from Delta- and Fractional-Gamma
hedging for a range of values between 1.1 and 1.%.fdris important to note that the frac-

tional strategy that delivered the smallest standard deviation of the P&ly weak5 and the

15



FMLS Delta hedging, a=1.5
T

140

Mean= —0.060
STD= 5.01
Max= 2.43
Min= —94.75
100 - -

®
o
T
|

Frequency

60 - =

o "
—100 —80 —60 —40 —20 o 20
Profit and Loss

Figure 1. Daily Delta-Hedging. P&L resulting from daily Delta-hedging under the assump-
tion that the stock price follows an FMLS process.

one that delivered the highest lower bound for the P&L was the one performedyusitd.
Moreover, we repeat the simulations but vary the strike price of the second option. Table I
summarises the results from usidg = 95 and Table Il from usingl, = 105. In both cases

the fractional strategies deliver better results than Delta- and Gamma-hedging.

FMLS, a =1.5,% = 100,K; = 100,K> = 100,T; =20, T, = 25
y=11 y=12 y=13 y=14 y=15 y=16 y=17| y=2 Delta
Mean| -0.0029 -0.0028 -0.0025 -0.0016 -0.0004 0.0034 0.0p8B0070 -0.0604
STD | 0.5191 0.5113 0.4937 0.4606 0.4288 0.4853 0.6[/415894 5.0198
Max | 21.02 20.77 20.30 19.57 18.16  20.70  25.4046.10 2.43
Min | -12.77 -12.39 -11.55 -9.99 -8.03 -7.78  -12.81:57.69 -94.75

Table |
P&L statistics from N = 10,000simulations. We show Delta- and
Fractional-Gamma-neutral strategies for variousy's and the last two columns show the
Delta-Gamma-neutral strategy (iey = 2) and Delta-neutral strategy respectively.
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FMLS Delta—Gamma hedging, a=1.5
T T T

250

Mean= —0.007
200 STD= 1.58 i
Max= 46.10

Min= —57.69

i
[
o

Frequency

100

50

o
Profit and Loss

Figure 2. Daily Delta- and Gamma-Hedging.P&L resulting from employing a Delta- and
Gamma-neutral strategy when the underlying follows an FMLS process.

FMLS Delta—Fractional-Gamma hedging, a=1.5, y=1.5
T

150 T T T T
Mean= —0.0004
STD= 0.42
Max= 18.16
Min= —8.03
100 - -
>
3
=
7]
S
=
=4
[
50 - -
o ! 1 i L !

—-20 —15 —-10 -5 o 5 10 15 20
Profit and Loss

Figure 3. Daily Delta- and Fractional-Gamma-Hedging.P&L resulting from employing a
Delta- and Fractional-Gamma strategy when the underlying follows an FMLS process.
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FMLS,a =1.5,% =100,K; =100,K; =95,T1 =20, T, = 25
y=11 y=12 y=13 y=14 y=15 y=16 y=17| y=2 Delta
Mean| -0.0284 -0.0285 -0.0288 -0.0295 -0.0312 -0.0339 -0.03-011540 0.0946
STD | 1.6325 1.6281 1.6187 1.6011 1.5774 15729 1.62%H7067 4.0185
Max | 49.54  49.24  48.49 46.69 42.82 37.35 41.47197.87 2.46
Min -5.29 -5.24 -5.23 -5.22 -5.22 -5.27 -6.18 -30.57 -81.00
Table Il

P&L statistics from N = 10,000simulations. We show Delta- and
Fractional-Gamma-neutral strategies for variousy's and the last two columns show the
Delta-Gamma-neutral strategy (iey = 2) and Delta-neutral strategy respectively.

FMLS,a =1.5, % =100,K; =100,K, =105,T; =20,T, =25
y=11 y=12 y=13 y=14 y=15 y=16 y=17| y=2 Delta
Mean| 0.0017 0.0017 0.0017 0.0016 0.0015 0.0011 0.0062.0043 0.0087
STD | 2.3193 2.3166 2.3097 2.2936 2.2614 2.2136 2.1/@4742 4.6324
Max | 4.07 4.07 4.06 4.03 3.96 3.79 3.97 1.64 2.37
Min | -45.56 -45.52 -45.39 -45.07 -44.36 -43.21 -42[0456.82 -89.84
Table I1I

P&L statistics from N = 10,000simulations in the LS model. We show
Delta-Fractional-Gamma-neutral strategies for variousy's and the last two columns
show the Delta- and Gamma-neutral strategy (i = 2) and Delta-neutral strategy
respectively.

B. Hedging in the LS model

Here we assume that under the physical measure the price process follows a geometric LS

process
d(Ing) = pdt+ odL:S, (19)

wheredLS ~ S (dt B,0) with 0 < a <2, -1 <B <1, u> 0 ando > 0. Under the
1

risk-neutral measure, see (D9) in the appendix, it follows that
d(InS) = (r — Ba® sedar/2))dt+ odi-S+ odl Pt
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whered( S anddiP" are independent and as stated in (D10). This is not only an interesting
case from a financial point of view but also one that can be used to stress-test hedging strategies
given the heavy tails of the process. As mentioned earlier, the shocks to the stock dynamics

shown in (19) above, have infinite variance and exponential moments do not exist.

We proceed as above and compare the results of hedging a European call option, (where
S = 100,K1 = 100 andT; = 20) with a second option (wheke = 100 andT, = 25), using
the Delta- and Fractional-Gamma-neutral strategy, with the more familiar Delta- and Gamma-
neutral strategy. For illustrative purposes we simulate stock prices using Proposition 6 (in
Appendix D) whermt = 1.7, 3 = —0.5, p= 0.05 ando = 0.20. Moreover, for simplicity, we

assume that the risk-free rate- 0 and that the stock pays no dividends.

Figures 4, 5 and 6 show histograms of the P&L and Table IV summarises the results of
the simulations using a range of fractional derivatives. We highlight that in this case we can-
not show the standard deviation of the P&L since, under the physical measure, exponential
moments of the log-stock price do not exist. Note that when the traditional Delta- Gamma-
neutral strategy is employed, assumikg= 100, the resulting P&L is within the interval
[—10146,63004] which contrasts sharply with the range5.45,7.70], obtained when frac-
tional strategies are used wih= 1.4. Moreover, Table V shows the results from another set
of simulations assuming that the strike of the second opti&a is 105. In this case the Delta-
Gamma-neutral strategy delivers P&L results within the intefrvdll. 66,452 15 whereas for

all the fractional strategies the resulting P&L lie betwéeB9, 81].
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LS Delta hedging, a=1.7, B=-0.5
T T T

300
Mean= -0.508
250 - Max=  2.34 T
Min= -4,353
200 - B
=
2
S 150 -
(]
[
100 - B
50 - B
. L L L . . i
—300 —250 —200 —150 —100 -50 o

Profit and Loss

Figure 4. Daily Delta-Hedging. P&L resulting from using the Black-Scholes Delta-hedging
strategy.

LS Delta—Gamma hedging, a=1.7, B=-0.5
T T

100
90 - —
Mean= 0.050
Max= 630.04
80 - Min= -101.46 T

Frequency

o
Profit and Loss

Figure 5. Daily Delta- and Gamma-Hedging. P&L resulting from using a Delta- and
Gamma-neutral strategy.
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LS Delta—Fractional-Gamma hedging, a=1.7, 3=—-0.5
100 T T

90 - -
Mean= —0.002
Max= 7.70

80 - Min= —-5.45 I

70 - =

60 - =

50 - =

Frequency

a0 g

30 =

10 =

Yrm

o
Profit and Loss

Figure 6. Daily Delta- and Fractional-Gamma-Hedging.P&L resulting from using a Delta-
and Fractional-Gamma strategy with- 1.4.

C. Hedging in the MJD model

Here we show how Delta- and Fractional-Gamma-hedging compares to Delta- and Gamma-
hedging when the underlying security follows a jump diffusion model as proposed by Merton

(1990). This model proposes that under the physical meaSuialows

g—s = pdt+ odW + (J—1)dg

wherepis a constanty > 0, dW is the increment of a standard Wiener process a Poisson
process with intensity parametgr andJ; is a sequence of i.i.d. random variables such that

InJ ~ N(uJ,oﬁ) andW, g; andJ;’s are independent.

We assume that under the risk-neutral measure the stock price follows
== (r — Z0% = A\(Ey[J] - 1)) dt+odW + (J—1)dg

wherer is the risk-free rate andW is the increment of Brownian motion.
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LS,a=1.7,=-0.5,S=100,K; = 100,K, = 100,T; = 20, T, = 25

y=11 y=12 y=13 y=14 y=15 y=16 y=17| y=2 Delta
Mean| -0.0073 -0.0069 -0.0059 -0.0027 0.0050 0.019 0.03®.055 -0.508
Max 7.19 7.25 7.40 7.70 63.70 190.00 362.7330.04 2.34
Min | -37.18 -34.51 -25.77 -5.45 -5.89 -8.62 -12.80101.46 -4,353
Table IV

P&L statistics from N = 10,000simulations in the LS model. We show
Delta-Fractional-Gamma-neutral strategies for variousy's and the last two columns
show the Delta- and Gamma-neutral strategy (ie/ = 2) and Delta-neutral strategy

respectively.

LS,a=17,=-0.5,S=100,K; = 100,K; = 105,T; = 2

0, T, =25

y=11 y=12 y=13 y=14 y=15 y=16 y=17

y=2 Delta

Mean| 0.0268 0.0269 0.0270 0.0274 0.0285 0.0306 0.083871069 -0.0449
Max | 74.47 74.67 75.12 76.04 77.62 79.47 80.83152.15 2.53
Min | -38.46 -38.37 -38.17 -37.73 -36.93 -35.82 -349241.66 -199.12

Table V

P&L statistics from N = 10,000simulations in the LS model. We show
Delta-Fractional-Gamma-neutral strategies for variousy's and the last two columns
show the Delta- and Gamma-neutral strategy (ie/ = 2) and Delta-neutral strategy

respectively.

Table VI shows results fromt = 10,000 simulations for the MJD model with parameters

n=.05,0=0.2,0;=0.2, =0 and assuming that the stock price jumps on avekage

5 times per year. As above, we have assumedrthat0, Ty = 20, T, = 25, K1 = Ky =

100 andSy) = 100. It can be appreciated from the results that the Delta- Fractional-Gamma
strategy with 11 <y < 1.7 delivers considerably better results than the Delta- Gamma-neutral
strategy. Figures 7 and 8 show the histograms for the P&L resulting from the simulations for

Delta hedging and Delta- and Gamma hedging. Figure 9 shows the histogram for Delta- and

Fractional-Gamma hedging whgs= 1.1. This value delivered the lowest volatility, which is

approximately 30% of the volatility of the P&L resulting from the classical Delta- and Gamma
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MJD Delta hedging
70 T T

60 -

Mean= —0.0173
STD= 5.56
Max= 3.74
50 Min= -74.14
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—80 —-70 —60 —50 —40 —30
Profit and Loss

Figure 7. Daily Delta-Hedging. P&L resulting from using the Black-Scholes Delta-hedging
strategy.

hedging strategy. Moreover, Tables VIl and VIl show simulations for the cases Whef®5

andK; = 105 respectively.

MJD, & = 100,K; = 100,K, = 100,T; =20, T, =25,A=5
y=11 y=12 y=13 y=14 y=15 y=16 y=17| y=2 Delta
Mean| 0.0005 0.0004 0.0001 -0.0008 -0.0033 -0.0086 -0.01680521 -0.0173
STD | 0.7453 0.7465 0.7492 0.7582 0.7975 0.9361 1.23064194 5.5602
Max | 10.07 10.23 10.66 11.66 13.67 16.48 21.8941.90 3.74
Min | -9.87 -10.08 -10.60 -11.86 -14.83 -20.99 -31.5368.28 -74.14

Table VI
P&L statistics from N = 10,000simulations in the LS model. We show
Delta-Fractional-Gamma-neutral strategies for variousy’s and the last two columns
show the Delta- and Gamma-neutral strategy (i = 2) and Delta-neutral strategy
respectively.
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MJD Delta—Gamma hedging
T
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Figure 8. Daily Delta- and Gamma-Hedging. P&L resulting from using a Delta- and
Gamma-neutral strategy.

MJD Delta—Fractional-Gamma hedging
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Figure 9. Daily Delta- and Fractional-Gamma-Hedging.P&L resulting from using a Delta-
and Fractional-Gamma strategy with- 1.1.
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MJD, § = 100,K; = 100,Kp =95,T1 =20,T, =25,A=5
y=11 y=12 y=13 y=14 y=15 y=16 y=17| y=2 Delta
Mean| -0.0044 -0.0043 -0.0043 -0.0044 -0.0048 -0.0060 -0.00850282 -0.0418

STD | 2.66 2.66 2.66 2.65 2.66 2.69 2.78 8.42 5.44
Max | 23.94 23.77 23.36 22.38 20.48 19.26 22.2863.53 3.80
Min | -38.45 -38.51 -38.65 -38.96 -39.57 -40.47 -41.0651.11 -55.57

Table VII
P&L statistics from N = 10,000simulations in the LS model. We show
Delta-Fractional-Gamma-neutral strategies for variousy's and the last two columns
show the Delta- and Gamma-neutral strategy (iey = 2) and Delta-neutral strategy
respectively.

MJD, & = 100,K; = 100,K, = 105,T1 = 20,T, =25,A =5
y=11 y=12 y=13 y=14 y=15 y=16 y=17 \ y=2
Mean| -0.0483 -0.0485 -0.0489 -0.0499 -0.0519 -0.0547 -0.054B0899 0.0307

STD | 2.49 2.49 2.50 2.54 2.62 2.77 3.02 12.96 5.35
Max | 38.71 38.86 39.20 39.85 40.88 41.87 48.07321.89 3.98
Min | -23.36 -23.32 -23.26 -23.21 -23.30 -23.86 -38.5658.27 -67.43

Delta

Table VIII
P&L statistics from N = 10,000simulations in the LS model. We show
Delta-Fractional-Gamma-neutral strategies for variousy’s and the last two columns
show the Delta- and Gamma-neutral strategy (i = 2) and Delta-neutral strategy
respectively.

V. Other Applications: Fractional Black-Scholes equations

The pricing of European-style options written on assets that follow non-Gaussian processes,
such as Lévy processes, has become a very straightforward task when transform methods are
used, Carr and Madan (1999) and Lewis (2001). On the other hand, although progress has

been made with regards to the pricing of other types of options, such as American and exotic,
there is still scope to develop better and more accurate methods.
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Although until now the theory of fractional calculus had not been applied to the field
of finance, there is a wealth of literature, and associated findings, from the theory of frac-
tional differential equations that may prove useful in helping to solve current problems in
continuous-time finance. Therefore in this section we show another way in which financial
instruments are closely related to fractional calculus. We show that if the risk-neutral dynam-
ics of the log-stock process follow a Lévy process such as the specific cases discussed above
in section I, then the corresponding pricing equation satisfied by instruments written on these
assets satisfies a FBS, which is a pricing equation with fractional derivatives or fractional inte-
grals. Below, we use the following proposition to show the connection between these families
of Lévy processes and their corresponding FBS equations. The proposition shows that the
(Fourier transformed) value of a European-style option, where the underlying follows a Lévy

process, satisfies an ordinary differential equation (ODE).
Proposition 2 The Pricing ODE.Let x = InS follow, under the risk-neutral measure,
dx = pdt+ odLy, (20)

where $is the underlying stock price, p aralare constants and dLis the increment of a

Lévy process with log-characteristic functig{§). Moreover, we let
V(E) = / ¥V (xt)dx,  with EeC,

denote the Fourier transform of the value of a European-style option with final gayoff T ).
ThenV (&,t) satisfies the ODE

A

V(1)
ot

= [r+igu-W(-ENV &), (21)
with boundary conditioV (£, T) = (&, T).

For a proof see Appendix D.
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Here we show that if the risk-neutral dynamics of the stock price follow a LS, CGMY, DL
or KoBoL process then the pricing equation satisfied by European-style derivatives contains

fractional derivatives and integrals.

Proposition 3 The Lévy-Stable FBS equationLet the log-price x= InS process follow,

under the physical measure, an arithmetic LS process
dx = pdt+odL->,

where dItS ~ S (dt1/®,3,0) is the increment of an LS process Withc a < 2, —1 < B < 1,
o > 0and pis a constant. Then the value of a European-style option with final gagaff T)

satisfies the following fractional differential equation

BV (x,1) avg,t) +(r — Bo® sedam/2)) 6V(§§,t) — K$sedaTy/2) _DIV (x.t)
+k§ sedar/2) (V(xt) — e \DLe "V (x,t)), (22)
where
ngl;ﬁoa and K‘i‘:lizBoa. (23)
For a proof see Appendix D.
Note that the case when= 2 and3 = 0 yields
_ OV(xt) VXt 1, 12 2
v (x,t) = 3 +(r—o°) > " 3° _wDXV(x,t)+§o DSV (1)
O OV(xt) » OV (X1) L0V (xt)
= 3 (r—o9) w0 e (24)

which is the classical Black-Scholes partial differential equatiox i InS. Note also that
given the parametrisation of the LS distribution we use here, when$(0,0,0), the ex-
pected valud [X?] = 202. This is the reason why the constant coefficients stéinstead

of the usuab?/2 in the classical Black-Scholes operator shown above.

27



Another very important case is whean> 1 andf3 = —1; this is known as the FMLS process

of Carr and Wu (2003a).

European-style options written on an underlying that follows the risk-neutral process (D9)
withf=-1

d(Ing) = (r + 0c®sedar/2))dt + odi S

satisfy the FMLS FBS equation

NV (x.t)

vV (xt) = P

+(r+c%secar/2)) —o%sedarn/2) DIV (x,t).  (25)

oV (x,t)
ox

Moreover, to derive the corresponding FBS equation, when the risk-neutral dynamics of
the stock price are driven by a CGMY process, we proceed as above. The stock dynamics are

given by
wherex =InS and

Wegmy=CI(Y) {(M-1)Y =MY +(G+1)"-G"}. (26)

Hence the CGMY FBS is given by

ov(xt) oV (xt)
s = (r+0(M"+GY)V(xt) = (1 = Wegmy) —
o™ DY (e™V(x 1) +e DY (V)| @)

whereo = CI(-Y).
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Note thatY < 2, so that in the case whel¥e< 0 the fractional operators shown in (27)
are in fact fractional integrals as shown in Definition 1. Moreover, we also need the condition
M > 1 to be satisfied so th& [Sr| < co.

Finally, for the DL or KoBoL process we proceed as above to obtain the corresponding

FBS equation; see (D13) in the appendix for details.

V. Conclusions

This paper shows that the calculus of fractional operators is related to some of the most im-
portant jump processes used in the financial literature, for example the FMLS, KoBoL, Kopo-
nen’s DL and CGMY. More importantly, we have devised a dynamic hedging strategy based
on fractional operators and tested it for different models. We have compared our proposed
Delta-Fractional-Gamma hedging strategy with the well-known approach of Delta-Gamma-
neutrality and looked in detail at simulations under the FMLS, LS and MJD models. We have
seen that due to the large movements or jumps in the underlying stock price, fractional opera-
tors provide a much better hedge than the traditional Delta- and Gamma-neutral approach. It
was argued that since fractional operators take into account information about the value and
curvature of the portfolio for a range of the stock price between zero and the current stock
price, ie[0,S], hedging strategies will perform better according to metrics such as the range
in which the P&L lies, or when applicable, the volatility of the P&L. We showed that in cases
such as the MJD and the FMLS the volatility of the P&L is within the range of 25% to 30% of
that resulting from employing Delta- and Gamma-neutrality. Moreover, in very extreme cases
such as the LS model, where under the physical measure the log-stock price (due to the heavy
tails of the distribution of the underlying uncertainty) exhibits infinite variance, we showed
that the fractional strategies considerably reduce the exposure of the P&L to large shocks. For

example, the results from Delta- and Gamma-hedging resulted in P&L values ranging between
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[—101,630] whereas the results in the same simulation when fractional hedging strategies are

applied ranged betweénr 5, 7].
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Appendix A. Leévy process

Proposition 4 Lévy-Khintchine representationLet X be a Levy process. Then the natural logarithm

of the characteristic function can be written as
- ) 1 - )
INE[E®] — cité — =d%E2+t / (€%~ 118 0 ) W(c) (A1)
2 R\{0}
where ce R, d > 0, & € C, | is the indicator function and the@vy measure W must satisfy

/R min{L,x2}W(dx) < 0. (A2)

A Lévy process can be seen as a combination of a drift component, a Brownian motion (Gaussian)
component and a jump component. These three components are determined by the Lévy-Khintchine
triplet (c,d?,W). The parametec parametrises the ‘trend’ component which is responsible for the
development of the proce®s on the average. The parametrdefines the variance of the continuous
Gaussian component &§. The Lévy measuré/ is responsible for the behaviour of the jump compo-
nent ofX; and determines the frequency and magnitude of jumps. Fijifale Lévy measure is of the
form W(dx) = w(x)dx, we callw(x) the Lévy density, which measures the arrival rate of the jumps of
the underlying process We note that in (A1) above we can have different centering functions; that
is, instead of having the terigxl |, .1, we may have other functional forms that guarantee intelysabi
around zero. For example we could simply choose to axéie without the indicator function) and
the difference in the Lévy-Khintchine representation will be in the drift component. Moreover, for
some types of processes, like the CGMY, it is sufficient to hﬁi‘/‘g,(eizx - 1) W(dx) for the jump part

of the process, see Carr, Geman, Madan, and Yor (2002).

Appendix B. Fractional Derivatives

In this section we depict fractional derivatives for Eurapeall options using different assumptions

for the stochastic process followed by the underlying sec&ity
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FMLS Fractional Derivative, a=1.5, K=100, T=10 days
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Figure 10. Fractional Derivative for FMLS. The figure shows fractional derivatives
oD‘éV(S,t; K,T) withy=2y=17y= 15 andy= 1.3 for a European call witlg = 100,

K = 100 andT = 10 days to expiry when the underlying follows, under the risk-neutral mea-
sure, an FMLS process with= 0.2, a = 1.5 and driftp= 0.05.

FMLS Fractional Derivative, a=1.5, K=100, T=5 days
T T T T T

0.25
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Figure 11. Fractional Derivative for FMLS. The figure shows fractional derivatives
oD‘éV(S,t; K,T) withy=2y=17y= 15 andy = 1.3 for a European call witlg = 100,

K =100 andT = 5 days to expiry when the underlying follows, under the risk-neutral mea-
sure, an FMLS process with= 0.2, a = 1.5 and driftp= 0.05
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LS Fractional Derivative, K=100, T=10 days
T T T

T
—_— =2

- — y=1.8
<<<< y=1.6
0.12 - v=1.4 [
0.1 Tm— oL |
0.08 —
[
=
=
[=)
=}
0.06 —
0.04 -
0.02 —
=~ o~
o . L L L .
60 70 80 90 100 110 120 130 140

Stock Price

Figure 12. Fractional Derivative for LS. The figure shows fractional derivatives
oD‘éV(S,t; K,T) withy=2y=1.8y= 1.6 andy = 1.4 for a European call witlg = 100,

K = 100 andT = 10 days to expiry when the underlying follows, under the risk-neutral mea-
sure, an LS process with=0.2,a = 1.7, 3 = —0.5 and drifty = 0.05.

LS Fractional Derivative, K=100, T=5 days
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Figure 13. Fractional Derivative for LS. The figure shows fractional derivatives
oD‘éV(S,t; K,T) withy=2y=1.8y= 1.6 andy = 1.4 for a European call witlg = 100,

K =100 andT = 5 days to expiry when the underlying follows, under the risk-neutral mea-
sure, an LS process with=0.2,a = 1.7, 3 = —0.5 and driftu= 0.05
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Classical Black—Scholes Fractional Derivative, K=100, T=10 days
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Figure 14. Fractional Derivative for Classical Black-ScholesThe figure shows fractional
derivativesoD\§V(St; K,T) withy=2y=18y= 1.6 andy = 1.4 for a European call with
S = 100,K =100 andT = 10 days to expiry when the underlying follows, under the risk-
neutral measure, a geometric Brownian motion with volatdity 0.2, and driftp = 0.05.

Classical Black—Scholes Fractional Derivative, K=100, T=5 days
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Figure 15. Fractional Derivative for Classical Black-ScholesThe figure shows fractional
derivativesoD\§V(St; K,T) withy=2y= 1.8 y= 1.6 andy = 1.4 for a European call with
$H = 100,K =100 andT =5 days to expiry when the underlying follows, under the risk-
neutral measure, a geometric Brownian motion with volatdity 0.2, and driftu = 0.05.
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MJD Fractional Derivative, K=100, T=10 days
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Figure 16. Fractional Derivative for MJD. The figure shows fractional derivatives
oD‘éV(S,t; K,T) withy=2y=18y= 1.6 andy = 1.4 for a European call witlg = 100,

K = 100 andT = 10 days to expiry when the underlying follows, under the risk-neutral mea-
sure, a MJD process with= 0.2, A = 5,03 = 0.2 andyy; = 0.

MJID Fractional Derivative, K=100, T=5 days
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Figure 17. Fractional Derivative for MJD. The figure shows fractional derivatives
oD‘éV(S,t; K,T) withy=2y=1.8y= 1.6 andy = 1.4 for a European call witlg = 100,

K = 100 andT = 10 days to expiry when the underlying follows, under the risk-neutral mea-
sure, a MJD process with= 0.2, A = 5,03 = 0.2 andy; = 0.
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Appendix C. Calculation of fractional derivatives in the com-

plex plane

In the fractional Taylor's expansion we use derivatives efflrm

v 1 d s L
oDsV(St) = = Y)W (y,t)dy.

(n—y)ds Jo (5

We calculate these derivatives by numerically inverting their Fourier transforms; these are given in

the following proposition.

Proposition 5 Letl <y < 2. Then

$V_av(sy, } M(—ig—1+y),

POV =7 { 5 e e Ve i

Proof: First we use integration by parts to write

1 dv(St) /S(S_ y)lfvdzv(yat) dy.

DV =F7 a5 S0 Tz v b T

Now let us focus on the second term on the right-hand side of the equation above supstitife

to obtain

1 S EVCEVA(YA 9 DA S _,d?V(uSt)
r2—y /0 S az Y T ey /0 Q- g —du ©3)

Now let’s take the Fourier transform with respect to the stock @Bieee”.

v 1 2 1t L o
f{m/o (-w? VWV(”St)dU} = oy b 0 gy (Ve fau
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¥ {e(Z*V)XV(ueXJ)} — / &2y (@I t)dix, now letm=x+Inu
_ /°° &2 (M-It (@ )
_ o (ig2-y)ny / " dEIVImy (@ t)dm

= e (E2VINY (g —i2—y),1).

Combining the results together we obtain

2 2 2 . n
4%.[“‘“*‘” Vd(ﬁzst)d“} - I'(Tl—v)./ol(l—U)l_y;—uze_('@rz_y)'nuv(z—i(Z—V)J)dU
_ /1(1—u)1vd—2u<i€+2V>\7(a—i(2—y) t)du
r2-vyJo duw? ’
_ (IE—FZF(VZ)QEV;—?)—V) /Ol(l—u)lyu(i““y)\A/(E—i(Z—y),t)du
_ <i5+2;(yz>f5y )+3‘V)\7<z—i<z—v>,t> [ "1 uy Ay
- “E+2;(V2)S+3_y)\7<z—i<2—v>,t>B<—iE—3+v,2—v>
_ (iE+2-y)(iE4+3-y) (g =3+Y)(2-Y)y . .
- F2—y) e U S A
— (423 Y S DV E i)
o M(—iE—2+Y)e . .
= —('E.+2—V)mv(5—'(2—y)7t)
- e,
where Bw,z) =T (w)I"(2)/T (z+w) is the Beta function and we have ude@+ 1) = 2 (2).
|

Note that fory = 2 we obtain((i€)2 +i&)V (,t), which is the Fourier transform &VsgSit).
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Appendix D. Other propositions and proofs

Proof of Proposition 2

The value of the option satisfies
V(th) = eir(Tit)Et[rI (XT>T)]'
Now assume that the paydff(xr, T) has a complex Fourier transform (CFT), denoted by a circumflex,

~ c+ig
FNoe D) =AET) = [ &M, Thdwr,

in the stripa < &; < b, where we denot& = Im &. Then we can write

—r(T-t) o+,
Vit = S| [ e g T (04)

Now taking the expectation operator inside the integral, see Lewis (2001), we obtain

e T(T-1) oot _ixr &1
V(xt) = 21 /_oo+iE‘Et[e e T
—r(T—t o0& :
e / I T o TOYDF (£ T, (bS)
2 J—coti

wheree*® is the characteristic function af j dLs. Note that we require*(~%) to be analytic in a

strip that intersects the strip where the CFT of the payoff exists.

It is straightforward to see that (D5) can be written as

oti& . (Tt otE i
i/ e e"EX‘\A/(E,t)dE _ € A )/ i e-'EXt—|E|J(T—t)e(T—t)qJ(—E)ﬁ(E’T)da’ (D6)
210 —coti; 21 J—ootig;

and, by applying the Fourier transfors to both sides of equation (D6), we obtain

VED) = e T-OgituT-0gT-0%-0fE T).
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Reordering terms, and taking the principal value of the logarithm function, yields

In (V(€,1)/MN(E,T)) =—r(T—t) —i&u(T —t) + (T —t)¥(-E). (D7)

Now, differentiating with respect to time(dt), we note that (D7) is the solution of the ordinary
differential equation (ODE)

V(1)

s = M- WV E

with boundary conditiotV (£, T) = (&,T).

Moreover, note that we can use this ODE to find the integro-differential equation satisfied by the
value of options written on a stock that follows a geometric Lévy process. For simplicity let us assume
that the Lévy triplet ig0,0,W), ie that it has no location and no Gaussian component. Then the next

step is to apply the inverse Fourier transform? to the ODE above. Thus

av((;tgt) _ %T/‘::Ze—iExt[H_iEu_qJ(_E)]V(E,t)dE
= T e gV [T e g(E o
0+i§;

21 —wotig

oV (x,t
= rV(th)_p- a(X )

o e [ (e iy WO (€0

—oo+i§;
Vv (x,t)
0X
co+i&; . ~
/ / + —IEXt P igyl M<1>v(§,t)d€w(dy) (D8)

o-+i&
oV (x,t)
0X

_ /_Z (V(x+ y.t) —V(xt) _yavg;,t) | y|<1> W(dy).

Note that by applying Fubini’s theorem we can interchange the order of integration to obtain (D8).

= v (Xat) —H

= v (th) —H
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Proof of Proposition 3

McCulloch (2003) showed that the corresponding risk-neutral process is given by
d(Ing) = (r — Ba®seda/2)) dt+ odi S+ odiPt (D9)

wheredi S anddi Pt are independent and are the increments of a maximally netyaskewed LS

process and the increment of a maximally positively skewed DL process, ie.
o5~ S(K2,—1,00 and ol Pt~ DLg(k1,1,0,0,1) (D10)

with k1 andk; as in (23).
In this case the ODE (21) becomes

NVED _ [r+i& (r — Bo” sedam/2)) — Wis(—&) — WoL(—E)V(E,1), (D11)

where

Wi s(—&) = kg secar/2)(—i§)"

and

Wp (—&) =k sedam/2) (1— (1+i§)?).

Taking the inverse Fourier transform of (D11) delivers the result.

The KoBoL or DL FBS equation

To obtain the DL or KoBoL FBS equation we assume that the risk-neutral log-stock price dynamics

follow a DL process

dx = (r — wg)dt +dLY, (D12)
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where
Wgi = K¢ { p(A — 1) + g(A + 1) —A* —ar®"Y(q—p)},

X = In§ andr is the risk-free rate. Then, proceeding as above, the value of a European-style option

with final payoff[1(x, T) satisfies the following FBS equation

oV (x,t _ oV (x,t
rrexVey = Y0y —aeiqpy) MU
+«a[p@x,ngeJAMXJ)+qe4XXng*vogU]. (D13)

Note that if we leth = 2, p=g=1/2 andA = 0 we obtain the Black-Scholes PDE.

Proposition 6 Letd be a uniform random variable ofr-11/2,11/2) and lete be exponential with mean

1. Assumé andeg are independent. Then

_ sinad (cos((l_q)5)>(1—a>/a
~ (cos®)L/a £
is $(1,0,0).

For a proof see Samorodnitsky and Taqqu (1994).
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Notes

INote that a sufficient condition for the integrals (1) and (2) to converge is that

f(x)=0O(]x|7Y®) fore>0 asx— .

2By large we mean that the movements of the underlying are much larger than those pre-

dicted by Gaussian shocks.
3Note that the condition on the valuefis given by (A2).

41t is interesting to note that the Lévy density of the CGMY and the DL process is essen-
tially the same as that of the LS process except that the exponential damping factor ensures
exponential, instead of polynomial, decay at infinity. We also point out that in the DL case
for ‘short-time’ scales, depending on the magnitude of the damping fActbe distribution
of the DL can be seen as a very good approximation to the distribution of the LS, see Matacz
(2000).

51f we assume that under the physical measure the log-stock price follows a CGMY, DL,
KoBoL or FMLS process, then the Esscher transformed process will again be a Lévy process

where the corresponding pricing equation can be expressed as a FBS equation.

5We note that we do not enquire about the performance of the hedgeKgherK; be-
cause the stock price exhibits very large and frequent positive jumps and it is very difficult to
implement a Delta- and Gamma-neutral strategy. If simulations were performed, then for a
considerable amount of runs, the gamma/g(fS t; Kz, T2) would approach zero much faster
than that ofV4(St; Ky, T1), therefore, in these cases, the hedging strategy would require ex-

tremely large amounts, given by

_ 0%V4(St) /0%
"8 vy (s )08
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of Vo(S;t; Ko, T2) to be purchased.

45



