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Abstract

In this paper, expansions of functionals of Lévy processes are established under

some Hilbert spaces and their orthogonal bases. From practical standpoint, both

time-homogeneous and time-inhomogeneous functionals of Lévy processes are consid-

ered. Several expansions and rates of convergence are established. In order to state

asymptotic distributions for statistical estimators of unknown parameters involved in

a general regression model, we develop a general asymptotic theory for partial sums

of functionals of Lévy processes. The results show that these estimators of the un-

known parameters in different situations converge to quite different random variables.

In addition, the rates of convergence depend on various factors rather than just the

sample size.

1 Introduction

Stochastic differential equations driven by a Lévy process under some conditions have

solutions in the form of functionals of the underlying process. Such equations are used

extensively in economics, finance and engineering disciplines to describe random phenom-

ena in both theory and practice. Meanwhile, some empirical studies show that many

data sets admit nonlinearity and nonstationarity. Consequently, a number of nonpara-

metric and semiparametric models and kernel-based methods have been proposed to deal

1



with both nonlinearity and nonstationarity simultaneously. Existing studies mainly dis-

cuss the employment of nonparametric kernel estimation methods. Such studies include

Phillips and Park (1998), Park and Phillips (1999), Park and Phillips (2001), Karlsen

and Tjøstheim (2001), Karlsen et al. (2007), Cai et al. (2009), Phillips (2009), Wang and

Phillips (2009a,b), Xiao (2009), and Gao and Phillips (2011).

However, such kernel-based estimation methods are not applicable to establish closed-

form expansions of functionals of Lévy processes. In the stationary case, the literature

already discusses how series approximations may be used in dealing with stationary time

series models, such as, Ai and Chen (2003), Chapter 2 of Gao (2007) and Li and Racine

(2007). In addition, although the celebrated Black-Scholes option pricing formula de-

scribed the price of the financial product as a functional of Brownian motion, literature

has pointed out that there are some significant drawbacks in this formula. For example,

empirical evidence suggests that log returns do not behave according to a normal dis-

tribution (see Schoutens, 2003). Hence, the researcher realizes that one would need to

include other stochastic processes (not just Brownian motion) when one needs to formu-

late a continuous-time stochastic model in order to depict some stochastic phenomenon

or scientific data set.

Therefore, there is need to study functionals of Lévy process, Z(t), in the both cases of

time-homogeneity and time–inhomogeneity. Note that one powerful way of dealing with

such problems is to decompose the process, say f(Z(t)) or f(t, Z(t)), where the functional

form is unknown, into an orthogonal series in some Hilbert space, such that once one

has obtained observed values of the process, the coefficients involved in the series can

be estimated using an econometric method. Actually, there is long history that there

exists a close connection between stochastic processes and orthogonal polynomials. For

example, the so-called Karlin-McGregor representation expresses the transition probability

of birth and death process by means of a spectral representation in terms of orthogonal

polynomials. Some people clearly feel the potential importance of orthogonal polynomials

in probability theory. Schoutens (2000), for instance, gives an extensive discussion about

relations between stochastic processes and orthogonal polynomials.

In this paper, we establish some general theory and methodology for the expansion of

a class of functionals of Lévy processes. As an application, we shall estimate an unknown

function of the form m(t, z) involved in the following model:

Y (t) = m(t, Z(t)) + ε(t), t ∈ [0,∞), (1.1)
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where Z(t) is a Lévy process that covers both the continuous (such as Brownian motion)

and the discrete (such as Poisson process) cases, ε(t) is an error process with zero mean

and finite variance, and m(t, z) is an unknown function of (t, z).

As far as we are aware, there is no discussion about how to estimate m(t, z) by a non- or

semi-parametric method in the literature. Even in the discrete case where t = 1, 2, · · · , it

is not clear whether a nonparametric kernel method can provide a consistent estimator for

m(t, z). Part of the contribution of this paper is to establish an asymptotically consistent

estimator of m(t, z) and the resulting asymptotic theory in each of the three sampling

situations: a) the case where Zt = Z(t) at t = 1, 2, · · · , b) the case where Zt,n = Z
(
tT
n

)
at t = 1, 2, · · · , and c) the case where Zt,n = Z

(
tTn
n

)
at t = 1, 2, · · · and with Tn →∞.

The estimation methodology proposed in this paper is summarized as follows. We

shall employ an appropriate polynomial sequence that is orthogonal with respect to ei-

ther the probability density or the probability distribution of Z(t) depending on whether

Z(·) is continuous or discrete. We then expand the unknown function m(t, Z(t)) into

an orthogonal series in some Hilbert space in terms of the polynomial sequence. We then

propose using a semiparametric least squares (SLS) estimation method to estimate m(t, z)

by m̂(t, z). To establish an asymptotic theory for m̂, we introduce a general asymptotic

theory to deal with the sample mean and sample covariance of four classes of functionals

of Lévy processes. It is noteworthy to point out that the established asymptotic theory

considerably extends some existing results, such as Park and Phillips (1999, 2001), and

Wang and Phillips (2009a).

With the advantage of expanding an unknown functional into an orthogonal series,

the proposed method can be used to deal with some estimation problems in economics,

finance and engineering. For example, there are a number of studies involving models with

conditional moment restriction containing an unknown functional, such as Ai and Chen

(2003, 2007), and Chen and Ludvigson (2009). Since existing theory for expansions of

functionals of stationary processes is not directly applicable, the proposed expansion and

estimation method in this paper is useful and significant in both theory and applications.

The organization of the rest of the paper is as follows. Section 2 is devoted to the

expansions of functionals of Lévy processes for the cases of time-homogeneous function-

als and time-inhomogeneous on both finite and infinite horizons. Section 3 develops an

asymptotic theory. Section 4 systematically discusses the estimation theory of model (1.1)

for the cases of infinite-time, finite-time and infinite-time sequence horizons. Section 5
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gives some conclusions and discussions. Appendix A summarizes some basic results for

both the existence and explicit expression of an orthogonal polynomial system associated

with an underlying Lévy process. Appendix B includes all remarks and justifications of

some results and assumptions. Appendix C mainly shows several lemmas which are crucial

for the proofs of the main results. Appendix D contains the proofs of the main theorems.

2 Orthogonal expansion of functionals of Lévy processes

This section is devoted to the expansion of both time-homogeneous functional f(Z(t))

and time-inhomogeneous functional f(t, Z(t)) for t ∈ [0, T ] with fixed T and t ∈ (0,∞)

where (Z(t), t ≥ 0) is a Lévy process with ρ(t, x) being either the probability density or

the probability distribution function of Z(t) depending on whether Z(t) is continuous or

discrete. Suppose that Z(t) admits a classical orthonormal polynomial systemQi(t, x) with

the weight function ρ(t, x). Note that this requires ρ(t, x) satisfy the so-called boundary

condition and another one specified in Appendix A. Qi(t, x) is a normalized polynomial,

viz., Qi(t, x) = 1
di(t)

yi(t, x) so that ‖Qi(t, x)‖ = 1 in the relevant space where yi(t, x) is a

polynomial solution in both t and x of the so-called hypergeometric differential/difference

equation. Readers consult Appendix A for detailed explanation. Many notations and

assertions are related to Appendix A. Let I be the support of ρ(t, x) and µ signify Lebesgue

measure on line. Let (Ω,F ,P) be the probability space on which Z(t) is defined.

2.1 Expansion of homogeneous functionals of Lévy processes

Consider a function space for t > 0

L2(I, dΨt(x)) = {f(x) :

∫
I
f2(x)dΨt(x) <∞}, (2.1)

where Ψt(x) is the distribution function of Lévy process Z(t).

According to Billingsley (1995, p249), L2(I, dΨt(x)) is a Hilbert space. Given that

Ψt(x) satisfies a sufficient condition, viz., there exists a constant c > 0, such that
∫
ec|x|dΨt(x) <

∞ for each fixed t, the system Qi(t, x) is not only orthonormal but also complete in

L2(I, dΨt(x)) (see, for example, Nikiforov and Uvarov (1988, p57)). Indeed, there are

many Lévy processes satisfying this sufficient condition. For instance, the Laguerre poly-

nomial system associated with the Gamma process satisfies it with c < 1, and both the

Hermite polynomial system with the density of Brownian motion as its weight and the
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Charlier polynomial system with the probability distribution of Poisson process as its

weight satisfy the condition with any c > 0.

Additionally, in the Hilbert space L2(I, dΨt(x)), the scalar product and the induced

norm are defined as follows:

(f, g) =

∫
f(x)g(x)dΨt(x) and ‖f‖ =

√
(f, f).

Construct a mapping, for f(x) ∈ L2(I, dΨt(x)), T : f 7→ f(Z(t)). Since E[f2(Z(t))] =∫
I f

2(x)dΨt(x) < ∞, f(Z(t)) is an element of L2(Ω), the collection of all random vari-

ables with finite second moments. Accordingly, the image of T , denoted by Θ, is a

subset of L2(Ω). Hence, the elements in Θ admit the norms and scalar products, namely,

〈f(Z(t)), g(Z(t))〉Θ = E[f(Z(t))g(Z(t))] and ‖f(Z(t))‖Θ =
√
〈f(Z(t)), f(Z(t))〉, the in-

duced norm. The following lemmas give the properties of T and Θ.

Lemma 2.1. The mapping T has the following properties:

(1) T is linear; (2) T is an one-to-one mapping from L2(I, dΨt(x)) to Θ; (3) T is an

isomorphism.

Lemma 2.2. Θ is a closed subspace of L2(Ω), hence it is a Hilbert space.

Lemma 2.3. If {pi(x)}∞i=0 is any orthonormal basis in L2(I, dΨt(x)), then {T (pi)}∞n=0 is

an orthonormal basis in Θ. Particularly, {Qi(t, Z(t))}∞i=0, t > 0, is an orthonormal basis

in Θ.

The following theorem is a consequence of the above lemmas.

Theorem 2.1. Suppose that Lévy process (Z(t), t > 0) admits a classical orthonormal

polynomial system Qi(t, x) with weight ρ(t, x). For any element f(Z(t)) ∈ Θ, it has a

Fourier series expansion

f(Z(t)) =
∞∑
i=0

ci(t, f)Qi(t, Z(t)), (2.2)

where ci(t, f) = 〈f(Z(t)), Qi(t, Z(t))〉Θ.

See some examples of expansion in Remark B.1.

Let k be a truncation parameter for i. The truncation series of (2.2) is defined as

fk(Z(t)) =

k∑
i=0

ci(t, f)Qi(t, Z(t)).
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With the notations D (differentiate or difference operator with respect to x only

throughout the paper), ρh(t, x) and v(t) > 0 defined in Appendix A, we have the fol-

lowing theorem.

Theorem 2.2. Let (Z(t), t > 0) be a Lévy process satisfying conditions in Theorem 2.1.

Suppose further that Dhf(x) ∈ L2(I, ρh(t, x)) for h = 0, 1, · · · , r. Then

‖f(Z(t))− fk(Z(t))‖2Θ ≤
1

kr
R2
k(t,D

rf), (2.3)

where R2
k(t,D

rf) = (1 + o(1))[v(t)]r
∑∞

i=k+1 c
2
i (t,D

rf)→ 0 as k →∞ for every t > 0.

2.2 Expansion of time-inhomogeneous functionals of Lévy processes on

finite time horizon

In this subsection we shall dwell on the expansion of f(t, Z(t)) for t ∈ [0, T ] with fixed T .

Consider function space

L2(I × [0, T ], ν) =

{
f(t, x) :

∫
I
f2(t, x)dΨt(x) <∞, for each t ∈ [0, T ],

and

∫ T

0

∫
I
f2(t, x)dν <∞

}
,

where ν is the product measure of Ψt(x) and Lebesgue measure µ.

We abbreviate the notation of the space as L2(I × [0, T ]). As a conventional L2 space,

L2(I × [0, T ]) is a Hilbert space with scalar product

(f1(t, x), f2(t, x)) =

∫ T

0

∫
I
f1(t, x)f2(t, x)dΨt(x)dt.

Since {Qi(t, x)} is an orthonormal basis for L2(I, dΨt(x)) and {ϕjT (t)}, where ϕ0T =
√

1
T ,

ϕjT =
√

2
T cos jπtT for j ≥ 1, is an orthonormal basis in L2([0, T ], µ), according to Problem

12 of Dudley (2003, p173), {Qi(t, x)ϕjT (t)} is an orthonormal basis in L2(I × [0, T ]).

Construct a mapping T from L2(I × [0, T ]) to a set of stochastic processes,

T : f(t, x) 7→ f(t, Z(t)), for f(t, x) ∈ L2(I × [0, T ]).

Denote the image of T by Ξ. Define operation 〈f1(t, Z(t)), f2(t, Z(t))〉Ξ =
∫ T

0 E[f1(t, Z(t))f2(t, Z(t))]dt

on Ξ. Obviously, 〈·, ·〉Ξ is an inner product on Ξ. Meanwhile, T and Ξ enjoy the

properties established in Lemma 2.1–2.3. We then assert that Ξ is a Hilbert space and

{Qi(t, Z(t))ϕjT (t)} (i, j = 0, 1, · · · ) is an orthonormal basis in Ξ. The following theorem

is obtained from Hilbert space theory.
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Theorem 2.3. In Ξ, any element f(t, Z(t)) admits a Fourier series expansion

f(t, Z(t)) =
∞∑
i=0

∞∑
j=0

cijϕjT (t)Qi(t, Z(t)), (2.4)

where cij = 〈f(t, Z(t)), Qi(t, Z(t))ϕjT (t)〉Ξ.

Because cij =
∫ T

0 E[f(t, Z(t))Qi(t, Z(t))]ϕjT (t)dt :=
∫ T

0 ci(t, f)ϕjT (t)dt, expansion

(2.4) can be regarded as a two-step expansion, that is, expand f(t, Z(t)) first in terms of

{Qi(t, Z(t))} obtaining coefficients ci(t, f) = E[f(t, Z(t))Qi(t, Z(t))], then expand ci(t, f)

in terms of {ϕjT (t)} on [0, T ].

Notice that from Parseval equality it follows that

‖f(t, Z(t))‖2Ξ =

∞∑
i=0

∞∑
j=0

c2
ij =

∞∑
i=0

‖ci(t, f)‖2L2[0,T ]. (2.5)

Given a bundle of truncation parameters k for i and pi for j’s, we define the truncation

series of (2.4) as follows

fk,p(t, Z(t)) =

k∑
i=0

pi∑
j=1

cijQi(t, Z(t))ϕjT (t). (2.6)

Denote pmin = min{p1, · · · , pk} and pmax = max{p1, · · · , pk} for national convenience.

Theorem 2.4. Suppose that functional f(t, Z(t)) ∈ Ξ and that Dhf(t, x), h = 1, · · · , r,
are in the space L2(I, ρh(t, x)) for each t > 0. Moreover,

√
v(t)

r
Drf(t, x) ∈ L2(I× [0, T ]).

In addition, for each i ≥ 0, ci(t, f) ∈ C2[0, T ] and ‖c′′i (t, f)‖L2[0,T ] is uniformly bounded

in i. Then,

‖f(t, Z(t))− fk,p(t, Z(t))‖2Ξ ≤
1

kr
R2
k + C(k, p)

k

p4
min

, (2.7)

where R2
k = (1 + o(1))

∑∞
i=k+1

∥∥∥ci (t,√v(t)
r
Drf

)∥∥∥2

L2[0,T ]
→ 0 as k → ∞, C(k, p) =

π−4 max0≤i≤k
∑∞

j=pmin+1 b
2
j (c
′′
i ), in which bj(c

′′
i ) stands for the j-th coefficient in the ex-

pansion of c′′i (t, f). Here we assume that k
p4min
→ 0.

See Remark B.2 for some discussions.
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2.3 Expansion of time-inhomogeneous functionals of Lévy processes on

infinite time horizon

Let t ∈ (0,∞) and consider function space defined by

L2(I × R+, ν) =

{
f(t, x) :

∫
I
f2(t, x)dΨt(x) <∞, for each t ∈ (0,∞),

and

∫ ∞
0

∫
I
f2(t, x)dν <∞

}
,

where ν is the product of Ψt(x) and Lebesgue measure µ.

We abbreviate the notation of the space as L2(I × R+). Apparently, it is a L2 space

so that it is a Hilbert space. The inner product is conventional (f1(t, x), f2(t, x)) =∫
R+

∫
I f1(t, Z(t))f2(t, Z(t))dΨt(x)dt, which can induce a norm ‖f(t, x)‖.

As {Qi(t, x)} and {Lj(t)} (Lj(t) = e−t/2Lj(t), with Lj(t) being Leguerre polynomial

sequence) are orthonormal bases in L2(I, dΨt(x)) and L2(R+, µ) respectively, {Qi(t, x)Lj(t)}
is an orthonormal basis in L2(I × R+).

Similarly, construct a mapping from L2(I × R+) to a set of stochastic processes

T : f(t, x) 7→ f(t, Z(t)), for f(t, x) ∈ L2(I × R+).

It is clear that T is linear, so that the image set, denoted by Λ, is a linear real vector

space. Note that after defining 〈f1(t, Z(t)), f2(t, Z(t))〉Λ =
∫∞

0 E[f1(t, Z(t))f2(t, Z(t))]dt,

Λ becomes an inner product space equipped with induced norm. Analogously, T and Λ

enjoy the properties in Lemma 2.1–2.3. As a result, {Qi(t, Z(t))Lj(t)} is an orthonormal

basis in Λ.

Theorem 2.5. In Λ, any element f(t, Z(t)) admits Fourier series expansion

f(t, Z(t)) =
∞∑
i=0

∞∑
j=0

bijLj(t)Qi(t, Z(t)), (2.8)

where bij = 〈f(t, Z(t)), Qi(t, Z(t))Lj(t)〉Λ.

Because bij =
∫
R+ E[f(t, Z(t))Qi(t, Z(t))]Lj(t)dt :=

∫
R+ bi(t, f)Lj(t)dt, expansion

(2.8) can be regarded as a two-step expansion, that is, expand f(t, Z(t)) first in terms of

{Qi(t, Z(t))} obtaining coefficients bi(t, f) = E[f(t, Z(t))Qi(t, Z(t))], then expand bi(t, f)

in terms of {Lj(t)} on (0,∞).
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Notice that from Parseval equality it follows that

‖f(t, Z(t))‖2Λ =
∞∑
i=0

∞∑
j=0

b2ij =
∞∑
i=0

‖bi(t, f)‖2L2(R+). (2.9)

Given a bundle of truncation parameters k for i and pi for j’s, we define the truncation

series of (2.8) as follows:

fk,p(t, Z(t)) =

k∑
i=0

pi∑
j=0

bijQi(t, Z(t))Lj(t). (2.10)

Theorem 2.6. Suppose that functional f(t, Z(t)) ∈ Λ, that Dhf(t, x), h = 1, · · · , r1, are

in the space L2(I, ρh(t, x)) for all t > 0. Moreover,
√
v(t)

r1
Dr1f(t, x) ∈ L2(I × R+).

In addition, for each i ≥ 0, bi(t, f) is differentiable up to r2-th order and bi(t, f) and√
v(t)

r2 dh

dth
bi(t, f) are all in L2(R+) for h = 1, · · · , r2. Then,

‖f(t, Z(t))− fk,p(t, Z(t))‖2Λ ≤
1

kr1
R2(k) + C(k, p)

k

pr2min

, (2.11)

where R2(k) = (1 + o(1))
∑∞

i=k+1 ‖bi(t,
√
v(t)

r1
Dr1f)‖2L2(R+) → 0, as k → ∞, C(k, p) =

(1 + o(1)) max0≤i≤k
∑∞

j=pmin+1[a
(r1)
j−r1 (̃bi(t))]

2, in which b̃i(t) = tr2/2e−t/2[bi(t, f)et/2](r2)

and a
(r2)
j−r2 (̃bi(t)) are the coefficients of the expansion of b̃i(t) in terms of L

(r2)
j (t). Here

we assume that C(k, p) k
p
r2
min

→ 0.

We have a similar remark for Theorem 2.6 to that for Theorem 2.5.

Theorems 2.1–2.6 show that either a homogenous or in-homogenous functionals of Z(t)

can be expanded as an orthogonal series. In order to apply such expansions to establish

an estimation theory for model (1.1) in Section 4 below, we first develop some asymptotic

properties for partial sums of several classes of functionals of Lévy processes.

3 Asymptotic theory

In this section we shall establish some asymptotic theory for two basic classes of functionals

f(·, ·) defined below. We then shall define two more general classes of functionals F (t, x)

for t > 0 and x ∈ R, T (HI) and T (HH), and investigate the asymptotic theory for these

functionals on both sample mean and sample covariance.

Given a triangular array xs,n (x0,n = 0 by definition), 1 ≤ s ≤ n, constructed from

some underlying time series, we assume that x[nr],n (0 ≤ r ≤ 1) converges in distribution to
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a stochastic process W (r) on D[0, 1] with respect to the Skorohod topology, where D[0, 1]

stands for the space of real-valued functions that are right continuous with left limits. It

is known that there are many cases in which {xs,n} satisfies this condition, and in some

suitable probability space it can be shown that sup0≤r≤1 |x[nr],n−W (r)| = oP (1). Readers

consult Phillips (1987), Park and Phillips (1999, 2001), Wang and Phillips (2009a) and

Gao and Phillips (2010) for detailed discussion.

We now state the following assumption on xs,n.

Assumption A

(a) Suppose that x[nr],n (0 ≤ r ≤ 1) converges in distribution to a stochastic process

W (r) on D[0, 1] with respect to the Skorohod topology. Let W (r) admit a continuous

local-time LW (r, s).

(b) In some suitable probability space there exists a stochastic process W (r) that admits

a continuous local-time LW (r, s) such that sup0≤r≤1 |x[nr],n −W (r)| = oP (1).

(c) Denote for ε (0 < ε < 1) that Ωn(ε) = {(l, k) : εn ≤ k ≤ (1− ε)n, k+ εn ≤ l ≤ n}. For

all 0 ≤ k < l ≤ n, there exist a sequence of constants dl,k,n and a sequence of σ-fields

Fn,k where Fn,0 = {∅,Ω}, such that

(i) for some m0 > 0 and C > 0, inf(l,k)∈Ωn(ε) dl,k,n ≥ εm0/C as n→∞,

lim
ε→0

lim
n→∞

1

n

n∑
l=(1−ε)n

1

dl,0,n
= 0, (3.1)

lim
ε→0

lim
n→∞

1

n
max

0≤k≤(1−ε)n

k+εn∑
l=k+1

1

dl,k,n
= 0, (3.2)

lim sup
n→∞

1

n
max

0≤k≤n−1

n∑
l=k+1

1

dl,k,n
<∞. (3.3)

(ii) Suppose that xk,n are adapted to Fn,k. Moreover, if xk,n are continuous variables,

conditional on Fn,k, (xl,n − xk,n)/dl,k,n has a density hl,k,n which is uniformly

bounded by a constant K and

lim
δ→0

lim
n→∞

sup
(l,k)∈Ωn(δ1/(2m0))

sup
|u|<δ

|hl,k,n(u)− hl,k,n(0)| = 0. (3.4)
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If xk,n are discrete variables, conditional on Fn,k, (xl,n − xk,n)/dl,k,n has a prob-

ability distribution Pl,k,n(x) and its distribution function Fl,k,n(x) satisfies

lim
δ→0

lim
n→∞

sup
(l,k)∈Ωn(δ1/(2m0))

sup
|u|<δ

|Fl,k,n(u)− Fl,k,n(0)| = 0. (3.5)

Remark 3.1. Assumption A is almost the same as the conditions in the univariate function

case in Wang and Phillips (2009a) except that we concern both continuous and discrete

variables in A (c). We shall discuss the condition (3.5) later. Note that Assumption A is

quite weak which is discussed in the literature. As a consequence, the following theorems

are generally applicable.

Also, we remark that this situation particularly accommodates any Lévy process. Ac-

cording to infinite divisibility, a Lévy process Z(t) at point positive integer s can be

rephrased as Z(s) = µs + v1 + · · · + vs in distribution where vi = Z(i) − Z(i − 1) − µ
(i = 1, · · · , s) form an i.i.d. sequence, and µ = E(Z(1)). Whence, define xs,n = 1√

nσz
Z(s)

for s = 1, · · · , n and n ≥ 1 where σ2
z = V ar(Z(1)), then by virtue of functional cen-

tral limit theorem xs,n converges in distribution to a Brownian motion W (r) on [0, 1] as

n → ∞. In addition, with dl,k,n =
√

(l − k)/n, xs,n and dl,k,n satisfy Assumption A (a)

and (c), and also A (b) can be achieved by the Skorohod representation theorem.

Take an example to verify the condition (3.5). Suppose now that Z(t) is a Poisson

process, viz., Z(t) ∼ Poi(µt). Because 1
dl,k,n

(xl,n − xk,n) =D
1√

l−kσz
(Z(l − k)− (l − k)µ),

Fl,k,n(0) =
∑

i≤(l−k)µ

[(l − k)µ]i

i!
e−(l−k)µ

Fl,k,n(u) =
∑

i≤(l−k)µ+u
√
l−kσz

[(l − k)µ]i

i!
e−(l−k)µ.

Thus, if u > 0

Fl,k,n(u)− Fl,k,n(0) = e−(l−k)µ
∑

(l−k)µ<i≤(l−k)µ+u
√
l−kσz

[(l − k)µ]i

i!
,

if u < 0,

|Fl,k,n(u)− Fl,k,n(0)| = e−(l−k)µ
∑

(l−k)µ+u
√
l−kσz<i≤(l−k)µ

[(l − k)µ]i

i!
.

Because e−(l−k)µ → 0 as (l, k) ∈ Ωn(ε), n → ∞ and the sums are less than the tail of a

convergent series, the condition (3.5) is fulfilled.
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Notice also that in some situation, for continuous process the condition (3.5) implies

the requirement (3.4), so that they merge as (3.5) which harbours both continuous and

discrete cases.

Since we study the asymptotic theory not only for the sample mean but also for the

sample covariance, the following assumption stipulates some necessary conditions for xs,n

and error sequence es.

Assumption B

(a) There is a martingale difference sequence (es,Fn,s) with E(e2
s|Fn,s−1) = σ2

e a.s. for all

s = 1, 2, . . . , n and sup1≤s≤nE(|es|p|Fn,s−1) <∞ a.s. for some p > 2.

(b) {xs+1,n} is adapted to Fn,s, s ≥ 0.

(c) Let, for r ∈ [0, 1],

Un(r) =
1√
n

[nr]∑
s=1

es and Wn(r) = x[nr],n.

Suppose that (Un,Wn) converges in distribution to (U,W ) on D[0, 1]2 as n → ∞,

where (U,W ) is a correlated Brownian motion vector.

Remark 3.2. As for Assumption A, Assumption B is also quite general and applicable in

many situations. For example, Condition (b) holds when {es} is a sequence of independent

errors and Fn,s = σ(e1, · · · , es, xs+1,n).

3.1 Time-normalized and integrable functionals

This subsection establishes an asymptotic theory that extends existing literature, such as

Park and Phillips (1999, 2001) and Wang and Phillips (2009a), from the univariate case to

the bivariate case. In what follows our asymptotic theory depends heavily on a local-time

process of Brownian motion. A standard reference book for local-time process is Revuz

and Yor (1999).

Let us now introduce some necessary conditions to establish important theorem. Such

theorem is of general interest.

Assumption C

12



(a) Suppose that f(t, x) is defined on [0, 1]×(−∞,∞). Suppose further that both |f(t, x)|
and f2(t, x) are Lebesgue integrable with respect to x on (−∞,∞).

(b) There exists a function cf (x) : R → R+ such that |f(t, x)| ≤ cf (x) uniformly in

t ∈ [0, 1] and cf (x) is integrable on R.

(c) For each x ∈ R, f(t, x) is continuous in t and there are at most a finite number of

points for t at which
∫
f(t, x)dx = 0.

Remark 3.3. We shall denote G1(t) =
∫
f(t, x)dx, G2(t) =

∫
|f(t, x)|dx and G3(t) =∫

f2(t, x)dx for notational convenience. Notice that they are all continuous functions by

the dominated convergence theorem.

Condition (a) is an extension of Assumption 2.1 in Wang and Phillips (2009a). Require-

ment on integrability of functions is a basic need to deal with such kind of problems. Note

that if f(t, x) = f(x) becomes time-homogeneous, Condition (a) reduces to Assumption

2.1 in Wang and Phillips (2009a).

Condition (b) requires that the function f(t, x) be dominated uniformly in t over

compact interval [0, 1] by an integrable function cf (x). In the situations where f(t, x) is the

product of a continuous function of t and an integrable function of x or the superposition

of such products, the condition is automatically fulfilled.

Condition (c) also excludes the situation where there are infinite many points tj ∈ [0, 1]

such that G1(tj) = 0.

Theorem 3.1. If Assumptions C and A (a) and (c) hold, we have for any cn → ∞,

n/cn →∞ and r ∈ [0, 1],

cn
n

[nr]∑
s=1

f
( s
n
, cnxs,n

)
→D

∫ r

0
G1(t)dLW (t, 0), (3.6)

where G1(·) =
∫
f(·, x)dx and LW (t, 0) is the local–time process of W at origin over time

interval [0, t].

If, in addition, Assumption A (a) is replaced by Assumption A(b), then for any cn →
∞, n/cn →∞ and r ∈ [0, 1],

sup
0≤r≤1

∣∣∣∣∣∣cnn
[nr]∑
s=1

f
( s
n
, cnxs,n

)
−
∫ r

0
G1(t)dLW (t, 0)

∣∣∣∣∣∣ = oP (1), (3.7)

13



under the same probability space as defined in Assumption A(b).

Moreover, suppose that f2(t, x) satisfies Assumption C, and that {es} and {xs,n} satisfy

Assumptions B and A (c). We have for n→∞, cn →∞, cn/n→ 0 and r ∈ [0, 1],√
cn
n

[nr]∑
s=1

f
( s
n
, cnxs,n

)
es →D

(∫ r

0
G3(t)dLW (t, 0)

) 1
2

N, (3.8)

where G3(·) =
∫
f2(·, x)dx and N is a standard normal random variable independent of

W .

Remark 3.4. Note that if function f(t, x) reduces to f(x), equations (3.6) and (3.7) reduce

to Theorem 2.1 of Wang and Phillips (2009a) and with cn =
√
n to Theorem 5.1 of Park and

Phillips (1999), since G1(t) =
∫
f(x)dx becomes a constant and

∫ 1
0 dLW (r, 0) = LW (1, 0).

Also, these reduced cases of (3.7) and (3.8) can be viewed as a special case of Theorem 3.2

in Park and Phillips (2001) by taking parameter set Π as singleton since in the situation

G3 =
∫
f2(x)dx is a constant.

3.2 Asymptotic time-homogeneous and integrable functionals

Since in most cases the interested stochastic quantities are Ln =
∑n

s=1 F (s, cnxs,n) and

Mn =
∑n

s=1 F (s, cnxs,n)es, the results in the last subsection could not be used directly.

To tackle this issue, the key point is how we can normalize the time variable involved

in the functionals. Noting that if s in function F is in the form of some polynomial, we

would be able to deal with the normalization issue of time variable given that the F has

some convenient form. Motivated by this idea, we introduce the following definition of

asymptotic homogeneity with respect to t.

Definition 3.1. Let F (t, x) be defined on t ≥ 0 and x ∈ R. Suppose for every x ∈ R,

∀η > 0, and t ∈ [0, 1],

F (ηt, x) = υ(η)f(t, x) +Rη(t, x),

where

(a) f(t, x) satisfies Assumption C.

(b) Rη(t, x) is chosen such that it satisfies either (i) or (ii) below:

(i) |Rη(t, x)| ≤ qη(t)P (x), where both P (x) and P 2(x) are Lebesgue integrable, and

qη(t)/υ(η)→ 0 uniformly in t ∈ [0, 1] as η →∞.

14



(ii) |Rη(t, x)| ≤ qη(t)Q(ηt)P (x) where P (x) and P 2(x) are Lebesgue integrable,

limη→∞
qη(t)
v(η) = l(t) which is bounded on [0,1] and Q(y) is bounded on any

compact interval and limy→+∞Q(y) = 0.

Such functions F (t, x) are asymptotic homogeneous with respect to t and integrable

with respect to x, thus F (t, x) is called homogeneously-integrable functions, said to be

in Class (HI), denoted by T (HI). Functions υ and f are called homogeneity power and

normal function respectively. Function F (t, x) with R(t, x) satisfying (i) and (ii) is said

to be in T (HI1) and T (HI2), respectively.

Theorem 3.2. Suppose that F (t, x) is in the class T (HI) with homogeneity power υ

and normal function f . Then, when Assumption A (a) and (c) hold, for any cn → ∞,

n/cn →∞ and r ∈ [0, 1],

cn
nυ(n)

[nr]∑
s=1

F (s, cnxs,n)→D

∫ r

0
G1(t)dLW (t, 0), (3.9)

where G1(·) =
∫
f(·, x)dx and LW is the local–time process of W .

If Assumption A (a) is replaced by A (b), for any cn →∞, n/cn →∞,

cn
nυ(n)

[nr]∑
s=1

F (s, cnxs,n)→P

∫ r

0
G1(t)dLW (t, 0), (3.10)

uniformly in r ∈ [0, 1] as n → ∞ where G1(·) =
∫
f(·, x)dx and LW is the local–time

process of W .

Moreover, if {es} and {xs,n} satisfy Assumption B, and f2(t, x) satisfies Assumption

C, we have for n→∞, cn →∞, n/cn →∞ and r ∈ [0, 1],√
cn
n

1

υ(n)

[nr]∑
s=1

F (s, cnxs,n) es →D

(∫ r

0
G3(t)dLW (t, 0)

) 1
2

N, (3.11)

where G3(·) =
∫
f2(·, x)dx and N is a standard normal random variable independent of

W .

3.3 Regular functionals

In this subsection, we establish an asymptotic theory for the sample mean and sample

covariance of a regular functional f(t, x) to be defined below. The idea here is to deal with
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the convergence of the sample moment for functionals which have disconuious point but

can be sandwiched between two continuous functions that the integral of whose difference

on some compact interval approaches to zero. Also, the definition of regularity extends

that in Park and Phillips (1999, 2001).

Definition 3.2. Let f(t, x) be defined on [0, 1]× R. We say that f(t, x) is regular, if

(a) for each x ∈ R, f(t, x) is Lipschitz with respect to t, that is, there exists a constant

L(x) relative to x such that for any t1, t2 ∈ [0, 1],

|f(t1, x)− f(t2, x)| ≤ L(x)|t1 − t2|, (3.12)

where L(x), viewed as a function of x, satisfies condition (b) and (c) below (ignoring t);

(b) for each t, f(t, x) is continuous in x in a neighborhood of infinity;

(c) on any compact interval J of R, for any given ε > 0, there exist functions f
ε
(t, x),

f ε(t, x), which are continuous in t and x, and δ > 0 such that whenever |y − x| < δ on J ,

for each t ∈ [0, 1],

f
ε
(t, x) ≤ f(t, y) ≤ f ε(t, x), (3.13)

and as ε→ 0, ∫
J

sup
t∈[0,1]

(f ε(t, x)− f
ε
(t, x))dx→ 0. (3.14)

Remark 3.5. Note that if f(t, x) reduces to f(x), the conditions in (b) and (c) (ignoring t)

can be viewed as the definition of regularity of f(x), identical (with negligible difference)

to that in Park and Phillips (1999, 2001). Hence, since t is in [0,1], any type of functions

f(t, x) = q(t)L(x) is regular where q(t) ∈ C1[0, 1] and L(x) is regular. For detailed

discussion consult the papers above.

Note also that the main difference between this definition for f(t, x) and Definition

3.2 in Park and Phillips (2001) for function F (x, π), π ∈ Π, is that π is a parameter in

a compact set Π, while t ∈ [0, 1] is not parameter, which is involved as a variable in our

discussion below.

Theorem 3.3. Let f(t, x) be regular. If Assumption B is verified for triangular array

xs,n, 1 ≤ s ≤ n, n = 1, 2, · · · , and martingale difference (es,Fn,s), then

1

n

n∑
s=1

f
( s
n
, xs,n

)
→D

∫ 1

0
f(r,W (r))dr, (3.15)
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1√
n

n∑
s=1

f
( s
n
, xs,n

)
es →D

∫ 1

0
f(r,W (r))dU(r), (3.16)

as n→∞.

The following lemma gives the closure of the usual operations: addition, multiplication

by a scalar and product for regular functions.

Lemma 3.1. Suppose that both f(t, x) and g(t, x) are regular, then f(t, x)+g(t, x), cf(t, x)

for any c ∈ R and f(t, x)g(t, x) are regular.

3.4 Asymptotic homogeneous regular functionals

We borrow some notations from Park and Phillips (2001) for notational brevity. Let

TLB denote a class of locally bounded transformations on R; let T 0
LB be a subclass of

TLB consisting only of locally bounded transformations which are exponential bounded,

i.e. transformations P such that P (x) = O(ec|x|) for some c > 0; a class of bounded

transformations on R is denoted by TB, and a subclass T 0
B of TB is the collection of

transformations that are bounded and vanish at infinity, i.e. transformations P such that

P (x)→ 0 as |x| → ∞. Clearly, T 0
B ⊂ TB ⊂ T 0

LB ⊂ TLB.

Definition 3.3. We say that function F (t, x) is asymptotically homogeneous with respect

to both t and x, if for all ξ, η > 0 and t ∈ [0, 1],

F (ξt, ηx) = υ1(ξ)υ2(η)f(t, x) +R(ξ, η; t, x), (3.17)

where f(t, x) is regular on [0, 1] × R, and |R(ξ, η; t, x)| ≤ Aξ(t)a(η)P (x) + q(t)b(ξ)Bη(x)

with positive functions A, a, P, q, b, B such that

a) P (x) ∈ T 0
LB, lim supη→∞

a(η)
υ2(η) < ∞ and either lim supξ→∞

Aξ(t)
υ1(ξ) = 0 uniformly in

t ∈ [0, 1]; or υ1(ξ) → ∞ as ξ → ∞ and Aξ(t) = A(t) which is Riemann integrable on

[0, 1]; or Aξ(t) = Āξ(t)Q(ξt) with lim supξ→∞
Āξ(t)
υ1(ξ)

= l(t) which is bounded on [0, 1] and Q(·) ∈ T 0
B . And,

b) q(t) is bounded on [0, 1], lim supξ→∞
b(ξ)
υ1(ξ) < ∞ and either Bη(x) = B̄(η)V (x) with

lim supη→∞
B̄(η)
υ2(η) = 0 and V (x) ∈ T 0

LB, or Bη(x) = B̄(η)V (ηx), where V (·) ∈ T 0
B and

lim supη→∞
B̄(η)
υ2(η) <∞.
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In the definition of asymptotic homogeneity, we denote F (t, x) ∈ T (HH) and call

f(t, x) the normal function of F (t, x), and υ1(·) and υ2(·) the homogeneity powers with

respect to t and x respectively. See Remark B.3 for discussion and examples.

Theorem 3.4. Let F (t, x) be in Class T (HH) with homogeneity powers υ1(·) and υ2(·)
and normal function f(t, x). Let martingale difference (es,Fn,s) and xs,n satisfy Assump-

tion B. We then have

1

nυ1(n)υ2(cn)

n∑
s=1

F (s, cnxs,n) →D

∫ 1

0
f(r,W (r))dr, (3.18)

1√
nυ1(n)υ2(cn)

n∑
s=1

F (s, cnxs,n)es →D

∫ 1

0
f(r,W (r))dU(r), (3.19)

where (U(r),W (r)) is the limit of (Un(r),Wn(r)) for r ∈ [0, 1] stipulated in Assumption

B.

Remark 3.6. Note that if F (t, x) reduces to a univariate function F (x), with cn =
√
n,

equation (3.18) becomes Theorem 5.3 of Park and Phillips (1999) and the first part of

Theorem 3.3 with singleton Π of Park and Phillips (2001); equation (3.19) becomes the

second part of Theorem 3.3 with singleton Π in Park and Phillips (2001).

4 Statistical estimation

We consider a general statistical regression model of the form

Y (t) = m(t, Z(t)) + ε(t), (4.1)

where m(·, ·) is an unknown functional, ε(t) is an error process with zero mean and finite

variance, and Z(t) is a Lévy process.

Suppose that Z(t) admits a classical orthonormal polynomial system Qi(t, x) with

weight ρ(t, x), the density function or the probability distribution function of Z(t). Let

the support of ρ(t, x) be denoted by I, which can be R, R+ or N. Note that, as before,

the operator D signifies either differentiation or difference and it is conducted only with

respect to x.

This section is devoted to the estimation of m(·, ·) given observations of Y (t). We shall

divide the section into three subsections according to the different types of time horizons,

viz., on (0,∞), [0, T ] with fixed T and [0, Tn] where Tn is increasing with sample size n.
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4.1 Infinite time horizon

Suppose t is in the interval (0,∞). In this subsection we are going to work with the

situation where m(·, ·) is defined on [0,∞) × I and our sampling points are ts = s, s =

1, 2, · · · , n. Given that we have observations (Zs, Ys) where Ys = Y (s) and Zs = Z(s) for

s = 1, 2, · · · , n, our aim is to estimate m(τ, Zτ ) at t = τ .

At each point of observations, model (4.1) now becomes

Ys = m(s,Xs) + es, s = 1, . . . , n, (4.2)

where Xs = Z(s) denotes the Lévy process at point s, es = ε(s) (s = 1, . . . , n) form an

error sequence with mean zero and finite variance.

Observe that because Z(t) is a Lévy process, E[Z(t)] = tµ where µ = E(Z(1)) and

Var(Z(t)) = tσ2
z where σ2

z = Var(Z(1)). Observe also that Xs = sµ + Xs − sµ = sµ +∑s
i=1(Xi −Xi−1 − µ) = sµ +

√
nσzxs,n, where xs,n = 1√

nσz

∑s
i=1(Xi −Xi−1 − µ). Since

Xi − Xi−1 − µ form an i.i.d (0, σ2
z) sequence, it follows from the functional central limit

theorem, xs,n converges in distribution to a Brownian motion on [0, 1]. In addition, xs,n

satisfies Assumption A in the preceding section.

We firstly need to impose some conditions on m(t, x).

Assumption 4.1

(a) For every t > 0, m(t, x) and Drm(t, x) are in L2(I, ρr(t, x)), r = 1, 2, 3.

(b) For each i, the coefficient function ci(t,m) = E[m(t, Z(t))Qi(t, Z(t))], and its deriva-

tives of up to third order all belong to L2(R+).

(c) For i large enough, the coefficient functions ci(t,D
3m) of D3m(t, Z(t)) expanded by

the system {Q3i(t, Z(t))} are chosen such that v(t)3c2
i (t,D

3m) are bounded on (0,∞)

uniformly in i.

See Remark B.4 for discussion and examples.

Having expanded function m at sampling points, given truncation parameters k and

pi, model (4.2) can be written as for s = 1, 2, . . . , n,

Ys =

 k∑
i=0

pi∑
j=0

+
k∑
i=0

∞∑
j=pi+1

+
∞∑

i=k+1

∞∑
j=0

 cijLj(s)Qi(s,Xs) + es. (4.3)
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As we know from the preceding section,
∑∞

j=0 cijLj(s) = ci(s,m) or more simply, ci(s)

if there is no confusion occurred. We now may rewrite equations (4.3) in the following

matrix form:

Y = Xθ + δ + γ + ε, (4.4)

where

Y ′ =(Y1, Y2, . . . , Yn); θ′ = (c00, c01 . . . , c0p0 , c10, . . . , c1p1 , . . . , ck0, . . . , ckpk);

x1 =(L0(1)Q0(1, X1),L1(1)Q0(1, X1), . . . ,Lp0(1)Q0(1, X1),

L0(1)Q1(1, X1),L1(1)Q1(1, X1), . . . ,Lp1(1)Q1(1, X1),

. . . ,L0(1)Qk(1, X1),L1(1)Qk(1, X1), . . . ,Lpk(1)Qk(1, X1)),

...

xn =(L0(n)Q0(n,Xn),L1(n)Q0(n,Xn), . . . ,Lp0(n)Q0(n,Xn),

L0(n)Q1(n,Xn),L1(n)Q1(n,Xn), . . . ,Lp1(n)Q1(n,Xn),

. . . ,L0(n)Qk(n,Xn),L1(n)Qk(n,Xn), . . . ,Lpk(n)Qk(n,Xn)),

andX = (x′1, x
′
2, . . . , x

′
n)′, δ′ = (δ1, . . . , δn), γ′ = (γ1, γ2, . . . , γn) with δs =

∑k
i=1

∑∞
j=pi+1 cijLj(s)Qi(s,Xs)

and γs =
∑∞

i=k+1 ci(s)Qi(s,Xs), s = 1, 2, . . . , n; ε′ = (e1, e2, . . . , en).

The Semiparametric Least Squares (SLS) estimator of θ is given by

θ̂ = (X ′X)−1X ′Y. (4.5)

After obtaining the estimators of the coefficients in the expansion of functionalm(t, Z(t)),

we are able to estimate the function m(τ, x) at point (τ, x), where ∀τ > 0 and x ∈ R is

any point on the trajectory of Xτ = Z(τ), namely, we can have m̂(τ, x) by superseding

θ̂ in lieu of θ and getting rid of residues in the expansion of m(τ, x). More precisely, as

m(τ, x) = A′(τ, x)θ + δ(τ, x) + γ(τ, x), m̂(τ, x) = A′(τ, x)θ̂, where θ is defined as before

and

δ(τ, x) =
k∑
i=0

∞∑
j=pi+1

cijLj(τ)Qi(τ, x), γ(τ, x) =
∞∑

i=k+1

ci(τ,m)Qi(τ, x),

A′(τ, x) =(L0(τ)Q0(τ, x), · · · ,Lp0(τ)Q0(τ, x),

· · · ,L0(τ)Qk(τ, x), · · · ,Lpk(τ)Qk(τ, x)).
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We shall investigate the limit of

m̂(τ, x)−m(τ, x) = A′(τ, x)(θ̂ − θ)− δ(τ, x)− γ(τ, x)

= A′(τ, x)(X ′X)−1X ′(δ + γ + ε)− δ(τ, x)− γ(τ, x).
(4.6)

For late use, denote Ap×p and Bp×p by

A =
A(τ, x)A′(τ, x)

‖A(τ, x)‖2
and B = (X ′X)A(X ′X)−1,

where ‖ · ‖ signifies Euclidean norm and dimension p = p0 + · · ·+ pk + k + 1.

Before proceeding further let us establish the following useful lemma.

Lemma 4.1. Let v be an 1 × p unit row vector. Define p × p matrix V = v′v. Then V

has eigenvalues λ1 = 1, λi = 0, i = 2, . . . , p.

Because of their similarity, in view of Lemma (4.1), A andB share the same eigenvalues,

λ1 = 1, λ2 = · · · = λp = 0.

Let α be the unit left eigenvector of B pertaining to eigenvalue 1, viz., α′B = α′ and

‖α‖ = 1. Denote α′ = (α00, · · · , α0p0 , · · · , αk0, · · · , αkpk), in accordance with A(τ, x).

The following assumption imposes some conditions on a double-index sequence we are

working with.

Assumption 4.2

(a) Let S = {a0, a1, a2, . . .}, where ai = {aij}∞j=0 is a sequence such that
∑∞

j=1 j|ai,j | <∞
for i = 0, 1, 2, · · · .

(b) Suppose further that
∑∞

i=1 i
(∑∞

j=0 |aij |
)2

<∞.

Remark 4.1. Note that Assumption 4.2(a) and Assumption 4.2(b) are both required. This

is because the first condition is the requirement of the decay rate of |aij | in terms of j,

while the second one postulates that for each i > 0, ςi =
∑∞

j=0 |ai,j | is approximately

of O
(

1
i1+η

)
for some η > 0. Obviously, if there are some ε > 0 and η > 0 such that

aij = O
(

1
(1+j)2+ε(1+i)1+η

)
for i, j ≥ 0, both conditions are fulfilled.

Using α and 1
‖A′(τ,x)‖A

′(τ, x), let us reshuffle the set S as S̃ and S̄ by defining

1) S̃ = {ã0, · · · , ãi, · · · }, and S̄ = {ā0, · · · , āi, · · · };

2) ãi = {ãij} where ãij = 1√
pmax

αij for 0 ≤ i ≤ k and 0 ≤ j ≤ pi; otherwise, ãij = aij ;
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3) āi = {āij} where āij = 1√
pmax‖A(τ,x)‖Lj(τ)Qi(τ, x) for 0 ≤ i ≤ k and 0 ≤ j ≤ pi;

otherwise, āij = aij .

Obviously, ãij = aij = āij if i > k or j > pi. Meanwhile, since S̃ and S̄ satisfy

Riesz-Fischer theorem, there exist functions, denoted by F̃ (t, x) and G̃(t, x), such that

F̃ (t, Z(t)) =
∞∑
i=0

∞∑
j=0

ãijLj(t)Qi(t, Z(t)), (4.7)

G̃(t, Z(t)) =
∞∑
i=0

∞∑
j=0

āijLj(t)Qi(t, Z(t)), (4.8)

for any t > 0.

Therefore, in view of (4.7) and (4.8), we have

1
√
pmax

α′X ′ = F̃
′
− δ̃′ − γ̃′, (4.9)

1
√
pmax‖A′(τ, x)‖

A′(τ, x)X ′ = G̃
′
− δ̃′ − γ̃′, (4.10)

where

F̃
′
=(F̃ (1, X1), · · · , F̃ (n,Xn)), G̃

′
= (G̃(1, X1), · · · , G̃(n,Xn)),

δ̃′ =(δ̃1, · · · , δ̃n) with δ̃s =
k∑
i=0

∞∑
j=pi+1

aijLj(s)Qi(s,Xs),

γ̃′ =(γ̃1, · · · , γ̃n) with γ̃s =

∞∑
i=k+1

∞∑
j=0

aijLj(s)Qi(s,Xs).

We have the following proposition for the functions F̃ (t, x) and G̃(t, x).

Proposition 4.1. For any t > 0, (a) E[G̃(t, Z(t))]2 <∞, and (b) E[F̃ (t, Z(t))]2 <∞.

Notice that E[Z(t)] = µt. Denote F (t, x − µt) = F̃ (t, x) and G(t, x − µt) = G̃(t, x).

This is only a change in the form of functions since the process Z(t) has to be centralized

in order to acquire the limit distribution of m̂.

The following assumption is stipulated for the truncation parameters, which is crucial

for obtaining the limit distribution of the estimator.

Assumption 4.3

(a) k = [nκ1 ] with 1
2 < κ1 < 1;
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(b) pmin = [nκ2 ] and pmax = [nκ̄2 ] with 0 < κ2 ≤ κ̄2 < 1;

(c) 2 + 2κ1 < 5κ2.

Remark 4.2. There are obviously a great deal of feasible options for κ1, κ2 and κ̄2 satisfying

the conditions. Note that condition (c) is quite reasonable since it follows automatically

when κ2 > 0.8.

Next assumption describes the families of functionals F and G we are studying in the

asymptotic distribution of the estimator.

Assumption 4.4

(a) Suppose that F (·, ·) and G(·, ·) are in class T (HI) with homogeneity powers υ(·) and

%(·) and normal functions f(·, ·) and g(·, ·) respectively. Let υ(n) = nς and %(n) = nι

with ς ≥ 0 and ι ≥ 0 satisfying 1
2(κ1 − 1

2) < ι < min{5
4κ2 − 1

4 −
1
2κ1,

7
4κ1 − 1

4}.

(b) Suppose also that F 2(·, ·), G2(·, ·) and F (·, ·)G(·, ·) are all in class T (HI) with ho-

mogeneity powers υ2(·), %2(·) and υ(·)%(·), and normal functions f2(·, ·), g2(·, ·) and

f(·, ·)g(·, ·) respectively.

(c) Suppose that F (·, ·) and G(·, ·) are in class T (HH) with homogeneity powers υ1(·),
υ2(·) and %1(·), %2(·) and normal functions f(·, ·) and g(·, ·) respectively. Let υ1(n) =

nς1 , υ2(n) = nς2 , %1(n) = nι1 , and %2(n) = nι2 with ςi ≥ 0, ιi ≥ 0, i = 1, 2, satisfying

that ι1 + 1
2 ι2 < min{5

4κ2 − 1
2(1 + κ1), 7

4κ1 − 1
2}.

(d) Suppose also that F 2(·, ·), G2(·, ·) and F (·, ·)G(·, ·) are all in class T (HH) with ho-

mogeneity powers υ2
1(·) and υ2

2(·); %2
1(·) and %2

2(·); υ1(·)%1(·) and υ2(·)%2(·) as well as

normal functions f2(·, ·), g2(·, ·) and f(·, ·)g(·, ·) respectively.

Remark 4.3. Assumption 4.3 ensures that two upper bounds for ι and ι1 + 1
2 ι2 are positive.

Of course, we can simplify these conditions in (a) and (c) if we impose more constraints

on κ1 and κ2. However, these conditions allow more options.

Note that in the proof of the following theorem, whatever conditions for ι and ι1 + 1
2 ι2

we actually use also involve κ̄2 − κ2. Since we may require κ̄2 to be much closer to κ2

such that κ̄2 − κ2 is as small as we wish, conditions in (a) and (c) tacitly provide what

we need in the proof. Obviously, this does not harm any thing else and applies to the

subsequential subsections.
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Note also that the ambit for both ι and ι1 + 1
2 ι2 can be enlarged at price of enhancing

the order of differentiability for the coefficient functions in the expansion of m function,

as can be seen in the proof of the following theorem.

We are now ready to state the main result in the subsection.

Theorem 4.1. Suppose that {xs,n}n1 and {es}n1 satisfy Assumption B. Let Assumptions

4.1–4.3 hold.

If Assumption 4.4(a) and (b) hold, then

√
σz

4
√
nυ(n)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

(m̂(τ, x)−m(τ, x))

→D

(∫ 1

0
G3(t)dLW (t, 0)

) 1
2

N,

(4.11)

where G3(t) =
∫
f(t, x)2dx, W is a standard Brownian motion on [0, 1], N is a standard

normal random variable independent of W , and LW is the local–time process of W .

If Assumption 4.4(c) and (d) hold, then

1√
nυ1(n)υ2(

√
nσz)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

(m̂(τ, x)−m(τ, x))

→D

∫ 1

0
f(r,W (r))dU(r),

(4.12)

where (W (r), U(r)) is the vector of Brownian motions involved in Assumption B.

See Remark B.5 for discussion on the theorem.

4.2 Finite time horizon

Assume time variable t lies in [0, T ] with T fixed. In this subsection function m is defined

on [0, T ] × I. Therefore, conditions on m would be weakened since square integrability

on [0, T ] is much weaker than that on the half line. We make the following assumptions

about m(t, x) in model (4.1).

Assumption 4.5

(a) Let Drm(t, x) ∈ L2(I, ρr(t, x)) for any t ∈ [0, T ] and r = 0, 1, 2. Moreover, the

expansion of D2m(t, Z(t)) in terms of Qi(t, Z(t)) converges in the sense of mean square

uniformly on [0, T ].
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(b) For each i, bi(t,m) = E[m(t, Zt)Qi(t, Zt)] and its derivatives of up to third order

belong to L2[0, T ].

(c) Furthermore, ‖b′′i (t,m)‖L2[0,T ] are bounded uniformly in i.

Remark 4.4. Both Condition (a) and (b) are quite general. Condition (a) ensures the pos-

sibility of the expansions of Drm(t, Z(t)). Condition (c) is also reasonable. For example,

if function m is polynomial, sine, cosine function, or their combinations, the condition is

fulfilled automatically.

Suppose that we have n observations for the process Y (t) on [0, T ] and the observations

are Ys,n = Y (ts,n) at ts,n = T s
n for s = 1, 2, · · · , n. At the sampling points, we have the

following model

Ys,n = m(ts,n, Xs,n) + es, s = 1, . . . , n, (4.13)

where Xs,n = Z(T s
n) denotes the Lévy process Z(t) at point ts,n, es = ε(T s

n) (s = 1, . . . , n)

form an error sequence with mean zero and finite variance.

Note that Xs,n = s
nTµ+

√
Tσz

1√
n

∑s
i=1wi, where wi =

√
n√
Tσz

(Xi,n−Xi−1,n− 1
nTµ) form

an i.i.d.(0,1) sequence. Let xs,n = 1√
n

∑s
i=1wi. It follows from the functional central limit

theorem that xs,n converges to a standard Brownian motion in distribution as n→∞. It

is also clear that xs,n satisfies Assumption A.

Under Assumption 4.5 we can expand m(t, Z(t)) at every point t ∈ [0, T ] using basis

ϕjT (t)Qi(t, Z(t)). Let k and pi be truncation parameters for i and j. Thus, model (4.13)

for s = 1, 2, · · · , n becomes

Ys,n =

 k∑
i=0

pi∑
j=0

+
k∑
i=0

∞∑
j=pi+1

+
∞∑

i=k+1

∞∑
j=0

 bijϕjT (ts,n)Qi(ts,n, Xs,n) + es.

Equivalently, the matrix form of (4.2) is

Y = Xβ + δ + γ + ε, (4.14)

where all notations remain similar to what has been defined in the last subsection so that

we avoid reciting them. The SLS estimator of β is given by

β̂ = (X ′X)−1X ′Y. (4.15)

With the help of β̂ we are able to estimate m(·, ·) at (τ, x) where τ is any point in [0, T ]

and x is any point on the path of Z(τ). The estimator m̂(τ, x) of m(τ, x) is obtained by
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replacing β by β̂ and abandoning all the residues in the expansion of m(τ, x). Explicitly,

m(τ, x) := A′(τ, x)β + δ(τ, x) + γ(τ, x) and m̂(τ, x) = A′(τ, x)β̂, where

δ(τ, x) =
k∑
i=0

∞∑
j=pi+1

bijϕjT (τ)Qi(τ, x), γ(τ, x) =
∞∑

i=k+1

bi(τ,m)Qi(τ, x),

A′(τ, x) =(ϕ0T (τ)Q0(τ, x), · · · , ϕp0T (τ)Q0(τ, x),

· · · , ϕ0T (τ)Qk(τ, x), · · · , ϕpkT (τ)Qk(τ, x)).

We shall investigate the limit of

m̂(τ, x)−m(τ, x) = A′(τ, x)(β̂ − β)− δ(τ, x)− γ(τ, x)

= A′(τ, x)(X ′X)−1X ′(δ + γ + ε)− δ(τ, x)− γ(τ, x).
(4.16)

Let us define

A =
A(τ, x)A′(τ, x)

‖A(τ, x)‖2
and B = (X ′X)A(X ′X)−1. (4.17)

By virtue of Lemma 4.1 and similarity, B has eigenvalues λ1 = 1, λ2 = · · · = λp = 0.

Let unit column vector α be the left eigenvector of B pertaining to λ1 = 1, viz., α′B = α′

and ‖α‖ = 1. In accordance with the notation of A(τ, x), the subscript of α is specified in

double-index, that is, α′ = (α00, · · · , α0p0 , · · · , αk0, · · · , αkpk).

Let us apply the reshuffling procedure for the set S from Assumption 4.2 by α and
1

‖A(τ,x)‖A(τ, x). Denote by S̃ and S̄ the resulting sets:

1) S̃ = {ã0, · · · , ãi, · · · }, and S̄ = {ā0, · · · , āi, · · · }.

2) ãi = {ãij} where ãij = 1√
pmax

αij for 0 ≤ i ≤ k and 0 ≤ j ≤ pi; otherwise, ãij = aij .

3) āi = {āij} where āij = 1√
pmax‖A(τ,x)‖ϕjT (τ)Qi(τ, x) for 0 ≤ i ≤ k and 0 ≤ j ≤ pi;

otherwise, āij = aij .

Since Riesz-Fischer theorem is satisfied by both S̃ and S̄, there exist two functions,

denoted by F (t, x) and G(t, x), such that for all t ∈ [0, T ],

F (t, Z(t)) =
∞∑
i=0

∞∑
j=0

ãijϕjT (t)Qi(t, Z(t)), (4.18)

G(t, Z(t)) =

∞∑
i=0

∞∑
j=0

āijϕjT (t)Qi(t, Z(t)). (4.19)
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Therefore, by virtue of equations in (4.18) and (4.19),

1
√
pmax

α′X ′ = F′ − δ̃′ − γ̃′, (4.20)

1
√
pmax‖A(τ, x)‖

A(τ, x)′X ′ = G′ − δ̃′ − γ̃′, (4.21)

where

F′ = (F (t1,n, X1,n), · · · , F (tn,n, Xn,n)),G′ = (G(t1,n, X1,n), · · · , G(tn,n, Xn,n)),

δ̃′ = (δ̃1, · · · , δ̃n), with δ̃s =
k∑
i=0

∞∑
j=pi+1

aijϕjT (ts,n)Qi(ts,n, Xs,n),

γ̃′ = (γ̃1, · · · , γ̃n), with γ̃s =

∞∑
i=k+1

∞∑
j=0

aijϕjT (ts,n)Qi(ts,n, Xs,n).

The following proposition demonstrates the finiteness of the second moments of F (t, Z(t))

and G(t, Z(t)).

Proposition 4.2. For any t ∈ [0, T ], (a) E[F 2(t, Z(t))] <∞, and (b) E[G2(t, Z(t))] <∞.

In order to obtain an asymptotic theory for m̂, we make the following assumptions for

the truncation parameters.

Assumption 4.6

(a) Let k = [nκ1 ] and 1
2 < κ1 < 1

(b) Let pmin = [nκ2 ], pmax = [nκ̄2 ] with 0 < κ2 ≤ κ̄2 < 1 and 0 ≤ κ̄2 − κ2 < 3κ2 − κ1 − 1.

Clearly, feasible solutions of such truncation parameters do exist. The last assumption

is about the functions F (t, x), G(t, x) and m(τ, x).

Assumption 4.7 Both F (t, x) and G(t, x) are continuous in t and x.

We are now ready to establish the following theorem.

Theorem 4.2. Suppose that {xs,n}n1 and {es}n1 satisfy Assumption B. Under Assumptions

4.5–4.7 we have as n→∞,

1√
n

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

(m̂(τ, x)−m(τ, x))

→D

∫ 1

0
F (Tr, Tµr +

√
TσzW (r))dU(r),

(4.22)

where (U(r),W (r)) is the vector of Brownian motions involved in Assumption B.

See Remark B.6 for the discussion on the theorem.
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4.3 Time horizon approaching infinity

We are also interested in the scenario where time variable lies in [0, Tn] and Tn → ∞ as

n→∞.

The relationship between Tn and n is crucial for the following development. Both of

them are divergent. The divergence of Tn, however, is negligible comparing with that of n,

viz., Tn
n → 0 as n→∞. The main reason is that the proposed method requires sufficient

information from the path of the process to estimate the coefficients in the expansion.

In addition, such designed framework will help us avoid two drawbacks, that is, on

(0,∞) we could not shrink the time span of observations, whereas on [0, T ] with fixed

T we ignore considerable information beyond the time zone that may be helpful for our

estimation. In technical terms, allowing T = Tn →∞ and Tn
n → 0 amounts to both infill

and long span asymptotics. Meanwhile, the two-fold limit theory keeps ones away from

the so-called aliasing problem (i.e., different continuous-time processes may be indistin-

guishable when sampled at discrete time). Phillips (1973) and Hansen and Sargent (1983)

were among the first discussing the aliasing phenomenon in the literature. Recent studies

include Bandi and Phillips (2003, 2007).

We propose the following assumptions for the function m(t, x) in the model (4.1).

Assumption 4.8

(a) For every t > 0, m(t, x) and Drm(t, x) are all in L2(I, ρr(t, x)), r = 1, 2, 3.

(b) For each i, bi(t,m) = E[m(t, Z(t))Qi(t, Z(t))], belongs to C3[0, T ] for any T > 0.

(c) For i large enough, the coefficient functions bi(t,D
3m) of D3m(t, Z(t)) expanded by

the system {Q3i(t, Z(t))} are such that v(t)3b2i (t,D
3m) are bounded on (0,∞) uni-

formly in i.

(d) ‖b′′i (t,m)‖L2[0,T ] are bounded uniformly in i for any T > 0.

Remark 4.5. Since the framework in this subsection is a combination of the first two, the

requirements for m(t, x) contain the basic conditions in Assumptions 4.1 and 4.5.

There are many functions that satisfy these four conditions at the same time. For

instance, m(t, x) = tηe−ctP (x) with η ≥ 1, c > 0 and P (x) being any polynomial of fixed

degree; m(t, x) = t
1+tη cosx with η ≥ 3, and so on.
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For the truncation parameters and time span Tn, we make the following assumption.

Assumption 4.9

(a) Let k = [nκ1 ], pmin = [nκ2 ], pmax = [nκ̄2 ] and Tn = [nκ3 ], where 0 < κi < 1 (i = 1, 2, 3),

κ2 ≤ κ̄2 < 1 and κ1 >
1
2 .

(b) Let 3κ3 + κ1 + 1 < 3κ2.

Remark 4.6. Feasible solutions for κi (i = 1, 2, 3) do exist. For instance, κ1 = 0.6, κ2 = 0.8

and κ3 = 0.2. Meanwhile, condition (b) implies that κ2 >
1
2 + κ3.

Given the observation number n, one can choose T = Tn according to Assumption 4.9.

Let us sample on [0, Tn] at equally spaced points: ts,n = Tn
s
n (s = 1, · · · , n) for model

(4.1). Denote by Ys,n the process Y (t) at ts,n, Xs,n = Z(ts,n) for the Lévy process at the

discrete points and es = ε(ts,n). Observe that Xs,n = s
nTnµ +

√
Tnσz

1√
n

∑s
i=1wi where

wi =
√
n√

Tnσz
(Xi,n −Xi−1,n − 1

nTnµ) form an i.i.d (0,1) sequence. Let xs,n = 1√
n

∑s
i=1wi.

It therefore follows from the functional central limit theorem that xs,n converges in distri-

bution to a Brownian motion on [0, 1] as n→∞. In addition, it is clear that xs,n satisfies

Assumption A.

The following procedure is similar to the preceding subsections. The m(t, Z(t)) is

expanded using an orthonormal basis {ϕjTn(t)Qi(t, Z(t))} at each sampling point, and

then obtain n equations. The n equations can be written in the following matrix form

Y = Xβ + δ + γ + ε, (4.23)

where all notations remain the similar meanings as before, so that we spare our effort to

recite them.

The SLS estimator of β is given by

β̂ = (X ′X)−1X ′Y. (4.24)

Obtaining β̂ enables us to estimate m(τ, x) for fixed τ > 0 and fixed x on the

path of Z(τ). m̂(τ, x) is generated from the expansion of m(τ, x) by superceding β by

β̂ and removing all residues. Whence, we have m̂(τ, x) = A′(τ, x)β̂, where A′(τ, x) =

(ϕ0Tn(τ)Q0(τ, x), · · · , ϕp0Tn(τ)Q0(τ, x), · · · ,
ϕ0Tn(τ)Qk(τ, x), · · · , ϕpkTn(τ)Qk(τ, x)). The difference between m̂(τ, x) and m(τ, x) is

m̂(τ, x)−m(τ, x) = A′(τ, x)(β̂ − β)− δ(τ, x)− γ(τ, x)

= A′(τ, x)(X ′X)−1X ′(δ + γ + ε)− δ(τ, x)− γ(τ, x),
(4.25)
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where

δ(τ, x) =
k∑
i=0

∞∑
j=pi+1

bijϕjTn(τ)Qi(τ, x); γ(τ, x) =
∞∑

i=k+1

bi(τ,m)Qi(τ, x).

Thus, one desired result is the asymptotic distribution of m̂(τ, x) −m(τ, x). To this

end, put

A =
A(τ, x)A′(τ, x)

‖A(τ, x)‖2
and B = (X ′X)A(X ′X)−1. (4.26)

Once again B has eigenvalues λ1 = 1, λ2 = · · · = λp = 0. Let unit vector α be the

left eigenvector of B pertaining to λ1. Hence, we have α′B = α′ and ‖α‖ = 1. Denote

α′ = (α00, · · · , α0p0 , · · · , αk0 · · · , αkpk) in accordance with A(τ, x).

Let us apply the reshuffling procedure for the set S from Assumption 4.2 by α and
1

‖A(τ,x)‖A(τ, x). Denote by S̃ and S̄ the resulting sets:

1) S̃ = {ã0, · · · , ãi, · · · }, and S̄ = {ā0, · · · , āi, · · · }.

2) ãi = {ãij} where ãij =
√

Tn
pmax

αij for 0 ≤ i ≤ k and 0 ≤ j ≤ pi; otherwise, ãij = aij .

3) āi = {āij} where āij =
√

Tn
pmax

1
‖A(τ,x)‖ϕjTn(τ)Qi(τ, x) for 0 ≤ i ≤ k and 0 ≤ j ≤ pi;

otherwise, āij = aij .

Due to Riesz-Fischer theorem, for two sequences S̃ and S̄, there exist two functions,

denoted by F̃ (t, x) and G̃(t, x), such that

F̃ (t, Z(t)) =
∞∑
i=0

∞∑
j=0

ãijϕjTn(t)Qi(t, Z(t)), (4.27)

G̃(t, Z(t)) =

∞∑
i=0

∞∑
j=0

āijϕjTn(t)Qi(t, Z(t)), (4.28)

for any t ∈ [0, Tn].

In view of the expressions of ãij and āij , rewrite (4.27) and (4.28) as√
Tn
pmax

α′X ′ = F̃
′
− δ̃′ − γ̃′, (4.29)

1

‖A(τ, x)‖

√
Tn
pmax

A(τ, x)′X ′ = G̃
′
− δ̃′ − γ̃′, (4.30)
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where

F̃
′
= (F̃ (t1,n, X1,n), · · · , F̃ (tn,n, Xn,n)), G̃

′
= (G̃(t1,n, X1,n), · · · , G̃(tn,n, Xn,n)),

δ̃′ = (δ̃1, · · · , δ̃n), with δ̃s =
k∑
i=0

∞∑
j=pi+1

aijϕjTn(ts,n)Qi(ts,n, Xs,n),

γ̃′ = (γ̃1, · · · , γ̃n), with γ̃s =
∞∑

i=k+1

∞∑
j=0

aijϕjTn(ts,n)Qi(ts,n, Xs,n).

Proposition 4.3. For any t ∈ [0, Tn], (a) E[G̃(t, Z(t))]2 < ∞, and (b) E[F̃ (t, Z(t))]2 <

∞.

Let G̃(t, x) = G̃(t, µt + x − µt) := G(t, x − µt) and F̃ (t, x) = F̃ (t, µt + x − µt) :=

F (t, x − µt). These reforms are because we are working on the centralized underlying

process.

Assumption 4.10

(a) Both F (t, x) and G(t, x) are in Class (HI) with normal functions f(t, x), g(t, x) and

homogeneity powers υ(·) and %(·) respectively. Let υ(n) = nς and %(n) = nι satisfying

(i) 1 + κ1 + (2ι+ 2.5)κ3 < 3κ2; (ii) 1 + (2ι− 0.5)κ3 < 2.5κ1.

(b) Suppose further that F 2(t, x), G2(t, x) and F (t, x)G(t, x) are in Class (HI) with normal

functions f2(t, x), g2(t, x) and f(t, x)g(t, x) and homogeneity powers υ2(·), %2(·) and

υ(·)%(·) respectively.

(c) Both F (t, x) and G(t, x) are in Class (HH) with normal functions f(t, x), g(t, x) and

homogeneity powers υ1(·), υ2(·) and %1(·), %2(·) respectively. Let υ1(n) = nς1 , υ2(n) =

nς2 and %1(n) = nι1 , %2(n) = nι2 satisfying (i) 1 + κ1 + (2ι1 + ι2 + 3)κ3 < 3κ2; (ii)

1 + (2ι1 + ι2)κ3 < 2.5κ1.

(d) Suppose further that F 2(t, x), G2(t, x) and F (t, x)G(t, x) are in Class (HH) with nor-

mal functions f2(t, x), g2(t, x) and f(t, x)g(t, x) and homogeneity powers υ2
1(·), υ2

2(·);
%2

1(·), %2
2(·); υ1(·)%1(·), υ2(·)%2(·) respectively.

Remark 4.7. Note that the conditions in (a) and (c) are untidy since we would like to

show the original requirement for the parameters.

It is clear that if 0 < ι < 0.25, Assumption 4.9 (b) implies the condition (i) of As-

sumption 4.10 (a); conversely, when ι ≥ 0.25 the latter always implies the former. Of
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course, there are feasible options for them to satisfy all the requirements. For example,

if κ1 = 0.7, κ2 = 0.9 and κ3 = 0.1, then ι can be chosen from (0, 3.5). By the way, if we

impose some relationship among κi (i = 1, 2, 3), such as κ2 <
7
6κ1 + κ3, (i) implies (ii) in

(a).

Let ζ = 2ι1 + ι2 for the time being. Since ζ ≥ 0, the condition (i) in (c) always implies

Assumption 4.9 (b). Evidently, if a relationship is imposed among κi (i = 1, 2, 3), (i) and

(ii) in (c) may substitute each other, depending on what relationship is being imposed.

Note that there are feasible choices for all parameters. For instance, κ1 = 0.6, κ2 = 0.8,

κ3 = 0.1, ζ ∈ (0, 2.5).

The following theorem is the main result of this subsection.

Theorem 4.3. Suppose that {xs,n}ns=1 and {es}ns=1 satisfy Assumption B. Let Assump-

tions 4.8–4.9 hold.

If Assumption 4.10 (a) and (b) are true, then

4
√
Tn

3√
σz√

nυ(Tn)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

(m̂(τ, x)−m(τ, x))

→D

(∫ 1

0
G3(u)dLW (u, 0)

) 1
2

N,

(4.31)

where G3(·) =
∫
f2(·, x)dx, W is a standard Brownian motion on [0, 1] and N is a standard

normal random variable independent of W , and LW is the local–time process of W .

If Assumption 4.10 (c) and (d) are true, then

√
Tn√

nυ1(Tn)υ2(
√
Tnσz)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

(m̂(τ, x)−m(τ, x))

→D

∫ 1

0
f(r,W (r))dU(r),

(4.32)

where vector (W (r), U(r)) of Brownian motions is from Assumption B.

See Remark B.7 for the discussion on the theorem.

5 Conclusion and discussion

We have established orthogonal expansions of Lévy process functionals for both time-

homogeneous and time-inhomogeneous ones under consideration of time horizon being
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finite and infinite. With a verity of options of process sequence constructed from un-

derlying process and error sequence verifying conventional assumptions, we have studied

the convergence of sample mean and sample covariance for four classes of quite general

functionals, which are applicable as seen in Section 4. As an application of the expansions

and asymptotic theory, we have developed a sophisticated method to tackle the statistical

estimation problem in nonlinear and nonstationary continuous-time models and proved

the proposed estimators are consistent.

As far as what we noticed, the expansion method for unknown functionals of Lévy

process can be used in economics and finance for some relevant research fields. For in-

stance, in economics there are a great deal of models with conditional moment restriction

containing unknown functionals in nonstationary process; in finance, more often than not,

derivative pricing problem is associated with a functional, much popular nowadays, in a

general Lévy process rather than only a Brownian motion. It can be expected that our

expansion method is applicable in complete financial market for perfect hedging problem

and in incomplete financial market for mean-variance hedging problem.
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A Existence of orthogonal polynomial system associated to

a Lévy process

A Lévy process (Z(t), t ≥ 0) is a stochastic process which has independent increments

(for 0 ≤ s ≤ t, Z(t) − Z(s) is independent of {Z(u), u ≤ s}), stationary distribution (for

0 ≤ s ≤ t, Z(t)−Z(s) is equal in distribution to Z(t− s)) and starts almost surely at zero

(P(Z(0) = 0) = 1).

Let φ(θ) be the characteristic function of Z(1), viz. φ(θ) = E[eiθZ(1)]. It follows from

the infinite divisibility of the distribution of Z(t) that E[eiθZ(t)] = (φ(θ))t. According to

Schoutens (2000, p. 50), it can be shown that

φ′(θ)

φ(θ)
= i(µ+ σ2τ(iθ)) (A.1)
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for some function τ(·) with τ(0) = 0, where µ = EZ(1) and σ2 = Var(Z(1)).

Let u(·) be the inverse function of τ(·) and define π(z) = [φ(−iu(z))]−1.

Definition A.1 (Lévy-Meixner system). A polynomial set {qi(t, x), i ≥ 0, t ≥ 0} is called

a Lévy-Meixner system if it is defined by a generating function of the form

∞∑
i=0

qi(t, x)
zi

i!
= (π(z))t exp(xu(z)). (A.2)

Such qi(t, x) functions are orthogonal with respect to the distribution Ψt(x) of Z(t):∫
qi(t, x)qj(t, x)dΨt(x) = δij d̃

2
i (t), where d̃2

i (t) is the squared norm of qi(t, x).

Remark A.1. When process Z(t) is specified as Brownian motion, qi(t, x) becomes Her-

mite polynomial with the density of normal distribution N(0, t) being the weight function;

when Z(t) is specified as Gamma process, qi(t, x) will be the Laguerre polynomial system

L
(αt)
i (x); if Z(t) = N(t) a Poisson process with intensity µ, qi(t, x) will be the Char-

lier polynomial system ci(µt, x); if Z(t) is a Pascal process, qi(t, x) will be the Meixner

polynomial system.

In what follows we are about to show some explicit expressions, orthogonality, squared

norm for qi(t, x) and its derivatives. Since their derivations are analogous to those given

in Nikiforov and Uvarov (1988), we omit them for brevity.

Let us now consider differential and difference equations of hypergeometric type with

parameter t > 0:

s(t, x)y′′(t, x) + v(t, x)y′(t, x) + λ(t)y(t, x) = 0; (A.3a)

s(t, x)4∇y(t, x) + v(t, x)4y(t, x) + λ(t)y(t, x) = 0, (A.3b)

where s(t, x) and v(t, x) are polynomials in x of degree at most 2 and 1 respectively,

while λ(t) is independent of x. Note that in the equations of (A.3), and in the sequel, all

derivatives and differences are conducted with respect to x, not to t.

Remember we denote by D in the text differential or difference operation for notational

convenience.

It is known that when λ(t) ≡ λi(t) = −iv′(t, x) − i(i−1)
2 s′′(t, x), y(t, x) = yi(t, x), as a

solution of (A.3), is a polynomial in x of degree exactly i. In addition, if ρ(t, x) satisfies

(i) D(s(t, x)ρ(t, x)) = v(t, x)ρ(t, x),

(ii) s(t, x)ρ(t, x)xk|ba = 0, k = 0, 1, · · · ,
(A.4)
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where a and b are the boundary points of the support of ρ(t, x) (so that the condition

(ii) of (A.4) is called boundary condition), we have explicit expressions of yi(t, x) and

Dkyi(t, x) (k = 1, · · · , i):

Dkyi(t, x) =
AkiBi
ρk(t, x)

Dk[ρi(t, x)], (A.5)

where Aki := Πk−1
j=0(λi(t)−λj(t)) for k = 0, · · · , i and Bi = 1

Aii
y

(i)
i (t, x), ρk(t, x) = ρ(t, x+

k)Πk
j=1s(t, x + j) in the discrete case and ρk(t, x) = sk(t, x)ρ(t, x) in the continuous case

for k = 1, 2, · · · , with convention of ρ0(t, x) = ρ(t, x).

Moreover, such yi(t, x) and Dkyi(t, x) are orthogonal on (a, b) with respect to ρ(t, x)

and ρk(t, x), respectively. We also have with d2
ki(t) standing for the squared norm of

Dkyi(t, x) that

d2
ki(t) = d2

i (t)

k−1∏
j=0

ηji(t), (A.6)

for k ≥ 1 where d2
i (t) := d2

0i(t), η0i(t) = λi(t) and ηji(t) = λi(t)− λj(t).

Remark A.2. Because an orthogonal polynomial system is determined uniquely up to a

normalizing factor by the interval (a,b) and the weight ρ(t, x), it is not difficult to obtain

that qi(t, x) = d̃i(t)
di(t)

yi(t, x).

If for Lévy process Z(t), ρ(t, x) satisfies the conditions in (A.4), as stated before, there

is an orthogonal polynomial system yi(t, x) with weight ρ(t, x). Let us define Qi(t, x) and

Qki(t, x) by

Qi(t, x) =
1

di(t)
yi(t, x) and Qki(t, x) =

1

dki(t)
Dkyi(t, x), (A.7)

each of which is an orthonormal polynomial system with either ρ(t, x) or ρk(t, x) being its

weight. In such a situation, we say that Z(t) admits a classical orthonormal polynomial

system Qi(t, x).

Example A.1

(1) If Z(t) = B(t) is a Brownian motion with ρ(t, x) = 1√
2πt
e−

x2

2t , the corresponding

hypergeometric differential equations are

ty′′(t, x)− xy′(t, x) + iy(t, x) = 0,

which have polynomial solution yi(t, x) = Hi(x/
√
t), where Hi(·) for i ≥ 1 are Hermite

polynomials.
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(2) If Z(t) = G(t) is a Gamma process with ρ(t, x) = 1
Γ(1+αt)x

αte−x, the corresponding

hypergeometric differential equations are

xy′′(t, x) + (αt+ 1− x)y′(t, x) + iy(t, x) = 0,

which have polynomial solution yi(t, x) = L
(αt)
i (x), where L

(·)
i (·) for i ≥ 1 are Laguerre

polynomials.

(3) If Z(t) = N(t) is a Poisson process with ρ(t, x) = e−µt (µt)x

x! , x = 0, 1, 2, · · · , the

corresponding hypergeometric difference equations are

x4∇y(t, x) + (µt− x)4y(t, x) + iy(t, x) = 0,

which have polynomial solution yi(t, x) = c
(µt)
i (x), where c

(·)
i (·) for i ≥ 1 are Charlier

polynomials.

Remark A.3. It follows from (A.6) that for any i, λi(t) > 0. That entails that v′(t, x) < 0

and s′′(t, x) = 0 or v′(t, x) < 0 and s′′(t, x) < 0. The former includes three processes in

Example A.1, while in the latter, after a transformation s(t, x) can be written as c2 − x2

with fixed c > 0. However, this scenario is beyond the scope of this paper since we are

interested in that Z(t) assumes values on infinite interval or set, specifically, R, R+ or N.

Therefore, our development will focus on the case where v′(t, x) < 0 and s′′(t, x) = 0.

Although in our examples v′(t, x) = −1, in order to keep the framework as general

as possible, we shall always treat v′(t, x) as a negative function of t. Denote v(t) :=

−[v′x(t, x)]−1 > 0, which is used frequently in the paper.

Remark A.4. We may also need some asymptotic properties about the orthogonal poly-

nomials. In the sequel, the following inequalities for Hermite polynomials and Laguerre

polynomials are useful, which can be found in Nikiforov and Uvarov (1988, p54) for large

i,
1

di
|Hi(x)| ≤ C1i

− 1
4 and

1

di
|L(α)
i (x)| ≤ C2i

− 1
4 ,

where di’s are the norm of Hermite and Laguerre polynomials in different inequalities

respectively; C1 and C2 only depend on fixed x.

In addition, in view of the relation ci(µ, x) = cx(µ, i) = x!L
(i−x)
x (µ), the above inequal-

ity is true for Charlier polynomials as well. Thus, we may assert that within the ambit of

our study, all classical orthonormal polynomials Qi(t, x) satisfy that |Qi(t, x)| ≤ Ci−
1
4 for

fixed t and x, where C is independent of i.
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B Remarks, justifications and examples

Remark B.1. We now give some examples of expansion of f(Z(t)).

(1) f(Z(t)) = a0 + a1Z(t) + · · ·+ akZ(t)k. Obviously, f(Z(t)) can be expanded by the

first k+1 terms ofQi(t, Z(t)) with coefficients ci(t) = E[f(Z(t))Qi(t, Z(t))], i = 0, 1, · · · , k.

We have two particular examples for Z(t) = B(t), a Brownian motion and Z(t) = N(t), a

Poisson process with intensity 1:

B5(t) =15t5/2h1(t, B(t)) + 10
√

6t5/2h3(t, B(t)) + 2
√

30t5/2h5(t, B(t)),

N2(t) =t(1 + t)C0(t;N(t))−
√
t(2t+ 1)C1(t;N(t)) +

√
2tC2(t;N(t)),

where hi(t, B(t)) = 1√
i!
Hi(B(t)/

√
t) withHi(·) being Hermite polynomials, and Ci(t;N(t)) =

√
t
i

√
i!
ci(t;n) with ci(·; ·) being Charlier polynomials.

(2) f(Z(t)) = cosZ(t) and g(Z(t)) = sinZ(t).

cosZ(t) =
∞∑
j=0

bj(t)Qj(t, Z(t)), sinZ(t) =
∞∑
j=0

cj(t)Qj(t, Z(t)),

where

bj(t) =
1

j!
d̃j(t)

1

2

{
τ(i)j [φ(1)]t + τ(−i)j [φ(−1)]t

}
,

cj(t) =
1

j!
d̃j(t)

1

2i

{
τ(i)j [φ(1)]t − τ(−i)j [φ(−1)]t

}
.

in which τ , φ and d̃j(t) being defined in Appendix A and i in this example being imaginary

unit.

Particularly, with α being a constant and β = 1− cos 1,

sinB(t) =
∞∑
k=0

c2k+1h2k+1(t, B(t)) with c2k+1 = (−1)k
√
t
2k+1√

(2k + 1)!
e−t/2,

cosB(t) =
∞∑
k=0

c2kh2k(t, B(t)) with c2k = (−1)k
tk√
(2k)!

e−t/2,

cosN(t) =

∞∑
k=0

(−1)k
√
t
k

√
k!
e−tβ

√
2β

k
cos(αk + t sin 1)Ck(t;N(t)),

sinN(t) =
∞∑
k=0

(−1)k
√
t
k

√
k!
e−tβ

√
2β

k
sin(αk + t sin 1)Ck(t;N(t)).

37



Remark B.2 (Theorem 2.4). The error of approximation fk,p(t, Z(t)) to f(t, Z(t)) consists

of two types because the expansion is of two-step, that is, the first term in the right hand

side of (2.7) is incurred since we abandon the residue in the first step expansion, while the

second term is due to giving up the residues in the second step.

Because for each i : 0 ≤ i ≤ k,
∑∞

j=pmin+1 b
2
j (c
′′
i ) is an infinitesimal when pmin goes to

infinity, for fixed k, C(k, p) is an infinitesimal as well. However, when both k and pmin

approach to infinity, C(k, p) could not be infinitesimal any more. One sufficient condition

that C(k, p) is bounded is that the norm ‖c′′i (t, f)‖L2[0,T ] is uniformly bounded in i, so we

always have
∑∞

j=pmin+1 b
2
j (c
′′
i ) ≤ ‖c′′i (t, f)‖2L2[0,T ].

Remark B.3 (Definition 3.3). (a) If the functions involved in the definition reduce to

univariate functions without time variable, i.e., F (t, x) ≡ F (x), υ1(ξ) = 1, f(t, x) ≡ f(x)

and R(ξ, η; t, x) ≡ R(η;x) with q(t) ≡ 1, b(ξ) = 1, it becomes the Class (H) in Park and

Phillips (1999, 2001).

(b) In practice, often one of the two dominated terms of R appears. The only ap-

pearance of the first term implies that q(t) = 0, while the appearance of the second term

indicates that P (x) = 0.

(c) There are many functions that have asymptotic homogeneity. For example,

(1). F (t, x) = a1t
m1xl1 + · · · + akt

mkxlk with m1 ≥ · · · ≥ mk ≥ 0, m1 ≥ 1 and

l1 ≥ · · · ≥ lm ≥ 0, is homogeneous where f(t, x) = a1t
m1xl1 , υ1(ξ) = ξm1 , υ2(η) = ηl1 , and

if m1 > m2, |R(ξ, η; t, x)| ≤ Aξ(t)a(η)P (x) where Aξ(t) = |a2|ξm2tm2 + · · · + |ak|ξmktm2 ,

a(η) = ηl2 and P (x) = 1 + |x|l2 . Clearly, limξ→∞
Aξ(t)
υ1(ξ) = 0 uniformly in t. If l2 < l1,

|R(ξ, η; t, x)| ≤ q(t)b(ξ)Bη(x) where q(t) = 1 + tm2 , b(ξ) = ξm2 , Bη(x) = ηl2(1 + |x|l2).

Palpably, limη→∞
ηl2
υ2(η) = 0 and 1 + |x|l2 ∈ T 0

LB.

(2). F (t, x) = tα log(1 + |x|) with α ≥ 1. The normal function f(t, x) = tα with

υ1(ξ) = ξα and υ2(η) = log(η), while R(ξ, η; t, x) ≤ ξαtα log(1+|x|). Notice that b(ξ) = ξα,

q(t) = tα, Bη(x) = log(1 + |x|) with B̄(η) = 1 and log(1 + |x|) ∈ T 0
LB.

(3). F (t, x) = t2x+
√

1 + t4 1
1+| ln t|

3
√
x. Note that f(t, x) = t2x, υ1(ξ) = ξ2 and υ2(η) =

η; while R(ξ, η; t, x) ≤ Aξ(t)a(η)P (x), where a(η) = 3
√
η, P (x) = 3

√
x, Aξ(t) = Āξ(t)Q(ξt)

with Āξ(t) =
√

1 + ξ4t4 and Q(y) = 1
1+| ln y| .

(4). F (t, x) = tαD(x) where α ≥ 1 and D(x) is a distribution function for any random

variable. Then f(t, x) = tαI(x ≥ 0), υ1(ξ) = ξα, υ2(η) = 1, R(ξ, η; t, x) < b(ξ)q(t)Q(ηx)

where b(ξ) = ξα, q(t) = tα and Q(y) = D(y)I(y < 0) + (1−D(y))I(y ≥ 0), which goes to

zero when y → +∞.
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Remark B.4 (Assumption 4.1). Note that the notations ρr(t, x), v(t) and Q3i(t, Z(t)) are

defined in Appendix A.

Condition (a) imposes some basic requirements, under which we can expand not only

m(t, Z(t)) but also Drm(t, x)|x=Z(t). Conditions (b) and (c) give the necessary conditions

for the coefficient functions in order to obtain some kind of rate of convergence on the

expansions.

There are many functionals satisfying all the conditions. (1) Let m1(t, x) = tae−btPk(x)

with a ≥ 1, b > 0 and Pk(x) being a polynomial of fixed degree k (k ≥ 1). m1(t, x) satisfies

Condition (a) due to the boundary condition on ρ(t, x); the reason that m1(t, x) satisfies

Condition (b) is that the coefficients ci(t,m1) are all of the form e−btq(t), where q(·) is a

power function in t when i ≤ k and zero when i > k; Condition (c) is fulfilled because

when i > k, ci(t,m1) = 0. (2) m2(t, x) = tα

1+tβ
sin(x) and m3(t, x) = tα

1+tβ
cos(x) where

α ≥ 1 and β ≥ α+ 1.25. In the Brownian motion case, from Example 3.1 we have explicit

expression of the coefficients ci(t,m2) = (−1)k 1√
i!
tα
√
t
i

1+tβ
e−t/2, for i = 2k + 1; 0, for i = 2k,

where k = 0, 1, . . . and ci(t,m3) = (−1)k 1√
i!
tα
√
t
i

1+tβ
e−t/2 for i = 2k; 0, for n = 2k + 1, where

k = 0, 1, . . .. It is not difficult to verify the conditions. (3) In the case where Z(t) = N(t)

is a Poisson process with intensity one, m4(t, x) = tξ2−x where ξ ≥ 2, m5(t, x) = tξ

1+tη sinx

and m6(t, x) = tξ

1+tη cosx with ξ ≥ 1 and η ≥ ξ+ 1.25. Since ci(t,m4) = tξe−t/2 1
2i

√
ti

i! , the

conditions are easy to be verified for m4. Meanwhile, from example 3.1 we can have the

explicit expressions of ci(t,m5) and ci(t,m6) and it is not difficult to verify these conditions

too.

Remark B.5 (Theorem 4.1). As can be seen from the proof, the order of the convergence

of (4.11) is
4√n√pmax%(n)
‖A(τ,x)‖ . By virtue of the calculation of ‖A(τ, x)‖ in the proof, we can

estimate

n
1
4

+ι− 1
2
κ1 ≤

4
√
n
√
pmax%(n)

‖A(τ, x)‖
≤ n

1
4

+ 1
2

(κ̄2−κ2)+ι− 1
2
κ1 ≤ n

5
4
κ2−κ1 .

This means when ι reaches its upper bound, the rate of convergence is bounded by

n
5
4
κ2−κ1 , while when ι is close to 1

2(κ1 − 1
2), the rate of convergence is very slow.

Meanwhile, the rate of convergence for (4.12) is
√
n
√
pmax%1(n)%2(

√
nσx)

‖A(τ,x)‖ , which similarly is

between n
1
2

(1−κ1)+ι1+ 1
2
ι2 and n

1
2

(1−κ1)+ι1+ 1
2
ι2+ 1

2
(κ̄2−κ2) ≤ n

5
4
κ2−κ1 , and as ι1 + 1

2 ι2 reaches

its upper bound, the rate is bounded by n
5
4
κ2−κ1 , while as ι1 + 1

2 ι2 closes to 1
2(κ1− 1

2) the

rate of convergence is very slow, the same as in the first situation.

Remark B.6 (Theorem 4.2). As can be seen from the proof, the rate of convergence of
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m̂(τ, x) − m(τ, x) is about
√
npmax

‖A(τ,x)‖ . In view of the estimation of ‖A(τ, x)‖, the rate is

between n
1
2

(1−κ1) and n
1
2

(1−κ1)+ 1
2

(κ̄2−κ2). The minimum order is smaller than 1
4 , while the

maximum order is slightly bigger than the minimum.

Remark B.7 (Theorem 4.3). The rate of convergence of m̂(τ, x)−m(τ, x) in the first case,

as can be seen in its proof, is about
√
n
√
pmax%(Tn)

4√Tn
3‖A(τ,x)‖

, which is between n
1
2

(1−κ1)+(ι− 1
4

)κ3 and

n
1
2

(1−κ1)+(ι− 1
4

)κ3+ 1
2

(κ̄2−κ2). The order of the lower bound is less than 1
4 , while the order of

the upper bound is less than 1
2 .

In the second case, the convergence rate is
√
n
√
pmax%1(Tn)%2(

√
Tnσz)√

Tn‖A(τ,x)‖ revealed by its proof.

Approximately, it is between n
1
2

(1−κ1)+(ι1+ 1
2
ι2)κ3 and n

1
2

(1−κ1)+(ι1+ 1
2
ι2)κ3+ 1

2
(κ̄2−κ2).

Comparing the upper bounds and the lower bounds in two scenarios, roughly speaking,

the second situation is faster than the first.

C Lemmas and basic results

Proof of Lemma 2.1. (1) Straightforward verification. (2) For any functions f, g ∈
L2(I, dΨt(x)), we have, 〈T (f), T (g)〉Θ = E[f(Z(t))g(Z(t))] =

∫
I f(x)g(x)dΨt(x) = (f, g)L2(I,dΨt(x)).

That means the transformation is inner product preserving. Therefore, f 6= g ⇔
T (f) 6= T (g). Thus T is one-one. (3) Since T is linear and ‖T (f)‖ = ‖f‖ for f ∈
L2(I, dΨt(x)), T is isomorphism.

Proof of Lemma 2.2. Note that Θ is a linear space due to linearity of T . Because

T is one-to-one and inner product preserving, {ξn} is a Cauchy sequence in Θ if and only

if there is a unique sequence {fn} in L2(I, dΨt(x)) such that T (fn) = ξn, n = 0, 1, 2, . . .,

and {fn(x)} is a Cauchy sequence in L2(I, dΨt(x)). Therefore, due to the completeness of

L2(I, dΨt(x)), Θ is a closed subspace of L2(Ω). Hence it is a Hilbert space.

Proof of Lemma 2.3. By virtue of the properties of T that T is one–to–one, inner

product preserving, it is valid.

It is known from P351 of Sansone (1959) that L
(α)
j (t), j = 0, 1, . . ., form an or-

thonormal basis in L2(R+) = {ϕ(t) :
∫∞

0 ϕ(t)2dt < ∞} where for α ≥ 0, L
(α)
j (t) :=(

Γ(α+ 1)Cjj+α

)−1/2
tα/2e−t/2L

(α)
j (t) and {L(α)

j (t)}∞0 is the generalized Laguerre polyno-

mial system which forms a complete orthogonal sequence with respect to the density tαe−t.

Thus, a function in the space L2(R+) can be expanded as: ϕ(t) =
∑∞

j=0 a
(α)
j L

(α)
j (t). Des-

ignate aj = a
(0)
j for convenience.
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Lemma C.1. Suppose that ϕ(t) ∈ L2(R+) is r–th differentiable such that t
r
2ϕ(v)(t), v =

0, 1, . . . , r, are in the space L2(R+) as well. Let ϕp(t) =
∑p

j=0 ajLj(t) be the truncation

series of ϕ(t). Then

‖ϕ(t)− ϕp(t)‖2 ≤
(p+ 1− r)!

(p+ 1)!
R2(p), (C.1)

|ϕ(t)− ϕp(t)|2 ≤
1

(p− r + 1)r−1

(
sup
j≥p+1

|Lj(t)|

)2

R2(p), (if r > 1) (C.2)

for sufficient large p, where R2(p) =
∑∞

j=p+1[a
(r)
j−r(ϕ̃)]2 is an infinitesimal with p→∞ in

which ϕ̃(t) = tr/2e−t/2[ϕ(t)et/2](r).

Actually approximation of ϕp(t) to ϕ(t) in the above lemma is uniformly. The table

on page 699 of Askey and Wainger (1965) shows that, given any α ≥ 0, there are positive

constants C and γ, independent of j and t, such that for all integers j ≥ 0,

|L (α)
j (t)| ≤



Ctα/2mα/2, if 0 < t ≤ 1
m

Ct−1/4m−1/4, if 1
m < t ≤ m

2

Cm−3/4(m1/3 + |t−m|)1/4, if m
2 < t ≤ 3m

2

Ce−γt, if t > 3m
2

(C.3)

where m = 4j + 2α+ 2.

We omit the proof of Lemma C.1 since it is a conventional result.

Proof of Theorem 2.1. In view of the facts that Θ is a Hilbert space and {Qi(t, Z(t))}
is an orthonormal basis in Θ, it follows.

Proof of Theorem 2.3. It follows from Hilbert space theory.

Proof of Theorem 2.5. For Λ is a Hilbert space with orthonormal basis {Qi(t, Z(t))Lj(t)},
it follows immediately.

Lemma C.2 (The Occupation Time Formula). Let Mt be a continuous SMG with quadratic

variation process [M ]t. Then,∫ t

0
f(s,Ms)d[M ]s =

∫ ∞
−∞

da

∫ t

0
f(s, a)dLM (s, a) (C.4)

for every positive Borel measurable function f(t, x).
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Observe that with the condition B (c) in Assumption B that (Un,Wn)→D (U,W ) on

D[0, 1]2, it follows from the so-called Skorohod-Dudley-Wichura representation theorem

that there is a common probability space (Ω,F ,P) supporting (U0
n,W

0
n) and (Un,Wn)

such that

(U0
n,W

0
n) =D (Un,Wn) and (U0

n,W
0
n)→a.s. (U,W ), (C.5)

in D[0, 1]2 with uniform topology.

Lemma C.3. Let Assumption B hold. We may represent U0
n introduced in (C.5) as

U0
n

(
k

n

)
= U

(τnk
n

)
with an increasing sequence of stopping times τnk in (Ω,F , P ) with τn0 = 0 such that as

n→∞
sup

1≤k≤n

∣∣∣∣τnk − knδ

∣∣∣∣→a.s. 0 (C.6)

for any δ > max{1
2 ,

2
q}, where q is the moment exponent in Assumption B for {ek}.

This lemma is exactly Lemma 2.1 in Park and Phillips (2001). Readers can find the

proof there.

To study the convergence of the statistics in Theorem 3.1 we introduce for any ε > 0

and 0 ≤ r ≤ 1,

L(r)
n =

cn
n

[nr]∑
k=1

f

(
k

n
, cnxk,n

)
and L(r)

n,ε =
cn
n

[nr]∑
k=1

∫ ∞
−∞

f

(
k

n
, cn(xk,n + zε)

)
φ(z)dz,

where φ(z) = 1√
2π
e−z

2/2. For later use we also define φε(z) = 1√
2πε

exp
(
− z2

2ε2

)
for some

ε > 0.

Lemma C.4. Suppose that Assumptions C and A (c) hold. Then

lim
ε→0

lim
n→∞

sup
0≤r≤1

E|L(r)
n − L(r)

n,ε| = 0. (C.7)

Proof. The proof consists of two parts according to xk,n being continuous and discrete

respectively in A (c).

The following arguments about the continuous case naturally treat those used for the

univariate case in Wang and Phillips (2009a) as a special case.
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Denote Yk,n(z) = f
(
k
n , cnxk,n

)
− f

(
k
n , cn(xk,n + zε)

)
. We have

sup
0≤r≤1

E|L(r)
n − L(r)

n,ε| = sup
0≤r≤1

E

∣∣∣∣∣∣cnn
∫ ∞
−∞

[nr]∑
k=1

Yk,n(z)φ(z)dz

∣∣∣∣∣∣
≤ cn

n

∫ ∞
−∞

sup
0≤r≤1

E

∣∣∣∣∣∣
[nr]∑
k=1

Yk,n(z)

∣∣∣∣∣∣φ(z)dz,

by the fact that
∫
φ(z)dz = 1. Notice that, by Assumption A (c),

E|Yk,n(z)| =
∫ ∞
−∞

∣∣∣∣f (kn, cndk,0,nx
)
− f

(
k

n
, cndk,0,nx+ cnzε

)∣∣∣∣hk,0,n(x)dx

≤ K

cndk,0,n

[∫ ∞
−∞

∣∣∣∣f (kn, x
)∣∣∣∣ dx+

∫ ∞
−∞

∣∣∣∣f (kn, x+ cnzε

)∣∣∣∣ dx]
=

2K

cndk,0,n
G2

(
k

n

)
, (C.8)

where G2(·) =
∫∞
−∞ |f(·, x)|dx and K is the uniform upper bound of the density hl,k,n.

Accordingly, for each z ∈ R,

cn
n

sup
0≤r≤1

E

∣∣∣∣∣∣
[nr]∑
k=1

Yk,n(z)

∣∣∣∣∣∣ ≤cnn
n∑
k=1

2K

cndk,0,n
G2

(
k

n

)
= 2KK2

1

n

n∑
t=1

1

dk,0,n
<∞

by virtue of (3.3), where K2 = supt∈[0,1]G2(t) < ∞ due to the continuity of G2(t). It

therefore follows from the dominated convergence theorem that, to prove the lemma, it

suffices to show that for any fixed z,

Λn(ε) =
c2
n

n2
sup

0≤r≤1
E

 [nr]∑
k=1

Yk,n(z)

2

→ 0,

as n→∞ first and then ε→ 0. Meanwhile, we have

Λn(ε) ≤ c
2
n

n2

n∑
k=1

EY 2
k,n(z) +

2c2
n

n2

n−1∑
k=1

n∑
l=k+1

|E[Yk,n(z)Yl,n(z)]|

:=Λ1n(ε) + Λ2n(ε).

We next investigate Λ1n(ε) and Λ2n(ε) separately.

In view of Assumption A (c), we have as n→∞

Λ1n(ε) =
c2
n

n2

n∑
k=1

EY 2
k,n(z) =

c2
n

n2

n∑
k=1

E

[
f

(
k

n
, cnxk,n

)
− f

(
k

n
, cn(xk,n + zε)

)]2
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=
c2
n

n2

n∑
k=1

∫ ∞
−∞

[
f

(
k

n
, cndk,0,nx

)
− f

(
k

n
, cndk,0,nx+ cnzε

)]2

hk,0,n(x)dx

≤ c
2
n

n2

n∑
k=1

K

cndk,0,n

∫ ∞
−∞

[
f

(
k

n
, x

)
− f

(
k

n
, x+ cnzε

)]2

dx

≤4Kcn
n2

n∑
k=1

1

dk,0,n

∫ ∞
−∞

∣∣∣∣f (kn, x
)∣∣∣∣2 dx =

4Kcn
n2

n∑
k=1

1

dk,0,n
G3

(
k

n

)

≤4KK3
cn
n

1

n

n∑
k=1

1

dk,0,n
→ 0,

where K3 = supt∈[0,1]G3(t) and G3(·) is continuous on the interval in question.

We then prove that Λ2n(ε)→ 0 as n→∞. Because

Λ2n(ε) =
2c2
n

n2

n−1∑
k=1

n∑
l=k+1

|E[Yk,n(z)Yl,n(z)]|

=
2c2
n

n2

n−1∑
k=1

n∑
l=k+1

|E[Yk,n(z)E(Yl,n(z)|Fk,n)]|,

For k < l, we begin with the following calculation of the conditional expectation:

|E(Yl,n(z)|Fk,n)| =
∣∣∣∣E [f ( ln , cnxl,n

)
− f

(
l

n
, cn(xl,n + zε)

) ∣∣∣Fk,n]∣∣∣∣
=

∣∣∣∣E [f ( ln , cnxk,n + cn(xl,n − xk,n)

)
− f

(
l

n
, cnxk,n + cn(xl,n − xk,n) + cnzε)

) ∣∣∣Fk,n]∣∣∣∣
=

∣∣∣∣∫ ∞
−∞

[
f

(
l

n
, cnxk,n + cndl,k,ny

)
− f

(
l

n
, cnxk,n + cndl,k,ny + cnzε

)]
hl,k,n(y)dy

∣∣∣∣
=

1

cndl,k,n

∣∣∣∣∫ ∞
−∞

[
f

(
l

n
, y

)
hl,k,n

(
y − cnxk,n
cndl,k,n

)
− f

(
l

n
, y

)
hl,k,n

(
y − cnxk,n − cnεz

cndl,k,n

)]
dy

∣∣∣∣
=

1

cndl,k,n

∣∣∣∣∫ ∞
−∞

f

(
l

n
, y

)[
hl,k,n

(
y − cnxk,n
cndl,k,n

)
− hl,k,n

(
y − cnxk,n − cnεz

cndl,k,n

)]
dy

∣∣∣∣
≤ 1

cndl,k,n

∫ ∞
−∞

∣∣∣∣f ( ln , y
)∣∣∣∣ |V (y, cnxk,n)| dy,

where V (y, cnxk,n) = hl,k,n

(
y−cnxk,n
cndl,k,n

)
− hl,k,n

(
y−cnxk,n−cnεz

cndl,k,n

)
.

Recall the definition of Ωn(ε) in Assumption A(c) and note that a pair (l, k) (l > k)

belongs to either Ωn(ε1/2m0) or its complement. It follows that

|E(Yl,n(z)|Fk,n)|
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≤


2K

cndl,k,n

∫∞
−∞

∣∣f ( ln , y)∣∣ dy = 2K
cndl,k,n

G2

(
l
n

)
, if (l, k) 6∈ Ωn,

2K
cndl,k,n

∫
|y|>√cn

∣∣f ( ln , y)∣∣ dy + 1
cndl,k,n

∫
|y|≤√cn

∣∣f ( ln , y)∣∣ |V (y, cnxk,n)|dy, otherwise.

According to Assumption A (c), inf(l,k)∈Ωn(ε1/2m0 ) dl,k,n ≥
√
ε
C , and at the same time

we can choose n large enough such that
√
cnε > 1. For |y| ≤ √cn and |x| ≤ √cn + cn|z|ε,

when (l, k) ∈ Ωn(ε1/2m0), we have

|V (y, x)| =
∣∣∣∣hl,k,n( y − x

cndl,k,n

)
− hl,k,n

(
y − x− cnεz
cndl,k,n

)∣∣∣∣
≤
∣∣∣∣hl,k,n( y − x

cndl,k,n

)
− hl,k,n(0)

∣∣∣∣+

∣∣∣∣hl,k,n(y − x− cnεzcndl,k,n

)
− hl,k,n(0)

∣∣∣∣
≤2 sup
|u|<2C(1+|z|)

√
ε

|hl,k,n(u)− hl,k,n(0)| . (C.9)

Therefore, when |y| ≤ √cn, n is large enough and (l, k) ∈ Ωn(ε1/2m0), we have

E|Yk,n(z)||V (y, cnxk,n)|

=

∫ ∞
−∞

∣∣∣∣f (kn, cndk,0,nx
)
− f

(
k

n
, cndk,0,nx+ cnzε

)∣∣∣∣ |V (y, cndk,0,nx)|hk,0,n(x)dx

≤ K

cndk,0,n

∫ ∞
−∞

∣∣∣∣f (kn, x
)
− f

(
k

n
, x+ cnzε

)∣∣∣∣ |V (y, x)|dx

≤ K

cndk,0,n

[∫ ∞
−∞

∣∣∣∣f (kn, x
)∣∣∣∣ |V (y, x)|dx+

∫ ∞
−∞

∣∣∣∣f (kn, x+ cnzε

)∣∣∣∣ |V (y, x)|dx
]

=
K

cndk,0,n

∫ ∞
−∞

∣∣∣∣f (kn, x
)∣∣∣∣ [|V (y, x)|+ |V (y, x− cnzε)|]dx

=
K

cndk,0,n

[∫
|x|>√cn

+

∫
|x|≤√cn

∣∣∣∣f (kn, x
)∣∣∣∣ [|V (y, x)|+ |V (y, x− cnzε)|]dx

]

≤ 2K2

cndk,0,n

∫
|x|>√cn

∣∣∣∣f (kn, x
)∣∣∣∣ dx

+
K

cndk,0,n

∫
|x|≤√cn

∣∣∣∣f (kn, x
)∣∣∣∣ [|V (y, x)|+ |V (y, x− cnzε)|]dx

≤ 2K2

cndk,0,n

∫
|x|>√cn

∣∣∣∣f (kn, x
)∣∣∣∣ dx

+
4K

cndk,0,n
sup

|u|<2C(1+|z|)
√
ε

|hl,k,n(u)− hl,k,n(0)|
∫
|x|≤√cn

∣∣∣∣f (kn, x
)∣∣∣∣ dx.

We summarise that if (l, k) 6∈ Ωn, equation (C.8) yields

|E(Yk,n(z)Yl,n(z))| = |E[Yk,n(z)E(Yl,n(z)|Fk,n)]|
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≤ 2K

cndl,k,n
G2

(
l

n

)
|EYk,n(z)|

≤ 4K2

c2
ndl,k,ndk,0,n

G2

(
l

n

)
G2

(
k

n

)
,

while if (l, k) ∈ Ωn,

|E(Yk,n(z)Yl,n(z))| = |E[Yk,n(z)E(Yl,n(z)|Fk,n)]|

≤ E[|Yk,n(z)||E(Yl,n(z)|Fk,n)|]

≤ 2K

cndl,k,n

∫
|y|>√cn

∣∣∣∣f ( ln , y
)∣∣∣∣ dyE|Yk,n(z)|

+
1

cndl,k,n

∫
|y|≤√cn

∣∣∣∣f ( ln , y
)∣∣∣∣E[|Yk,n(z)||V (y, cnxk,n)|]dy

≤ 4K2

c2
ndl,k,ndk,0,n

G2

(
k

n

)∫
|y|>√cn

∣∣∣∣f ( ln , y
)∣∣∣∣ dy

+
2K2

c2
ndl,k,ndk,0,n

∫
|y|≤√cn

∣∣∣∣f ( ln , y
)∣∣∣∣ dy ∫

|x|>√cn

∣∣∣∣f (kn, x
)∣∣∣∣ dx

+
4K

c2
ndl,k,ndk,0,n

∫
|y|≤√cn

∣∣∣∣f ( ln , y
)∣∣∣∣ dy ∫

|x|≤√cn

∣∣∣∣f (kn, x
)∣∣∣∣ dx

× sup
|u|<2C(1+|z|)

√
ε

|hl,k,n(u)− hl,k,n(0)| .

Finally, we have

|Λ2n(ε)| ≤2c2
n

n2

 ∑
l>k, (l,k)6∈Ωn

+
∑

(l,k)∈Ωn

E|Ys,n(z)Yt,n(z)|

≤2c2
n

n2

n∑
k=(1−ε)n

n∑
l=k+1

E|Yk,n(z)Yl,n(z)|+ 2c2
n

n2

n−1∑
k=1

k+εn∑
l=k+1

E|Yk,n(z)Yl,n(z)|

+
2c2
n

n2

εn∑
k=1

n∑
l=k+1

E|Yk,n(z)Yl,n(z)|+ 2c2
n

n2

n−1∑
k=1

n∑
l=k+εn

E|Yk,n(z)Yl,n(z)|

≤8K2K2
2

1

n

n∑
k=(1−ε)n

1

dk,0,n
max

1≤k≤n−1

1

n

n∑
l=k+1

1

dl,k,n

+ 8K2K2
2

1

n

n−1∑
k=1

1

dk,0,n
max

1≤k≤n−1

1

n

k+εn∑
l=k+1

1

dl,k,n

+ 8K2K2
2

1

n

εn∑
k=1

1

dk,0,n
max

1≤k≤n−1

1

n

n∑
l=k+1

1

dl,k,n

46



+ 8K2K2

∫
|y|>√cn

cf (y)dy
1

n2

n−1∑
k=1

1

dk,0,n
max

1≤k≤n−1

n∑
l=k+1

1

dl,k,n

+ 4K2K2

∫
|x|>√cn

cf (x)dx
1

n2

n−1∑
k=1

1

dk,0,n
max

1≤k≤n−1

n∑
l=k+1

1

dl,k,n

+ 8KK2
2

1

n2

n−1∑
k=1

1

dk,0,n
max

1≤k≤n−1

n∑
l=k+1

1

dl,k,n
sup

|u|<2C(1+|z|)
√
ε

|hl,k,n(u)− hl,k,n(0)| ,

in which we have used Assumption C (c) that
∣∣f ( ln , y)∣∣ ≤ cf (y) and the fact that∫

|y|≤√cn

∣∣∣∣f ( ln , y
)∣∣∣∣ dy ≤ G2

(
l

n

)
≤ K2.

In view of Assumptions A (c) and C, by virtue of the dominated convergence theorem,

Λ2n(ε)→ 0 as n→∞ and then ε→ 0. This finishes the proof of the continuous case.

The proof of the discrete case is quite similar to that of the continuous case. Some

critical steps are shown as follows.

Let Ak,n be the set of points that xk,n assumes. Suppose the points are equally dis-

tributed on R with distance 4. In what follows, define Bk,n := cndk,0,nAk,n := {cndk,0,na :

a ∈ Ak,n}. Then,

E|Yk,n(z)| =E
∣∣∣∣f (kn, cnxk,n

)
− f

(
k

n
, cn(xk,n + zε)

)∣∣∣∣
=
∑

x∈Ak,n

∣∣∣∣f (kn, cndk,0,nx
)
− f

(
k

n
, cn(dk,0,nx+ zε)

)∣∣∣∣Pk,0,n(x)

=
∑

x∈Bk,n

∣∣∣∣f (kn, x
)
− f

(
k

n
, x+ cnzε

)∣∣∣∣Pk,0,n( x

cndk,0,n

)

≤
∑

x∈Bk,n

∣∣∣∣f (kn, x
)∣∣∣∣+

∑
x∈Bk,n

∣∣∣∣f (kn, x+ cnzε

)∣∣∣∣
=

1

cndk,0,n4
∑

x∈Bk,n

∣∣∣∣f (kn, x
)∣∣∣∣ cndk,0,n4

+
1

cndk,0,n4
∑

x∈Bk,n

∣∣∣∣f (kn, x+ cnzε

)∣∣∣∣ cndk,0,n4
≤ 1

cndk,0,n4

(∫ ∣∣∣∣f (kn, x
)∣∣∣∣ dx+

∫ ∣∣∣∣f (kn, x+ cnzε

)∣∣∣∣ dx)
=

2

cndk,0,n4

∫ ∣∣∣∣f (kn, x
)∣∣∣∣ dx =

2

cndk,0,n4
G2

(
k

n

)
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≤ 2

cndk,0,n4
K2,

where we may modify the function f , e.g. fo(·, x) = maxy≥x |f(·, y)| for x > 0 to get the

inequality in the derivation and note that the result above is similar to (C.8). Following

the same arguments as before, to complete the proof, it suffices to show both Λ1n(ε) and

Λ2n(ε) converge to zero. Nevertheless, Λ1n(ε)→ 0 is easy to obtain, while the key step in

the proof of Λ2n(ε)→ 0 is the evaluation of the following conditional expectation.

|E(Yl,n(z)|Fk,n)| =
∣∣∣∣E [f ( ln , cnxl,n

)
− f

(
l

n
, cn(xl,n + zε)

) ∣∣∣Fk,n]∣∣∣∣
=

∣∣∣∣E [f ( ln , cnxk,n + cn(xl,n − xk,n)

)
− f

(
l

n
, cnxk,n + cn(xl,n − xk,n) + cnzε)

) ∣∣∣Fk,n]∣∣∣∣
=

∣∣∣∣∫ [f ( ln , cnxk,n + cndl,k,ny

)
− f

(
l

n
, cnxk,n + cndl,k,ny + cnzε

)]
dFl,k,n(y)

∣∣∣∣
=

∣∣∣∣∫ f

(
l

n
, y

)
dFl,k,n

(
y − cnxk,n
cndl,k,n

)
−
∫
f

(
l

n
, y

)
dFl,k,n

(
y − cnxk,n − cnεz

cndl,k,n

)∣∣∣∣
=

∣∣∣∣∫ f

(
l

n
, y

)
d

[
Fl,k,n

(
y − cnxk,n
cndl,k,n

)
− Fl,k,n

(
y − cnxk,n − cnεz

cndl,k,n

)]∣∣∣∣
=

∣∣∣∣∫ f

(
l

n
, y

)
dQ(y, cnxk,n)

∣∣∣∣ ,
where Q(y, cnxk,n) = Fl,k,n

(
y−cnxk,n
cndl,k,n

)
− Fl,k,n

(
y−cnxk,n−cnεz

cndl,k,n

)
.

Thus,

|E(Yl,n(z)|Fk,n)|

≤


2

cndl,k,n4
∫ ∣∣f ( ln , y)∣∣ dy = 2

cndl,k,n
G2

(
l
n

)
, if (l, k) 6∈ Ωn,

2
cndl,k,n4

∫
|y|>√cn

∣∣f ( ln , y)∣∣ dy +
∣∣∣∫|y|≤√cn f ( ln , y) dQ(y, cnxk,n)

∣∣∣ , if (l, k) ∈ Ωn.

Then the important ingredient is to deal with the following expectation.

E|Yk,n|

∣∣∣∣∣
∫
|y|≤√cn

f

(
l

n
, y

)
dQ(y, cnxk,n)

∣∣∣∣∣
=E

∣∣∣∣f (kn, cnxk,n
)
− f

(
k

n
, cn(xk,n + zε)

)∣∣∣∣
∣∣∣∣∣
∫
|y|≤√cn

f

(
l

n
, y

)
dQ(y, cnxk,n)

∣∣∣∣∣
=

∫ ∣∣∣∣f (kn, cndk,0,nx
)
− f

(
k

n
, cn(dk,0,nx+ zε)

)∣∣∣∣
×

∣∣∣∣∣
∫
|y|≤√cn

f

(
l

n
, y

)
dQ(y, cndk,0,nx)

∣∣∣∣∣ dFk,0,n(x)
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=

∫ ∣∣∣∣f (kn, x
)
− f

(
k

n
, x+ cnzε

)∣∣∣∣
∣∣∣∣∣
∫
|y|≤√cn

f

(
l

n
, y

)
dQ(y, x)

∣∣∣∣∣ dFk,0,n
(

x

cndk,0,n

)

≤
∫ ∣∣∣∣f (kn, x

)∣∣∣∣
∣∣∣∣∣
∫
|y|≤√cn

f

(
l

n
, y

)
dQ(y, x)

∣∣∣∣∣ dFk,0,n
(

x

cndk,0,n

)

+

∫ ∣∣∣∣f (kn, x+ cnzε

)∣∣∣∣
∣∣∣∣∣
∫
|y|≤√cn

f

(
l

n
, y

)
dQ(y, x)

∣∣∣∣∣ dFk,0,n
(

x

cndk,0,n

)

=

∫ ∣∣∣∣f (kn, x
)∣∣∣∣
∣∣∣∣∣
∫
|y|≤√cn

f

(
l

n
, y

)
dQ(y, x)

∣∣∣∣∣ dFk,0,n
(

x

cndk,0,n

)

+

∫ ∣∣∣∣f (kn, x
)∣∣∣∣
∣∣∣∣∣
∫
|y|≤√cn

f

(
l

n
, y

)
dQ(y, x− cnzε)

∣∣∣∣∣ dFk,0,n
(
x− cnzε
cndk,0,n

)

=

∫
|x|≤√cn

∣∣∣∣f (kn, x
)∣∣∣∣
∣∣∣∣∣
∫
|y|≤√cn

f

(
l

n
, y

)
dQ(y, x)

∣∣∣∣∣ dFk,0,n
(

x

cndk,0,n

)

+

∫
|x|>√cn

∣∣∣∣f (kn, x
)∣∣∣∣
∣∣∣∣∣
∫
|y|≤√cn

f

(
l

n
, y

)
dQ(y, x)

∣∣∣∣∣ dFk,0,n
(

x

cndk,0,n

)

+

∫
|x|≤√cn

∣∣∣∣f (kn, x
)∣∣∣∣
∣∣∣∣∣
∫
|y|≤√cn

f

(
l

n
, y

)
dQ(y, x− cnzε)

∣∣∣∣∣ dFk,0,n
(
x− cnzε
cndk,0,n

)

+

∫
|x|>√cn

∣∣∣∣f (kn, x
)∣∣∣∣
∣∣∣∣∣
∫
|y|≤√cn

f

(
l

n
, y

)
dQ(y, x− cnzε)

∣∣∣∣∣ dFk,0,n
(
x− cnzε
cndk,0,n

)

:=
4∑
1

Ti(l, k;n).

For T1(l, k;n) is similar to T3(l, k;n), and T2(l, k;n) is similar to T4(l, k;n), we only

explain T1(l, k;n) and T2(l, k;n).

T1(l, k;n) =

∫
|x|≤√cn

∣∣∣∣f (kn, x
)∣∣∣∣
∣∣∣∣∣
∫
|y|≤√cn

f

(
l

n
, y

)
dQ(y, x)

∣∣∣∣∣ dFk,0,n
(

x

cndk,0,n

)

=
∑
|x|≤√cn
x∈Bk,n

∣∣∣∣f (kn, x
)∣∣∣∣
∣∣∣∣∣∣∣∣∣

∑
|y|≤√cn

y∈x+cnzεBl,k,n

f

(
l

n
, y

)
P (y, x)

∣∣∣∣∣∣∣∣∣Pk,0,n
(

x

cndk,0,n

)
,

where Bl,k,n = {cndl,k,na : a ∈ Al,k,n}, in which Al,k,n is the set of points that (xl,n −
xk,n)/dl,k,n assumes; meanwhile, P (y, x) = Pl,k,n

(
y−cnxk,n
cndl,k,n

)
− Pl,k,n

(
y−cnxk,n−cnεz

cndl,k,n

)
.
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Notice that when |x| ≤ √cn, |y| ≤ √cn and (l, k) ∈ Ωn(ε), we have

|P (y, x)| =
∣∣∣∣Pl,k,n(y − cnxk,ncndl,k,n

)
− Pl,k,n

(
y − cnxk,n − cnεz

cndl,k,n

)∣∣∣∣
=

∣∣∣∣Fl,k,n(y − cnxk,ncndl,k,n

)
− F−l,k,n

(
y − cnxk,n
cndl,k,n

)
−Fl,k,n

(
y − cnxk,n − cnεz

cndl,k,n

)
+ F−l,k,n

(
y − cnxk,n − cnεz

cndl,k,n

)∣∣∣∣
≤4 sup
|u|<2C(1+|z|)

√
ε

|Fl,k,n(u)− Fl,k,n(0)|.

Here F−l,k,n(·) denotes the left limit of the function at the point.

Therefore, we have

T1(l, k;n) ≤ 4

cndk,0,n4
1

cndl,k,n4
G2

(
k

n

)
G2

(
l

n

)
sup

|u|<2C(1+|z|)
√
ε

|Fl,k,n(u)− Fl,k,n(0)|.

Regarding T2(l, k;n), we directly have

T2(l, k;n) ≤ 2

cndk,0,n4
1

cndl,k,n4

∫
|x|≥√cn

∣∣∣∣f (kn, x
)∣∣∣∣ dx∫

|y|≤√cn

∣∣∣∣f (kn, y
)∣∣∣∣ dy

≤ 2

cndk,0,n4
1

cndl,k,n4
G2

(
l

n

)∫
|x|≥√cn

∣∣∣∣f (kn, x
)∣∣∣∣ dx.

As can be seen, every term in Λ2n(ε) has the similar evaluation in both continuous

and discrete cases, so that we obtain the vanish of Λ2n(ε). As yet, the whole proof is

finished.

Lemma C.5. Let Assumption C hold. Then we have for any fixed ε > 0,

L(r)
n,ε −

∫ ∞
−∞

1

n

[nr]∑
k=1

f

(
k

n
, y

)
φε(xk,n)dy →a.s. 0

uniformly in r ∈ [0, 1] as n→∞.

Proof. Observe that

L(r)
n,ε =

cn
n

[nr]∑
k=1

∫ ∞
−∞

f

(
k

n
, cn(xt,n + zε)

)
φ(z)dz

=
cn
n

[nr]∑
k=1

∫ ∞
−∞

f

(
k

n
, y

)
φ

(
y − cnxt,n

cnε

)
1

cnε
dy
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=

∫ ∞
−∞

1

n

[nr]∑
k=1

f

(
k

n
, y

)
φε

(
y

cn
− xt,n

)
dy.

It follows that for any M > 0,∣∣∣∣∣∣L(r)
n,ε −

∫ ∞
−∞

1

n

[nr]∑
k=1

f

(
k

n
, y

)
φε(xk,n)dy

∣∣∣∣∣∣
≤
∫ ∞
−∞

1

n

n∑
k=1

∣∣∣∣f (kn, y
)∣∣∣∣ ∣∣∣∣φε( y

cn
− xt,n

)
− φε(xk,n)

∣∣∣∣ dy
=

∫
|y|>M

+

∫
|y|≤M

1

n

n∑
k=1

∣∣∣∣f (kn, y
)∣∣∣∣ ∣∣∣∣φε( y

cn
− xt,n

)
− φε(xk,n)

∣∣∣∣ dy
:=Γ1n + Γ2n.

Notice that,

Γ1n ≤
2√
2πε

∫
|y|>M

1

n

n∑
k=1

∣∣∣∣f (kn, y
)∣∣∣∣ dy ≤ 2√

2πε

∫
|y|>M

cf (y)dy,

using Assumption C(c). Due to the integrability of cf (y) on R, one can choose large

enough M such that Γ1n < ε for any given ε > 0.

Moreover, since φ′ε(x) = − x√
2πε3

e−x
2/2ε2 and |φ′ε(x)| is bounded by 1√

2πeε2
on R, we

have ∣∣∣∣φε( y

cn
− xt,n

)
− φε(xt,n)

∣∣∣∣ =

∣∣∣∣φ′ε(ξ)(− y

cn

)∣∣∣∣ ≤ |y|√
2πeε2cn

,

where ξ is in between xt,n − y
cn

and xt.n. Therefore,

Γ2n ≤
∫
|y|≤M

1

n

n∑
k=1

∣∣∣∣f (kn, y
)∣∣∣∣ |y|√

2πeε2cn
dy

≤ M√
2πeε2cn

1

n

n∑
k=1

∫
|y|≤M

∣∣∣∣f (kn, y
)∣∣∣∣ dy ≤ M√

2πeε2cn

1

n

n∑
k=1

G2

(
k

n

)
.

As 1
n

∑n
k=1G2

(
k
n

)
≤ K2 and cn →∞ as n→∞, Γ2n → 0. The assertion follows.

Proof of Lemma 3.1. Straightforward verification.

Proof of Lemma 4.1. It is evident that V is both symmetric and nonnegative

definite, so that for i = 1, · · · , p, λi are all real and λi ≥ 0. Moreover,
∑p

i=1 λi = tr(V ) =
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tr(v′v) = tr(vv′) = ‖v‖2 = 1. Nonetheless, λ1 = 1 since V v′ = v′vv′ = v′. Whence, the

assertion follows.

Proof of Proposition 4.1. Straightforward calculation.

Proof of Proposition 4.2. Straightforward calculation.

Proof of Proposition 4.3. Straightforward calculation.

D Proofs of the main results

Proof of Theorem 2.2. We begin with the calculation of the coefficients ci(t, f) =

E[f(Z(t))Qi(t, Z(t))] where Qi(t, x) = 1
di(t)

yi(t, x). If Z(t) is continuous with density

function ρ(t, x), the polynomials yi(t, x) orthogonal with respect to ρ(t, x) satisfy the

differential equation

s(t, x)y′′i (t, x) + v(t, x)y′i(t, x) + λi(t)yi(t, x) = 0,

where s(t, x) > 0, v(t, x) and ρ(t, x) satisfy conditions (A.4) and λi(t) = −iv′(t, x).

The self-adjoint form of the equation is

(s(t, x)ρ(t, x)y′i(t, x))′ + λi(t)ρ(t, x)yi(t, x) = 0.

Multiplying by f(x), integrating by part on (a, b), we have

f(x)s(t, x)ρ(t, x)y′i(t, x)|ba −
∫ b

a
s(t, x)ρ(t, x)y′i(t, x)f ′(x)dx

=− λi(t)
∫ b

a
ρ(t, x)yi(t, x)f(x)dx.

(D.1)

Let us prove that f(x)s(t, x)ρ(t, x)y′i(t, x)|ba = 0.

Suppose limx→b f(x)s(t, x)ρ(t, x)y′i(t, x) = bi 6= 0. Then, as x→ b,

f(x) ≈ bi
s(t, x)ρ(t, x)y′i(t, x)

⇒ f2(x)ρ(t, x) ∼ b2i
s2(t, x)ρ(t, x)[y′i(t, x)]2

.

(1) Note that b = +∞. Because of boundary condition, f2(x)ρ(t, x) will go to positive

infinity as x→∞, which leads to the infiniteness of the integral
∫ b
a f

2(x)ρ(t, x)dx.

The above discussion applies to the situation where a = −∞ as well.

(2) When a is finite, according to Nikiforov and Uvarov (1988, p21),

s(t, x) ∼ x− a, and ρ(t, x) ∼ (x− a)α, where α > −1.
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Hence, when x→ +a,

f(x) ∼ 1

(x− a)1+α
, and f2(x)ρ(t, x) ∼ 1

(x− a)2+α

which implies the infiniteness of
∫ b
a f

2(x)ρ(t, x)dx.

Thus, the relation (D.1) reduces to∫ b

a
ρ1(t, x)y′i(t, x)f ′(x)dx = λi(t)

∫ b

a
ρ(t, x)yi(t, x)f(x)dx,

which is exactly the following relationship: d1i(t)ci(t, f
′) = λi(t)di(t)ci(t, f), or equiva-

lently

ci(t, f) =
d1i(t)

λi(t)di(t)
ci(t, f

′).

We can iterate the relation until r-th derivative,

ci(t, f) =
dri(t)

di(t)λi(t)η1i(t) · · · ηr−1,i(t)
ci(t, f

(r))

=
√
v(t)

r

√
(i− r)!
i!

ci(t, f
(r)),

(D.2)

where we have used the relationship (A.6) with ηji(t) = λi(t)− λj(t) = −v′(t, x)(i− j) =
1
v(t)(i− j).

If Z(t) is a discrete variable for each t > 0, ρ(t, x) is the probability distribution of Z(t).

The polynomials yi(t, x) orthogonal with respect to ρ(t, x) satisfy the following difference

equation

s(t, x)4∇yi(t, x) + v(t, x)4yi(t, x) + λi(t)yi(t, x) = 0

where s(t, x) > 0, s′′(t, x) = 0 and v′(t, x) < 0. The self-adjoint form of the difference

equation is

4(s(t, x)ρ(t, x)∇yi(t, x)) + λi(t)ρ(t, x)yi(t, x) = 0.

Multiplying by f(x) and summing up over the support of ρ(t, x),∑
m

f(xm)4(s(t, xm)ρ(t, xm)∇yi(t, xm)) = −λi(t)
∑
m

f(xm)ρ(t, xm)yi(t, xm).

Summation by parts gives

f(x)s(t, x)ρ(t, x)∇yi(t, x)|ba −
∑
m

s(t, xm+1)ρ(t, xm+1)∇yi(t, xm+1)4f(xm)
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= −λi(t)
∑
m

f(xm)ρ(t, xm)yi(t, xm).

It is easy to prove that f(x)s(t, x)ρ(t, x)∇yi(t, x)|ba = 0 similar to the continuous case.

Note that ∇yi(t, xm+1) = 4yi(t, xm) and s(t, xm+1)ρ(t, xm+1) = ρ1(t, xm). Therefore,∑
m

ρ1(t, xm)4yi(t, xm)4f(xm) = λi(t)
∑
j

f(xm)ρ(t, xm)yi(t, xm)

which reads ci(t, f) = d1i(t)
λi(t)di(t)

ci(t,4f). We iterate this relationship and obtain again

(D.2) with derivative being substituted by difference. Adopting our operator D, we have

ci(t, f) =
√
v(t)

r

√
(i− r)!
i!

ci(t,D
rf). (D.3)

Now we are ready to obtain the result. Using (D.3),

‖f(Z(t))− fk(Z(t))‖2Θ =

∞∑
i=k+1

c2
i (t, f) =

∞∑
i=k+1

[v(t)]r
(i− r)!
i!

c2
i (t,D

rf)

≤[v(t)]r
(k − r)!
k!

∞∑
i=k+1

c2
i (t,D

rf) =
1

kr
R2
k(t,D

rf),

where R2
k(t,D

rf) = (1 + o(1))[v(t)]r
∑∞

i=k+1 c
2
i (t,D

rf)→ 0 as k →∞ for every t > 0.

Proof of Theorem 2.4. It follows from the orthogonality that

‖f(t, Z(t))− fk,p(t, Z(t))‖2Ξ =
k∑
i=0

∞∑
j=pi+1

c2
ij +

∞∑
i=k+1

∞∑
j=0

c2
ij .

Since ci(t, f) ∈ C2[0, T ], the expansion of c′′i (t, f) in terms of ϕjT (t) is convergent

uniformly on [0, T ] (see Davis, 1963, p142). We thus have cij =
(
T
jπ

)2
bj(c

′′
i ), where bj(c

′′
i )

stands for the j-th coefficient in the expansion of c′′(t, f) in terms of ϕjT (t). Then

k∑
i=0

∞∑
j=pi+1

c2
ij =

k∑
i=0

∞∑
j=pi+1

(
T

jπ

)4

b2j (c
′′
i ) ≤

(
T

π

)4 k∑
i=0

1

p4
i

∞∑
j=pi+1

b2j (c
′′
i )

≤T
4

π4

k

p4
min

∞∑
j=pmin+1

b2j (c
′′
i ) ≤ C(k, p)T 4 k

p4
min

,

where C(k, p) = π−4 max0≤i≤k
∑∞

j=pmin+1 b
2
j (c
′′
i ).

On the other hand, using (D.3) we have

∞∑
i=k+1

∞∑
j=0

c2
ij =

∞∑
i=k+1

‖ci(t, f)‖2L2[0,T ] =

∞∑
i=k+1

(i− r)!
i!

∥∥∥ci (t,√v(t)
r
Drf

)∥∥∥2

54



≤(k − r)!
k!

∞∑
i=k+1

∥∥∥ci (t,√v(t)
r
Drf

)∥∥∥2

L2[0,T ]
=

1

kr
R2
k.

Proof of Theorem 2.6. It follows from the orthogonality that

‖f(t, Z(t))− fk,p(t, Z(t))‖2Λ =

k∑
i=0

∞∑
j=pi+1

b2ij +

∞∑
i=k+1

∞∑
j=0

b2ij .

Due to (D.3), bi(t, f) =
√
v(t)

r1
√

(i−r1)!
i! bi(t,D

r1f). Accordingly,

∞∑
i=k+1

∞∑
j=0

b2ij =
∞∑

i=k+1

‖bi(t, f)‖2L2(R+) =
∞∑

i=k+1

(i− r1)!

i!
‖bi(t,

√
v(t)

r1
Dr1f)‖2

≤(k + 1− r1)!

(k + 1)!

∞∑
i=k+1

‖bi(t,
√
v(t)

r1
Dr1f)‖2

=(1 + o(1))
1

kr1

∞∑
i=k+1

‖bi(t,
√
v(t)

r1
Dr1f)‖2 =

1

kr1
R2

1(k),

where R2
1(k) = (1 + o(1))

∑∞
i=k+1 ‖bi(t,

√
v(t)

r1
Dr1f)‖2L2(R+).

On the other hand, according to (C.1) in Lemma C.1,

∞∑
j=pi+1

b2ij ≤
(pi + 1− r2)!

(pi + 1)!

∞∑
j=pi+1

[a
(r2)
j−r2 (̃bi(t))]

2

where b̃i(t) = tr2/2e−t/2[bi(t, f)et/2](r2) and a
(r2)
j−r2 (̃bi(t)) are the coefficients of the expansion

of b̃i(t) in terms of L
(r2)
j (t). Thus,

k∑
i=0

∞∑
j=pi+1

b2ij ≤
k∑
i=0

(pi + 1− r2)!

(pi + 1)!

∞∑
j=pi+1

[a
(r2)
j−r2 (̃bi(t))]

2

≤k (pmin + 1− r2)!

(pmin + 1)!

∞∑
j=pmin+1

[a
(r2)
j−r2 (̃bi(t))]

2 ≤ C(k, p)
k

pr2min

.

where C(k, p) = (1 + o(1)) max0≤i≤k
∑∞

j=pmin+1[a
(r2)
j−r2 (̃bi(t))]

2. This finishes the proof.

Proof of Theorem 3.1. In view of Lemmas C.4 and C.5, we start to investigate the

convergence of ∫ ∞
−∞

1

n

[nr]∑
k=1

f

(
k

n
, y

)
φε(xk,n)dy.
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It follows from Assumptions A (a) and C, the continuous mapping theorem and the

occupation time formula in Lemma C.2 that∫ ∞
−∞

1

n

[nr]∑
k=1

f

(
k

n
, y

)
φε(xk,n)dy

=
1

n

[nr]∑
k=1

φε(xk,n)

∫ ∞
−∞

f

(
k

n
, y

)
dy =

1

n

[nr]∑
k=1

φε(xk,n)G1

(
k

n

)
=

∫ r

0
G1

(
[nt]

n

)
φε(x[nt],n)dt− 1

n
G1(0)φε(0) +

1

n
G1

(
[nr]

n

)
φε(x[nr],n)

→D

∫ r

0
G1 (t)φε(W (t))dt as n→∞

=

∫ ∞
−∞

dy

∫ r

0
G1(t)φε(y)dLW (t, y)

=

∫ ∞
−∞

dy

∫ r

0
G1(t)φ(y)dLW (t, εy) and then as ε→ 0

→a.s.

∫ ∞
−∞

dy

∫ r

0
G1(t)φ(y)dLW (t, 0)

=

∫ r

0
G1(t)dLW (t, 0).

This finishes the proof of (3.6). To prove (3.7), we need only to show the following:

sup
0≤r≤1

∣∣∣∣∣∣
∫ ∞
−∞

1

n

[nr]∑
k=1

f

(
k

n
, y

)
φε(xk,n)dy −

∫ r

0
G1 (t)φε(W (t))dt

∣∣∣∣∣∣ (D.4)

= sup
0≤r≤1

∣∣∣∣∣∣ 1n
[nr]∑
k=1

φε(xk,n)G1

(
k

n

)
−
∫ r

0
G1 (t)φε(W (t))dt

∣∣∣∣∣∣
= sup

0≤r≤1

∣∣∣∣∫ r

0
G1

(
[nt]

n

)
φε(x[nt],n)dt− 1

n
G1(0)φε(0) +

1

n
G1

(
[nr]

n

)
φε(x[nr],n)

−
∫ r

0
G1 (t)φε(W (t))dt

∣∣∣∣
≤
∫ 1

0

∣∣∣∣G1

(
[nt]

n

)
φε(x[nt],n)−G1(t)φε(W (t))

∣∣∣∣ dt+
A

n
,

where A comes from the bounds of G1 on [0, 1] and φε on R. It follows that∫ 1

0

∣∣∣∣G1

(
[nt]

n

)
φε(x[nt],n)−G1(t)φε(W (t))

∣∣∣∣ dt
≤
∫ 1

0

∣∣∣∣G1

(
[nt]

n

)
−G1(t)

∣∣∣∣ ∣∣φε(x[nt],n)
∣∣ dt+

∫ 1

0
|G1(t)|

∣∣φε(x[nt],n)− φε(W (t))
∣∣ dt
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≤ 1√
2πε

∫ 1

0

∣∣∣∣G1

(
[nt]

n

)
−G1(t)

∣∣∣∣ dt+ max
0≤t≤1

|G1(t)|
∫ 1

0

∣∣φε(x[nt],n)− φε(W (t))
∣∣ dt

≤ 1√
2πε

∫ 1

0

∣∣∣∣G1

(
[nt]

n

)
−G1(t)

∣∣∣∣ dt+
1√

2πeε2
max
0≤t≤1

|G1(t)| sup
0≤t≤1

∣∣x[nt],n −W (t)
∣∣ .

Hence, using the dominated convergence theorem and Assumption A(b), as n → ∞,

(D.4) converges in probability to zero. Then the assertion follows as ε→ 0.

Now we turn to prove (3.8). Define, for
τn,i−1

n < t ≤ τn,i
n ,

Mn(t) =
√
cn

i−1∑
k=1

f

(
k

n
, cnW

0
n

(
k

n

))(
U
(τnk
n

)
− U

(τn,k−1

n

))
+
√
cnf

(
i

n
, cnW

0
n

(
i

n

))(
U(t)− U

(τn,i−1

n

))
, (D.5)

where τnk (k = 1, . . . , n) are the stopping times in Lemma C.3. It follows that, for

any n ≥ 1, Mn(t) is a continuous martingale with respect to the filtration Fn(t) :=

σ(W 0
n

(
1
n

)
, . . . ,W 0

n

(
i
n

)
, U(s) |s ≤ t, τn,i−1

n < t ≤ τn,i
n ). We can then derive that

√
cn
n

[nr]∑
k=1

f

(
k

n
, cnxk,n

)
ek

D
= Mn

(τn,i
n

)
, if

τn,i−1

n
< r ≤ τn,i

n
, (D.6)

and deduct from (C.6) that

sup
1≤k≤n

∣∣∣∣(τnkn − τn,k−1

n

)
− 1

n

∣∣∣∣ = o(1), a.s.. (D.7)

The quadratic variation process [Mn] of Mn(t) is that

[Mn]t =cn

i−1∑
k=1

f2

(
k

n
, cnW

0
n

(
k

n

))(τnk
n
−
τn,k−1

n

)
+ cnf

2

(
i

n
, cnW

0
n

(
i

n

))(
t− τn,i−1

n

)
=
cn
n

i−1∑
k=1

f2

(
k

n
, cnW

0
n

(
k

n

))
(1 + oa.s.(1)) + cnf

2

(
i

n
, cnW

0
n

(
i

n

))(
t− τn,i−1

n

)
.

Because

E

∣∣∣∣cnf2

(
i

n
, cnW

0
n

(
i

n

))(
t− τn,i−1

n

)∣∣∣∣ ≤ cn
n
Ef2

(
i

n
, cnW

0
n

(
i

n

))
=
cn
n

∫ ∞
−∞

f2

(
i

n
, cndi,0,nx

)
hi,0,n(x)dx ≤ K

ndi,0,n

∫ ∞
−∞

f2

(
i

n
, x

)
dx

=
K

ndi,0,n
G3

(
i

n

)
≤ KK3

ndi,0,n
→ 0,
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where K3 = max0≤t≤1G3(t) and by Assumption A (C), ndi,0,n → ∞, we have that

cnf
2
(
i
n , cnxi,n

) (
r − τn,i−1

n

)
→P 0.

It therefore follows from (3.6) that

[Mn]t →D

∫ t

0
G3(a)dLW (a, 0), (D.8)

as n→∞.

Moreover, the covariance process [Mn,W ] of (Mn,W ) is

[Mn,W ]t =
√
cn

i−1∑
k=1

f

(
k

n
, cnW

0
n

(
k

n

))(τnk
n
−
τn,k−1

n

)
σuw

+
√
cnf

(
i

n
, cnW

0
n

(
i

n

))(
t− τn,i−1

n

)
σuw

=σuw(1 + oa.s.(1))

√
cn
n

i−1∑
k=1

f

(
k

n
, cnW

0
n

(
k

n

))
+ σuw

√
cnf

(
i

n
, cnW

0
n

(
i

n

))(
t− τn,i−1

n

)
,

for any t ∈ [0, 1], where σuw = Cov(U,W ). Meanwhile, using argument in Example 25.7

on Billingsley (1995, p332),∣∣∣∣∣
√
cn
n

i−1∑
k=1

f

(
k

n
, cnW

0
n

(
k

n

))∣∣∣∣∣ ≤ 1
√
cn

cn
n

n∑
k=1

∣∣∣∣f (kn, cnW 0
n

(
k

n

))∣∣∣∣→P 0,

because cn →∞ and using (3.6), we have

cn
n

n∑
k=1

∣∣∣∣f (kn, cnW 0
n

(
k

n

))∣∣∣∣→D

∫ 1

0
G2(t)dLW (t, 0).

Additionally,
∣∣√cnf ( in , cnW 0

n

(
i
n

)) (
t− τn,i−1

n

)∣∣ ≤ √cnn ∣∣f ( in , cnW 0
n

(
i
n

))∣∣→P 0 by the sim-

ilar argument as above. Thus,

[Mn,W ]Tn(t) →P 0, (D.9)

where Tn(t) = inf{s ∈ [0, 1], [Mn]s > t} be the sequence of time changes. Then, in virtue of

DDS (Dambis, Dubins-Schwarz) theorem (see, for example, Revuz and Yor, 1999, p181),

it follows that the process defined by

Bn(t) = Mn(Tn(t))
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becomes a so-called DDS Brownian motion. Also, Mn(t) = Bn([Mn]t), and it follows from

Theorem 2.3 of Revuz and Yor (1999, p524) that (W,Bn) converges in distribution jointly

to two independent Brownian motions (W,B). Therefore, we have as n→∞

√
cn
n

[nr]∑
k=1

f

(
k

n
, cnxk,n

)
ek

D
= Mn

(τn,i
n

)
=Mn(r) + oa.s.(1) = Bn([Mn]r) + oa.s.(1)

→DB

(∫ r

0
G3(a)dLW (a, 0)

)
=

(∫ r

0
G3(a)dLW (a, 0)

) 1
2

B(1).

This finishes the whole proof.

Proof of Theorem 3.2. It follows from the definition of the class T (HI) that

cn
nυ(n)

[nr]∑
s=1

F (s, cnxs,n) =
cn
n

[nr]∑
s=1

f
( s
n
, cnxs,n

)
+

cn
nυ(n)

[nr]∑
s=1

Rn

( s
n
, cnxs,n

)
:=Π1 + Π2.

As suggested by Theorem 3.1, under Condition A(a) and A(c) in Assumption A, we

have Π1 →D

∫ r
0 G1(t)dLW (t, 0), while under Condition A(b) and A(c), we have Π1 →P∫ r

0 G1(t)dLW (t, 0) uniformly in r. In order to complete (3.9) and (3.10), it thus suffices

to prove that Π2 →P 0 uniformly in r under Condition A(c) by virtue of the properties

of convergence in distribution and in probability (see Theorem 25.4 on Billingsley (1995,

p332) for weak convergence and any text book for convergence in probability. We do not

mention this any more in the sequel).

If F (t, x) is in the class T (HI1) and qn(t)/υ(n)→ 0 uniformly in t ∈ [0, 1] as n→∞,

for a given ε > 0, when n is large, 0 < qn(t)/υ(n) < ε for all t. We then have from

Assumption A(c) that

sup
0≤r≤1

E|Π2| ≤
cn

nυ(n)
sup

0≤r≤1

[nr]∑
s=1

E
∣∣∣Rn ( s

n
, cnxs,n

)∣∣∣
≤ cn
nυ(n)

sup
0≤r≤1

[nr]∑
s=1

qn

( s
n

)
E[P (cnxs,n)]

≤εcn
n

n∑
s=1

∫ ∞
−∞

P (cnds,0,nx)hs,0,n(x)dx
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=ε
1

n

n∑
s=1

1

ds,0,n

∫ ∞
−∞

P (x)hs,0,n

(
1

cnds,0,n
x

)
dx

≤εK
∫ ∞
−∞

P (x)dx
1

n

n∑
s=1

1

ds,0,n
,

where K is the uniform upper bound of the densities hl,k,n(x). Thus, the desired result

follows from (3.3) as n→∞ and ε→ 0.

If F (t, x) is in the class T (HI2), |Rn
(
s
n , cnxs,n

)
| ≤ qn(t)Q(nt)P (cnxs,n) with P (x)

integrable, limn→∞ qn(t)/υ(n) = l(t) which is bounded on [0,1] and Q(y) that is bounded

on any compact interval and limy→+∞Q(y) = 0. We have when n is large, qn(t)/υ(n) =

l(t)(1 + o(1)) and for a given ε > 0, there exists s0 > 0 such that 0 < Q(s) < ε whenever

s > s0. Whence,

sup
0≤r≤1

E|Π2| ≤
cn

nυ(n)
sup

0≤r≤1

[nr]∑
s=1

E
∣∣∣Rn ( s

n
, cnxs,n

)∣∣∣
≤ cn
nυ(n)

sup
0≤r≤1

[nr]∑
s=1

qn

( s
n

)
Q(s)E[P (cnxs,n)]

≤ cn
nυ(n)

n∑
s=1

qn

( s
n

)
Q(s)E[P (cnxs,n)]

≤cn
n

max
0≤t≤1

l(t)
n∑
s=1

Q(s)

∫ ∞
−∞

P (cnds,0,nx)hs,0,n(x)dx

≤K max
0≤t≤1

l(t)

∫ ∞
−∞

P (x)dx
1

n

n∑
s=1

1

ds,0,n
Q(s)

=K max
0≤t≤1

l(t)

∫ ∞
−∞

P (x)dx

(
1

n

s0∑
s=1

Q(s)

ds,0,n
+

1

n

n∑
s=s0

Q(s)

ds,0,n

)

≤K max
0≤t≤1

l(t)

∫ ∞
−∞

P (x)dx

(
K(s0)

1

n

s0∑
s=1

1

ds,0,n
+ ε

1

n

n∑
s=1

1

ds,0,n

)
→0,

as n → ∞ and then ε → 0 due to (3.2) and (3.3) where K(s0) is the maximum over

Q(1), · · · , Q(s0). This finishes the proof of (3.9) and (3.10). Now we turn to prove (3.11).

By virtue of the definition of the class T (HI),√
cn
n

1

υ(n)

[nr]∑
s=1

F (s, cnxs,n) es
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=

√
cn
n

[nr]∑
s=1

f
( s
n
, cnxs,n

)
es +

√
cn
n

1

υ(n)

[nr]∑
s=1

Rn

( s
n
, cnxs,n

)
es

:=Π3 + Π4.

It follows from Theorem 3.1 that

Π3 →D

(∫ r

0
G3(t)dLW (t, 0)

) 1
2

N,

as n→∞. Hence, it is sufficient to show Π4 →P 0 to complete the proof.

The structure of martingale difference of (es,Fn.s) and the adaptivity between es and

xs,n give

E[Π4]2 = σ2
e

cn
n

1

υ(n)2

[nr]∑
s=1

ER2
n

( s
n
, cnxs,n

)
.

In a very similar fashion as in the proof of Π2 →P 0 we can show that E[Π4]2 → 0.

This finishes the proof.

Proof of Theorem 3.3. Notice firstly that under Assumption B, with the argument

in Lemma C.3, we may rewrite any statistic about Un and Wn equivalently in distribution

into an expression of U0
n and W 0

n , so that we can obtain the weak convergence of the

statistic by studying the latter with almost sure convergence of (U0
n,W

0
n) →a.s. (U,W ).

Such schedule of consideration is referred to as the embedding schedule1 in the se-

quel. It therefore is reasonable in the sequel to assume without loss of generality that

(Un,Wn) →a.s. (U,W ) in order to avoid notational complication. We begin to prove the

result in (3.15). We first write that

1

n

n∑
s=1

f
( s
n
, xs,n

)
=

1

n

n∑
s=1

f

(
s− 1

n
+

1

n
,Wn

(
s− 1

n
+

1

n

))

=
n∑
s=1

∫ s
n

s−1
n

f(r + o(1),Wn(r + o(1)))dr =

∫ 1

0
f(r + o(1),Wn(r + o(1)))dr.

Thus, to complete the result in (3.15), it suffices to show∫ 1

0
f(r + o(1),Wn(r + o(1)))dr →a.s.

∫ 1

0
f(r,W (r))dr.

1We emphasize that the embedding schedule applies in the subsequent proofs. We shall mention it

without showing the details whenever it is used.
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Because of the condition (b) in regularity definition, there exists a constant c > 0 such

that f(t, x) is continuous in x whenever |x| > c. Let J = [−c − 2, c + 2]. For any given

ε > 0, it follows from the regularity of f that there exist continuous functions f
ε
(r, x),

f ε(r, x) in x and δ > 0 such that whenever |x− y| < δ on J , for each r ∈ [0, 1],

f
ε
(r, x) ≤ f(r, y) ≤ f ε(r, x).

Note that when x = y ∈ J , we always have f
ε
(r, x) ≤ f(r, x) ≤ f ε(r, x).

Since sup0≤r≤1 |Wn(r)−W (r)| = oa.s.(1), let n large enough such that sup0≤r≤1 |Wn(r)−
W (r)| < 1

2δ almost surely. Without loss of generality, assume that δ < 1.

Observe that for large n, |Wn(r + o(1)) −W (r)| ≤ |Wn(r + o(1)) −W (r + o(1))| +
|W (r + o(1)) −W (r)| < δ almost surely uniformly in r where we exploit the fact that

Brownian motion sample path is almost surely continuous, hence almost surely uniformly

continuous on [0, 1].

Denote A(r) = {|W (r)| < c+1}. It follows that on A(r), when n is large, Wn(r+o(1)) ∈
J , W (r) ∈ J ; while on Ā(r), |Wn(r + o(1))| > c, |W (r)| > c.

Notice that from Condition (a) of regularity,∣∣∣∣∫ 1

0
f(r + o(1),Wn(r + o(1)))dr −

∫ 1

0
f(r,W (r))dr

∣∣∣∣
≤
∫ 1

0
|f(r + o(1),Wn(r + o(1)))− f(r,Wn(r + o(1)))| dr

+

∣∣∣∣∫ 1

0
[f(r,Wn(r + o(1)))− f(r,W (r))]dr

∣∣∣∣
≤o(1)

∫ 1

0
L(Wn(r + o(1)))dr +

∣∣∣∣∫ 1

0
[f(r,Wn(r + o(1)))− f(r,W (r))]dr

∣∣∣∣ .
However, ∣∣∣∣∫ 1

0
[f(r,Wn(r + o(1)))− f(r,W (r))]dr

∣∣∣∣
≤
∫ 1

0
|f(r,Wn(r + o(1)))dr − f(r,W (r))|I(A(r))dr

+

∣∣∣∣∫ 1

0
[f(r,Wn(r + o(1)))− f(r,W (r))]I(Ā(r))dr

∣∣∣∣
≤
∫ 1

0
|f ε(r,W (r))− f

ε
(r,W (r))|I(A(r))dr

+

∣∣∣∣∫ 1

0
[f(r,Wn(r + o(1)))dr − f(r,W (r))]I(Ā(r))dr

∣∣∣∣
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:=∆1 + ∆2.

where I(·) is the indicator function.

Moreover, it follows from the occupation time formula for bivariate Brownian functional

that

∆1 =

∫ 1

0
[f ε(r,W (r))− f

ε
(r,W (r))]I(|W (r)| < c+ 1)dr

=

∫ c+1

−c−1
da

∫ 1

0

[
f ε(r, a)− f

ε
(r, a)

]
dLW (r, a)

≤
∫
J

sup
0≤r≤1

[
f ε(r, a)− f

ε
(r, a)

]
da

∫ 1

0
dLW (r, a)

=

∫
J
LW (1, a) sup

0≤r≤1

[
f ε(r, a)− f

ε
(r, a)

]
da

≤ sup
a∈J

LW (1, a)

∫
J

sup
0≤r≤1

[
f ε(r, a)− f

ε
(r, a)

]
da→a.s. 0,

as ε→ 0, due to regularity of f and supa∈J LW (1, a) ≤ 1 almost surely.

Furthermore, because f(r, ·) is continuous on |x| > c, the continuous mapping theorem

implies that ∆2 → 0 a.s.

Regarding of
∫ 1

0 L(Wn(r + o(1)))dr, since L(·) satisfies Condition (b) and (c) in reg-

ularity, similar derivation as above yields it approaches to
∫ 1

0 L(W (r))dr almost surely.

Hence, the proof of (3.15) is completed.

We are ready to prove (3.16). Once again the embedding schedule described in the

first part permits us to derive it under a stronger condition that (Un,Wn) →a.s. (W,U).

Let us write

1√
n

n∑
s=1

f
( s
n
, xs,n

)
es =

n∑
s=1

f
( s
n
, xs,n

) 1√
n
es

=

n∑
s=1

f

(
s− 1

n
+ o(1),Wn

(
s− 1

n
+ o(1)

))(
Un

( s
n

)
− Un

(
s− 1

n

))

=

n∑
s=1

∫ s
n

s−1
n

f(r + o(1),Wn(r + o(1)))dUn(r)

=

∫ 1

0
f(r + o(1),Wn(r + o(1)))dUn(r) :=

4∑
k=1

Πk,

where

Π1 =

∫ 1

0
[f(r + o(1),Wn(r + o(1)))− f(r,Wn(r + o(1)))]dUn(r)
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Π2 =

∫ 1

0
[f(r,Wn(r + o(1)))− fε(r,Wn(r + o(1)))]dUn(r)

Π3 =

∫ 1

0
fε(r,Wn(r + o(1)))dUn(r)−

∫ 1

0
fε(r,W (r))dU(r)

Π4 =

∫ 1

0
fε(r,W (r))dU(r),

in which denote fε(r, x) = f ε(r, x) or f
ε
(r, x) for notational convenience. Observe that

(fε(r,Wn(r + o(1))), Un(r)) → (fε(r,W (r)), U(r)) almost surely due to continuity in x of

fε. It follows from Theorem 2.2 in Kurtz and Protter (1991) that Π3 →P 0 as n→∞.

Therefore, in order to finish the proof, we need to show (1) Π1 →P 0 when n→∞; (2)

for all large n, Π2 →P 0 and Π4 →P

∫ 1
0 f(r,W (r))dU(r) when ε → 0. Let us investigate

them term by term.

It follows from Assumption B and regularity that

E[Π1]2 =E

{∫ 1

0
[f(r + o(1),Wn(r + o(1)))− f(r,Wn(r + o(1)))]dUn(r)

}2

=σ2
eE

∫ 1

0
[f(r + o(1),Wn(r + o(1)))− f(r,Wn(r + o(1)))]2dr

≤o(1)σ2
eE

∫ 1

0
L2(Wn(r + o(1)))dr → 0,

as n → ∞ because we have
∫ 1

0 L
2(Wn(r + o(1)))dr →a.s.

∫ 1
0 L

2(W (r))dr similar to the

counterpart in first part, and by virtue of the regularity, L2(Wn(r)) can be dominated by

L2
ε (W (r)) when n is large for some ε > 0 and Lε(·) is continuous, E

∫ 1
0 L

2(Wn(r))dr →
E
∫ 1

0 L
2(W (r))dr <∞. This finishes the proof of (1).

The convergence of Π2 and Π4 can be proven at the same time if we show∫ 1

0
[f(r,Wn(r + o(1)))− fε(r,Wn(r + o(1)))]dUn(r)→P 0,

as ε → 0 for all large n including n = ∞ that means conventionally (U∞(r), V∞(r)) =

(U(r), V (r)).

Let real c be defined as before. All notations ε, δ, J , A(r), f ε(t, x) and f
ε
(t, x) keep

the same meanings as in the first part. In view of regularity condition (b), we may

find f ε(r, x) and f
ε
(r, x) such that they are continuous in x on R for each r ∈ [0, 1],

since beyond [−c, c], we can take f ε(r, x) = f
ε
(r, x) = f(t, x) and due to this reason,

f ε(r, x)− f
ε
(r, x) is bounded on R. Consequently, supr∈[0,1](f ε(r, x)− f

ε
(r, x)) is bounded
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on R because it is continuous and beyond [−c, c] it is zero. Let C be the upper bound of

supr∈[0,1][f ε(r, x)− f
ε
(r, x)].

By the adaptivity of (Un(r),Wn(r + o(1))), for large n,

E

{∫ 1

0
[f(r,Wn(r + o(1)))− fε(r,Wn(r + o(1)))]dUn(r)

}2

=σ2
eE

∫ 1

0
[f(r,Wn(r + o(1)))− fε(r,Wn(r + o(1)))]2dr

=σ2
eE

∫ 1

0
[f(r,Wn(r + o(1)))− fε(r,Wn(r + o(1)))]2I(A(r))dr

≤σ2
eE

∫ 1

0
[f ε(r,Wn(r + o(1)))− f

ε
(r,Wn(r + o(1)))]2I(A(r))dr

→a.s.σ
2
eE

∫ 1

0
[f ε(r,W (r))− f

ε
(r,W (r))]2I(A(r))dr,

by virtue of continuity and boundedness of f ε(t, x)−f
ε
(t, x) in x and the fact that indicator

function is bounded as n→∞. Observe that by the occupation formula∫ 1

0
[f ε(r,W (r))− f

ε
(r,W (r))]2I(|W (r)| ≤ c+ 1)dr

=

∫ ∞
−∞

da

∫ 1

0
[f ε(r, a)− f

ε
(r, a)]2I(|a| ≤ c+ 1)dLW (r, a)

=

∫ c+1

−c−1
da

∫ 1

0
[f ε(r, a)− f

ε
(r, a)]2dLW (r, a)

≤C
∫
J

sup
0≤r≤1

[f ε(r, a)− f
ε
(r, a)]da

∫ 1

0
dLW (r, a)

≤C sup
a
LW (1, a)

∫
J

sup
0≤r≤1

[f ε(r, a)− f
ε
(r, a)]da→a.s. 0,

as ε→ 0.

It follows from the dominated convergence theorem that Π2 →P 0 and Π4 converges

to the desired variable in probability as ε→ 0. This finishes the proof.

Proof of Theorem 3.4. Observe that, like preceding proofs, the embedding schedule

allow us to work under a stronger condition (Wn, Un) → (W,U) almost surely but still

achieve the weak convergence for the assertion.

It follows from the asymptotic homogeneity of F function that

1

nυ1(n)υ2(cn)

n∑
s=1

F (s, cnxs,n)
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=
1

n

n∑
s=1

f
( s
n
, xs,n

)
+

1

nυ1(n)υ2(cn)

n∑
s=1

R(n, cn; s, cnxs,n).

Note that f(t, x) is regular and thus by the proof (not the result) of Theorem 3.3,

1

n

n∑
s=1

f
( s
n
, xs,n

)
→a.s.

∫ 1

0
f(r,W (r))dr,

as n→∞.

In order to complete the proof of (3.18), it thus suffices to show

1

nυ1(n)υ2(cn)

n∑
s=1

R(n, cn; s, cnxs,n)→a.s. 0.

Let limn→∞
a(cn)
υ2(cn) = a and limn→∞

b(n)
υ1(n) = b. Let K = [smin − 1, smax + 1] with

smin = infr∈[0,1]W (r) and smax = supr∈[0,1]W (r). Note that almost surely K is a finite

compact interval.

It follows from the definition that as n is large,

1

nυ1(n)υ2(cn)

n∑
s=1

|R(n, cn; s, cnxs,n)|

≤ a(cn)

nυ1(n)υ2(cn)

n∑
s=1

An

( s
n

)
P (xs,n) +

b(n)

nυ1(n)υ2(cn)

n∑
s=1

q
( s
n

)
Bcn(xs,n)

=
a(1 + o(1))

nυ1(n)

n∑
s=1

An

( s
n

)
P (xs,n) +

b(1 + o(1))

nυ2(cn)

n∑
s=1

q
( s
n

)
Bcn(xs,n)

:=Π1 + Π2.

If lim supn→∞
An( sn)
υ1(n) = 0 uniformly in s, then for any given ε > 0, when n is large

enough, 0 <
An( sn)
υ1(n) < ε. Thus,

0 ≤ Π1 <εa(1 + o(1))
1

n

n∑
s=1

P (xs,n) ≤ εa(1 + o(1))‖P‖K →a.s. 0,

as n → ∞ and ε → 0 since xs,n = Wn(r) ∈ K due to convergence of Wn(r) to W (r)

almost surely and ‖P‖K , the bound of P (x) on K (in the sequel similar notations have

the similar meaning), is almost surely finite. Thus, Π1 → 0, a.s..

If υ1(n)→∞ as n→∞ and An(t) = A(t) which is Riemann integrable on [0, 1], then

0 < Π1 =
a(1 + o(1))

nυ1(n)

n∑
s=1

A
( s
n

)
P (xs,n)
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≤a(1 + o(1))

υ1(n)
‖P‖K

1

n

n∑
s=1

A
( s
n

)
→a.s. 0,

since as n → ∞, 1
υ1(n) → 0, 1

n

∑n
s=1A

(
s
n

)
→
∫ 1

0 A(t)dt < ∞ and ‖P‖K < ∞ a.s.. We

have Π1 →a.s. 0 as well.

If An(t) = Ān(t)Q(nt) with lim supn→∞
Ān(t)
υ1(n) = l(t) bounded on [0,1] and Q(y) is

bounded on R as well as limy→+∞Q(y) = 0, then for any given ε > 0, there exists a

positive integer s0 such that when y > s0, 0 < Q(y) < ε. Therefore,

0 < Π1 =
a(1 + o(1))

nυ1(n)

n∑
s=1

Ān

( s
n

)
Q(s)P (xs,n)

≤a(1 + o(1))

n

n∑
s=1

l
( s
n

)
Q(s)P (xs,n)

≤a(1 + o(1)) max
0≤t≤1

l(t)‖P‖K
1

n

n∑
s=1

Q(s)

≤a(1 + o(1)) max
0≤t≤1

l(t)‖P‖K

[
1

n

s0∑
s=1

Q(s) +
1

n

n∑
s=s0

ε

]
→a.s. 0,

as n→∞ and ε→ 0. Thus, Π1 →a.s. 0 too.

We are now in a position to show Π2 →a.s. 0.

If Bcn(xs,n) = B̄(cn)V (xs,n) with lim supn→∞
B̄(cn)
υ2(cn) = 0, 0 ≤ q(t) ≤ Mq < ∞ on [0,1]

and V (x) is locally bounded, then for any given ε > 0, when n is large, 0 < B̄(cn)
υ2(cn) < ε.

Thus,

0 < Π2 =
b(1 + o(1))

nυ2(cn)

n∑
s=1

q
( s
n

)
B̄(cn)V (xs,n)

≤εb(1 + o(1))‖V ‖KMq →a.s. 0,

as n→∞ and ε→ 0. Thus, Π2 →a.s. 0.

If Bcn(xs,n) = B̄(cn)V (cnxs,n) where lim supn→∞
B̄(cn)
υ2(cn) = l <∞ and V (y) is bounded

and vanishes at infinity, viz., limy→∞ V (y) = 0, then when n is large, B̄(cn)
υ2(cn) = l(1 + o(1))

and when |y| > y0 for some positive y0 and a given ε > 0, |V (y)| < ε. Therefore,

0 < Π2 =
b(1 + o(1))B̄(cn)

nυ2(cn)

n∑
s=1

q
( s
n

)
V (cnxs,n)

=bl(1 + o(1))
1

n

n∑
s=1

q
( s
n

)
V (cnxs,n)
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=blMq(1 + o(1))
1

n

n∑
s=1

V (cnxs,n)

× [I(|cnxs,n| ≤ y0) + I(|cnxs,n| > y0)]

≤blMq(1 + o(1))

(
‖V ‖ 1

n

n∑
s=1

I(cn|xs,n| ≤ y0) + ε

)

=blMq(1 + o(1))

(
‖V ‖

∫ 1

0
I(cn|Wn(r + o(1))| ≤ y0)dr + ε

)
.

Observe that for ε > 0,

{cn|Wn(r + o(1))| ≤ y0}

=

{
|Wn(r + o(1))| ≤ y0

cn
, |W (r)| ≤ y0

cn
+ ε

}
∪
{
|Wn(r + o(1))| ≤ y0

cn
, |W (r)| > y0

cn
+ ε

}
⊂
{
|W (r)| ≤ y0

cn
+ ε

}
∪ {|Wn(r + o(1))−W (r)| > ε} .

Thus,

I{cn|Wn(r + o(1))| ≤ y0} ≤I
{
|W (r)| ≤ 1

cn
y0 + ε

}
+ I {|Wn(r + o(1))−W (r)| > ε} .

However, as n→∞, for every r ∈ [0, 1),{
|W (r)| ≤ 1

cn
y0 + ε

}
↓ {|W (r)| ≤ ε} , and

{|Wn(r + o(1))−W (r)| > ε} ↓ ∅,

which imply that

I

{
|W (r)| ≤ 1

cn
y0 + ε

}
→a.s. I {|W (r)| ≤ ε}

I

{
sup

0≤r≤1
|Wn(r + o(1))−W (r)| > ε

}
→a.s. 0.

It follows from the dominated convergence theorem that

0 ≤
∫ 1

0
I(cn|Wn(r + o(1))| ≤ y0)dr
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≤
∫ 1

0
I

{
|W (r)| ≤ 1

cn
y0 + ε

}
dr +

∫ 1

0
I {|Wn(r + o(1))−W (r)| > ε} dr

→a.s.

∫ 1

0
I {|W (r)| ≤ ε} dr.

Then, as ε → 0, I {|W (r)| ≤ ε} →a.s. I{|W (r)| = 0} = 0 almost surely except r = 0.

Once again, the dominated convergence theorem implies that∫ 1

0
I {|W (r)| ≤ ε} dr →a.s.

∫ 1

0
I{|W (r)| = 0}dr = 0, a.s.

Hence, Π2 →a.s. 0 as n → ∞ first and then ε → 0. This finishes the proof of (3.18).

We are now ready to prove (3.19).

It follows from the asymptotic homogeneity of F (·, ·) that

1√
nυ1(n)υ2(cn)

n∑
s=1

F (s, cnxs,n)es

=
1√
n

n∑
s=1

f
( s
n
, xs,n

)
es +

1√
nυ1(n)υ2(cn)

n∑
s=1

R(n, cn; s, cnxs,n)es

:=Π3 + Π4.

According to Theorem 3.3,

Π3 =
1√
n

n∑
s=1

f
( s
n
, xs,n

)
es →D

∫ 1

0
f(r,W (r))dU(r).

It thus suffices to show that with the help of the embedding schedule, Π4 →P 0 as

n→∞ in order to finish the proof. Using martingale structure of (es,Fn,s) we have

E[Π4]2 =
1

nυ1(n)2υ2(cn)2
E

[
n∑
s=1

R(n, cn; s, cnxs,n)es

]2

=
σ2
e

nυ1(n)2υ2(cn)2

n∑
s=1

ER2(n, cn; s, cnxs,n)

≤ 2σ2
ea

2(cn)

nυ1(n)2υ2(cn)2

n∑
s=1

A2
n

( s
n

)
E[P (xs,n)]2

+
2σ2

eb
2(n)

nυ1(n)2υ2(cn)2

n∑
s=1

q2
( s
n

)
E[Bcn(xs,n)]2

:=Π41 + Π42.
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In a similar way to the convergence of Π1 and Π2, we can show that Π41 and Π42

converge to zero. This finishes the proof.

Proof of Theorem 4.1. We first prove (4.11). By virtue of (4.6) and α′B = α′, we

may write

√
σz

4
√
nυ(n)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

(m̂(τ, x)−m(τ, x))

=

√
σz

4
√
nυ(n)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

× [A′(τ, x)(X ′X)−1X ′(δ + γ + ε)− δ(τ, x)− γ(τ, x)]

=

√
σz

4
√
nυ(n)

√
pmax

α′X ′(δ + γ + ε)

−
√
σz

4
√
nv(n)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[δ(τ, x) + γ(τ, x)]

:=

3∑
i=1

Πi −Π4,

where

Π1 =

√
σz

4
√
nυ(n)

√
pmax

α′X ′δ, Π2 =

√
σz

4
√
nυ(n)

√
pmax

α′X ′γ,

Π3 =

√
σz

4
√
nυ(n)

√
pmax

α′X ′ε, Π4 =

√
σz

4
√
nυ(n)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[δ(τ, x) + γ(τ, x)].

We are about to show that Πi →P 0, i = 1, 2, 4, and Π3 converges to the desired

variable in distribution as n→∞.

Firstly, it follows from (4.9) that

Π3 =

√
σz

4
√
nυ(n)

(F̃
′
− δ̃′ − γ̃′)ε =

√
σz

4
√
nυ(n)

(F̃
′
ε− δ̃′ε− γ̃′ε)

=

√
σz

4
√
nυ(n)

(
n∑
s=1

F̃ (s,Xs)es +
n∑
s=1

δ̃ses +
n∑
s=1

γ̃ses

)

=

√
σz

4
√
nυ(n)

(
n∑
s=1

F̃ (s, sµ+
√
nσzxs,n)es +

n∑
s=1

δ̃ses +

n∑
s=1

γ̃ses

)

=

√
σz

4
√
nυ(n)

n∑
s=1

F (s,
√
nσzxs,n)es +

√
σz

4
√
nυ(n)

n∑
s=1

δ̃ses +

√
σz

4
√
nυ(n)

n∑
s=1

γ̃ses

:=Π31 + Π32 + Π33.

70



In view of the third part of Theorem 3.2 with cn =
√
nσz and Assumption 4.4 (a), (b),

we have

Π31 →D

(∫ 1

0
G3(t)dLW (t, 0)

) 1
2

N, (D.10)

where G3(t) =
∫
f(t, x)2dx, W is a standard Brownian motion on [0, 1], N is a standard

normal random variable independent of W , and LW is the local–time process of W .

Meanwhile, the martingale difference structure (es,Fn,s) and the adaptivity of xs+1,n

with Fn,s yield

E(Π32)2 =
σzσ

2
e√

nυ(n)2

n∑
s=1

Eδ̃2
s and E(Π33)2 =

σzσ
2
e√

nυ(n)2

n∑
s=1

Eγ̃2
s . (D.11)

As for the first part of (D.11), using the expression of δ̃s we have

E(Π32)2 =
σzσ

2
e√

nυ(n)2

n∑
s=1

Eδ̃2
s

=
σzσ

2
e√

nυ(n)2

n∑
s=1

E

 k∑
i=0

∞∑
j=pi+1

aijLj(s)Qi(s,Xs)

2

=
σzσ

2
e√

nυ(n)2

n∑
s=1

k∑
i=0

 ∞∑
j=pi+1

aijLj(s)

2

≤ σzσ
2
e√

nυ(n)2

n∑
s=1

k∑
i=0

(
max
j≥pi
|Lj(s)|

)2
 ∞∑
j=pi+1

|aij |

2

≤o(1)
σzσ

2
e√

nυ(n)2

n∑
s=1

1√
s

k∑
i=0

1
√
pi

1

p2
i

≤ o(1)
σzσ

2
e

υ(n)2

k

p
5/2
min

=o(1)
σzσ

2
e

υ(n)2
nκ1−

5
2
κ2 → 0,

as n→∞ due to Assumptions 4.2 and 4.3, and the upper bound of |Lj(t)| in (C.3). Thus,

Π32 →P 0.

Similarly, using the expression of γ̃s we have

E(Π33)2 =
σzσ

2
e√

nυ(n)2

n∑
s=1

Eγ̃2
s

=
σzσ

2
e√

nυ(n)2

n∑
s=1

E

 ∞∑
i=k+1

∞∑
j=0

aijLj(s)Qi(s,Xs)

2
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=
σzσ

2
e√

nυ(n)2

n∑
s=1

∞∑
i=k+1

 ∞∑
j=0

aijLj(s)

2

≤C2 σzσ
2
e√

nυ(n)2

n∑
s=1

∞∑
i=k+1

 ∞∑
j=0

|aij |

2

≤o(1)
σzσ

2
e√

nυ(n)2

n∑
s=1

1

k
= o(1)

σzσ
2
e

v(n)2

√
n

k

=o(1)
σzσ

2
e

υ(n)2
n

1
2
−κ1 → 0,

due to Assumption 4.2 and 4.3, and simply using |Lj(s)| ≤ C for any j. Hence, Π33 →P 0.

Whence, we obtain

Π3 →D

(∫ 1

0
G3(t)dLW (t, 0)

) 1
2

N. (D.12)

Secondly, for Π1 and Π2, from (4.9) it follows that

Π1 =

√
σz

4
√
nυ(n)

√
pmax

α′X ′δ =

√
σz

4
√
nυ(n)

(F̃
′
δ − δ̃′δ − γ̃′δ),

Π2 =

√
σz

4
√
nυ(n)

√
pmax

α′X ′γ =

√
σz

4
√
nυ(n)

(F̃
′
γ − δ̃′γ − γ̃′γ).

Thus, by Cauchy-Schwarz inequality, in order to obtain Π1 →P 0 and Π2 →P 0, we

only need to show ‖δ‖ →P 0 and ‖γ‖ →P 0 since the convergence of (D.11) indicates that

1√
n
‖δ̃‖2 →P 0, and

1√
n
‖γ̃‖2 →P 0, (D.13)

and because of Theorem 3.2 and Assumption 4.4 (b), we have

σz√
nυ(n)2

‖F̃
′
‖2 =

σz√
nυ(n)2

n∑
s=1

F̃ 2(s,Xs)

=
σz√
nυ(n)2

n∑
s=1

F 2(s,
√
nσxxs,n)→D

∫ 1

0

∫ ∞
−∞

f2(r, x)dxdLW (r, 0).

(D.14)

In fact, by orthogonality of Qi and C.2 in Lemma C.1 with r = 3,

E‖δ‖2 =E

n∑
s=1

δ2
s = E

n∑
s=1

 k∑
i=0

∞∑
j=pi+1

cijLj(s)Qi(s,Xs)

2

=

n∑
s=1

k∑
i=0

 ∞∑
j=pi+1

cijLj(s)

2

=

n∑
s=1

k∑
i=0

ci(t,m)−
pi+1∑
j=0

cijLj(s)

2
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≤
n∑
s=1

k∑
i=0

o(1)
1
√
spi

1

p2
i

≤ o(1)
k

p
5
2
min

n∑
s=1

1√
s

=o(1)n
1
2

+κ1− 5
2
κ2 → 0

as n → ∞, where once again we have used the upper bound for |Lj(s)| for j sufficient

large and Assumption 4.3.

In addition, in view of (D.3), ci(t,m) =
√
v(t)

r
√

(i−r)!
i! ci(t,D

rm), it follows from

Assumption 4.1 (a) and (c) with r = 3 that

E‖γ‖2 =E
n∑
s=1

γ2
s = E

n∑
s=1

( ∞∑
i=k+1

ci(s,m)Qi(s,Xs)

)2

=
n∑
s=1

∞∑
i=k+1

(ci(s,m))2 =
n∑
s=1

∞∑
i=k+1

v(s)3 (i− 3)!

i!
ci(s,D

3m)2

=
∞∑

i=k+1

(i− 3)!

i!

n∑
s=1

v(s)3ci(s,D
3m)2 ≤ An 1

k2
(1 + o(1))→ 0,

where A is the uniform bound of v(s)3ci(s,D
3m)2 on account of Assumption 4.1 and we

have used Assumption 4.3.

Now, we are ready to prove that Π4 →P 0 as n→∞. We may rewrite

Π4 =

√
σz

4
√
nυ(n)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[δ(τ, x) + γ(τ, x)]

=

√
σz√

nυ(n)%(n)

α′X ′XA(τ, x)

pmax‖A(τ, x)‖
×

4
√
n
√
pmax%(n)

‖A(τ, x)‖
[δ(τ, x) + γ(τ, x)]

:=Π41 × (Π42 + Π43).

We shall demonstrate that Π41 converges to a random variable in distribution and both

Π42 and Π43 approach to zero as n → ∞, which guarantee that Π4 →P 0 (see Example

25.7 on Billingsley (1995, p332). We do not mention this in what follows). To begin with,

it follows from (4.9) and (4.10) that

Π41 =

√
σz√

nυ(n)%(n)
(F̃
′
− δ̃′ − γ̃′)(G̃− δ̃ − γ̃)

=

√
σz√

nυ(n)%(n)
(F̃
′
G̃− δ̃′G̃− γ̃′G̃− F̃

′
δ̃ − F̃

′
γ̃ + ‖δ̃‖2 + ‖γ̃‖2 + 2γ̃′δ̃).

Therefore, by virtue of (D.13) and (D.14), to find out the limit of Π41, our remaining

task is to prove the convergence of σz√
n%(n)2

‖G̃‖2 and σz√
nυ(n)%(n)

F̃
′
G̃ due to Cauchy-Schwarz

inequality.
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In fact, similarly to (D.14), due to Assumption 4.4(b), It follows from Theorem 3.2

that

σz√
nυ(n)2

‖G̃‖2 →D

∫ 1

0

∫ ∞
−∞

g2(t, x)dx dLW (t, 0),

σz√
nυ(n)%(n)

F̃
′
G̃→D

∫ 1

0

∫ ∞
−∞

f(t, x)g(t, x)dx dLW (t, 0).

Whence, Π41 →D

∫ 1
0

∫∞
−∞ f(t, x)g(t, x)dxdLW (t, 0) as n→∞.

For the vanish of Π42 and Π43, we first estimate ‖A(τ, x)‖:

‖A(τ, x)‖2 =
k∑
i=0

pi∑
j=0

L 2
j (τ)Q2

i (τ, x) = e−τ
k∑
i=0

Q2
i (τ, x)

pi∑
j=0

L2
j (τ),

which leads to O(1)kpmin ≤ ‖A(τ, x)‖2 ≤ O(1)kpmax where we have invoked the fact that∑k
i=0H

2
i (x) = O(1)k uniformly in x for any orthogonal polynomial Hi(x) on any compact

interval (see Alexits, 1961, p295).

Accordingly, due to Assumption 4.1(b), using in C.2 in Lemma C.1 with r = 3 and

the bound for Lj in (C.3) gives

|Π42| =
4
√
n
√
pmax%(n)

‖A(τ, x)‖
|δ(τ, x)| =

4
√
n
√
pmax%(n)

‖A(τ, x)‖

∣∣∣∣∣∣
k∑
i=0

∞∑
j=pi+1

cijLj(τ)Qi(τ, x)

∣∣∣∣∣∣
≤

4
√
n
√
pmax%(n)

‖A(τ, x)‖

k∑
i=0

|Qi(τ, x)|

∣∣∣∣∣∣
∞∑

j=pi+1

cijLj(τ)

∣∣∣∣∣∣
≤

4
√
n
√
pmax%(n)

‖A(τ, x)‖

(
k∑
i=0

Q2
i (τ, x)

) 1
2

 k∑
i=0

 ∞∑
j=pi+1

cijLj(τ)

2
1
2

≤O(1)
4
√
n
√
pmaxn

ι

√
kpmin

√
k

[
k∑
i=0

1
√
τpi

o(1)

p2
i

] 1
2

≤ o(1)
n

1
4

+ι√pmaxk
1
2

√
pminp

5
4
min

=o(1)n
1
4

+ι+ 1
2
κ1+ 1

2
(κ̄2−κ2)− 5

4
κ2 → 0,

where we have used Assumption 4.4 (a) for the parameters involved.

Meanwhile, on account of Assumption 6.1 using (D.3) with r = 3 and the estimation

for Qi in Remark A.4, we have

|Π43| =
4
√
n
√
pmax%(n)

‖A(τ, x)‖
|γ(τ, x)| =

4
√
n
√
pmax%(n)

‖A(τ, x)‖

∣∣∣∣∣
∞∑

i=k+1

ci(τ,m)Qi(τ, x)

∣∣∣∣∣
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=
4
√
n
√
pmax%(n)

‖A(τ, x)‖

∣∣∣∣∣
∞∑

i=k+1

√
v(τ)

3√
i(i− 1)(i− 2)

ci(τ,D
3m)Qi(τ, x)

∣∣∣∣∣
≤o(1)

4
√
n
√
pmax%(n)

‖A(τ, x)‖

( ∞∑
i=k+1

1

i(i− 1)(i− 2)
Qi(τ, x)2

) 1
2

≤o(1)
4
√
nnι
√
pmax√

kpmin

( ∞∑
i=k+1

1

i(i− 1)(i− 2)
√
i

) 1
2

≤o(1)
4
√
nnι
√
pmax√

kpmin

1

k5/4
= o(1)n

1
4

+ι+ 1
2

(κ̄2−κ2)− 7
4
κ1 → 0,

because of Assumption 4.4 (a). The proof of (4.11) is completed.

We are now in a position to prove (4.12). In view of (4.6) and α′B = α′,

1√
nυ1(n)υ2(

√
nσz)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

(m̂(τ, x)−m(τ, x))

=
1√

nυ1(n)υ2(
√
nσz)

α′X ′
√
pmax

(δ + γ + ε)

− 1√
nυ1(n)υ2(

√
nσz)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[δ(τ, x) + γ(τ, x)]

:=

3∑
i=1

Γi − Γ4,

where we by Γi (i = 1, 2, 3, 4) signify that

Γ1 =
1√

nυ1(n)υ2(
√
nσz)

α′X ′
√
pmax

δ =
1√

nυ1(n)υ2(
√
nσz)

(F̃
′
− δ̃′ − γ̃′)δ,

Γ2 =
1√

nυ1(n)υ2(
√
nσz)

α′X ′
√
pmax

γ =
1√

nυ1(n)υ2(
√
nσz)

(F̃
′
− δ̃′ − γ̃′)γ,

Γ3 =
1√

nυ1(n)υ2(
√
nσz)

α′X ′
√
pmax

ε =
1√

nυ1(n)υ2(
√
nσz)

(F̃
′
− δ̃′ − γ̃′)ε,

Γ4 =
1√

nυ1(n)υ2(
√
nσz)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[δ(τ, x) + γ(τ, x)].

Observe that because of Assumption 4.4(c) and (d), we have

1√
nυ1(n)υ2(

√
nσz)

F̃
′
ε =

1√
nυ1(n)υ2(

√
nσz)

n∑
s=1

F̃ (s,Xs)es

=
1√

nυ1(n)υ2(
√
nσz)

n∑
s=1

F (s,
√
nσzxs,n)es →D

∫ 1

0
f(r,W (r))dU(r),

(D.15)
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and

1

nυ1(n)2υ2(
√
nσz)2

‖F̃‖2 =
1

nυ1(n)2υ2(
√
nσz)2

n∑
s=1

F̃ (s,Xs)
2

=
1

nυ1(n)2υ2(
√
nσz)2

n∑
s=1

F (s,
√
nσzxs,n)2 →D

∫ 1

0
f2(r,W (r))dr,

(D.16)

as n→∞ by Theorem 3.4.

Note that in first part we have shown that

1√
n
‖δ̃′‖2 →P 0,

1√
n
‖γ̃′‖2 →P 0, ‖δ‖2 →P 0, (D.17a)

‖γ‖2 →P 0,
1
4
√
n
δ̃′ε→P 0,

1
4
√
n
γ̃′ε→P 0. (D.17b)

All results in (D.17) remain true since all conditions for δ, γ, δ̃, γ̃ and ε have not

changed. Therefore, (D.15),(D.16) and (D.17) imply that Γ1 →P 0 and Γ2 →P 0, as well

as Γ3 →D

∫ 1
0 f(r,W (r))dU(r) as n → ∞. Thus, our remaining task is to prove Γ4 →P 0

as n→∞.

To this end, let us rewrite

Γ4 =
1√

nυ1(n)υ2(
√
nσz)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[δ(τ, x) + γ(τ, x)]

:=Γ41 × (Γ42 + Γ43),

where we denote

Γ41 =
1

nυ1(n)υ2(
√
nσz)%1(n)%2(

√
nσz)

α′X ′XA(τ, x)

pmax‖A(τ, x)‖
,

Γ42 =

√
n
√
pmax%1(n)%2(

√
nσz)

‖A(τ, x)‖
δ(τ, x), and

Γ43 =

√
n
√
pmax%1(n)%2(

√
nσz)

‖A(τ, x)‖
γ(τ, x).

It follows from (4.9) and (4.10) that

Γ41 =
1

nυ1(n)υ2(
√
nσz)%1(n)%2(

√
nσz)

(F̃
′
− δ̃′ − γ̃′)(G̃

′
− δ̃′ − γ̃′)

=
1

nυ1(n)υ2(
√
nσz)%1(n)%2(

√
nσz)

× (F̃
′
G̃− δ̃′G̃− γ̃′G̃− F̃

′
δ̃ − F̃

′
γ̃ + ‖δ̃‖2 + ‖γ̃‖2 + 2γ̃′δ̃).
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Once again, due to Theorem 3.4 and Assumption 4.4 (d), similar to (D.16), we have

1

n%1(n)2%2(
√
nσz)2

‖G̃‖2 →D

∫ 1

0
g2(r,W (r))dr, (D.18)

1

nυ1(n)υ2(
√
nσz)%1(n)%2(

√
nσz)

F̃
′
G̃→D

∫ 1

0
f(r,W (r))g(r,W (r))dr.

Thus, Cauchy-Schwarz inequality as well as (D.15),(D.16), (D.17) and (D.18) suggest

that Γ41 converges to the last limit in distribution.

We are ready to prove both Γ42 → 0 and Γ43 → 0, as n → ∞. Because δ(τ, x) and

γ(τ, x) remain the same as in the first part, similar to Π42 and Π43, we have

|Γ42| =
√
n
√
pmax%1(n)%2(

√
nσz)

‖A(τ, x)‖
|δ(τ, x)|

≤O(1)

√
n
√
pmaxn

ι1n
1
2
ι2

√
kpmin

√
k

[
k∑
i=0

1
√
τpi

o(1)

p2
i

] 1
2

≤o(1)
√
nn

1
2

(κ̄2−κ2)nι1+ 1
2
ι2
√
kp
− 5

4
min

=o(1)n
1
2

+ 1
2

(κ̄2−κ2)+ι1+ 1
2
ι2+ 1

2
κ1− 5

4
κ2 → 0,

|Γ43| =
√
n
√
pmax%1(n)%2(

√
nσz)

‖A(τ, x)‖
|γ(τ, x)|

≤o(1)

√
n
√
pmaxn

ι1n
1
2
ι2

√
kpmin

1

k5/4

=o(1)n
1
2

+ 1
2

(κ̄2−κ2)+ι1+ 1
2
ι2− 7

4
κ1 → 0,

due to Assumption 4.4 (c). This finishes the proof.

Proof of Theorem 4.2. We here only give an outline, as it is similar to the proof

of Theorem 4.1. It follows from (4.16) that

1√
n

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

(m̂(τ, x)−m(τ, x))

=
1√

n
√
pmax

α′X ′(δ + γ + ε)− 1√
n

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[δ(τ, x) + γ(τ, x)]

:=Π1 −Π2.

We shall show that Π1 converges to the desired variable in distribution and Π2 →P 0

as n→∞.

In what follows, we shall adopt the embedding schedule that allows us to work on a

stronger condition: (Wn, Un) → (W,U) almost surely but still gets a weak convergence.
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In view of (4.20), Π1 can be rephrased as Π1 = 1√
n

(F′ − δ̃′ − γ̃′)(δ + γ + ε). In order to

complete the convergence of Π1, we are about to demonstrate that

1√
n

F′ε→P

∫ 1

0
F (Tr, Tµr +

√
TσzW (r))dU(r), (D.19)

and all the other terms in Π1 converge to zero in probability.

In fact, (D.19) is valid because from Assumption B it follows that

1√
n

F′ε =
1√
n

n∑
s=1

F (ts,n, Xs,n)es

=
1√
n

n∑
s=1

F
( s
n
T,
s

n
Tµ+

√
Tσzxs,n

)
es

=
n∑
s=1

F
( s
n
T,
s

n
Tµ+

√
TσzWn

( s
n

))(
Un

( s
n

)
− Un

(
s− 1

n

))
=

∫ 1

0
F (rT + o(1), rTµ+ o(1) +

√
TσzWn(r + o(1)))dUn(r),

and since (Wn(r+o(1)), Un(r))→a.s. (W (r), U(r)), it follows from the continuity of F (·, ·)
that

(F (rT + o(1), rTµ+ o(1) +
√
TσxWn(r + o(1))), Un(r))

→a.s. (F (rT, rTµ+
√
TσxW (r)), U(r)).

Invoking Theorem 2.2 in Kurtz and Protter (1991) yields the result.

In addition, using the martingale difference structure of (es,Fn,s) and adaptivity of

xs+1,n with Fn,s yields

1

n
E(δ̃′ε)2 = σ2

e

1

n
E‖δ̃′‖2 and

1

n
E(γ̃′ε)2 =σ2

e

1

n
E‖γ̃′‖2.

Therefore, by virtue of Cauchy-Schwarz inequality, in order to prove the convergence

of other terms in Π1 it is sufficient to show that as n→∞,

‖δ‖2 →P 0, ‖γ‖2 →P 0,
1

n
E‖δ̃′‖2 → 0,

1

n
E‖γ̃′‖2 → 0, (D.20)

since

1

n
‖F′‖2 =

1

n

n∑
s=1

F 2
( s
n
T,
s

n
Tµ+

√
Tσzxs,n

)
→a.s.

∫ 1

0
F 2(Tr, Tµr +

√
TσzW (r))dr,

(D.21)
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using the continuity of F (·, ·) and Wn(r)→a.s. W (r).

Let us prove the results in (D.20) one by one. Firstly, because of Assumptions 4.5 (b),

bi(t) := bi(t,m) is differentiable up to third order, hence all expansions of bi(t), b
′
i(t) and

b′′i (t) in terms of ϕjT (t) are convergent uniformly on [0, T ]. Whence bij =
(
T
jπ

)2
cj(b

′′
i )

where cj(b
′′
i ) stands for the j-th coefficient in the expansion of b′′i (t). We have

E‖δ‖2 =

n∑
s=1

k∑
i=1

 ∞∑
j=pi+1

bijϕjT (ts,n)

2

≤ 2T 3

π4

n∑
s=1

k∑
i=1

 ∞∑
j=pi+1

1

j2
|cj(b′′i )|

2

≤2T 3

π4

n∑
s=1

k∑
i=1

∞∑
j=pi+1

1

j4

∞∑
j=pi+1

|cj(b′′i )|2

≤o(1)
nk

p3
min

= o(1)n1+κ1−3κ2 → 0

as n→∞, which implies ‖δ‖2 →P 0.

Secondly, by virtue of (D.3) with r = 2,

E‖γ‖2 =
n∑
s=1

E[γ2
s ] =

n∑
s=1

E

( ∞∑
i=k+1

b(ts,n,m)Qi(ts,n, Xs,n)

)2

=
n∑
s=1

∞∑
i=k+1

b2i (ts,n,m) =
n∑
s=1

∞∑
i=k+1

v(ts,n)2 (i− 2)!

i!
b2i (ts,n, D

2m)

≤ 1

k2

n∑
s=1

v(ts,n)2
∞∑

i=k+1

b2i (ts,n, D
2m) ≤ o(1)

1

k2

n∑
s=1

v(ts,n)2

≤o(1)
n

k2
max

0≤t≤T
v(t)2 = o(1)n1−2κ1 → 0,

due to Assumption 4.6, and we have invoked Assumption 4.5 that the convergence of

expansion of D2m is uniformly on [0, T ],
∑∞

i=k+1 b
2
i (ts,n, D

2m) = o(1) independent of s;

in addition, in the scope of this study, v(t) ∈ C[0, T ]. Therefore, it is bounded on the

interval. Whence, ‖γ‖2 →P 0.

Thirdly, similar to the counterparts in the proof of Theorem 4.1, it follows that
1
nE‖δ̃

′‖2 → 0 and 1
nE‖γ̃‖

2 → 0.

Now we are in a position to prove Π2 →P 0 as n→∞. Since Π2 can be rephrased as

Π2 =
1

n

α′X ′XA(τ, x)

pmax‖A(τ, x)‖
·
√
n
√
pmax

‖A(τ, x)‖
[δ(τ, x) + γ(τ, x)] := Π21 · (Π22 + Π23),

we shall show that Π21 converges to some random variable in probability and Π22,Π23 → 0.
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To begin with, by virtue of (4.20) and (4.21) we have

Π21 =
1

n

α′X ′XA(τ, x)

pmax‖A(τ, x)‖
=

1

n
(F′ − δ̃′ − γ̃′)(G− δ̃ − γ̃)

Noting that (D.20) and (D.21) imply that 1
nF′δ̃ →P 0, 1

nF′γ̃ →P 0, 1
n δ̃
′γ̃ →P 0,

1
n‖δ̃

′‖2 →P 0 and 1
n‖γ̃

′‖2 →P , it suffices to show that the convergence of 1
nF′G and

1
n‖G‖

2 as n→∞.

In effect, similar to (D.21),

1

n
F′G =

1

n

n∑
s=1

F (ts,n, Xs,n)G(ts,n, Xs,n)

→a.s.

∫ 1

0
F (Tr, Tµr +

√
TσzW (r))G(Tr, Tµr +

√
TσzW (r))dr,

1

n
‖G‖2 =

1

n

n∑
s=1

G2(ts,n, Xs,n)→a.s.

∫ 1

0
G2(Tr, Tµr +

√
TσzW (r))dr,

by continuous mapping theorem as n→∞.

Therefore, as n→∞,

Π21 →P

∫ 1

0
F (Tr, Tµr +

√
TσzW (r))G(Tr, Tµr +

√
TσzW (r))dr.

Consider the convergence of Π22 and Π23. It is known that O(1)kpmin ≤ ‖A(τ, x)‖2 ≤
O(1)kpmax. It follows from Assumption 4.5 that

|Π22| =
√
npmax

‖A(τ, x)‖
|δ(τ, x)| ≤

√
npmax

‖A(τ, x)‖

k∑
i=0

|Qi(τ, x)|

∣∣∣∣∣∣
∞∑

j=pi+1

bijϕjT (τ)

∣∣∣∣∣∣
≤O(1)

√
npmax√
kpmin

(
k∑
i=0

|Qi(τ, x)|2
) 1

2

 k∑
i=0

2T 3

π4

∣∣∣∣∣∣
∞∑

j=pi+1

1

j2
|cj(b′′i )|

∣∣∣∣∣∣
2

1
2

≤O(1)

√
npmax√
kpmin

√
k

 k∑
i=0

∞∑
j=pi+1

1

j4

∞∑
j=pi+1

|cj(b′′i )|2
 1

2

≤o(1)

√
npmax

√
k

√
pminp

3/2
min

= o(1)n
1
2

+ 1
2
κ1+ 1

2
(κ̄2−κ2)− 3

2
κ2 → 0

as n→∞ using Assumption 4.6.
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Additionally, using (D.3) with r = 2 and the asymptotic property of Qi in Remark

A.4 gives

|Π23| =
√
npmax

‖A(τ, x)‖
|γ(τ, x)| =

√
npmax

‖A(τ, x)‖

∣∣∣∣∣
∞∑

i=k+1

bi(τ,m)Qi(τ, x)

∣∣∣∣∣
=

√
npmax

‖A(τ, x)‖

∣∣∣∣∣
∞∑

i=k+1

v(τ)√
i(i− 1)

bi(τ,D
2m)Qi(τ, x)

∣∣∣∣∣
≤O(1)

√
npmax√
kpmin

( ∞∑
i=k+1

|bi(τ,D2m)|2
) 1

2
( ∞∑
i=k+1

1

i(i− 1)
√
i

) 1
2

=o(1)

√
npmax√
kpmin

1

k3/4
= o(1)n

1
2

+ 1
2

(κ̄2−κ2)− 5
4
κ1 → 0

as n→∞ by virtue of Assumption 4.6. The proof is finished.

Proof of Theorem 4.3. Here is a sketch of the proof. Let us prove the first part to

begin. It follows from (4.25) that

4
√
Tn

3√
σz√

nυ(Tn)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

(m̂(τ, x)−m(τ, x))

=
4
√
Tn

3√
σz√

nυ(Tn)
√
pmax

α′X ′(δ + γ + ε)

−
4
√
Tn

3√
σz√

nυ(Tn)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[δ(τ, x) + γ(τ, x)]

:=Π1 −Π2.

We are about to show that Π1 converges to the desired random variable in distribution

and Π2 →P 0 as n→∞.

Using (4.29) we can write

Π1 =
4
√
Tn
√
σz√

nυ(Tn)
(F̃
′
− δ̃′ − γ̃′)(δ + γ + ε).

It follows from Theorem 3.2 and Assumption 4.10 (a) that

4
√
Tn
√
σz√

nυ(Tn)
F̃
′
ε =

4
√
Tn
√
σz√

nυ(Tn)

n∑
s=1

F̃ (ts,n, Xs,n)es

=
4
√
Tn
√
σz√

nυ(Tn)

n∑
s=1

F
( s
n
Tn,
√
Tnσzxs,n

)
es →D

(∫ 1

0
G3(u)dLW (u, 0)

) 1
2

N,
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where G3(·) =
∫
f2(·, x)dx, W is a standard Brownian motion on [0, 1], N is a standard

normal random variable independent of W and LW is the local–time process of W . In

addition, it follows once again from Theorem 3.2 and Assumption 4.10 (b) that

√
Tnσz

nυ(Tn)2
‖F̃
′
‖2 →D

∫ 1

0

∫ ∞
−∞

f2(t, x)dxdLW (t, 0). (D.22)

Also, since xs,n and es (s = 1, · · · , n) satisfy Assumption B, using martingale difference

structure, we have
√
Tnσz

nυ(Tn)2
E(δ̃′ε)2 =

√
Tnσzσ

2
e

nυ(Tn)2
E‖δ̃′‖2,

√
Tnσz

nυ(Tn)2
E(γ̃′ε)2 =

√
Tnσzσ

2
e

nυ(Tn)2
E‖γ̃′‖2.

Therefore, in order to complete the convergence of Π1, by virtue of Cauchy-Schwarz

inequality, it suffices to demonstrate that as n→∞,

‖δ‖2 →P 0, ‖γ‖2 →P 0, (D.23a)
√
Tn

nυ(Tn)2
E‖δ̃′‖2 →0,

√
Tn

nυ(Tn)2
E‖γ̃′‖2 →0. (D.23b)

To begin with the proof of (D.23a), similar to the counterpart in the proof of Theorem

4.2,

E‖δ‖2 =
n∑
s=1

E

 k∑
i=0

∞∑
j=pi+1

bijϕjTn(ts,n)Qi(ts,n, Xs,n)

2

=
n∑
s=1

k∑
i=0

 ∞∑
j=pi+1

bijϕjTn(ts,n)

2

≤ o(1)T 3
n

n∑
s=1

k∑
i=0

1

p3
i

≤o(1)T 3
n

nk

p3
min

= o(1)n1+3κ3+κ1−3κ2 → 0,

by virtue of Assumption 4.9, which in turn implies ‖δ‖2 →P 0.

And, it follows from (D.3) with r = 3 that as n→∞

E‖γ‖2 =
n∑
s=1

E

( ∞∑
i=k+1

bi(ts,n,m)Qi(ts,n, Xs,n)

)2

=

n∑
s=1

∞∑
i=k+1

b2i (ts,n,m) =

n∑
s=1

∞∑
i=k+1

v3(ts,n)

i(i− 1)(i− 2)
b2i (ts,n, D

3m)

=

∞∑
i=k+1

1

i(i− 1)(i− 2)

n∑
s=1

v3(ts,n)b2i (ts,n, D
3m)
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≤An
∞∑

i=k+1

1

i(i− 1)(i− 2)
≤ A(1 + o(1))

n

k2
= An1−2κ1 → 0

by Assumption 4.8, 4.9, where A is the uniform bound of v(t)3b2i (t,D
3m).

Meanwhile, similar to its counterpart in the preceding theorem we can show that

(D.23b) is true. Thus, we are now in a position to prove Π2 →P 0 as n→∞.

Notice that Π2 can be rephrased as Π2 := Π21 × (Π22 + Π23), where

Π21 =

√
Tnσz

nυ(Tn)%(Tn)

Tn
pmax‖A(τ, x)‖

α′X ′XA(τ, x),

Π22 =

√
n
√
pmax%(Tn)

√
σz

4
√
Tn

3‖A(τ, x)‖
δ(τ, x), Π23 =

√
n
√
pmax%(Tn)

√
σz

4
√
Tn

3‖A(τ, x)‖
γ(τ, x).

To complete the convergence of Π2, we are going to show that Π21 converges to some

random variable in distribution, while both Π22 and Π23 are convergent to zero.

It follows from (4.29) and (4.30) that

Π21 =

√
Tnσz

nυ(Tn)%(Tn)

Tn
pmax‖A(τ, x)‖

α′X ′XA(τ, x)

=

√
Tnσz

nυ(Tn)%(Tn)
(F̃
′
− δ̃′ − γ̃′)(G̃− δ̃ − γ̃).

Nevertheless, (D.22) and (D.23b) as well as Cauchy-Schwarz inequality suggest that

in order to obtain the limit of Π21, one only needs to find the limits of

√
Tnσz

nυ(Tn)%(Tn)
F̃
′
G̃ and

√
Tnσz

n%(Tn)2
‖G̃‖2.

Indeed, similar to (D.22), by Theorem 3.2 and Assumption 4.10 (b),

√
Tnσz

nυ(Tn)%(Tn)
F̃
′
G̃→D

∫ 1

0

∫ ∞
−∞

f(t, x)g(t, x)dxdLW (t, 0),

√
Tnσz

n%(Tn)2
‖G̃
′
‖2 →D

∫ 1

0

∫ ∞
−∞

g2(t, x)dxdLW (t, 0).

Hence, we have Π21 →D

∫ 1
0

∫∞
−∞ f(t, x)g(t, x)dxdLW (t, 0).

As for Π22, it can be deduced that O(1)kpmin ≤ Tn‖A(τ, x)‖2 ≤ O(1)kpmax and bij =(
Tn
jπ

)2
cj(b

′′
i ) where cj(b

′′
i ) is the j-th coefficient in the expansion of b′′i . Hence,

|Π22| =
√
n
√
pmax%(Tn)

√
σz

4
√
Tn

3‖A(τ, x)‖
|δ(τ, x)|
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=

√
n
√
pmax%(Tn)

√
σz

4
√
Tn

3‖A(τ, x)‖

∣∣∣∣∣∣
k∑
i=0

∞∑
j=pi+1

bijϕjTn(τ)Qi(τ, x)

∣∣∣∣∣∣
≤
√
n
√
pmax%(Tn)

√
σz

4
√
Tn

3‖A(τ, x)‖

(
k∑
i=0

|Qi(τ, x)|2
) 1

2

 k∑
i=0

∣∣∣∣∣∣
∞∑

j=pi+1

bijϕjTn(τ)

∣∣∣∣∣∣
2

1
2

≤o(1)

√
n
√
pmaxTn%(Tn)

√
kpmin

4
√
Tn

3

√
k

(
k∑
i=0

T 3
n

p3
i

) 1
2

≤o(1)

√
npmaxT

ι
n√

pmin
4
√
Tn

√
k
√
Tn

3

√
pmin

3

=o(1)n
1
2

+ 1
2
κ1+(ι+ 5

4
)κ3+ 1

2
(κ̄2−κ2)− 3

2
κ2 → 0,

as n → ∞ where we have exploited the condition in Assumption 4.10 (a) for ι and trun-

cation parameters.

Analogously, by (D.3) with r = 2,

|Π23| =
√
n
√
pmax%(Tn)

√
σz

4
√
Tn

3‖A(τ, x)‖
|γ(τ, x)|

=

√
n
√
pmax%(Tn)

√
σz

4
√
Tn

3‖A(τ, x)‖

∣∣∣∣∣
∞∑

i=k+1

bi(τ)Qi(τ, x)

∣∣∣∣∣
=

√
n
√
pmax%(Tn)

√
σz

4
√
Tn

3‖A(τ, x)‖

∣∣∣∣∣
∞∑

i=k+1

v(τ)√
i(i− 1)

bi(τ,D
2m)Qi(τ, x)

∣∣∣∣∣
≤o(1)

√
npmaxT

ι
n

4
√
Tn
√
kpmin

( ∞∑
i=k+1

1

i(i− 1)
√
i

) 1
2

≤ o(1)

√
npmaxT

ι
n

4
√
Tn
√
kpmin

1

k3/4

=o(1)n
1
2

+ 1
2

(κ̄2−κ2)+(ι− 1
4

)κ3− 5
4
κ1 → 0,

as n→∞ in view of Assumption 4.10 (a).

Up to now, the first part of the theorem is finished. In what follows we shall prove the

second part. It follows from (4.25) and α′B = α′ that
√
Tn√

nυ1(Tn)υ2(
√
Tnσz)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

(m̂(τ, x)−m(τ, x))

=
1

√
nυ1(Tn)υ2(

√
Tnσz)

√
Tn
pmax

α′X ′(δ + γ + ε)

−
√
Tn√

nυ1(Tn)υ2(
√
Tnσz)

α′X ′XA(τ, x)
√
pmax‖A(τ, x)‖2

[δ(τ, x) + γ(τ, x)]
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:= Π3 −Π4.

We are about to show that Π3 is convergent in distribution to the desired stochastic

integral and Π4 →P 0.

Observe that in view of (4.29) we have

Π3 =
1

√
nυ1(Tn)υ2(

√
Tnσz)

(F̃
′
− δ̃′ − γ̃′)(δ + γ + ε).

It follows from Theorem 3.4 that

1
√
nυ1(Tn)υ2(

√
Tnσz)

F̃
′
ε =

1
√
nυ1(Tn)υ2(

√
Tnσz)

n∑
s=1

F̃ (ts,n, Xs,n)es

=
1

√
nυ1(Tn)υ2(

√
Tnσz)

n∑
s=1

F
( s
n
Tn,
√
Tnσzxs,n

)
es

→D

∫ 1

0
f(r,W (r))dU(r), (D.24)

on account of Assumption 4.10 (c) where (W (r), U(r)) is in Assumption B the limit of

(Wn(r), Un(r)).

Also, for the same reason we have

1

nυ2
1(Tn)υ2

2(
√
Tnσz)

‖F̃
′
‖2 →D

∫ 1

0
f2(r,W (r))dr, (D.25)

on account of Assumption 4.10 (d).

Notice that the parameters k, pi, the expressions of δ̃′ and γ̃′ as well as δ and γ remain

unchanged as in the first part. Whence, (D.23) is still valid now with a modification

that υ(Tn) is superceded by υ1(Tn). Therefore, Cauchy-Schwarz inequality and (D.25)

imply all the terms of Π3 except for (D.24) are approaching to zero in probability, hence

Π3 →D

∫ 1
0 f(r,W (r))dU(r).

Now we are ready to prove that Π4 →P 0. Rewrite Π4 := Π41 × (Π42 + Π43), where

Π41 =
Tn

nυ1(Tn)υ2(
√
Tnσz)%1(Tn)%2(

√
Tnσz)

α′X ′XA(τ, x)

pmax‖A(τ, x)‖
,

Π42 =

√
n
√
pmax%1(Tn)%2(

√
Tnσz)√

Tn‖A(τ, x)‖
δ(τ, x),

Π43 =

√
n
√
pmax%1(Tn)%2(

√
Tnσz)√

Tn‖A(τ, x)‖
γ(τ, x).
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It follows from (4.29) that

Π41 =
1

nυ1(Tn)υ2(
√
Tnσz)%1(Tn)%2(

√
Tnσz)

× (F̃
′
G̃− δ̃′G̃− γ̃′G̃− F̃

′
δ̃ − F̃

′
γ̃ + ‖δ̃‖2 + ‖γ̃‖2 + 2γ̃′δ̃).

Once again, due to Theorem 3.4, Assumption 4.10 (d), we similarly have

1

n%1(Tn)2%2(
√
Tnσz)2

‖G̃‖2 →D

∫ 1

0
g2(r,W (r))dr. (D.26)

Thus, Cauchy-Schwarz inequality as well as (D.23b),(D.25), (D.26) suggests that all

the terms in Π41 except for the one containing F̃
′
G̃ converge in probability to zero. Hence,

to find out the limit of Γ41 it suffices to find that of the term involving F̃
′
G̃. In fact,

1

nυ1(Tn)υ2(
√
Tnσz)%1(Tn)%2(

√
Tnσz)

F̃
′
G̃→D

∫ 1

0
f(r,W (r))g(r,W (r))dr,

as n → ∞ by Theorem 3.4 and Assumption 4.10 (d), so that Π41 converges to the same

limit as above in distribution.

Now let us turn to prove both Π42 → 0 and Π43 → 0, as n → ∞. Recall that

O(1)kpmin ≤ Tn‖A(τ, x)‖2 ≤ O(1)kpmax. Because δ(τ, x) and γ(τ, x) are the same as in

the first part,

|Π42| =
√
n
√
pmax%1(Tn)%2(

√
Tnσz)√

Tn‖A(τ, x)‖
|δ(τ, x)|

≤o(1)

√
n
√
pmaxT

ι1
n T

1
2
ι2

n√
kpmin

√
k

(
k∑
i=0

T 3
n

1

p3
i

) 1
2

≤o(1)n
1
2

+ 1
2
κ1+ 1

2
(κ̄2−κ2)+(ι1+ 1

2
ι2+ 3

2
)κ3− 3

2
κ2 → 0,

|Π43| =
√
n
√
pmax%1(Tn)%2(

√
Tnσz)√

Tn‖A(τ, x)‖
|γ(τ, x)|

≤o(1)

√
n
√
pmaxT

ι1
n T

1
2
ι2

n√
kpmin

1

k3/4

=o(1)n
1
2

+ 1
2

(κ̄2−κ2)+(ι1+ 1
2
ι2)κ3− 5

4
κ1 → 0,

as n→∞ by Assumption 4.10 (c) for the parameters. This finishes the proof.

86



References

Ai, C. and Chen, X. (2003). Efficient estimation of models with conditional moment

restrictions containing unknown functions. Econometrica, 71:1795–1843.

Ai, C. and Chen, X. (2007). Estimation of possibly misspecified semiparametric con-

ditional moment restriction models with different conditioning variables . Journal of

Econometrics, 141:5–43.

Alexits, G. (1961). Convergence Problems of Orthogonal Series. International Series of

Monographs in Pure and Applied Mathematics. Pergamon Press, New York.

Askey, R. and Wainger, S. (1965). Mean convergence of expansions in Laguerre and

Hermite series. American Journal of Mathematics, 87:695–708.

Bandi, F. and Phillips, P. C. B. (2003). Fully nonparametric estimation of scalar diffusion

models. Econometrica, 71:241–283.

Bandi, F. and Phillips, P. C. B. (2007). A simple approach to the parametric estimation

of potentially nonstationary diffusions . Journal of Econometrics, 137:354–395.

Billingsley, P. (1995). Probability and Measure. JOHN WILEY & SONS, Inc., New York.

Cai, Z., Li, Q., and Park, J. (2009). Functional-coefficient cointegration models for non-

stationary time series data. Journal of Econometrics, 148:101–113.

Chen, X. and Ludvigson, S. C. (2009). Land of addicts? an empirical investigation of

habit-based asset pricing models. Journal of Applied Econometrics, 24:1057–1093.

Davis, H. F. (1963). Fourier Series and Orthogonal Functions. Allyn and Bacon, Boston.

Dudley, R. M. (2003). Real Analysis and Probability. Cambridge Studies in Advanced

Mathematics 74. Cambridge University Press, Cambridge, U.K.

Gao, J. (2007). Nonlinear Time Series: semiparametric and nonparametric methods.

Monographs on Statistics and Applied Probability. Chapman & Hall, New York.

Gao, J. and Phillips, P. C. B. (2011). Semiparametric estimation in

multivariate non stationary time series models. Working Paper at

http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2011/wp17-11.pdf.

87



Hansen, L. P. and Sargent, T. J. (1983). The dimensionality of the aliasing problem in

models with rational spectral densities. Econometrica, 50:377–387.

Karlsen, H. A., Mykelbust, T., and Tjøstheim, D. (2007). Nonparametric estimation in a

nonlinear cointegration type model. The Annals of Statistics, 35:252–299.

Karlsen, H. A. and Tjøstheim, D. (2001). Nonparametric estimation in null recurrent time

series. The Annals of Statistics, 29:372–416.

Kurtz, T. G. and Protter, P. (1991). Weak limit theorems for stochastic integrals and

stochastic differential equations . The Annals of Probability, 19(3):1035–1070.

Li, Q. and Racine, J. (2007). Nonparametric Econometrics: Theory and Practice. Prince-

ton University Press, Princeton.

Nikiforov, A. F. and Uvarov, V. B. (1988). Special Functions of Mathematical Physics.

Birkhauser, Boston.

Park, J. Y. and Phillips, P. C. B. (1999). Asymptotics for nonlinear transformations of

integrated time series. Econometric Theory, 15:269–298.

Park, J. Y. and Phillips, P. C. B. (2001). Nonlinear regression with integreted time series.

Econometrica, 69(1):117–161.

Phillips, P. C. B. (1973). The problem of identification in finite parameter continuous-time

models. Journal of Econometrics, 4:351–362.

Phillips, P. C. B. (1987). Time series regression with a unite root. Econometrica, 55(2):277–

301.

Phillips, P. C. B. (2009). Local time theory and spurious regressions. Econometric Theory,

25:1466–1497.

Phillips, P. C. B. and Park, J. Y. (1998). Nonstationary density estimation and kernel

autoregression. Cowles Fundation Discussion Paper No.1181, Yale University.

Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion. A Series

of Comprehensive Studies in Mathematics 293. Springer-Verlag.

88



Sansone, G. (1959). Orthogonal Functions. Pure and Applied Mathematics. Interscience

Publishers, Inc., New York.

Schoutens, W. (2000). Stochastic Processes and Orthogonal Polynomials. Springer-Verlag.

Schoutens, W. (2003). Levy Processes in Finance: Pricing Financial Derivatives. Wiley

Series in Probability and Statistics. WILEY.

Wang, Q. and Phillips, P. C. B. (2009a). Asymptotic theory for local time density esti-

mation and nonparametric cointegreting regression. Econometric Theory, 25:710–738.

Wang, Q. and Phillips, P. C. B. (2009b). Structure nonparametric cointegrating regression.

Econometrica, 77:1901–1948.

Xiao, Z. (2009). Functional-coefficient cointegration models. Journal of Econometrics,

152:81–92.

89


	covertemplate19-11 revised
	wp19-11
	covertemplate19-11
	wp19-11




