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This paper establishes a suite of uniform consistency results for nonparametric kernel

density and regression estimators when the time series regressors concerned are nonsta-

tionary null–recurrent Markov chains. Under suitable conditions, certain rates of conver-

gence are also obtained for the proposed estimators. Our results can be viewed as an

extension of some well–known uniform consistency results for the stationary time series
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1. Introduction

As shown in the literature, uniform consistency for nonparametric kernel density and

regression estimators is not only important in estimation theory, but also useful in deriving

results in specification testing theory. Existing studies by many authors mainly focus on

the case where the observed time series data satisfy some stationarity conditions. Such

studies include Liero (1989), Roussas (1990), Liebscher (1996), Masry (1996), Bosq (1998),

Fan and Yao (2003), Ould–Säıd and Cai (2005) and others. Most of the existing results

basically focus on uniform convergence on fixed compact sets. In a recent paper by Hansen

(2008), the author makes significant progress towards establishing uniform convergence

on unbounded sets for a general class of nonparametric functionals when the time series

data are stationary and α–mixing. Kristensen (2009) extends Hansen’s result to the

heterogeneous dependent case under an α–mixing condition. By contrast, there is little

work on uniform consistency of nonparametric kernel estimators for nonstationary time

series without any mixing condition.

Phillips and Park (1998) are among the first to study nonparametric estimation in

an autoregression model with integrated regressors and they develop a local–time ap-

proach for the establishment of their asymptotic theory. In the same period, Karlsen

and Tjøstheim (1998, 2001) independently establish nonparametric kernel estimation in

the nonstationary case where the time series regressors are nonstationary null–recurrent

Markov chains. The authors establish various asymptotic results. For the recent develop-

ment of nonparametric and semiparametric estimation in nonstationary time series and

diffusion models, we refer to Karlsen, Myklebust and Tjøstheim (2007, 2010), Bandi and

Moloche (2008), Cai, Li and Park (2009), Wang and Phillips (2009a, 2009b), Chen, Li and

Zhang (2010), Chen, Gao and Li (2011) and the references therein. In the field of model

specification testing, Gao et al (2009a, 2009b) establish asymptotically consistent tests in

both autoregression and co–integration cases. In addition, the supplementary material

for the papers by Gao et al (2009a, 2009b) briefly discuss weak uniform consistency for a

nonparametric kernel density estimator for the case where the time series involved follow

a random walk process.

This paper systematically studies the strong and weak uniform consistency results for

a class of nonparametric kernel density and regression estimators for the case where the

time series data involved are nonstationary null–recurrent Markov chains. In the weak

uniform consistency result discussed in Section 3, we obtain a sharp rate of convergence
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of the order OP

(√
logn

nβLs(n)h

)
when the regressors are β–null recurrent Markov processes

(see Section 3 for the definition of Ls(·)). Such sharp rate of convergence is comparable to

OP

(√
logn
nh

)
, which is a conventional result for the rate of convergence for nonparametric

kernel estimators in the stationary time series case. In the strong uniform consistency

result discussed in Section 3, we obtain a rate of convergence of the order o
(√

1
nβ−ε0h

)
for

some small 0 < ε0 < β. Such a rate would be very close to the sharp rate of convergence

O
(√

logn
nβLs(n)h

)
when ε0 is close to zero. The uniform consistency results established in

this paper not only strengthen existing point–wise consistency results given in Karlsen

and Tjøstheim (2001), but also naturally extend some corresponding results in Hansen

(2008) for the stationary time series case.

The rest of the paper is organized as follows. Some basic definitions and results for

Markov chains are introduced in Section 2. The main results are stated in Section 3.

Applications of the main results to the density estimation, the Nadaraya–Watson kernel

and the local linear estimation methods are given in Section 4. The conclusions are given

in Section 5. Some basic results in Markov theory are summarized in Appendix A. All

the proofs are given in Appendix B.

2. Some basic results for Markov chains

Let {Xt, t ≥ 0} be a ϕ–irreducible Markov chain with transition probability P and

state space (E, E). This means that there exists a nontrivial measure ϕ on E such that

each ϕ–positive set A is communicating with the whole state space, that is,

∞∑
n=1

Pn(x,A) > 0, for all x ∈ E whenever ϕ(A) > 0. (2.1)

We assume that ϕ is maximal in the sense that if ϕ∗ is another irreducible measure, then

ϕ∗ is absolutely continuous with respect to ϕ. In this paper, E ⊂ R. Denote the class of

nonnegative measurable functions with ϕ–positive support by E+. For a set B ∈ E , we
write B ∈ E+ if 1B ∈ E+, where 1B is the indicator function of set B. A function η ∈ E+ is

said to be a small function if there exist a measure λ, a positive constant b and an integer

m ≥ 1, so that

Pm ≥ bη ⊗ λ. (2.2)

And if λ satisfies the above inequality for some η ∈ E+, b > 0 and m ≥ 1, then λ is called

a small measure. A set B is small if 1B is a small function.
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To make asymptotics for nonparametric estimation possible, we assume that the ϕ–

irreducible Markov chain {Xt} is Harris recurrent.

Definition 2.1. The chain {Xt} is Harris recurrent if, given a neighborhood Nv of v

(v ∈ E) with ϕ(Nv) > 0, {Xt} returns to Nv with probability one.

It is well–known that for a Markov chain on a countable state space which has a point

of recurrence, a sequence splitted by the regeneration times becomes independent and

identically distributed (i.i.d.) by the Markov property (see, for example, Chung 1967).

For a general Markov process which does not have an obvious point of recurrence, as

in Nummelin (1984), the Harris recurrence allows one to construct a split chain which

decomposes the partial sum of the Markov process {Xt} into blocks of i.i.d. parts and

the negligible remaining parts.

Let Tt only take the values 0 and 1, and {(Xt, Tt), t ≥ 0} be the split chain whose

detailed construction will be provided in Appendix A. Define

τk =

 inf{t ≥ 0 : Tt = 1}, k = 0,

inf{t > τk−1 : Tt = 1}, k ≥ 1,
(2.3)

and denote the total number of regenerations in the time interval [0, n] by N(n), that is,

N(n) =

 max{k : τk ≤ n}, if τ0 ≤ n,

0, otherwise.
(2.4)

Let f be a real function defined in R. We explain how to decompose the partial sum

Sn(f) =
∑n

t=0 f(Xt) into a sum of i.i.d. random variables with one main part and two

asymptotically negligible minor parts. Define

Zk =



τ0∑
t=0

f(Xt), k = 0,

τk∑
t=τk−1+1

f(Xt), 1 ≤ k ≤ N(n),

n∑
t=τN(n)+1

f(Xt), k = (n).

And it is easy to check that

Sn(f) = Z0 +

N(n)∑
k=1

Zk + Z(n). (2.5)

4



From Nummelin (1984)’s result, we know that {Zk, k ≥ 1} is a sequence of i.i.d. random

variables. In the decomposition (2.5) of Sn(f), N(n) plays the role of the number of

observations. It follows from Lemma 3.2 in Karlsen and Tjøstheim (2001) that Z0 and

Z(n) converge to zero almost surely when they are divided by N(n).

Note that Harris recurrence only yields stochastic rates of convergence for the non-

parametric estimation, where both the distribution and the number of regenerations N(n)

have no a priori known structure but fully depend on the underlying process. We next

impose some restrictions on the tail behavior of the distribution of the recurrence time of

the chain.

Definition 2.2. A Markov chain {Xt} is β–null recurrent if there exist a small non-

negative function f(·), an initial measure λ, a constant β ∈ (0, 1) and a slowly varying

function Lf (·) such that as n → ∞

Eλ

[
n∑

t=0

f(Xt)

]
∼ 1

Γ(1 + β)
nβLf (n), (2.6)

where Eλ stands for the expectation with initial distribution λ, Γ(·) is the usual Gamma

function and an ∼ bn means that lim
n→∞

an
bn

= 1.

The β–null Harris recurrence restricts the tail behavior of the recurrence time of the

process to be a regularly varying function (see, for example, Galambos and Seneta 1973).

In particular, for a stationary or positive recurrent process, we have β = 1. We next

provide two examples of 1
2
–null recurrent Markov process.

Example 2.1. Let a random walk process be defined as

Xt = Xt−1 + ut, t = 1, 2, · · · , X0 = 0, (2.7)

where {ut} is a sequence of i.i.d. random variables. Existing literature, such as Kallianpur

and Robbins (1954), shows that {Xt} defined by (2.7) is a 1
2
–null recurrent Markov chain

under weak conditions on the distribution of ut.

Example 2.2. Consider a parametric threshold autoregressive (TAR) model of the

form

Xt = α1Xt−1I{Xt−1∈C} + α2Xt−1I{Xt−1∈Cc} + vt, (2.8)

where C is a compact subset of R, Cc is the complement of C, α2 = 1, −∞ < α1 < ∞,

{vt} is assumed to be i.i.d. with E[v1] = 0, 0 < E[v21] < ∞ and E[v41] < ∞, and the
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distribution of {vt} is absolutely continuous with respect to Lebesgue measure with f(·)
being the density function satisfying infx∈S f(x) > 0 for all compact sets S. Recently, Gao,

Tjøstheim and Yin (2010) have shown that {Xt} generated by (2.8) is a 1
2
–null recurrent

Markov chain.

3. Main results

Let {et} be a sequence of i.i.d. random variables and independent of {Xt}. Define a

general nonparametric quantity of the form

Φn(x) =
1

N(n)h

n∑
t=0

L

(
Xt − x

h

)
et, (3.1)

where L(·) is a kernel function satisfying Assumption A2(i) below and h is a bandwidth.

To establish uniform consistency results for the nonparametric quantity Φn(x) defined by

(3.1), we need the following assumptions.

Assumption A1 (i) The invariant measure of the β–null recurrent Markov chain {Xt}
has a uniformly continuous density function ps(·) on R with supx∈R ps(x) < ∞.

(ii) Let {et} be a sequence of i.i.d. random variables with E[et] = 0 and E[e21] < ∞. In

addition, {et} is independent of {Xt}.

Assumption A2 (i) L(·) is nonnegative and has some compact support C(L) and

Nx(h) :=
{
y : 1

h
L
(
y−x
h

)
> 0
}
is a small set. In addition, L(·) satisfies a Lipschitz–type

condition of the form: |L(x)− L(y)| ≤ CL |x− y| for all x, y ∈ C(L) and some constant

CL > 0.

(ii) The bandwidth h satisfies

nε0h → 0 and nβ−ε0h → ∞ as n → ∞. (3.2)

for some 0 < ε0 < β.

Remark 3.1. (i) Assumption A1(i) corresponds to the analogous conditions on the

density function in the stationary time series case. Moreover, it can be verified when {Xt}
is generated by the random walk defined in Example 2.1. Nummelin (1984) shows in this

case that the invariant density function ps(x) ≡ 1. A1(ii) is imposed to make sure that

the compound process {(Xt, et)} is still β–null recurrent. The assumption that {et} is

independent of {Xt} can be relaxed by allowing a heteroscedasticity structure of the form
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et = σ(Xt)ϵt, where {ϵt} is assumed to be independent of {Xt} and supx∈R |σ(x)| < ∞.

Another extension is that the i.i.d. condition on {et} in A1(ii) might also be relaxed to

accommodate the case where the error term is stationary and weakly dependent (such as

α–mixing).

(ii) As discussed in condition B2 in Section 5 of Karlsen and Tjøstheim (2001), A2(i)

is needed in this kind of kernel estimation of null–recurrent time series. The small set

requirement is a weak condition when combined with the compact support condition. For

example, if {Xt} is autoregressive given by Xt = g(Xt−1) + xt, a sufficient condition for

the smallness of Nx(h) is that g(·) is bounded on compact sets and that {xt} has density

with respect to the Lebesgue measure and this density function is strictly positive on any

compact set (see, for example, Doukhan and Ghindés 1980; Tjøstheim 1990). There are

many other sufficient conditions that can be seen from Chapter 2.3 of Nummelin (1984).

A2(ii) also imposes some mild conditions on the bandwidth parameter h for the null

recurrent time series (cf. Karlsen, Myklebust and Tjøstheim 2007). When β = 1, our

condition in (3.2) is slightly stronger than h → 0 and nh/ log n → ∞, which is commonly

used for the stationary time series case.

In the stationary case, Hansen (2008) studies the uniform consistency results for a

nonparametric estimate of the form

Ψ∗(x) =
1

nhd

n∑
t=1

L∗

(
Xt − x

h

)
Yt,

where {(Xt, Yt) : t ≥ 1} is a (d + 1)–dimensional vector of random variables and L∗(·)
is a multivariate kernel function. Both weak and strong uniform consistency results are

established in Theorems 2 and 3 of Hansen (2008). In Theorems 3.1 below, we establish

a weak uniform consistency result for the nonparametric quantity defined by (3.1).

Theorem 3.1. Suppose that A1 and A2 hold. Let

E
[
|e1|4p0

]
< ∞ for p0 =

[
1 + β

ε0

]
,

where [x] ≤ x is the largest integer part of x. Then,

sup
|x|≤Tn

|Φn(x)| = OP

(√
log n

nβLs(n)h

)
, (3.3)

where Tn = M0 nβ−ε0Ls(n), in which 0 < ε0 < β, M0 is any given positive constant, Ls(·)
is chosen such that, for all small functions f , the asymptotic relation (2.6) holds with

Lf = πs(f)Ls, in which πs will be defined in (A.2) in Appendix A.
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Remark 3.2. (i) Theorem 3.1 can be seen as an extension of the corresponding results

in the stationary time series case to the nonstationary null recurrent time series case.

When β = 1 and Ls(·) equals a non–zero constant, equation (3.3) reduces to some well–

known results in the stationary case (see, for example, Theorem 2 in Hansen 2008). Taking

h ∼
(

logn
(nβLs(n))

)1/5
, the right–hand side of (3.3) becomes

(
logn

(nβLs(n))

)2/5
, which reduces to

an optimal rate in the stationary time series case when β = 1 and Ls(·) becomes a non–

zero constant (see, for example, Stone 1980). The moment condition on {et} implies

that there exists a trade–off between the bandwidth condition and the moment condition

on {et}. As ε0 decreases and then the bandwidth condition becomes weaker, we need a

stronger moment condition on {et}.
(ii) In particular, when β = 1

2
with Ls(·) being a non–zero constant and ε0 → 0, the

rate of convergence in (3.3) is close to OP

(√
logn√
n h

)
, which corresponds to OP

(√
logn
n h

)
for the stationary time series case. This is mainly because in the 1

2
–null recurrent case,

the amount of time spent by the time series around any particular point is of order
√
n

(see, for example, the random walk process defined in Example 2.1) rather than n for the

stationary time series case.

In Theorem 3.2 below, we further establish a strong uniform rate of convergence under

a slightly stronger condition on the moments of {et}.

Theorem 3.2. Let A1 and A2 hold. If, in addition,

E
[
|e1|2m0

]
< ∞ with m0 = 2

([
β + 1

ε0

]
+ 1

)
, (3.4)

then,

sup
|x|≤Tn

|Φn(x)| = o

(
1√

nβ−ε0h

)
a.s., (3.5)

where ε0 is defined as in A2(ii) and Tn = M0n
β−ε0Ls(n).

Remark 3.3. Equation (3.5) can be viewed as a result corresponding to some existing

results in the stationary time series case (see, for example, Theorem 3 of Hansen 2008).

We can see that the rate of convergence in (3.5) is very close to the sharp rate obtained in

Theorem 3.1 when ε0 is close to zero. In this case, the moment condition (3.4) becomes

stronger when ε0 becomes smaller.

4. Applications in density and regression estimation
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Define the kernel density estimator of the invariant density function ps(x) by

p̂n(x) =
1

N(n)h

n∑
t=0

K

(
Xt − x

h

)
, (4.1)

where K(·) is a kernel function. We next establish weak and strong uniform convergence

rates for p̂n(x).

Theorem 4.1. Suppose that A1 and A2(ii) hold. Let ps(x) be thrice continuously

differentiable with supx∈R (|p′s(x)|+ |p′′s(x)|+ |p′′′s (x)|) ≤ Cp < ∞. Suppose that K(·) has

some compact support C(K) and satisfies the Lipschitz–type condition: |K(x)−K(y)| ≤
CK |x− y| for all x, y ∈ C(K) and some constant CK > 0. In addition, K(·) is a sym-

metric probability density function. Then, we have for Tn = M0n
β−ε0Ls(n) and n large

enough

sup
|x|≤Tn

|p̂n(x)− ps(x)| = OP

(
h2
)
+OP

(√
log n

nβLs(n)h

)
(4.2)

and

sup
|x|≤Tn

|p̂n(x)− ps(x)| = O(h2) + o

(
1√

nβ−ε0h

)
a.s. (4.3)

Remark 4.1. (i) The above theorem can be seen as an extension of Theorem 5.3 in

Fan and Yao (2003) and Theorems 6 and 7 in Hansen (2008) from the stationary time

series case to the nonstationary time series case. Karlsen and Tjøstheim (2001) obtain

the point–wise consistency of p̂n(x) in the null recurrent time series case where

nε0h → 0 and n
β
2
−ε0h → ∞ for 0 < ε0 <

β
2
.

Theorem 4.1 not only weakens their bandwidth condition but also extends their point–wise

consistency result to the uniform consistency result with possible rates.

(ii) The uniform consistency results in Theorem 4.1 may be thought to be of a some-

what academic character as N(n) in the definition of (4.1) is not observable. However,

it can be used in practice when N(n) is linked with a directly observable hitting time.

Indeed, if C∗ ∈ E+, the number of times that the process is visiting C∗ up to the time n

is defined by NC∗(n) =
∑n

t=0 IC∗(Xt). By Lemma 3.2 in Karlsen and Tjøstheim (2001),

we have
NC∗(n)

N(n)
→ πsIC∗ a.s., (4.4)

where πs will be defined in (A.2) in Appendix A. Define

p̂C∗
n (x) =

1

NC∗(n)h

n∑
t=0

K

(
Xt − x

h

)
.
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Note that

p̂C∗
n (x) =

N(n)

NC∗(n)

(
1

N(n)h

n∑
t=0

K

(
Xt − x

h

))
=

N(n)

NC∗(n)
p̂n(x). (4.5)

By (4.2)–(4.5) and noting that πsIC∗ > 0, we have

sup
|x|≤Tn

∣∣p̂C∗
n (x)− ps(x)/(πsIC∗)

∣∣ = OP

(
h2
)
+OP

(√
log(n)√
Ls(n)

· 1√
nβh

)
(4.6)

and

sup
|x|≤Tn

∣∣p̂C∗
n (x)− ps(x)/(πsIC∗)

∣∣ = O(h2) + o

(
1√

nβ−ε0h

)
a.s. (4.7)

We now consider a nonlinear nonstationary regression model of the form

Yt = m(Xt) + et, 0 ≤ t ≤ n, (4.8)

where {Xt} is a β–null recurrent Markov chain, {et} is a sequence of i.i.d. errors with

E[e1] = 0 and 0 < E[e21] < ∞, m(·) is an unknown function, and {et} is independent

of {Xt}. Such nonlinear cointegration models have been studied by several authors.

For example, Karlsen, Myklebust and Tjøstheim (2007), and Wang and Phillips (2009a)

consider estimating the regression function by the Nadaraya–Watson (NW) estimator of

the form

m̂n(x) =
n∑

t=0

wn,t(x)Yt with wn,t =
K
(
Xt−x

h

)
n∑

s=0

K
(
Xs−x

h

) . (4.9)

They then establish asymptotic distributions for m̂n(x) using different methods. As

an application of Theorems 3.1 and 3.2, we establish rates for both the weak and strong

uniform consistency results for the NW estimator m̂n(x) in Theorem 4.2 below.

Theorem 4.2. Assume that the conditions of Theorem 4.1 are satisfied. In addition,

let m(x) be twice continuously differentiable,

δ2nn
β−ε0h → ∞, h2δ−1

n → 0, δ∗inh
i → 0 for i = 1, 2, (4.10)

where δn = inf |x|≤Tn ps(x) > 0 and δ∗in = sup|x|≤Tn

∣∣m(i)(x)
∣∣ /δn for i = 1, 2 and Tn =

M0n
β−ε0Ls(n).

(i) If, in addition, the moment condition on {et} in Theorem 3.1 is satisfied, then we

have

sup
|x|≤Tn

|m̂n(x)−m(x)| = OP

( √
log n

δn
√

nβLs(n)h
+ δ∗2nh

2

)
+ oP (δ

∗
1nh). (4.11)
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(ii) If, in addition, the moment condition on {et} in Theorem 3.2 is satisfied, then we

have

sup
|x|≤Tn

|m̂n(x)−m(x)| = o

(
1

δn
√
nβ−ε0h

+ δ∗1nh

)
+O(δ∗2nh

2) a.s. (4.12)

Remark 4.2. (i) The conditions imposed for the establishment of Theorem 4.2 are

reasonable and justifiable. We can show that the conditions in (4.10) can be easily verified

in the case where the regressor {Xt} is defined as in either Example 2.1 or Example 2.2.

ps(x) ≡ 1 in the first example and ps(x) → 1 as |x| → ∞ in the second example, and thus

the first two parts of (4.10) can be derived from (3.2) in Assumption A2 (ii). The last

part of (4.10) imposes certain restrictions on the functional form of m(·). Several classes
of functional forms of m(·) are included as long as m(x) is of the form m(x) = O

(
|x|1+ζ

)
for some 0 < ζ < 1 when x is large enough. Particularly when m(x) = a + bx and {Xt}
is generated by either Example 2.1 or Example 2.2, the last part of (4.10) is satisfied

trivially.

(ii) Theorem 4.2 can be viewed as an extension of Theorem 3.3 in Bosq (1998) and

Theorems 8 and 9 in Hansen (2008) from the stationary regression time series case to the

nonstationary time series case. When {Xt} is the random walk defined by Example 2.1, it

is easy to check that (4.11) and (4.12) hold with δn = 1, β = 1
2
and Ls(·) being a positive

constant.

We finally apply the local linear method for the estimation of m(·), and establish both

the weak and strong uniform consistency results for the proposed local linear estimator.

As in Fan and Gijbels (1996), the local linear estimator of m(x) is defined by

m̃n(x) =
n∑

t=0

w̃n,t(x)Yt, where w̃n,t(x) =
K̃x,h(Xt)

n∑
s=0

K̃x,h(Xs)
, (4.13)

in which K̃x,h(Xt) =
1
h
K̃n

(
Xt−x

h

)
, K̃n

(
Xt−x

h

)
= K

(
Xt−x

h

) (
Sn,2(x)−

(
Xt−x

h

)
Sn,1(x)

)
with

Sn,j(x) =
1

N(n)h

∑n
s=0K

(
Xs−x

h

) (
Xs−x

h

)j
for j = 1, 2.

The following theorem can be seen as an extension of Theorems 10 and 11 in Hansen

(2008) from the stationary time series case to the nonstationary time series case.

Theorem 4.3. Let the conditions of Theorem 4.2 hold and Tn = M0n
β−ε0Ls(n).

(i) If the moment condition on {et} in Theorem 3.1 is satisfied, then we have

sup
|x|≤Tn

|m̃n(x)−m(x)| = OP

( √
log n

δn
√
nβLs(n)h

)
+OP

(
δ∗2nh

2
)
. (4.14)
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(ii) If the moment condition on {et} in Theorem 3.2 is satisfied, then we have

sup
|x|≤Tn

|m̃n(x)−m(x)| = o

(
1

δn
√
nβ−ε0h

)
+O(δ∗2nh

2) a.s. (4.15)

Remark 4.3. (i) Note that the first–order bias term involved in (4.14) and (4.15) is

eliminated when the local–linear estimation method is employed. As a consequence, the

class of functional forms for m(x) is enlarged to include the case where m(x) = O
(
|x|2+ζ

)
for some 0 < ζ < 1 when x is large enough.

(ii) Note that the proofs of Theorems 4.2 and 4.3 show that the conclusions of Theo-

rems 4.2 and 4.3 remain true in the case where Xt = Yt−1, {Ys} and {et} are independent

for all s < t, and the functional form of m(·) is chosen such that {Yt} is a β–null recurrent

Markov chain.

5. Conclusions

We have established several results for both the weak and strong uniform convergence

with rates for some commonly–used nonparametric estimators in the case where the re-

gressors are nonstationary null recurrent time series. Our main results have extended

some existing uniform consistency results from the stationary time series case to the non-

stationary time series case. In particular, we have obtained a sharp rate of convergence

in the weak uniform consistency case. The established results are expected to be useful

in deriving asymptotic theory for semiparametric estimation and specification testing for

nonstationary null recurrent time series.

Note that, in this paper, we have only considered the case where {Xt} is univariate.

The main reason is that {Xt} is not necessarily Harris recurrent when it is multivariate.

When {Xt} is a multivariate random walk process, for example, it is transient. For the

case where a vector of independent univariate random walk regressors is involved, we refer

to Schienle (2008), and Cai, Li and Park (2009).
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Appendix A: Useful results in Markov theory

To make this paper more self–contained, we summarize some useful terms and facts in

Markov theory in this appendix. We adopt the same notation as used in Nummelin (1984) and

Karlsen and Tjøstheim (2001). Let {Xt, t ≥ 0} be a Markov chain with transition probability

P and state space (E, E), and ϕ be a measure on (E, E).

Let η be a nonnegative measurable function and λ be a measure. We define the kernel η⊗λ

by

η ⊗ λ(x,A) = η(x)λ(A), (x,A) ∈ (E, E).

If K is a kernel, we define the function Kη, the measure λK and the number λη by

Kη(x) =

∫
K(x, dy)η(y), λK(A) =

∫
λ(dx)K(x,A), λη =

∫
λ(dx)η(x).

The convolution of two kernels K1 and K2 is defined by

K1K2(v,A) =
∫

K1(v, dy)K2(y,A).

Let (2.2) hold. By Theorem 2.1 and Proposition 2.6 in Nummelin (1984), we know that for

a ϕ–irreducible Markov chain, there exists a minorization inequality: there are a small function

s, a probability measure ν and an integer m0 ≥ 1 such that Pm0 ≥ s ⊗ ν. As pointed out by

Karlsen and Tjøstheim (2001), it causes some technical difficulties to have m0 > 1 and it is

not a severe restriction to assume m0 = 1. So in this appendix, we always assume that the

minorization inequality

P ≥ s⊗ ν (A.1)

holds with ν(E) = 1, 0 ≤ s(x) ≤ 1, x ∈ E.

As mentioned in Section 2, we will apply the so–called Markov chain splitting method of

Karlsen and Tjøstheim (2001) to prove our results. In this method, an important role is played

by the split chain under the minorization inequality (A.1). This allows for the decomposition of

the chain into i.i.d. main parts and remaining parts that are asymptotically negligible. Denote

Q(x,A) = (1− s(x))−1(P(x,A)− s(x)ν(A))1(s(x) < 1) + 1A(x)1(s(x) = 1).
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Then the transition probability P(x,A) can be decomposed as

P(x,A) = (1− s(x))Q(x,A) + s(x)ν(A).

When (A.1) holds, it can be verified that Q is a transition probability. As 0 ≤ s(x) ≤

1 and ν(E) = 1, P can be seen as a mixture of the transition probability Q and the small

measure ν. Since ν is independent of x, the chain regenerates each time when ν is chosen with

probability s(x). For more details, we refer to Nummelin (1984). Now we introduce the split

chain {(Xt, Tt), t ≥ 0}, where {Xt} is Harris recurrent and the auxiliary chain Tt only takes the

values 0 and 1. Given Xt = x, Tt−1 = tt−1, Tt takes the value 1 with probability s(x) and then

the chain regenerates. Thus, α = E× {1} is a proper atom of the split chain. The distribution

of {(Xt, Tt), t ≥ 0} is determined by its initial distribution λ, the transition probability P and

(s, ν). We use Pλ and Eλ for the distribution and expectation of the Markov chain with initial

distribution λ. When λ = δx we write Px instead of Pδx , which is the conditional distribution

of (T0, {(Xt, Tt), t ≥ 1}) given X0 = x. When λ = δα(x, 1), i.e., X0 = x for arbitrary x ∈ E and

T0 = 1, then we write Pα and Eα. As shown in Karlsen and Tjøstheim (2001), if we let

πs = νGs,ν , where Gs,ν =

∞∑
n=0

(P− s⊗ ν)n, (A.2)

then πs = πsP, which implies that πs is an invariant measure.

We then give some definitions of the stopping times of the Markov chain. Let

τ = min{t ≥ 0 : Tt = 1} (A.3)

and

Sα = min{t ≥ 1 : Tt = 1}. (A.4)

As {(Xt, Tt), t ≥ 0} is Harris recurrent, Pα(Sα < ∞) = 1. Let τk and N(n) be defined as

in (2.3) and (2.4), respectively. Following a standard result in Karlsen and Tjøstheim (2001),

the number of regenerations N(n) of the β–null recurrent Markov chain {Xt} has the following

asymptotic distribution
N(n)

nβLs(n)

d−→ Mβ(1) (A.5)

as n → ∞, where Ls is defined in Theorem 3.1 and Mβ(1) is the Mittag–Leffler distribution

with parameter β (cf., Kasahara 1984).

In addition, for a πs–integrable function g(·) on R, we have πsg =
∫
g(x)πs(dx). Note that

Gs,νg(z) = Ez

 τk∑
t=τk−1+1

g(Xt)

 = Ez

[
τ∑

t=0

g(Xt)

]
, (A.6)
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which, together with the definition of πs, implies

πsg =

∫
g(z)πs(dz) =

∫ (∫
g(z)Gs,ν(x, dz)

)
ν(dx)

=

∫ (∫
Gs,ν(x, dz)g(z)

)
ν(dx) =

∫
Gs,νg(x)ν(dx)

=

∫
Ex

[
τ∑

t=0

g(Xt)

]
ν(dx). (A.7)

Equations (A.6) and (A.7) will be used in the proofs of our main results.

B: Proofs of the main results

To prove the main results in Sections 3 and 4, we need the following two lemmas.

Lemma B.1. Let

gh(x) =

τk∑
t=τk−1+1

Lh,x(Xt), with Lh,x(Xt) =
1

h
L

(
Xt − x

h

)
,

and {Xt} be a β–null recurrent Markov process. If, in addition, A1(i) and A2 (i) are satisfied,

then we have

E
[
|gh(x)|2m

]
≤ Mh−2m+1, (B.1)

where M is a positive constant which depends on m, but is independent of x and h.

Proof. The main idea for the proof of (B.1) is similar to that for the proof of Lemma 5.2

in Karlsen and Tjøstheim (2001).

By the definition of gh(·) and noting that the kernel function is nonnegative, we have

E
[
|gh(x)|2m

]
= Eν

( τ∑
t=0

Lh,x(Xt)

)2m


= Eν

{ ∞∑
t=0

[
t−1∏
s=0

I(Ts = 0)

]
Lh,x(Xt)

}2m

= Eν

[ ∞∑
t=0

BtLh,x(Xt)

]2m
, (B.2)

where Bt =
∏t−1

s=0 I(Ts = 0).

Letting

Λ2m,j =

{
l = (l1, · · · , lj) ∈

(
N+
)j

:

j∑
k=1

lk = 2m

}
, 1 ≤ j ≤ 2m,
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where N+ is the set of positive integers, it is easy to check that

Eν

[ ∞∑
t=0

BtLh,x(Xt)

]2m
=

2m∑
j=1

∑
l∈Λ2m,j

(2m)!

l1! · · · lj !
Eν

[
L̃j,l(x)

]
, (B.3)

where

L̃j,l(x) =
∞∑

t1=0

∞∑
t2=t1+1

· · ·
∞∑

tj=tj−1+1

Bt1Bt2 · · · BtjL
l1
h,x(Xt1)L

l2
h,x(Xt2) · · ·L

lj
h,x(Xtj ).

We first consider the case of j ≥ 2. Following the calculations in Karlsen and Tjøstheim

(2001) (see also the more detailed version of Karlsen and Tjøstheim 1998), we have (omitting

the identity function in the sequel)

Eν

[
L̃j,l(x)

]
= νGs,ν ĬLl1

h,x

Gs,ν ĬLl2
h,x

· · ·Gs,ν Ĩ
L
lj
h,x

≤ νGs,ν ĨLl1
h,x

Gs,ν ĨLl2
h,x

· · ·Gs,ν Ĩ
L
lj
h,x

, (B.4)

where 2 ≤ j ≤ 2m, l ∈ Λ2m,j , Gs,ν is defined in (A.2),

Ĭf (y, dz) = (P− s⊗ ν)(y, dz)f(y) and Ĩf (y, dz) = P(y, dz)f(y).

By the compactness of L(·), the definition of Lh,x(·) and Remark 5.1 in Karlsen and Tjøstheim

(2001), we have for 2 ≤ k ≤ j,

Gs,ν ĨLlk
h,x

≤ Mj,l(k)h
−lk , (B.5)

where Mj,l(k) is a positive constant independent of x.

Meanwhile, by A1(i) and A2(i), there exists a positive constant Mj,l(1), independent of x,

such that

νGs,ν ĨLl1
h,x

= πsL
l1
h,x ≤ Mj,l(1)h

−l1+1, (B.6)

where πsg =
∫
g(x)πs(dx).

In view of (B.5) and (B.6), we have for l ∈ Λ2m,j and j ≥ 2,

Eν

[
L̃j,l(x)

]
≤

(
j∏

k=2

Mj,l(k)h
−lk

)(
νGs,ν ĬLl1

h,x

)

≤

(
j∏

k=1

Mj,l(k)

)
h(−

∑j
k=1 lk)+1 =

(
j∏

k=1

Mj,l(k)

)
h−2m+1.

For the case of j = 1, by (B.6), we have

Eν

[
L̃j,l(x)

]
≤ νGs,ν ĨL2m

h,x
= πsL

2m
h,x ≤ M1,l(1)h

−2m+1. (B.7)

where M1,l(1) is a positive constant independent of x.
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Letting

M =

2m∑
j=1

∑
l∈Λ2m,j

(2m)!

l1! · · · lj !
Mj,l with Mj,l =

j∏
k=1

Mj,l(k),

by (B.3), (B.7) and (B.7), we have shown that (B.1) holds. �

Lemma B.2. Let {Xt} be a null recurrent Markov process. Then, we have

lim
n→∞

P

{
C1 <

N(n)

nβLs(n)
< C2

}
= 1, (B.8)

where C1 < C2 are two positive constants. Furthermore,

P
{
nβ−ϵ < N(n) < nβ+ϵ, i.o.

}
= 1 (B.9)

for any ϵ > 0.

Proof. We only provide the detailed proof of (B.8) as the proof of (B.9) follows from

Lemma 3.4 of Karlsen and Tjøstheim (2001).

By the definition of Mittag–Leffler distribution (see, for example, Lin 1998), there exist two

positive constants 0 < C1 < C2 < ∞ such that

P (C1 < Mβ(1) ≤ C2) ≥ 1− δ

2
(B.10)

for any small δ > 0.

Let Fn(x) = P
{

N(n)
nβLs(n)

≤ x
}

and F (x) = P {Mβ(1) ≤ x}. Then, equation (A.5) implies

that for n large enough, we have

Fn(C2)− F (C2) ≥ −δ

4
, (B.11)

Fn(C1)− F (C1) ≤
δ

4
. (B.12)

Thus, equations (B.10)–(B.12) imply for large enough n

P

(
C1 <

N(n)

nβLs(n)
≤ C2

)
=

(
P

(
N(n)

nβLs(n)
≤ C2

)
− P (Mβ(1) ≤ C2)

)
−
(
P

(
N(n)

nβLs(n)
≤ C1

)
− P (Mβ(1) ≤ C1)

)
+ P (C1 < Mβ(1) ≤ C2) ≥ 1− δ,

which implies that (B.8) holds. �

Proof of Theorem 3.1. Here and in the sequel, let C denote a positive constant, which

may change from line to line. Since {et} is assumed to be i.i.d. and independent of {Xt},

{(Xt, et)} is still β–null recurrent by Lemma 3.1 in Karlsen, Myklebust and Tjøstheim (2007).

Let

ηn =

√
log n

nβLs(n)h
, Γt(x) =

1

h
L

(
Xt − x

h

)
et
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and Jn(β) be the event
{
C1n

βLs(n) ≤ N(n) ≤ C2n
βLs(n)

}
, where C1 and C2 are defined as in

Lemma B.2.

To prove Theorem 3.1, we need only to show

sup
|x|≤Tn

1

N(n)

n∑
t=0

Γt(x) = OP (η
∗
n), (B.13)

where η∗n = η · ηn, in which η > 0 is a constant and can be sufficiently large.

Observe that

(
sup

|x|≤Tn

∣∣∣∣ 1
N(n)

n∑
t=0

Γt(x)

∣∣∣∣ > η∗n

)

=

{(
sup

|x|≤Tn

∣∣∣∣ 1
N(n)

n∑
t=0

Γt(x)

∣∣∣∣ > η∗n

)
∩ Jn(β)

}

∪

{(
sup

|x|≤Tn

∣∣∣∣ 1
N(n)

n∑
t=0

Γt(x)

∣∣∣∣ > η∗n

)
∩ Jc

n(β)

}

⊂

{(
sup

|x|≤Tn

∣∣∣∣ 1
N(n)

n∑
t=0

Γt(x)

∣∣∣∣ > η∗n

)
∩ Jn(β)

}
∪ Jc

n(β).

(B.14)

By (B.8) in Lemma B.2, in order to prove (B.13), it suffices to show that as n → ∞

P

{(
sup

|x|≤Tn

∣∣∣∣∣ 1

N(n)

n∑
t=0

Γt(x)

∣∣∣∣∣ > η∗n

)
∩ Jn(β)

}
→ 0. (B.15)

The set {x : |x| ≤ Tn} can be covered by a finite number of subsets {Si} centered at si with

radius (nβ− ε0
2 h)−(2p0−1), where p0 > 1+β

ε0
− 1. Letting Q(n) be the number of these sets, then

Q(n) = O
(
Tn(n

β− ε0
2 h)2p0−1

)
. Hence, it is easy to check that

sup
|x|≤Tn

∣∣∣∣∣ 1

N(n)

n∑
t=0

Γt(x)

∣∣∣∣∣ ≤ max
1≤j≤Q(n)

∣∣∣∣∣ 1

N(n)

n∑
t=0

Γt(sj)

∣∣∣∣∣ (B.16)

+ max
1≤j≤Q(n)

sup
x∈Sj

∣∣∣∣∣ 1

N(n)

n∑
t=0

(Γt(x)− Γt(sj))

∣∣∣∣∣ .
Assumption A2(i) implies that there exists a constant Cl > 0 such that

∣∣∣∣L(Xt − x

h

)
− L

(
Xt − sj

h

)∣∣∣∣ ≤ Cl

∣∣∣∣sj − x

h

∣∣∣∣ ≤ Cl
(nβ− ε0

2 h)−(2p0−1)

h
. (B.17)
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By (B.17), it is easy to check that in Jn(β) =
{
C1n

βLs(n) ≤ N(n) ≤ C2n
βLs(n)

}
,

max
1≤j≤Q(n)

sup
x∈Sj

{∣∣∣∣∣ 1

N(n)

n∑
t=0

[Γt(x)− Γt(sj)]

∣∣∣∣∣
}

= OP

(
nh−2(nβ− ε0

2 h)−(2p0−1) ·N−1(n)
)

= OP

(
n1−2p0β+p0ε0− ε0

2 h−2p0−1 · L−1
s (n)

)
= OP

(
n1−2p0β+p0ε0− ε0

2 h−2p0−1 · L−1
s (n) η−1

n

)
·O(η∗n)

= OP

(
1

(nβ−ε0h)
2p0+

1
2 np0ε0−1−β+ε0

√
Ls(n) log(n)

)
·O(η∗n)

= oP

(
1

np0ε0−1−β+ε0
√

Ls(n) log(n)

)
·O(η∗n) = oP (η∗n) , (B.18)

using nβ−ε0h → ∞ by Assumption A2(ii) and p0 >
1+β
ε0

− 1.

In view of (B.16) and (B.18), in order to prove (B.15), it suffices to show that as n → ∞

P

{(
max

1≤j≤Q(n)

∣∣∣∣∣ 1

N(n)

n∑
t=0

Γt(sj)

∣∣∣∣∣ > η∗n

)
∩ Jn(β)

}
→ 0. (B.19)

We then apply the same independence decomposition technique as used in (2.5) to show

(B.19). Define

Zk(sj) =



τ0∑
t=0

Γt(sj), k = 0,

τk∑
t=τk−1+1

Γt(sj), k ≥ 1,

n∑
t=τN(n)+1

Γt(sj), k = (n),

(B.20)

where τk, k ≥ 0, are defined as in Section 2. Then

n∑
t=0

Γt(sj) = Z0(sj) +

N(n)∑
k=1

Zk(sj) + Z(n)(sj). (B.21)

From Nummelin (1984)’s result, we know that {Zk(sj), k ≥ 1} is a sequence of i.i.d. random

variables for each fixed j. We first show that as n → ∞

P


 max

1≤j≤Q(n)

∣∣∣∣∣∣ 1

N(n)

N(n)∑
k=1

Zk(sj)

∣∣∣∣∣∣ > η∗n

 ∩ Jn(β)

→ 0. (B.22)

We prove (B.22) through using the Bernstein inequality and the truncation method. Simi-

larly to the proof of Lemma B.1, we have for p0 =
[
1+β
ε0

]
,

max
1≤j≤Q(n)

E
[
|Zk(sj)|4p0

]
≤ C h−4p0+1 (B.23)
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where the constant C depends neither on sj nor on n.

By the definition of Γt(x) =
1
hL
(
Xt−x

h

)
et and the mutual independence between {es : s ≥ 1}

and {Xt : t ≥ 1}, we have E [Zk(sj)] = 0.

Note that n
β
2
− ε0

8 h−
1
2 =

√
nβ−ε0h n

3
8
ε0h−1 → ∞ by Assumption A2(ii) and define

Zk(sj) = Zk(sj)I
(
|Zk(sj)| < n

β
2
− ε0

8 h−
1
2

)
and Z̃k(sj) = Zk(sj)− Zk(sj). (B.24)

By standard arguments, we have

P

{(
max

1≤j≤Q(n)

∣∣∣∣∣ 1
N(n)

N(n)∑
k=0

Zk(sj)− ν∗(sj)

∣∣∣∣∣ > η∗n

)
∩ Jn(β)

}

≤ P

{(
max

1≤j≤Q(n)

∣∣∣∣∣ 1
N(n)

N(n)∑
k=0

(
Zk(sj)− E

[
Zk(sj)

])∣∣∣∣∣ > η∗n/2

)
∩ Jn(β)

}

+ P

{(
max

1≤j≤Q(n)

∣∣∣∣∣ 1
N(n)

N(n)∑
k=0

(
Z̃k(sj)− E

[
Z̃k(sj)

])∣∣∣∣∣ > η∗n/2

)
∩ Jn(β)

}
.

(B.25)

By (B.23) and (B.24), we have uniformly for 1 ≤ j ≤ Q(n),

E
∣∣∣Z̃k(sj)

∣∣∣ = E
[
|Zk(sj)| I

(
|Zk(sj)| ≥ n

β
2
− ε0

8 h−
1
2

)]
≤ E

[
|Zk(sj)|4p0

(
n

β
2
− ε0

8 h−
1
2

)−4p0+1
]
= O

(
h−4p0+1

(
n

β
2
− ε0

8 h−
1
2

)−4p0+1
)

= O

( √
Ls(n)

(nβ−ε0h)
2p0−1

n
ε0(12p0−7)

8

)
·O (η∗n) = o(η∗n) (B.26)

using similar arguments to the derivation of (B.18), p0 > 1 and Assumption A2(ii).

Meanwhile, note that

max
1≤j≤Q(n)

∣∣∣∣∣∣ 1

N(n)

N(n)∑
k=1

Z̃k(sj)

∣∣∣∣∣∣
≥ max

1≤j≤Q(n)

∣∣∣∣∣∣ 1

N(n)

N(n)∑
k=1

(
Z̃k(sj)− E

[
Z̃k(sj)

])∣∣∣∣∣∣− max
1≤j≤Q(n)

E
∣∣∣Z̃k(sj)

∣∣∣ ,
which, together with max1≤j≤Q(n) E

∣∣∣Z̃k(sj)
∣∣∣ ≤ η∗n

6 by (B.26), leads to{
max

1≤j≤Q(n)
max

1≤k≤N(n)
|Zk(sj)| < n

β
2
− ε0

8 h−
1
2

}
⊂

{
Z̃k(sj) = 0 for 1 ≤ j ≤ Q(n), 1 ≤ k ≤ N(n)

}
⊂

 max
1≤j≤Q(n)

∣∣∣∣∣∣ 1

N(n)

N(n)∑
k=1

Z̃k(sj)

∣∣∣∣∣∣ = 0

 ⊂

 max
1≤j≤Q(n)

∣∣∣∣∣∣ 1

N(n)

N(n)∑
k=1

Z̃k(sj)

∣∣∣∣∣∣ ≤ η∗n
3


⊂

 max
1≤j≤Q(n)

∣∣∣∣∣∣ 1

N(n)

N(n)∑
k=1

(
Z̃k(sj)− E

[
Z̃k(sj)

])∣∣∣∣∣∣ ≤ η∗n
2

 . (B.27)
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By (B.23), (B.24), (B.27) and the Markov inequality, we have for p0 >
2β
ε0

− 1

P


 max

1≤j≤Q(n)

∣∣∣∣∣∣ 1

N(n)

N(n)∑
k=1

(
Z̃k(sj)− E

[
Z̃k(sj)

])∣∣∣∣∣∣ > η∗n/2

 ∩ Jn(β)


= P(Jn(β))− P


 max

1≤j≤Q(n)

∣∣∣∣∣∣ 1

N(n)

N(n)∑
k=1

(
Z̃k(sj)− E

[
Z̃k(sj)

])∣∣∣∣∣∣ ≤ η∗n/2

 ∩ Jn(β)


≤ P(Jn(β))− P


 max

1≤j≤Q(n)

∣∣∣∣∣∣ 1

N(n)

N(n)∑
k=1

Z̃k(sj)

∣∣∣∣∣∣ ≤ η∗n/3

 ∩ Jn(β)


≤ P(Jn(β))− P


 max

1≤j≤Q(n)

∣∣∣∣∣∣ 1

N(n)

N(n)∑
k=1

Z̃k(sj)

∣∣∣∣∣∣ = 0

 ∩ Jn(β)


≤ P(Jn(β))− P

{(
max

1≤j≤Q(n)
max

1≤k≤N(n)
|Zk(sj)| < n

β
2
− ε0

8 h−
1
2

)
∩ Jn(β)

}
= P

{(
max

1≤j≤Q(n)
max

1≤k≤N(n)
|Zk(sj)| ≥ n

β
2
− ε0

8 h−
1
2

)
∩ Jn(β)

}

≤
C2nβLs(n)∑

k=1

Q(n)∑
j=1

P
{
|Zk(sj)| ≥ n

β
2
− ε0

8 h−
1
2

}
≤ CQ(n)nβLs(n)h

1−2p0n−2p0(β− ε0
4 )

≤ Cn2β−ε0L2
s(n)(n

β− ε0
2 h)2p0−1h1−2p0n−2p0(β− ε0

4 )

= O
(
n−( 1

2
(p0+1)ε0−β)L2

s(n)
)
= o(1). (B.28)

By Lemma B.1, we have

Var
[
Zk(sj)

]
= E

[
Z

2
k(sj)

]
−
{
E
[
Zk(sj)

]}2 ≤ E
[
Z

2
k(sj)

]
≤ 2E

[
Z2
k(sj)

]
≤ M1h

−1, (B.29)

where M1 is independent of k and j.

By (B.29), for any q ≥ 1, we have uniformly for 1 ≤ j ≤ Q(n)

q∑
k=1

Var
[
Zk(sj)

]
≤ M1qh

−1. (B.30)

Meanwhile, by (B.30) and Bernstein inequality for i.i.d. random variables (see, for example,
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van der Vaart and Wellner 1996), we have for some 0 < C1 < C2 < ∞

P


 max

1≤j≤Q(n)

∣∣∣∣∣∣ 1

N(n)

N(n)∑
k=1

(
Zk(sj)− E

[
Zk(sj)

])∣∣∣∣∣∣ > η∗n/2

 ∩ Jn(β)


≤

Q(n)∑
j=1

C2nβLs(n)∑
q=C1nβLs(n)

P

{∣∣∣∣∣1q
q∑

k=1

(
Zk(sj)− E

[
Zk(sj)

])∣∣∣∣∣ > η∗n/2

}

≤
Q(n)∑
j=1

C2nβLs(n)∑
q=C1nβLs(n)

exp

− q2(η∗n/2)
2

2
q∑

k=1

Var
[
Zk(sj)

]
+ (2/3)n

β
2
− ε0

8 h−
1
2 q(η∗n/2)


≤

Q(n)∑
j=1

C2nβLs(n)∑
q=C1nβLs(n)

exp

− q2(η∗n/2)
2

Cqh−1
(
1 + η

√
logn
Ls(n)

n− ε0
8

)


≤
Q(n)∑
j=1

C2nβLs(n)∑
q=C1nβLs(n)

exp

{
−c0q(η

∗
n)

2h

1 + o(1)

}
≤ Q(n)

C2nβLs(n)∑
q=C1nβLs(n)

exp
{
−c0qη

∗2
n h
}

= Q(n)

C2nβLs(n)∑
q=C1nβLs(n)

exp

{
−c0 η2 q log(n)

nβLs(n)

}
≤ C2Q(n)nβLs(n) exp

{
−c0 C1 η2 log n

}
= o(1) (B.31)

for some suitably chosen η > 0 such that η >
√

2(2p0+1)β−(2p0−1)ε0
2C1c0

, where c0 is a positive

constant.

Then, by (B.25), (B.28) and (B.31), equation (B.22) is proved.

To consider the edge terms Z0(sj) and Z(n)(sj), we first prove

max
1≤j≤Q(n)

E
[
|Z0(sj)|4p0

]
≤ M2h

−4p0+1 (B.32)

and

max
1≤j≤Q(n)

E
[∣∣Z(n)(sj)

∣∣4p0] ≤ M3h
−4p0+1 (B.33)

where M2 and M3 are both positive constants independent of sj and n.

If T0 = 1 ({Tt} is defined in Appendix A), τ0 = τ = 0, which implies that

Z0(x) =
1

h
L

(
X0 − x

h

)
e0.

Then, by some standard calculation, we have

E
[
|Z0(sj)|4p0

]
= h−4p0E[|e0|4p0 ]Eν

[
L4p0

(
X0 − sj

h

)]
= h−4p0E[|e0|4p0 ]

∫
E
L4p0

(
z − sj

h

)
ν(dz)

= h−4p0+1E[|e0|4p0 ]
∫
C(L)

L4p0 (y) ν(dy),
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which implies that (B.32) holds. If T0 = 0, without loss of generality, let τ−1 = −1. Then,

following the proof of Lemma B.1, we can also show that (B.32) holds.

On the other hand, noting that n ≤ τN(n)+1, it follows that

n∑
t=τN(n)+1

|Γt(sj)| ≤
τN(n)+1∑

t=τN(n)+1

|Γt(sj)|. (B.34)

By (B.34) and following the proof of Lemma B.1, we have

max
1≤j≤Q(n)

E
[∣∣Z(n)(sj)

∣∣4p0] ≤ max
1≤j≤Q(n)

E

 τN(n)+1∑
t=τN(n)+1

|Γt(sj)|

4p0

≤ M2h
−4p0+1,

which implies that (B.33) holds.

Then, by (B.32), Lemma B.2 and the Markov inequality, we have

P

{(
1

N(n)
max

1≤j≤Q(n)
|Z0(sj)| > η∗n

)
∩ Jn(β)

}

≤
Q(n)∑
j=1

P

{(
1

N(n)
|Z0(sj)| > η∗n

)
∩ Jn(β)

}

≤ C

Q(n)∑
j=1

E
[
|Z0(sj)|4p0

]
(η∗nn

βLs(n))
4p0

= O

(
Q(n)h−4p0+1

(η∗nn
βLs(n))

4p0

)

= O

(
1

n(p0−
1
2)ε0L2p0−1

s (n) log2p0(n)

)
= o(1) (B.35)

as ε0 > 0 and p0 >
1
2 .

Hence, we have
1

N(n)
max

1≤j≤Q(n)
|Z0(sj)| = OP (η

∗
n). (B.36)

By (B.33), similarly to the proof of (B.36), we have

1

N(n)
max

1≤j≤Q(n)
|Z(n)(sj)| = OP (η

∗
n). (B.37)

In view of (B.21), (B.22), (B.36) and (B.37), equation (B.19) holds. Hence, the proof of

Theorem 3.1 is completed. �

Proof of Theorem 3.2. Let Γt(x) be defined as in the proof of Theorem 3.1 and J∗
n(β) ={

nβ−ξ1ε0 ≪ N(n) ≪ nβ+ξ1ε0
}
, where ξ1 will be chosen later and the symbol “an ≪ bn” means

that lim
n→∞

an
bn

= 0.

By (B.9), in order to prove (3.5), it suffices to show that for any ϵ > 0,

P

{(
sup

|x|≤Tn

∣∣∣∣∣ 1

N(n)

n∑
t=0

Γt(x)

∣∣∣∣∣ > ϵ√
nβ−ε0h

)
∩ J∗

n(β), i.o.

}
= 0. (B.38)
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As in the proof of Theorem 3.1, the set {x : |x| ≤ Tn} can be covered by a finite number of

subsets {S∗
i } centered at s∗i with radius rn =

(
n(β+ε0−2ξ1ε0−2)/2h3/2

)
.

Letting U(n) be the number of these sets, we then have U(n) = O
(
Tnr

−1
n

)
. Similarly to the

derivation in (B.16), we have

sup
|x|≤Tn

∣∣∣∣∣ 1

N(n)

n∑
t=0

Γt(x))

∣∣∣∣∣ ≤ max
1≤j≤U(n)

∣∣∣∣∣ 1

N(n)

n∑
t=0

Γt(s
∗
j )

∣∣∣∣∣
+ max

1≤j≤U(n)
sup
x∈S∗

j

1

N(n)

n∑
t=0

∣∣Γt(x)− Γt(s
∗
j )
∣∣ =: Πn,1 +Πn,2. (B.39)

In a derivation similar to (B.18), Assumptions A1(ii) and A2(i) imply that

Πn,2 = O

(
n rn

N(n)h2

)
= o

(
1√

nβ−ε0h

)
. (B.40)

in J∗
n(β).

In view of (B.39) and (B.40), in order to prove (B.38), we need only to consider Πn,1. We

will still apply the independence decomposition technique and truncation method as in the proof

of Theorem 3.1. Letting Zk(s
∗
j ) be defined as Zk(sj) in (B.20),

Πn,1 = max
1≤j≤U(n)

1

N(n)

∣∣∣∣∣∣Z0(s
∗
j ) +

N(n)∑
k=1

Zk(s
∗
j ) + Z(n)(s

∗
j )

∣∣∣∣∣∣ . (B.41)

We first show that

P


 max

1≤j≤U(n)

∣∣∣∣∣∣ 1

N(n)

N(n)∑
k=1

Zk(s
∗
j )

∣∣∣∣∣∣ > ϵn

 ∩ J∗
n(β), i.o.

 = 0, (B.42)

where ϵn = ϵ√
nβ−ε0h

for some ϵ > 0.

Similarly to the proof of Lemma B.1, we have

max
1≤j≤U(n)

E
[∣∣Zk(s

∗
j )
∣∣2m0

]
≤ M3h

−2m0+1, (B.43)

where the constant M3 depends neither on s∗j nor on n. Define

Ẑk(s
∗
j ) = Zk(s

∗
j )I
(
|Zk(s

∗
j )| < n(β−ξ2ε0)/2h−1/2

)
and Zk(s

∗
j ) = Zk(s

∗
j )− Ẑk(s

∗
j ), (B.44)

where ξ2 is chosen such that 0 < ξ1 < ξ2 <
(2−ξ1)ε0
β+1+ε0

< 1.

As in (B.25), we have

P

{(
max

1≤j≤U(n)

∣∣∣∣∣ 1
N(n)

N(n)∑
k=1

Zk(s
∗
j )

∣∣∣∣∣ > ϵn

)
∩ J∗

n(β)

}

≤ P

{(
max

1≤j≤U(n)

∣∣∣∣∣ 1
N(n)

N(n)∑
k=1

(
Ẑk(s

∗
j )− E

[
Ẑk(s

∗
j )
])∣∣∣∣∣ > ϵn/2

)
∩ J∗

n(β)

}

+ P

{(
max

1≤j≤U(n)

∣∣∣∣∣ 1
N(n)

N(n)∑
k=1

(
Zk(s

∗
j )− E

[
Zk(s

∗
j )
])∣∣∣∣∣ > ϵn/2

)
∩ J∗

n(β)

}
.

(B.45)
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By (B.43) and similarly to the proof of (B.28), we have

∞∑
n=1

P

{(
max

1≤j≤U(n)

∣∣∣∣∣ 1
N(n)

N(n)∑
k=1

(
Zk(s

∗
j )− E

[
Zk(s

∗
j )
])∣∣∣∣∣ > ϵn/2

)
∩ J∗

n(β)

}

=
∞∑
n=1

(
P (J∗

n(β))− P

{(
max

1≤j≤U(n)

∣∣∣∣∣ 1
N(n)

N(n)∑
k=1

(
Zk(s

∗
j )− E

[
Zk(s

∗
j )
])∣∣∣∣∣ ≤ ϵn/2

)
∩ J∗

n(β)

})

≤
∞∑
n=1

(
P (J∗

n(β))− P

{(
max

1≤j≤U(n)

∣∣∣∣∣ 1
N(n)

N(n)∑
k=1

Zk(s
∗
j )

∣∣∣∣∣ = 0

)
∩ J∗

n(β)

})
≤

∞∑
n=1

(
P (J∗

n(β))− P

{(
max

1≤j≤U(n)
max

1≤k≤N(n)
|Zk(s

∗
j )| < n(β−ξ2ε0)/2h−1/2

)
∩ J∗

n(β)

})
=

∞∑
n=1

P

{(
max

1≤j≤U(n)
max

1≤k≤N(n)
|Zk(s

∗
j )| ≥ n(β−ξ2ε0)/2h−1/2

)
∩ J∗

n(β)

}
≤

∞∑
n=1

U(n)∑
j=1

nβ+ξ1ε0∑
k=1

P
{
|Zk(s

∗
j )| ≥ n(β−ξ2ε0)/2h−1/2

}
≤ C

∞∑
n=1

U(n)nβ+ξ1ε0h1−2m0n−m0(β−ξ2ε0)hm0

≤ C
∞∑
n=1

T (n)r−1
n nβ+ξ1ε0h1−2m0n−m0(β−ξ2ε0)hm0

= C
∞∑
n=1

Ls(n)

nm0ε0(1−ξ2)−1−2ξ1ε0−2(ε0−β)(nβ−ε0h)
m0+

1
2
< ∞,

since m0 >
2(1+ξ1ε0)
ε0(1−ξ2)

+ 2(β−ε0)
ε0(1−ξ2)

by the choice of ξ2 and m0 = 2
(
1 +

[
β+1
ε0

])
.

Meanwhile, as in the proof of (B.30), we have

Var
[
Ẑk(sj)

]
≤ M4qh

−1, (B.46)

where M4 is a positive constant independent of j and n.

Then, by (B.46) and the Bernstein inequality, we have

∞∑
n=1

P


 max

1≤j≤U(n)

∣∣∣∣∣∣ 1

N(n)

N(n)∑
k=1

(
Ẑk(s

∗
j )− E

[
Ẑk(s

∗
j )
])∣∣∣∣∣∣ > ϵn/2

 ∩ J∗
n(β)


≤

∞∑
n=1

U(n)∑
j=1

c2nβ+ξ1ε0∑
q=c1nβ−ξ1ε0

P

{∣∣∣∣∣1q
q∑

k=1

(
Ẑk(s

∗
j )− E

[
Ẑk(s

∗
j )
])∣∣∣∣∣ > ϵn/2

}

≤
∞∑
n=1

U(n)

c2nβ+ξ1ε0∑
q=c1nβ−ξ1ε0

exp

− q2(ϵn/2)
2

2
q∑

k=1

Var
[
Ẑk(sj)

]
+ (2/3)n(β−ξ2ε0)/2h−

1
2 q(ϵn/2)


≤

∞∑
n=1

U(n)

c2nβ+ξ1ε0∑
q=c1nβ−ξ1ε0

exp

{
− q2(ϵn/2)

2

Cqh−1nε0(1−ξ2)/2(1 + o(1))

}

=

∞∑
n=1

U(n)

c2nβ+ξ1ε0∑
q=c1nβ−ξ1ε0

exp

{
−C1

q

nβ−ε0 nε0(1−ξ2)/2(1 + o(1))

}

≤ c2

∞∑
n=1

U(n)nβ+ξ1ε0 exp
{
−C2n

(1−2ξ1+ξ2)
ε0
2

}
< ∞, (B.47)
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since 0 < ξ1 < ξ2 < 1 leads to 1 − 2ξ1 + ξ2 > 0, where c1, c2, C1 and C2 are some positive

constants. By (B.45), (B.46), (B.47) and the Borel–Cantelli lemma, equation (B.42) is proved.

Furthermore, by (B.32) with 4p0 replaced by 2m0, and similarly to the proof of (B.36), we

have

∞∑
n=1

P

{(
1

N(n)
max

1≤j≤U(n)
|Z0(s

∗
j )| > ϵn

)
∩ J∗

n(β)

}

≤
∞∑
n=1

U(n)∑
j=1

P

{(
1

N(n)
|Z0(s

∗
j )| > ϵn

)
∩ J∗

n(β)

}

≤ C
∞∑
n=1

U(n)∑
j=1

E

[∣∣∣Z0(s
∗
j )
∣∣∣2m0

]
(ϵnnβ−ξ1ε0)

2m0
≤ C

∞∑
n=1

U(n)h−2m0+1

(ϵnnβ−ξ1ε0)
2m0

= C

∞∑
n=1

1

nm0(β+ε0(1−2ξ1))−1−β+ε0(1−ξ1)
√
nβ−ε0h

< ∞,

by the definition of m0.

Then, we have
1

N(n)
max

1≤j≤U(n)
|Z0(s

∗
j )| = o

(
1√

nβ−ε0h

)
a.s.. (B.48)

Analogously, by (B.33), we have

1

N(n)
max

1≤j≤U(n)
|Z(n)(s

∗
j )| = o

(
1√

nβ−ε0h

)
a.s. (B.49)

Then, by (B.42), (B.48) and (B.49), we have

Πn,1 = o

(
1√

nβ−ε0h

)
a.s. (B.50)

In view of (B.39), (B.40) and (B.50), equation (B.38) is proved. The proof of Theorem 3.2

is completed. �

Proof of Theorem 4.1. Similarly to the decomposition of (B.21), we have

p̂n(x) =
1

N(n)

N(n)∑
k=1

Vk(x) +
1

N(n)
V0(x) +

1

N(n)
V(n)(x), (B.51)

where Vk(x) =
1
h

∑τk
t=τk−1+1K

(
Xt−x

h

)
. Note that {Vk(x)} is a sequence of i.i.d. random functions

of x.

We then have

p̂n(x)− ps(x) =
1

N(n)
V0(x) +

1

N(n)
V(n)(x) +

1

N(n)

N(n)∑
k=1

(Vk(x)− E[V1(x)]) + E[V1(x)]− ps(x).

(B.52)
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By Lemma B.1 for Vk(x), and following the same argument as in the proof of Theorem 3.1

with some modification, we can prove

sup
|x|≤Tn

1

N(n)

∣∣∣∣∣∣
N(n)∑
k=1

(Vk(x)− E[V1(x)])

∣∣∣∣∣∣ = OP

(√
log n

nβLs(n)h

)
. (B.53)

Similarly, following the same argument as in the proof of Theorem 3.2 with some modifica-

tion, we can also prove

sup
|x|≤Tn

1

N(n)

∣∣∣∣∣∣
N(n)∑
k=1

(Vk(x)− E[V1(x)])

∣∣∣∣∣∣ = o

(
1√

nβ−ε0h

)
a.s. (B.54)

Meanwhile, by (A.6) and (A.7) in Appendix A, we have

E [Vk(x)] = E

1
h

τk∑
t=τk−1+1

K

(
Xt − x

h

) = Eν

[
1

h

τ∑
t=0

K

(
Xt − x

h

)]

=

∫
1

h
K

(
u− x

h

)
νGs,ν(du) =

∫
1

h
K

(
u− x

h

)
πs(du)

=

∫
K (u) ps(x+ hu)du = ps(x) + p′′s(x)

(∫
u2K(u)du

)
h2 + o(h2), (B.55)

where Gs,ν and πs are defined as in Appendix A.

Equation (B.55) then implies

sup
x∈IR

|E [Vk(x)]− ps(x)| ≤ sup
x∈IR

∣∣p′′s(x)∣∣ (∫ u2K(u)du

)
h2 + o(h2). (B.56)

In a similar way to the proofs of (B.36) and (B.37), we have

sup
|x|≤Tn

∣∣∣∣ 1

N(n)
V0(x)

∣∣∣∣+ sup
|x|≤Tn

∣∣∣∣ 1

N(n)
V(n)(x)

∣∣∣∣ = OP

(√
log n

nβLs(n)h

)
.

Analogously to the proofs of (B.48) and (B.49), we have

sup
|x|≤Tn

∣∣∣∣ 1

N(n)
V0(x)

∣∣∣∣+ sup
|x|≤Tn

∣∣∣∣ 1

N(n)
V(n)(x)

∣∣∣∣ = o

(
1√

nβ−ε0h

)
a.s.

The above two results and (B.52)–(B.56) imply that both (4.2) and (4.3) hold. �

Proof of Theorem 4.2. We only prove (4.12) with the help of Theorem 3.2. The proof of

(4.11) is similar by using Theorem 3.1.

By the definition of m̂n(x), we have

m̂n(x) =

n∑
t=0

wn,t(x)et +

n∑
t=0

wn,t(x)m(Xt).
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By using Theorem 3.2, we then have as n → ∞

sup
|x|≤Tn

∣∣∣∣∣ 1

N(n)h

n∑
t=0

K

(
Xt − x

h

)
et

∣∣∣∣∣ = o

(
1√

nβ−ε0h

)
a.s. (B.57)

Meanwhile, by (4.3) in Theorem 4.1 we have

sup
|x|≤Tn

∣∣∣∣∣ 1

N(n)h

n∑
t=0

K

(
Xt − x

h

)
− ps(x)

∣∣∣∣∣ = O(h2) + o

(
1√

nβ−ε0h

)
a.s. (B.58)

In view of δn = inf |x|≤Tn
ps(x), by (B.57) and (B.58) we then have

sup
|x|≤Tn

(∣∣∣∣∣ 1
1

N(n)h

∑n
t=0K

(
Xt−x

h

)∣∣∣∣∣ ·
∣∣∣∣∣ 1

N(n)h

n∑
t=0

K

(
Xt − x

h

)
et

∣∣∣∣∣
)

≤ C δ−1
n sup

|x|≤Tn

∣∣∣∣∣ 1

N(n)h

n∑
t=0

K

(
Xt − x

h

)
et

∣∣∣∣∣ = o

(
1

δn
√
nβ−ε0h

)
a.s., (B.59)

which implies

sup
|x|≤Tn

∣∣∣∣∣ 1

N(n)h

n∑
t=0

wn,t(x)et

∣∣∣∣∣ = o

(
1

δn
√
nβ−ε0h

)
a.s. (B.60)

In the meantime, standard arguments imply

n∑
t=0

wn,t(x)m(Xt)−m(x) =

1
N(n)h

n∑
t=0

K
(
Xt−x

h

)
m(Xt)

p̂n(x)
− m(x)p̂n(x)

p̂n(x)

=

1
N(n)h

n∑
t=0

K
(
Xt−x

h

)
(m(Xt)−m(x))

p̂n(x)
=

m′(x)h
N(n)h

n∑
t=0

K
(
Xt−x

h

) (
Xt−x

h

)
p̂n(x)

+

h2

N(n)h

n∑
t=0

m′′(x+ ϑt(Xt − x))K
(
Xt−x

h

) (
Xt−x

h

)2
2p̂n(x)

=: Ξn,1(x) + Ξn,2(x),

where 0 ≤ ϑt ≤ 1.

Similarly to the proof of Theorem 4.1 above, in view of
∫
uK(u)du = 0, the conditions of

Theorem 4.2 imply

sup
|x|≤Tn

Ξn,1(x) = o (δ∗1nh) a.s. (B.61)

Analogously, we have

sup
|x|≤Tn

Ξn,2(x) = O
(
δ∗2nh

2
)

a.s. (B.62)

Therefore, equations (B.60)–(B.62) show that equation (4.12) in Theorem 4.2 holds. �

Proof of Theorem 4.3. We only prove (4.15) with the help of Theorem 3.2 as the proof

of (4.14) is similar. By the definition of m̃n(x), we have

m̃n(x) =

n∑
t=0

w̃n,t(x)et +

n∑
t=0

w̃n,t(x)m(Xt).
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Note that w̃n,t(x) =
K̃x,h(Xt)∑n

s=0 K̃x,h(Xs)
with K̃x,h(Xt) =

1
hK̃n

(
Xt−x

h

)
, in which

K̃n

(
Xt − x

h

)
= K

(
Xt − x

h

)[
Sn,2(x)−

(
Xt − x

h

)
Sn,1(x)

]
(B.63)

with Sn,j(x) =
1

N(n)h

∑n
t=0K

(
Xt−x

h

) (
Xt−x

h

)j
for j = 0, 1, 2.

Using the same arguments as in the proof of Theorem 4.1, we have as n → ∞

sup
|x|≤Tn

|Sn,j(x)− ps(x)µj | = O(h2) + o

(
1√

nβ−ε0h

)
a.s., (B.64)

where µj =
∫∞
−∞ xjK(x)dx for j = 0, 1, 2.

Similarly to the proof of equation (B.55) in the proof of Theorem 4.2, we have as n → ∞

sup
|x|≤Tn

∣∣∣∣∣ 1

N(n)h

n∑
t=0

Kj(x,Xt)et

∣∣∣∣∣ = o

(
1√

nβ−ε0h

)
a.s., (B.65)

where Kj(x,Xt) = K
(
Xt−x

h

) (
Xt−x

h

)j
for j = 0 and 1.

Noting that δn = inf |x|≤Tn
ps(x), equations (B.63)–(B.65) imply

sup
|x|≤Tn

∣∣∣∣∣∣
[∑n

t=0K
(
Xt−x

h

)
et
]
Sn,2(x)

N(n)h
(
Sn,2(x)Sn,0(x)− S2

n,1(x)
)
∣∣∣∣∣∣

≤ Cδ−1
n sup

|x|≤Tn

∣∣∣∣∣
∑n

t=0K
(
Xt−x

h

)
et

N(n)h

∣∣∣∣∣ = o

(
1

δn
√
nβ−ε0h

)
a.s. (B.66)

and

sup
|x|≤Tn

∣∣∣∣∣∣
[∑n

t=0

(
Xt−x

h

)
K
(
Xt−x

h

)
et
]
Sn,1(x)

N(n)h
(
Sn,2(x)Sn,0(x)− S2

n,1(x)
)
∣∣∣∣∣∣

≤ Cδ−1
n sup

|x|≤Tn

∣∣∣∣∣
∑n

t=0

(
Xt−x

h

)
K
(
Xt−x

h

)
et

N(n)h

∣∣∣∣∣ = o

(
1

δn
√
nβ−ε0h

)
a.s.. (B.67)

By (B.66), (B.67) as well as the definition of w̃n,t(x), we have

sup
|x|≤Tn

∣∣∣∣∣ 1

N(n)h

n∑
t=0

w̃n,t(x)et

∣∣∣∣∣ = o

(
1

δn
√
nβ−ε0h

)
a.s. (B.68)

In the meantime, observe that

n∑
t=0

w̃n,t(x)m(Xt)−m(x) =

1
N(n)

n∑
t=0

K̃x,h (Xt) (m(Xt)−m(x))

p̃n(x)
,
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where p̃n(x) =
1

N(n)

∑n
t=0 K̃x,h (Xt), and

1

N(n)

n∑
t=0

K̃n

(
Xt − x

h

)
(m(Xt)−m(x))

=
m′(x)

N(n)

n∑
t=0

(Xt − x)K̃n

(
Xt − x

h

)
+

1

2N(n)

n∑
t=0

m′′(x+ ϑ′
t(Xt − x))

× (Xt − x)2K̃n

(
Xt − x

h

)
=

m′′(x)

2N(n)

n∑
t=0

(Xt − x)2K̃n

(
Xt − x

h

)
(1 + o(1)) a.s.,

where we have used the fact that
∑n

t=0(Xt − x)K̃n

(
Xt−x

h

)
= 0 and that m′′(·) is continuous,

and 0 ≤ ϑ′
t ≤ 1 for t = 0, · · · , n.

Finally, using the proof of (B.61), we have

n∑
t=0

w̃n,t(x)m(Xt)−m(x) = O
(
δ∗2nh

2
)

a.s.. (B.69)

By equations (B.68) and (B.69), the proof of (4.15) is therefore completed. �
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