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Nonparametric Kernel Testing in Semiparametric

Autoregressive Conditional Duration Model

Pipat Wongsaart and Jiti Gao1

Monash University, Australia

A crucially important advantage of the semiparametric regression approach to the nonlinear autoregressive

conditional duration (ACD) model developed in Wongsaart et al. (2011), i.e. the so–called Semiparametric

ACD (SEMI–ACD) model, is the fact that its estimation method does not require a parametric assumption

on the conditional distribution of the standardized duration process and, therefore, the shape of the baseline

hazard function. The research in this paper complements that of Wongsaart et al. (2011) by introducing

a nonparametric procedure to test the parametric density function of ACD error through the use of the

SEMI–ACD based residual. The hypothetical structure of the test is useful, not only to the establishment

of a better parametric ACD model, but also to the specification testing of a number of financial market

microstructure hypotheses, especially those related to the information asymmetry in finance. The testing

procedure introduced in this paper differs in many ways from those discussed in existing literatures, for

example Aı̈t-Sahalia (1996), Gao and King (2004) and Fernandes and Grammig (2005). We show theoretically

and experimentally the statistical validity of our testing procedure, while demonstrating its usefulness and

practicality using datasets from New York and Australia Stock Exchange.

JEL Classification: C14, C41, F31.

keyword Duration model, hazard rates and random measures, nonparametric kernel testing.

1. Introduction

A well known property of the so–called high–frequency data in finance is the fact that

market events are clustered over time. This suggests that financial durations, i.e. the inter–

event waiting times, may follow positively an autocorrelated process with strong persistence.

This feature may be captured in a number of alternative ways through different econometric

methods based on duration, intensity or counting representations of a point process. Today,

one of the most well–known approaches in the literature is the ACD model introduced by

Engle and Russell (1998); see also Engle and Russell (1997) for an application of the model

to foreign exchange data. The ACD model considers a stochastic process that is simply

a sequence of times {i0, i1, . . . , in, . . .} with i0 < i1 < · · · < in . . . . The interval between
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two arrival times, i.e. xt = it − it−1, measures the length of times commonly known as

the durations by which {xt} is a nonnegative stationary process adapted to the filtration

{Ft, t ∈ Z} with Ft representing the previous history. The ACD class of models assumes a

multiplicative model of xt of the form

xt = ψtεt, (1.1)

where {εt} is an independent and identically distributed (i.i.d.) innovation series with density

f(ε;φ) (with non-negative support and E[ε1] = 1), ψt ≡ ϑ(xt−1, . . . , xt−p, ψt−1, . . . , ψt−q) and

ϑ : Rp
+ × Rq

+ → R+ is a strictly positive–valued function.

Expression (1.1) suggests that there is now a host of potential specifications for the ACD

model where each is defined by different specifications for the expected durations and for

the distribution of ε. While a number of existing studies examine some generalizations and

hypothesis testing of the former, for example Fernandes and Grammig (2006) and Meitz and

Teräsvirta (2006), the misspecification of the baseline distribution may have quite serious

implications. When a data generating process is based a non–monotonic baseline hazard rate

function, Grammig and Maurer (2000) show that the quasi maximum likelihood estimation

fails to provide sound finite sample results even in quite large sample cases. Furthermore,

the success of option pricing and risk management procedures based on intraday volatility

estimates from price duration models depends heavily on the appropriate specification of

the baseline hazard rate function (Prigent et al. (2000)). Moreover, Drost and Werker

(2004) argue against the i.i.d. assumption in (1.1) in favor of a semiparametric alternative

that allows the distribution function of the innovations to be dependent on the past. The

resulting model relies heavily on the linear parameterization of the conditional duration and

the assumption that it is correctly specified.

Therefore, one of the benefits of the SEMI–ACD model developed in Wongsaart et al.

(2011) is the fact that imposition of such distribution assumption is not required in the

model’s estimation procedure. Furthermore, a three–step modeling procedure, which was

also suggested in conjunction with the SEMI–ACD model, enables a straightforward method

of empirically estimating the the density (and therefore the survival and baseline hazard

functions) of the innovations. Nonetheless, for such results to be advantageous to empirical

and theoretical studies of financial market microstructure, there should be a method of

gauging their closeness to those of existing distributions in the literature.
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This paper presents a two–step semiparametric procedure to test the marginal density

function of durations. While the objective of the first step is to model the dynamics of the

financial duration process using the above mentioned SEMI–ACD model, the second step

tests the SEMI–ACD residual about the baseline density of the standardized duration.

Regarding the hypothesis testing in the second step, Aı̈t-Sahalia (1996) introduces a

nonparametric testing procedure to test the marginal density functions of a class of diffu-

sion processes under the β-mixing condition. Fernandes and Grammig (2005) extend Aı̈t–

Sahalia’s approach to hypothesis testing in the context of a parametric ACD model. Unlike

Fernandes and Grammig (2005), whose work focuses only on addressing the boundary bias

that arises as durations have a support which is bounded from below, the research of this

paper concentrates also on the importance of bandwidth selection in nonparametric kernel

testing, while an extra measure is taken to minimize the impact of the bias induced by the

kernel estimation. Both Aı̈t-Sahalia (1996) and Fernandes and Grammig (2005) select the

bandwidths of their tests by simply using an adjusted version of the Silverman (1986) rule

of thumb. However, existing studies, e.g. Gao and King (2004) and Gao (2007), show that

in fact bandwidth selection in nonparametric kernel testing is not a straightforward matter.

Generally speaking, one can distinguish in the literature two approaches to deal with

this bandwidth parameter choice in nonparametric and semiparametric kernel methods used

for constructing model specification tests. The first approach is to use an estimation–based

optimal bandwidth value, such as a cross–validation bandwidth. However, this may lead to

a poor performance of the test in finite sample studies because the estimation–based optimal

bandwidth may not necessarily imply that the corresponding test is optimal. The second

approach is to consider among a set of pre–specified suitable values for the bandwidth.

In this paper, we extend a method that is first initiated in Horowitz and Spokoiny (2001)

for testing of a parametric model of a conditional mean function against a nonparametric

alternative. The idea of the test is to consider simultaneously a family of test statistics

associated with HT , which represents a set of bandwidth values. The proposed test rejects

the null hypothesis if at least one of the test statistics for h ∈ HT is sufficiently large. For the

reasons that will be explained in Section 3, Horowitz and Spokoiny (2001) define this test

as an adaptive and rate optimal test. More recently, Gao and King (2004) extend Horowithz

and Spokoiny’s approach to the parametric specification testing of the marginal density in

a continuous–time diffusion model.
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The most important feature about the two–step SEMI–ACD estimation and nonpara-

metric specification testing introduced in this paper that clearly differentiates it from the

work of Gao and King (2004) is the fact that each of these steps is implemented based on es-

timates, i.e. use of the algorithm based conditional durations in the SEMI–ACD estimation

and testing the SEMI–ACD based residuals about the parametric marginal density function

of the standardized duration. Therefore, the main contribution of this paper is to construct

such testing procedure and to show theoretically and empirically its asymptotic costlessness.

Furthermore, the theoretical illustration of such asymptotic costlessness differs signifi-

cantly from what appears in Fernandes and Grammig (2005). Using the fact that the first

step of their two–step procedure is to estimate the conditional duration process by the quasi

maximum likelihood (QML) estimation, in their theoretical discussion, Fernandes and Gram-

mig simply assume a root-n consistency of their parametric estimator of the standardized

duration. The use of the SEMI–ACD model suggests that, we first establish the consistency

of the algorithm–based estimate of the standardized duration. Then an important implica-

tion of such consistency is shown on the unaffected limit distribution of the test statistic.

We will elaborate further on the differences between the research in this paper and that of

Fernandes and Grammig (2005) in Section 3 below.

Additionally, let us note the potential usefulness of our testing procedure that resides

in its applicability to various first–step ACD estimations by which the consistency of their

estimates of the standardized duration can be established. The most obvious example is

in Figure 2 of Drost and Werker (2004), which compares the estimated density and the

standard exponential density of their ACD innovations. In this case our testing procedure

can be used to test the statistical suitability of the standard exponential density for Drost

and Werker’s ACD innovation.

The remainder of this section summarizes a number of notable findings and key contri-

butions of the research in this paper.

• This paper deals with a new ACD model for the case where {ψt} is semiparametric

and {εt} is a stationary time series and its distribution is nonparametrically unknown.

The testing procedure developed in this paper displays a strong consistency against

a sequence of local alternatives, i.e. reasonable power values which are gradually

incremental toward one, even with relatively small distances between the null and

4



alternative hypotheses as well as sample sizes. Neither Fernandes and Grammig (2005)

nor Gao and King (2004) presents the empirical evidence about the consistency of their

test statistics against a sequence of local alternatives.

• Both the experimental and empirical studies show that the newly introduced testing

procedure is statistically powerful in the sense that it is able to gauge the mixture

of distributions even for cases by which the distributions belong to the same family.

As discussed in detail in Section 5, the test statistic suggests that a mixture weibull–

gamma distribution is able to best describe the price duration processes in question.

• Through the use of the SEMI–ACD residuals, evidently the procedure introduced in

this paper is able to successfully overcome the latency problem, which arises because

of the unobservability of the standardized duration in practice.

The remainder of this paper is organized as follows. Section 2 discusses the statistical

consistency of the algorithm–based estimation of the standardized durations. Section 3

discusses the testing of the marginal density and a number of new asymptotic results. Section

4 provides experimental evidence to demonstrate the statistical validity and usefulness of our

testing procedure. Section 5 applies the procedure to test parametric density functions for

price duration at the New York Stock Exchange (NYSE) and the Australian Stock Exchange

(ASX). Finally, Section 6 summarizes the main results and offers concluding remarks. For

ease of exposition, Appendices A and B collect all underlying assumptions. All proofs and

technical lemmas are given in Appendix C of the supplementary document.

2. Algorithm–Based Estimation of the Standardized Durations

An important feature of our two–step semiparametric estimation and testing procedure

is the fact that each of these steps is implemented based on an estimate, which is computed

using the iterative estimation algorithm studied in detail in Wongsaart et al. (2011). The

purpose of this section is to discuss statistical consistency of the algorithm–based estimation

of the standardized duration, which constitutes the first step of our procedure, in order to

pave way for the theoretical development of our test statistic in Section 3.

Let us begin our discussion in this section with a brief review of the so–called SEMI–ACD
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model. The main focus of this paper is on the SEMI–ACD(1,1) model of the form

ψt ≡ γxt−1 + g (ψt−1) , (2.1)

where g(·) satisfies Assumption B.1 below. The strict stationarity and ergodicity assumed

in Engle and Russell (1998) implies that Assumption B.1 holds for the ACD(1,1) model.

To derive the estimators of γ and g, observe that the multiplicative model in (1.1) can be

written in terms of an additive noise of the form

xt = γxt−1 + g (ψt−1) + ηt (2.2)

where ηt = ψt (εt − 1) and {εt} is a sequence of positive stationary errors with E [ε1] = 1

and E
[
ε4+δ

1

]
<∞ for some δ > 0. We then have under the assumption that E[ηt|ψt−1] = 0

g (ψt−1) = E [xt|ψt−1]− γE [xt−1|ψt−1] = g1 (ψt−1)− γg2 (ψt−1) . (2.3)

The fact that the conditional duration process is not observable in practice suggests that

the usual one–step partially linear autoregressive estimation cannot be applied in the SEMI–

ACD case. To address this latency problem the estimation procedure employed in Wongsaart

et al. (2011) is based on an algorithmically computed estimate of the t-th conditional duration

at the m∗-th iteration defined by

ψ̂t,m∗ ≡ γ̂m∗(h)xt−1 + ĝ1,h(ψ̂t−1,m∗−1)− γ̂m∗(h)ĝ2,h(ψ̂t−1,m∗−1), (2.4)

where γ̂m∗(h) is the kernel weighted LS estimate of γ at the m∗-th iteration, m∗ is a pre-

specified maximum number of iterations and

ĝj,h(ψ̂t−1,m∗−1) =
T∑

s=m∗+ι

Ws,h(ψ̂t−1,m∗−1)xs−j+1 (2.5)

for j = 1, 2 and ι ∈ N, where Ws,h is a probability weight function of the form

Ws,h(ψ̂t−1,m∗−1) =
kh(ψ̂t−1,m∗−1 − ψ̂s−1,m∗−1)∑T

s=m∗+ι kh(ψ̂t−1,m∗−1 − ψ̂s−1,m∗−1)

with kh (·) = h−1k (·/h), k is a real-valued kernel function satisfying Assumption B.3 in

Appendix B and h = hT ∈ HT .
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In the SEMI–ACD case, the kernel based least squares estimators of γ and σ2 = E(η2
1)

are written as

γ̂ψ̂(h) =

{
T∑
t=1

û2
t+1ω(ψ̂t,m∗)

}−1{ T∑
t=1

ût+1

(
xt+1 − ĝ1,h(ψ̂t,m∗)

)
ω(ψ̂t,m∗)

}
(2.6)

and

σ̂2
ψ̂
(h) =

1

T

T∑
t=1

{xt+1 − γ̂ψ̂(h)xt − ĝ1,h(ψ̂t,m∗) + γ̂ψ̂(h)ĝ2,h(ψ̂t,m∗)}2ω(ψ̂t,m∗), (2.7)

where ût+1 = xt− ĝ2,h(ψ̂t,m∗), ĝh = g(ψt)− ĝh(ψ̂t,m∗) and ω(·) is a known nonnegative weight

function satisfying Assumption B.3 in Appendix B.

In order to proceed with the hypothesis test in the second step, we first must introduce

an algorithm–based estimate of the standardized duration, which is the SEMI–ACD residual

ε̂t,m∗ =
xt

ψ̂t,m∗
, (2.8)

where ψ̂t,m∗ is the algorithm–based estimate of the conditional duration as defined in (2.4).

In the study of the nuisance parameter freeness of their test statistic, Fernandes and Gram-

mig (2005) use the fact that their first step estimation is based on the Engle and Russell’s

parametric ACD model, hence simply assume the so–called root-N consistency of their esti-

mate for the unobserved ε. The use of the SEMI–ACD model suggests that we must follow

quite a different route in this paper.

To study theoretically the impact of the SEMI–ACD’s algorithm–based estimation, here

we rely on the transformation

|ε̂t,m∗ − εt| =

∣∣∣∣∣ xt

ψ̂t,m∗
− xt
ψt

∣∣∣∣∣ =

{
εt
ψt

} ∣∣∣ψ̂t,m∗ − ψt∣∣∣{ ψt

ψ̂t,m∗

}
. (2.9)

Hence, a uniform consistency of ψ̂t,m∗ , for example, should immediately lead to a similar

mode of consistency of ε̂t,m∗ . Both the establishment and the statistical consistency of the

iterative estimation algorithm are discussed in detail in Wongsaart et al. (2011), therefore

are not the main concern of this paper. However, in the discussion that follows, in order to

establish the consistency of our test statistic against various alternatives, we establish the

uniform consistency of ψ̂t,m∗ and ε̂t,m∗ as a technical lemma, which is presented in Appendix

C of the supplementary document.
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3. Testing Marginal Density Function

This section discusses the basic construction and a number of important asymptotic

properties of the test statistic for testing the marginal densities. For the sake of convenience

in introducing the new testing procedure, its underlying motivations and statistical results,

and also in order to highlight the fact that the test may be used for testing the density of

a stationary random variable in general, Section 3.1 proceeds under the assumption that

standardized durations are observable. This assumption will be relaxed in Section 3.2.

3.1. Testing Procedure with Observable Durations

Let {εt} be the standardized duration process of a financial event and let f(·) and

f(·, θ) be a nonparametric and a parametric forms of the marginal density function of {εt},
respectively. Furthermore, let Θ denote a parameter space in Rq and θ0 ∈ Θ denote the true

value of θ. We consider in this paper a testing procedure for testing the null hypothesis

H0 : f(ε) = f(ε, θ0) (3.1)

against a sequence of local alternatives

H1 : f(ε) = f(ε, θ1) + CT∆T (ε), θ1 ∈ Θ, (3.2)

where 0 ≤ CT ≤ 1, lim
T→∞

CT = 0 and ∆T (ε) is a continuous function that is chosen to satisfy∫
∆T (ε)dε = 0. In this case, ∆T (ε) must be constructed in the way that the alternative

function is still a probability density under H1. The analysis in this paper considers the case

where

∆T (ε) = ϕ(ε)− f(ε, θ1) (3.3)

so that the alternative hypothesis in (3.2) can be rewritten as a semiparametric mixture

density

H1 : f(ε) = (1− CT )f(ε, θ1) + CTϕ(ε), (3.4)

where ϕ denotes a nonparametric density. Clearly, a couple of special cases of such a structure

of a sequence of local alternatives are the global alternatives of the forms

H′1 : f(ε) = f(ε, θ1) and H′′1 : f(ε) = (1− C)f(ε, θ1) + Cϕ(ε) (3.5)

that are obtained for cases by which CT = 0 and CT = C for 0 < C < 1, respectively.
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The usefulness of such specification testing in an ACD class of models is best evidenced

when considering the conditional intensity function of arrival times, which is commonly

defined in the literature as

λ(i|N(i), i1, . . . , iN(i)) = λ0

(
i− iN(i)

ψN(i)+1

)
1

ψN(i)+1

, (3.6)

where λ0(ε) = f(ε;φ)
S(ε;φ)

is the baseline hazard and S(ε;φ) =
∫∞
ε
f(u;φ)du is the survivor

function. Clearly, the shape of this type of accelerated failure time model depends very

much on that of the baseline hazard λ0(·). For example, if it is assumed that the durations

are conditionally exponential so that the baseline hazard is simply one, and the conditional

intensity is then

λ(i|N(i), i1, . . . , iN(i)) = ψ−1
N(i)+1. (3.7)

Hence, an idiosyncrasy of the Engle and Russell’s EACD and WACD models is that the

implied hazard functions conditional on past durations are restricted to be either constant,

increasing or decreasing with respect to duration. A number of studies, such as Zhang et al.

(2001) and Bauwens and Veredas (2004), raise questions about the appropriateness of im-

posing such restrictions. Furthermore, Grammig and Maurer (2000) present an experimental

evidence that suggests the misspecification of the hazard function can severely deteriorate

the model’s ability to predict expected durations.

A crucially important advantage of the semiparametric modeling procedure developed

in Wongsaart et al. (2011) is the fact that a specific distribution assumption of the inno-

vation ε, and therefore the above mentioned restrictions, is not required for their so–called

SEMI–ACD model to be consistently and efficiently estimated. Therefore, the specification

testing procedure presented in this paper complements the estimation method proposed in

Wongsaart et al. (2011) in the sense that the distribution of the standardized duration can

now be statistically determined by the SEMI–ACD based estimates. On the one hand, such

knowledge is very useful in empirical and theoretical studies of financial market microstruc-

ture, while on the other hand it can be used as guideline to building a better parametric

ACD model; see Section 5 below for an empirical illustration and further discussion.

Moreover, such hypothesis testing is particularly useful when taking into account the ex-

istence of the information asymmetry in financial markets whereby various types of traders,

for example informed and uninformed traders, may co–exist. The differences in their trading
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behavior lead us to believe that a mixture distribution might be a useful model for waiting–

time distribution in finance; see also De Luca and Gallo (2004). Therefore, not only the

hypothesis testing against such an alternative as (3.2) enables an empirical test of the infor-

mation asymmetry hypothesis, it also provides additional information on whether the use of

mixture distribution in a parametric ACD model is essential.

The main idea behind the test statistic considered in this paper is to compare a consistent

nonparametric density estimator directly to a parametric density in question. To discuss our

test statistic, let us first define the distance function

D(f, θ) =

∫
(f(ε)− f(ε, θ))2f(ε)dε. (3.8)

There are at least two alternative methods of estimating D(f, θ) considered in the literature.

The first alternative is based on the estimator

D(f̂ , θ̃) =

∫
(f̂(ε)− f(ε, θ̃))2f̂(ε)dε, (3.9)

where f̂(ε) = (1/T )
∑T

t=1 kh(ε − εt) is the standard kernel density estimator, kh(·) =

h−1k(·/h), k(·) is a kernel function and θ̃ is a consistent estimator of θ, while the second

alternative is to use

D̃(f̂ , θ̃) =

∫
(f̂(ε)− f̃(ε, θ̃))2f̂(ε)dε, (3.10)

where

f̃(ε, θ̃) =
T∑
t=1

wt(ε)f(εt, θ̃) (3.11)

is a nonparametric estimator of f(ε, θ),

wt(ε) = wt(ε, h) = (1/T )kh(ε− εt)×
[

(s2(ε)− s1(ε)(ε− εt))
(s2(ε)s0(ε)− s2

1(ε))

]
and sr(ε) = (1/T )

∑T
s=1 kh(ε − εs)(ε − εs)r for r = 0, 1, 2. Note that, in (3.11), f(εt, θ̃) is

properly smoothed in order to cancel out the bias involved in f̂(ε).

As shown in Gao and King (2004), a suitably standardized version of D̃(f̂ , θ̃) is better

both theoretically and empirically than that of D(f̂ , θ̃).

Thus, the test statistic that will be the main focus of this paper is based on D̃(f̂ , θ̃) in

(3.10) and is written as

N̂T = N̂T (h) = Th

∫
(f̂(ε)− f̃(ε, θ̃))2f̂(ε)dε. (3.12)
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In this case, Gao and King (2004) show that under H0,

LT (h) =
N̂T (h)− µ0√

hσ0

→
D
N(0, 1) as T →∞, (3.13)

where µ0 = R(k)
∫∞
∞ f 2(ε)dε and σ2

0 = 2k(4)(0)
∫
f 4(ε)dε, and that

L̂T (h) =
N̂T (h)− µ̂T (h)√

hσ̂T (h)
→
D
N(0, 1) as T →∞, (3.14)

where µ̂T (h) = R(k) ·
(

1
T

∑T
i=1 f̂(εt)

)
and σ̂2

T (h) = 2k(4)(0) ·
(

1
T

∑T
t=1 f̂

3(εt)
)

, in which

R(k) =
∫
k2(u)du <∞ and k(j)(0) denotes the j-times convolution product of k(·) given by

k(4)(0) =
∫∞
−∞ L

2(ε)dε with L(ε) =
∫∞
−∞ k(y)k(ε+ y)dy.

Furthermore, suppose that there is a random data–driven ĥ such that (ĥ/h) − 1 →P 0

as T →∞. Then, we have under H0

L̂T (ĥ) =
N̂T (ĥ)− µ̂T (ĥ)√

ĥσ̂T (ĥ)
→
D
N(0, 1) as T →∞. (3.15)

In this case, the asymptotic normality as stated in (3.13) to (3.15) can be obtained under a

conventional condition of the form lim supT→∞ Th
5 <∞.

For the implementation of their proposed test within the context of the parametric ACD

specifications, Fernandes and Grammig (2005) suggest that an undersmoothing–adjusted

theoretically optimal bandwidth can be used. Although one may argue in favor the use

of such a rule of thumb or other estimation–based optimal bandwidth this may contribute

to a poor performance of the test in finite sample studies because the estimation–based

bandwidth may not necessarily imply that the corresponding test is optimal.

To address this problem, the current paper suggests using

L∗ = max
h∈HT

L̂T (h) = max
h∈HT

N̂T (h)− µ̂T (h)√
hσ̂T (h)

, (3.16)

where it is assumed that HT is finite with JT number of elements. A specific formulation of

HT employed here is a geometric grid of the form

HT = {h = hmaxa
k : h ≥ hmin, k = 0, 1, 2, . . .}, (3.17)

where 0 < hmin < hmax and 0 < a < 1. In this case, JT ≤ log1/a(hmax/hmin). More detailed

conditions on hmax and hmin are given in Appendix A.
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3.2. Testing Procedure Based on the SEMI–ACD Estimates

For notational clarity, hereafter let LT,ε(h) ≡ LT (h), L̂T,ε(h) ≡ L̂T (h) and L∗ε ≡ L∗.

The substitution of the algorithm–based estimate ε̂t,m∗ for εt, suggests that L̂T,ε(h) can be

reformulated as

L̂T,ε̂(h) =
N̂T,ε̂(h)− µ̂T,ε̂(h)√

hσ̂T,ε̂(h)
, (3.18)

so that the test statistic L∗ε in (3.16) is now

L∗ε̂ = max
h∈HT

L̂T,ε̂(h) = max
h∈HT

N̂T,ε̂(h)− µ̂T,ε̂(h)√
hσ̂T,ε̂(h)

, (3.19)

where

N̂T,ε̂(h) =
Th

T

T∑
n=1

(f̂(ε̂t,m∗ − f̃(ε̂t,m∗ , θ̃))
2 = h

T∑
t=1

(f̂(ε̂t,m∗)− f̃(ε̂t,m∗ , θ̃))
2, (3.20)

in which θ̃ is the estimate of the true value θ0, based on the residual ε̂t,m∗ .

An essential result to ensure the asymptotic triviality of such use of SEMI–ACD estimate,

and therefore the consistency of the test introduced in this paper, is to establish that

L̂T,ε̂(h) = L̂T,ε(h) +RT (h), (3.21)

where RT (h) is the remainder that converges to zero in probability as T → ∞. The proof

of (3.21) relies heavily on the uniform convergence of ψ̂t,m∗ and ε̂t,m∗ , which is discussed in

Section 2. In view of (3.21), Lemma B.6 of Gao and King (2004) already shows that

L̂T,ε(h) = LT,ε(h) + oP{1}. (3.22)

Therefore, the asymptotic results of LT (h) and max
h∈HT

L̂T,ε(h) established in Gao and King

(2004) remain valid for L̂T,ε̂(h) and L∗ε̂. Appendix A lists the underlying assumptions, which

are required in order to establish some relevant asymptotic results in Gao and King (2004).

Let us now introduce the method of computing a critical value for L∗ε̂. For 0 < α <

1, the exact α-level critical value, lα, is defined as the 1 − α quantile of the exact finite

sample distribution of L∗ε̂. However, since θ0 is unknown, lα cannot be evaluated in practice.

Therefore, to implement our testing procedure, we suggest choosing a simulated α-level

critical value, l∗α, by using the following simulation scheme, which can be employed to both

re–samples of the sampled data or generated data from a known marginal density.
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Step 3.1: Perform SEMI–ACD estimation to obtain ε̂t,m∗ .

Step 3.2: The true value θ0 is estimated based on ε̂t,m∗ . The resulting estimate is then

denoted by θ̂.

Step 3.3: Compute L∗ε̂ based on ε̂t,m∗ and θ̂.

Step 3.4: Repeat the preceding steps Q times in order to obtain Q versions of L∗ε̂, i.e. L∗ε̂,q

for q = 1, 2, . . . , Q. The simulated critical value l∗α is then the (1− α) percentile of the

Q values of L∗ε̂.

The following result is essential in order to ensure the statistical validity of the above

simulation scheme; see also the discussion in Remark 3.1 regarding the mathematical proof

of these results.

Theorem 3.1. Let Assumptions A.1–A.7 listed in Appendix A and B.1–B.4 listed in Ap-

pendix B hold. Then, under H0 we have

lim
n→∞

P (L∗ε̂ > l∗α) = α. (3.23)

Furthermore, to ensure the statistical validity of using the residual based test statistic L∗ε̂

to test the parametric marginal density function of the unobserved standardized duration, ε,

we must also establish its consistency against the fixed and a sequence of local alternatives

introduced previously.

3.2.1. Consistency of the Test against a Fixed Alternative

The purpose of this section is to show that L∗ε̂ is consistent against such fixed alternatives

as in (3.5). Let F = {f(·, θ) : θ ∈ Θ} be a set of density functions that satisfy Assumption

A.3 in Appendix A and F (θ) = (f(ε1, θ), . . . , f(εT , θ))
τ and f̄ = (f(ε1), . . . , f(εT ))τ . Then

the distance between f and F can be measured by the following normalized l2 distance

ρ(f,F) =

[
inf
θ∈Θ

(
1
T
‖f̄ − F (θ)‖2

)]1/2

, where ‖ · ‖ denotes the Euclidean norm.

Theorem 3.2. Let Assumptions A.1–A.7 listed in Appendix A and B.1–B.4 listed in Ap-

pendix B hold. In addition, if there is a Cρ > 0 such that lim
T→∞

P (ρ(f,F) ≥ Cρ) = 1 holds,

then

lim
T→∞

P (L∗ε̂ > l∗α) = 1. (3.24)
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Theorem 3.2 shows that if H0 is false, then ρ(f,F) ≥ Cρ for all sufficiently large T and

some Cρ > 0. A consistent test will reject a false H0 with probability approaching one as

T →∞.

3.2.2. Consistency of the Test against a Sequence of Local Alternatives

The purpose of this section is to show that L∗ε̂ is consistent against a sequence of of local

alternatives of the form

fT (ε) = f(ε, θ1) + CT∆T (ε) (3.25)

whose distance from the parametric model converges to zero at the rate determined by

CT ≥ C0T
−1/2
√

log log T for some C0 > 0 and θ1 ∈ Θ. For convenience, let

∆̄T = (∆T (ε1), . . . ,∆T (εT ))τ and f̄T = (fT (ε1), . . . , fT (εT ))τ .

We can now write the l2 distance

1

T
‖f̄T − F (θ1)‖2 =

C2
T

T
‖∆̄T‖2 = C2

T

(
1

T

T∑
t=1

|∆T (εt)|2
)
. (3.26)

To ensure that the rate of convergence of f̃T to the parametric model F (θ1) is the same as

the rate of convergence of CT to zero, we assume that for some δ > 0 ∆T (ε) is a continuous

function which is normalized so that

lim
T→∞

P

(
1

T

T∑
t=1

|∆T (εt)|2 ≥ δ

)
= 1. (3.27)

Theorem 3.3. Let Assumptions A.1–A.7 listed in Appendix A and B.1–B.4 listed in Ap-

pendix B hold. Let fT satisfy (3.25) with CT ≥ CT−1/2
√

log log T for some constant C > 0.

In addition, let condition (3.27) hold. Then

lim
T→∞

P (L∗ε̂ > l∗α) = 1. (3.28)

Theorem 3.3 implies a similar conclusion to what has been discussed in Theorem 3.2.

Remark 3.1. An important step to completing the mathematical proof of Theorems 3.1 to

3.3 is to establish the asymptotic result presented in (3.21). In view of (3.21), the results

of the theorems can then be conveniently obtained using Lemmas B.6 and B.7 of Gao and

King (2004). While the technical assumptions required in the establishment of these results

are presented in Appendix B below for convenience, a more detailed discussion of the proof

can be found in Appendix C of the supplementary document.
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Sections 4 and 5 below examine the finite–sample performance of the proposed estimation

and testing procedure.

4. Finite Sample Properties: Monte Carlo Studies

The objective of the Monte Carlo exercises conducted in this section is threefold. Firstly,

it is to provide some experimental evidence on the asymptotic optimality of the Cross Vali-

dation (CV) bandwidth selection in the estimation of the SEMI–ACD model. Although the

theoretical discussion of this result is presented in detail in Wongsaart et al. (2011), this

is the first time that an experimental evidence in support of such a procedure is provided.

Secondly, it is to assess the performance of our hypothesis test in finite samples. Thirdly, it is

to compare the finite sample performance of our testing procedure to that of other methods

in order to shed some further light on the problem of bandwidth selection in nonparametric

kernel testing. These methods are discussed in further detail below.

All computations in this section are done in Splus. While the specific details about each

exercise are given in a relevant sub–section below, let us introduce here the so–called Mackey–

Glass ACD (MG–ACD) model, which is employed in this section as a model example.

To facilitate the experimental studies in this section, we generate a MG–ACD model by

which the dynamics of the duration process is described as

ψt = γxt−1 + λ

(
ψt−1

1 + ψ2
t−1

)
(4.1)

with γ = 0.5 and λ = 0.75, respectively. The MG–ACD model is suitable for our exercises

for a number of reasons. The most important reason being the fact that the above given

functional form of g ensures that the simulated duration process {xt} is strictly stationary;

see Section 2.4 of Tjøstheim (1994) for detail. Secondly, it can be shown using Lemma 3.4.4

and Theorem 3.4.10 of Györfi et al. (1989) that the resulting conditional duration process

{ψt} is α-mixing. Hence, the dynamics of the simulated duration process is completely

explained by the conditional duration, which is essentially the key assumption behind most

of the ACD class of models.

4.1. Asymptotic Optimality of Bandwidth Selection in the SEMI–ACD Model

To construct an adaptive data–driven estimation without unnecessary complication, let

us begin our discussion with a usual case by which the conditional duration is assumed to
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be observable. For 1 ≤ n ≤ N = T − 1, the leave-one-out estimators of gj can be defined as

ĝj,n(ψn) =
1

N − 1

∑
s 6=n

Kh(ψn − ψs)xx+2−j

f̂h,n(ψn)
, (4.2)

and let ĝh,n(ψn) = ĝ1,n(ψn)−γĝ2,n(ψn), where f̂h,n(ψn) = 1
N−1

∑
s 6=nKh(ψn−ψs). The leave-

one-out estimate γ̃ψ(h) of γ is defined by minimizing
∑N

n=1 {xn+1 − γxn − ĝh,n(ψn)}2 ω(ψn).

Hence, the CV function in this case can be written as

CVψ(h) =
1

N

N∑
n=1

{xn+1 − γ̃ψ(h)xn − ĝ1,n(ψn) + γ̃ψ(h)ĝ2,n(ψn)}2ω(ψn), (4.3)

by which an optimal value ĥC,ψ of h is chosen such that

CV (ĥC,ψ) = inf
h∈HN

CV (h). (4.4)

Unobservability of the conditional duration in practice suggests that we replace ψn with

the algorithm–based estimate ψ̂n,m∗ . This leads to the ASE and the CV functions:

Dψ̂(h) =
1

N

N∑
n=1

{
[γ̂ψ̂(h)xn + ĝ∗h(ψ̂n,m∗)]− [γxn + g(ψn)]

}2

ω(ψ̂n,m∗), (4.5)

where ĝ∗h(ψ̂n,m∗) = ĝ1,h(ψ̂n,m∗)− γ̂ψ̂(h)ĝ2,h(ψ̂n,m∗), and

CVψ̂(h) =
1

N

N∑
n=1

{xn+1 − γ̃ψ̂(h)xn − ĝ1,n(ψ̂n,m∗) + γ̃ψ̂(h)ĝ2,n(ψ̂n,m∗)}2 ω(ψ̂n,m∗). (4.6)

In the context of the SEMI–ACD model, the cross–validation criterion consists of selecting

the value ĥC,ψ̂ of h that achieves

CVψ̂(ĥC,ψ̂) = inf
h∈HN

CVψ̂(h). (4.7)

Assuming that some suitable assumptions hold, Wongsaart et al. (2011) show that the

adaptive nonparametric prediction algorithm is asymptotically optimal in the sense that

Dψ̂(ĥC,ψ̂)

Dψ(h0)
−→P1, where h0 = arg minDψ(h)

h∈HN

. (4.8)

To establish an experimental evidence to illustrate that the bandwidth selected using

the rule in (4.7) is asymptotically optimal in the light of (4.8) we only have to demonstrate

that
Dψ̂(ĥC,ψ̂)

Dψ(ĥC,ψ)
−→P1 as T →∞. (4.9)
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The fact that the true data generating process is known in our simulation study suggests that

we are not only able to compute Dψ̂(ĥC,ψ̂) and CVψ̂(ĥC,ψ̂), but also Dψ(ĥC,ψ) and CVψ(ĥC,ψ).

Furthermore, in order to establish an empirical evidence to illustrate the consistency of

ε̂t,m∗ , we compute the average squared error

Dε̂(h) =
1

T

T∑
t=1

{ε̂t,m∗ − εt}2 (4.10)

for all number of observations considered, namely T = 250, 750, and 1, 400.

Mathematically, the innovation ε may follow any distributional function such that the

probability of it being less than zero is zero. However, to be consistent with the experimental

exercises that follow, we assume in this sub–section that {εt} ∼ Gamma(α, θ). A detailed

discussion on the gamma and other distributions considered in this paper is available below.

Table 4.1. Asymptotic optimality of bandwidth selection in SEMI–ACD model.

T Dψ̂(ĥC,ψ̂) Dψ(ĥC,ψ) rD CVψ̂(ĥC,ψ̂) CVψ(ĥC,ψ) rCV Dε̂(h)

250 0.0073 0.0065 1.1415 0.3664 0.3666 1.0003 0.0087

750 0.0047 0.0056 1.0485 0.3771 0.3788 0.9968 0.0063

1,400 0.0039 0.0052 1.0008 0.3745 0.3758 0.9963 0.0053

Note: In the above table, let rD =
D
ψ̂
(ĥ
C,ψ̂

)

Dψ(ĥC,ψ)
and rCV =

CV
ψ̂
(ĥ
C,ψ̂

)

CVψ(ĥC,ψ)
.

Table 4.1 presents the simulation results about the asymptotic optimality of bandwidth

selection in SEMI–ACD estimation. The forth column of Table 4.1 presents the results of

rD for each number of observations being considered. Clearly, the asymptotic optimality

condition in (4.9) is well supported by these results. In this case, the resulting rD have

tendency to converge to 1 as T increases. rD = 1.0008 at T = 1, 400 is very close to 1.

Furthermore, Dε̂(h), which is reported in the last column of the table, has also shown a

strong tendency to converge to zero as T →∞. This is a convincing experimental evidence

in support of our theory about the consistency of ε̂t,m∗ in Section 2.

4.2. Nonparametric Specification Tests

In this section, we perform finite sample studies on the size and power of the test studied

above against a number of alternatives as outlined in Section 3. To examine the robustness

of the test, we attempt to formulate models with data generating processes that exhibit
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hazard rate functions of different shapes. To achieve this objective, here we employ a family

of three–parameter generalized gamma densities given by

fGG(ε;α, θ, δ) =

{
δεδα−1

θδαΓ(α)

}
exp

{
−
(ε
θ

)δ}
for ε ≥ 0, (4.11)

where α > 0, θ > 0 and δ > 0. These may include, among others, the gamma distribution

(δ = 1), the exponential distribution (α = 1 and δ = 1) and the weibull distribution (α = 1),

whose probability density functions can be, respectively, written as

fG(ε; θ, α) =

{
εα−1

θαΓ(α)

}
exp

{
−
(ε
θ

)}
, fE(ε;λ) = λ exp{−λε} (4.12)

and

fW (ε; θ, δ) =
δ

θ

{ε
θ

}δ−1

exp

{
−
(ε
θ

)δ}
,

where λ = 1
θ
.

Glaser (1980) derives a well–known result which examines the sign of η′ = −f ′(ε)
f(ε)

in order

to determine the shape of its hazard rate function. To apply Glaser’s result, let us first define

the following functions:

η′GG(ε) =
−f ′GG(ε)

fGG(ε)
= ε−2

[
(δα− 1) + δ(δ − 1)

(ε
θ

)δ]
, (4.13)

η′G(ε) =
−f ′G(ε)

fG(ε)
= ε−2(α− 1), (4.14)

η′E(ε) =
−f ′E(ε)

fE(ε)
= 0. (4.15)

A number of conclusions can then be drawn about the shape of the hazard rate functions

of the generalized gamma, gamma and exponential distributions. Let us present some cases,

which are useful for our studies, in Table 4.2.

Table 4.2. Shapes of the generalized gamma hazard rate functions.

Cases Parameters Hazard Rate Function

(1) δα− 1 < 0 δ = 1 and α < 1 Decreasing (Gamma Density)

δ < 1 and α = 1 Decreasing (Weibull Density)

δ > 1 U–Shaped

(2) δα− 1 > 0 δ = 1 and α > 1 Increasing (Gamma Density)

δ > 1 and α = 1 Increasing (Weibull Density)

δ < 1 Inverted U–Shaped

(3) δα− 1 = 0 δ = 1 and α = 1 Constant (Exponential Density)
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To provide experimental evidence on the effectiveness of the test based on {ε̂t,m∗} instead

of {εt}, we provide the results for each version of the test in two tables. The first table

presents rejection rates for the marginal density test when implemented on a random sample

generated under either the null (size) or the alternative (power) hypothesis, i.e. the test

statistic being considered in this case is L∗ε. These results are compared to those of the

second table that contains the rejection rates when the tests are implemented on the SEMI–

ACD residuals. That is, we use the random sample generated for the first table to simulate

the MG–ACD process, estimate the SEMI–ACD model to obtain ε̂t,m∗ and then apply our

testing procedure. Therefore, the test statistic being considered in this case is L∗ε̂.

Throughout the simulation, to compute the nonparametric estimators involved, we

choose the normal kernel function given by

k(x) =
1√
2π
e−

x2

2 . (4.16)

Furthermore, HT is as defined in (3.17) with hmin = T−
11
36 , hmax = 2(log log T )−1, and a = 35

36
.

Three different sizes of sample, namely T = 176, 301, and 501, are considered. The corre-

sponding simulated critical values at the α-level are found by using the simulation scheme

proposed in Section 3.2, which is implemented at M = 1, 000. The number of simulations

used in producing the proceeding tables is 200.

4.2.1. Size of the Test

In this section, we consider the following null hypotheses:

(a) H0 : f(ε) = fGG(ε, θ0) with θ0 = (α0 = 2, δ0 = 0.9, β0 = 0.5), which suggests that the

generalized gamma hazard rate function is inverted U–shaped.

(b) H0 : f(ε) = fG(ε, θ0) with θ0 = (α0 = 2, β0 = 1), which suggests that the gamma

hazard rate function is monotonically increasing.

(c) H0 : f(ε) = fE(ε, λ0) with the rate parameter of λ0 = 0.5.

Table 4.3. The size of the test L∗ε.

H0 : f(ε) = fGG(ε, θ0) H0 : f(ε) = fG(ε, θ0) H0 : f(ε) = fE(ε, λ0)

T α = 5% α = 1% α = 5% α = 1% α = 5% α = 1%

176 0.060 0.020 0.065 0.020 0.035 0.010

301 0.055 0.010 0.045 0.005 0.050 0.010

501 0.050 0.010 0.050 0.010 0.045 0.020
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Table 4.4. The size of the test L∗ε̂.

H0 : f(ε) = fGG(ε, θ0) H0 : f(ε) = fG(ε, θ0) H0 : f(ε) = fE(ε, λ0)

T α = 5% α = 1% α = 5% α = 1% α = 5% α = 1%

176 0.065 0.02 0.055 0.020 0.040 0.005

301 0.055 0.02 0.045 0.005 0.055 0.010

501 0.045 0.01 0.045 0.01 0.060 0.020

Tables 4.3 and 4.4 present simulation results on the size values of L∗ε and L∗ε̂, respec-

tively. In all cases, the rejection rates obtained are quite close to their corresponding critical

levels. Furthermore, generally all the rates in Table 4.4 are similar to those of their ε based

counterparts in Table 4.3. In Sections 4.2.2 and 4.2.3 below, we also introduce a measure,

which enables this particular issue to be investigated in more detail.

4.2.2. Power of the Test against a Fixed Alternative

We examine in this section the power of the test in the following hypotheses

H0 : f(ε) = fE(ε, θ0) vs. Ha : f(ε) = fG(ε, θj) (4.17)

H0 : f(ε) = fE(ε, θ0) vs. Ha : f(ε) = (1− Cs)fE(ε, θ1) + Cs ϕ(ε) (4.18)

for j = 1, 2, 3 and s = 1, 2, 3, where 0 < Cs < 1, θj are vectors of gamma parameters defined

in the table below and ϕ(ε) represents a nonparametric density function. The first set is

constructed so that comparatively restrictive densities, with respect to the implied shape of

the hazard rate function under H0, are tested against a set of more flexible densities. Specif-

ically, we look at testing the null hypothesis of fE(ε, θ0) with a constant hazard rate function

against alternatives fG(ε, θj) for j = 1, 2, 3, whose hazard rate functions are incrementally

increasing. With regard to the second set, to ensure that the alternative function in this

case is still a probability density and that it is fairly close to the exponential law under H0,

we let

ϕ(ε) =

 1(
1
4

) 1
4

 ε−
3
4

Γ
(

1
4

) exp

{
−4

ε

}
, (4.19)

which is a gamma density with α = θ = 1
4
.

The power of the test depends naturally on the distance between H0 and Ha. Let fHa(ε)

denotes the density function under the alternative hypothesis. Then to quantify this distance,

we calculate

D(fHa(ε)) =

∫
(fE(ε, θ0)− fHa(ε))2fE(ε, θ0)dε. (4.20)
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Table 4.5 summarizes the types of the distribution considered in this section and the distance

D(fHa(ε)) between the null and the alternative hypotheses.

These distances are also shown graphically in Figures 4.1 and 4.2. In these figures, the

black line represents the density under the null hypothesis, while other lines indicate the

alternatives, which are further and further away from H0.

Table 4.5. Distance D(fHa(ε)).

Testing Examples Denotation Densities α δ β D(fHa(ε))

Set 1 E fE(ε, θ0) 1.0 1.0 1.0 ·
G1 fG(ε, θ1) 1.3 1.0 1.0 0.0010

G2 fG(ε, θ2) 1.5 1.0 1.0 0.0025

G3 fG(ε, θ3) 1.7 1.0 1.0 0.0049

Testing Examples Denotation Densities Cs D(fHa(ε))

Set 2 E fE(ε, θ0) · ·
SDC1 (1− C1)fE(ε, θ1) + C1 ϕ(ε) 0.15 0.0001

SDC2 (1− C2)fE(ε, θ2) + C2 ϕ(ε) 0.17 0.0003

SDC3 (1− C3)fE(ε, θ1) + C3 ϕ(ε) 0.19 0.0004

Figure 4.1. E, G1, G2 and G3.
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Note that in the following tables, the quantities in the square brackets are computed as

the following. Let r = 1, . . . , 200 represent the simulated replications,

Q = {r|r is the replication, i.e. 1, 2, . . . , 200, that is rejected by L∗ε},

Q̂ = {r|r is the replication, i.e. 1, 2, . . . , 200, that is rejected by L∗ε̂}

and, therefore, Q̂
⋂
Q is the set of those that are rejected by both L∗ε and L∗ε̂. The values in

the square brackets are the quotient R1

R2
by which R1 and R2 are the numbers of elements in

Q̂
⋂
Q and Q, respectively. Hence, the closer to one the values in the square brackets are,

the larger proportion of rejections using L∗ε, which are also rejected by L∗ε̂.

Let us focus first on the top panel of Tables 4.6 and 4.7. As expected, we are able to

achieve higher power of the test for cases where the distances are relatively large. In all

cases, the power of the test against the given set of fixed null hypotheses improves as T

becomes large. Overall, the power values of L∗ε look reasonable even with H0 and Ha, which

are quite close, and with such small numbers of observations.

Figure 4.2. E, SDC1, SDC2 and SDC3.
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Table 4.6. Power of the test (Set 1).

Power of the Test L∗ε against Fixed Alternatives

α = 5% α = 1%

fG(·, θ1) fG(·, θ2) fG(·, θ3) fG(·, θ1) fG(·, θ2) fG(·, θ3)

T = 176 0.035 0.050 0.182 0.005 0.020 0.085

T = 301 0.120 0.345 0.475 0.015 0.115 0.195

T = 501 0.250 0.655 0.861 0.075 0.345 0.505

Power of the Test L∗ε̂ against Fixed Alternatives

α = 5% α = 1%

fG(·, θ1) fG(·, θ2) fG(·, θ3) fG(·, θ1) fG(·, θ2) fG(·, θ3)

T = 176 0.060[0.580] 0.065[0.769] 0.175[0.914] 0.010[0.000] 0.015[0.670] 0.040[1.000]

T = 301 0.115[0.782] 0.390[0.871] 0.485[0.896] 0.005[1.000] 0.120[0.875] 0.160[0.875]

T = 501 0.190[1.000] 0.585[1.000] 0.790[1.000] 0.020[0.250] 0.155[0.903] 0.250[0.940]

Table 4.7. Power of the test (Set 2).

Power of the Test L∗ε against Fixed Alternatives

α = 5% α = 1%

SDC1 SDC2 SDC3 SDC1 SDC2 SDC3

T = 176 0.115 0.180 0.205 0.030 0.075 0.085

T = 301 0.190 0.275 0.325 0.070 0.115 0.165

T = 501 0.335 0.520 0.630 0.160 0.280 0.400

Power of the Test L∗ε̂ against Fixed Alternatives

α = 5% α = 1%

SDC1 SDC2 SDC3 SDC1 SDC2 SDC3

T = 176 0.115[0.826] 0.180[0.805] 0.220[0.863] 0.025[0.600] 0.040[0.880] 0.040[0.750]

T = 301 0.245[0.775] 0.285[0.912] 0.395[0.757] 0.075[0.800] 0.140[0.714] 0.190[0.789]

T = 501 0.303[0.990] 0.505[0.970] 0.615[0.950] 0.090[0.777] 0.185[0.810] 0.275[0.909]

With regard to the bottom panel, let us illustrate, with a few examples, how these results

can be interpreted. Observe that the results shown in the top and the bottom panels of Table

4.7 for fG(·, θ3) at T = 501 are 0.861 and 0.790[1.000], respectively. Given that the total

number of replications used in this study is R = 200, these results suggest that the number

of rejection for L∗ε is 176, i.e. 0.88× 200, compared to 158 for L∗ε̂. Furthermore, the number
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in the square bracket suggests that, out of 172 rejections by L∗ε, 158 have been correctly

rejected by L∗ε̂ leaving 28 + 14 = 42, which the tests fail to reject.

Now, let us concentrate on cases by which α = 5%, i.e. columns 2 to 4, of the tables. In

all cases, the power values of the tests have strong tendency to converge to 1 as T increases.

The power values are reported to be quite close to 1 for both sets of examples, even with such

a small number of observation of 501. This tendency is also what we can observe about the

quotient R1

R2
. Furthermore, the power values presented in the bottom panels are reasonably

close to those of the top panels. Clearly, these results offer an experimental evidence in

support of the asymptotic consistency of the test stated in Theorem 3.2 above.

4.2.3. Power of the Test against a Sequence of Local Alternatives

To study the power of the test against a sequence of local alternatives, the test in this

subsection is constructed so that although globally ε has a gamma distribution with either

monotonically increasing or decreasing hazard rate, it may deviate locally at some finite T

by a ratio of some nonparametric density function, which converges to zero as T →∞.
Specifically, the null and alternative hypotheses in this example are constructed as

H0 : f(ε) = fG(ε, θ0) vs. Ha : fT (ε) = (1− CT )fG(ε, θ1) + CT ϕ(ε), (4.21)

where CT = T−
1
2

√
log log T . To introduce the above–mentioned local deviation, while en-

suring that the alternative function in this case is a probability density and that it is fairly

close to the density law under H0, we let

ϕ(ε) =

(
7

10

)
ε

4
10

Γ(2)
exp

{
−ε

7
10

}
, (4.22)

which is an inverted U–shaped hazard rate function generalized gamma density with α = 2,

δ = 0.7 and θ = 1. While the first column in Table 4.8 presents the values of the probability

mixing parameters C176, C301 and C501, the second column displays the distances between

the resulting mixing density functions and the null hypothesis. These distances are also

demonstrated graphically in Figure 4.3, where the black line represent the density under H0.
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Table 4.8. Power of the Tests

Power of the Tests L∗ε and L∗ε̂ against a Sequence of Local Alternatives

L∗ε L∗ε̂

CT D(fHa(ε)) T α = 5% α = 1% α = 5% α = 1%

C176 = 0.096 0.00037 176 0.335 0.125 0.282[0.835] 0.115[0.800]

C301 = 0.076 0.00026 301 0.355 0.095 0.332[0.915] 0.085[0.842]

C501 = 0.051 0.00018 501 0.367 0.127 0.339[0.864] 0.135[0.920]

The results in the sixth and seventh columns in Table 4.8 can be interpreted in a similar

manner as those of Tables 4.6 and 4.7 above. Using the distance in the second column as

a criterion, it is clear that the power values of the tests with the alternative hypotheses

associated with C176, C301 and C501 should, at least, be comparable with those of SDC3 at

T = 176, SDC2 at T = 301 and SDC1 at T = 501, respectively. The fact that the power

values of 0.335, 0.355 and 0.367 in Table 4.8 are larger than 0.220, 0.285 and 0.303 of Table

4.7 is a convincing evidence in support of the asymptotic results in Theorem 3.3.

Figure 4.3. Sequence of local alternatives.

25



4.3. Boundary Bias and Bandwidth Selection in Nonparametric Kernel Testing

As mentioned earlier, the so–called boundary bias is the difficulty that may exist in

nonparametric estimation using a fixed kernel due to the fact that duration has a support

which is bounded from below. In an attempt to minimize the impact of such problem,

Fernandes and Grammig (2005) follow a suggestion in the literature, such as Chen (2000),

and establish an asymmetric kernel version of the test.

Fernandes and Gramming’s so–called D-Test rests on measuring the distance

Φf =

∫
ε

I(ε ∈ S)[f(ε, θ)− f(ε)]2 dF (ε), (4.23)

where
∫
ε

denotes the integral over the support of the density function ε and I(·) is the indica-

tor function. The D-Test gauges the discrepancy between the parametric and nonparametric

estimates of the density function, which gives light to the following functional of interest

Φf̃ =

∫
ε

I(ε ∈ S)[f(ε, θf̃ )− f̃(ε)]2 dFT (ε), (4.24)

where θf̃ and f̃(·) denote pointwise consistent estimates of the true parameter θ0 and density

f(·), respectively. Fernandes and Grammig (2005) estimate the density function using the

gamma kernel

k x
bT+1

,bT (u) =
u

x
bT exp

(
− u
bT

)
Γ
(

x
bT +1

)
b

x
bT+1

T

I(u ≥ 0) (4.25)

with bandwidth bT , while show that

L̃FG(bT ) =
Tb

1
4
TΦf̃ − b

1
4
T δ̃

σ̃
→
D
N(0, 1),

where δ̃ and σ̃ are consistent estimates of

δ =
1√
π
E
[
I(ε ∈ S)ε−

1
2f(ε)

]
and σ2 =

1√
π
E
[
I(ε ∈ S)ε−

1
2f 3(ε)

]
,

respectively. In practice, the bandwidth of the test is selected using an under–smoothing

adjusted version of the rule–of–thumb bandwidth, i.e.

b̂T =
1

log T

{
λ̂

4

}− 1
5

(2− λ̂)−
4
5T−

4
9 ,

where λ̂ is some consistent estimator of the exponential parameter λ.
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We compare in this section the size and power properties of
̂̃
LFG(̂bT ) computed using Φ̂f̃ ,

which is the sample analog of (4.24), and L∗ε. The comparison is done under the following

null and alternative hypotheses

H0 : f(ε) = fG(ε, θ0) vs. Ha : f(ε) = {0.95× fG(ε, θ1)}+ {0.05× fW (ε, θ1)}. (4.26)

Specifically, fG(ε, θ0) and fG(ε, θ1) are the density functions of a gamma distribution with

α = 2 and θ = 2, and α = 2 and θ = 3, respectively. Furthermore, fW (ε, θ1) is the density

function of a weibull distribution with θ = 3 and δ = 1.

In order to focus the discussion in this section specifically on the comparison of the two

tests, we only concentrate on the case where a random sample is generated from a known

density under either the null or the alternative hypothesis. Three different sizes of sample,

namely T = 300, 500 and 700 are considered. The corresponding simulated critical values

at the α-level are found by using the simulation scheme proposed in Section 3, which is

implemented at M = 1, 000. The number of simulations used in producing the proceeding

tables in this section is 200. The detailed results at the 1%, 5% and 10% significance levels

are given in Table 4.9.

Table 4.9. Simulated size and power values at 1%, 5% and 10% significance levels.

Sample size Null hypothesis is true. Null hypothesis is false.

T
̂̃
LFG(̂bT ) L∗ε

̂̃
LFG(̂bT ) L∗ε

1% significance level

100 0.005 0.005 0.065 0.185

300 0.015 0.015 0.065 0.715

500 0.020 0.015 0.100 0.950

700 0.010 0.010 0.080 0.995

5% significance level

100 0.040 0.045 0.145 0.380

300 0.045 0.055 0.175 0.830

500 0.005 0.055 0.205 0.995

700 0.040 0.050 0.245 1.000

10% significance level

100 0.085 0.100 0.230 0.495

300 0.095 0.090 0.260 0.910

500 0.080 0.115 0.315 1.000

700 0.070 0.095 0.320 1.000
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Table 4.9 reports comprehensive simulation results for both the size and power values

of the two test statistics. It is clear in the third column of each panel of the table that the

sizes of L∗ε are more consistent across both significance levels and number of observations.

The gamma–kernel–based test,
̂̃
LFG(̂bT ), seems to perform relatively poorly in this aspect.

Furthermore, the power values of L∗ε reported in the forth column are always greater than

those of
̂̃
LFG(̂bT ) in the third column. It seems that

̂̃
LFG(̂bT ) achieves lower power values in

all categories.

5. Econometric Analysis of Price Duration Process

Having defined the inter–event waiting times as financial durations, we are able to classify

these durations further according to their events of interest. Some of the most commonly

studied duration processes in high frequency data literature are trade and quote durations

which are defined as the time between two consecutive trade and quote arrivals, respectively.

More recently, much attention has also been paid on the econometric modeling of price

durations, which correspond to the time between cumulative absolute price changes of a

given size. The econometric modeling of price durations is important for at least three

reasons, namely (i) there is a direct relationship between the price intensity and volatility as

pointed out by Engle and Russell (1998), (ii) the behavior of price durations has important

implications for option pricing as shown by Prigent et al. (2000) and (iii) price duration

process can be used to empirically test microstructure theories as demonstrated by Bauwens

et al. (2004) and Engle and Russell (1998).

The empirical analysis in this paper applies the above explained two–staged estimation

and testing to study the price duration process at the NYSE and the ASX. There are two

sets of data used in this analysis. The first dataset is the IBM data used in Engle and

Russell (1998). A total of 60,328 transactions were recorded for IBM over the three months

of trading on the consolidated market from November 1990 through January 1991. As per

the seminal paper, two days from the three months were deleted. A halt occurred on 23rd

November and a more than one hour opening delay occurred on 27th December. The second

dataset is that of AMP stock, which is listed on the Australian Stock Exchange. The dataset

is tick–by–tick data for the period of April to June 2000.

The first half hour of the trading days, i.e. trades before 10:00am, are omitted. This

is to avoid modeling the market which is characterized by a call auction followed by heavy
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activity. The dynamics are likely to be quite different over this period. Furthermore, the

call auction transactions are not recorded at the same time each morning. In addition, all

trades after 4:00pm are also omitted.

To construct the price duration processes, the so–called dependent thinning is performed.

In essence only the points at which the price has changed significantly since the occurrence

of the last price change is kept. In order to to minimize the effects of errant quotes two

consecutive points were required to have changed more than a threshold value, c, since the

last price change. Engle and Russell (1997) provide a more formal explanation of the thinning

method as follows:

(i) Retain point 1.

(ii) Retain point s > 1 if |ps − pj| > c and |ps+1 − pj| > c where j is the index of the most

recent retained point and the constant c represents a threshold value.

It is widely documented in the high–frequency data literature, for example Giot (2000),

that price durations feature a strong time–of–day effect related to predetermined market

characteristics such as trade opening and closing times, and lunch time for traders. In the

current paper, we assume that the stationary price duration series, which to be modeled in

the SEMI–ACD procedure, can be computed as

xt =
νt

φ(it−1)
= ψtεt, (5.1)

where νt denotes the observed price duration as constructed earlier and φ(it−1) denotes an

intraday diurnal factor.

Table 5.1. Descriptive Statistics

Descriptive Statistics νIBM x̃IBM ε̂IBM νAMP x̃AMP ε̂AMP

Mean 892.58 1.36 1.02 900.66 0.93 1.01

Standard Deviation 1258.89 2.09 1.58 1478.88 1.48 1.59

Kurtosis 11.26 14.82 15.30 19.94 21.70 21.37

Skewness 2.86 3.29 3.35 3.82 3.92 3.93

Minimum 1.00 0.00 0.00 1.00 0.00 0.00

Maximum 10609.00 19.12 14.45 15082.00 15.92 15.52

Ljung–Box[10] 42.50 34.20 23.44 91.60 79.18 24.55

(0.000) (0.000) (0.012) (0.000) (0.000) (0.010)
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The second and the fifth columns of of Table 5.1 present the descriptive statistics of IBM

and AMP observed price duration, respectively. Note that the variables in the remaining

columns of the table will be considered at a later stage. While, the average price dura-

tions for the IBM and AMP samples are 893 and 900 seconds, the maximum are 10,609

and 15,082 seconds, respectively. Minimum price duration for both IBM and AMP is 1

second. The Ljung–Box test values of 42.50 and 91.60 indicate strong clustering behavior

and autocorrelation in both IBM and AMP price duration series.

Following a similar modeling procedure in Wongsaart et al. (2011), in this paper we

estimate the diurnal factor φ(it−1) of the calendar time it−1 at which the t-th duration

begins using the kernel regression smoothing technique with the smoother defined as

φ̂h (it−1) =
N∑
v=1

Wv,h(it−1)νv, (5.2)

where Wv,h(y) = Kh(y−it−1)∑T
t=2Kh(y−it−1)

is a kernel weight function. In our calculation, an asymp-

totically optimal bandwidth parameter is selected using the leave–one–out cross valida-

tion selection criterion such that HT =
{
h = hmaxa

k : h ≥ hmin, k = 0, 1, 2, . . .
}
, where 0 <

hmin < hmax and 0 < a < 1. Letting JT denotes the number of elements of HT , we define

JT ≤ log1/a(hmax/hmin).

Figure 5.1. Expected price duration on hour of day for AMP (left panel) and IBM (right panel).

Figure 5.1 presents the kernel estimates of the diurnal factors associated with the IBM

and AMP price duration processes. As expected, the price durations are shortest in the
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morning and just prior to the close with a noticeable lull between during lunch hours. These

results are consistent with those found in existing literature; see, for example, Engle and

Russell (1998).

The next step is to model the ratio of the actual to the fitted value x̃t = νt
φ̂h(it−1)

as a

SEMI–ACD(1,1) model of the diurnally adjusted series of price durations. However, before

doing so, let us also check to see if diurnal adjustment alone is able to take care of serial

correlation and duration clustering. The Ljung–Box statistic reported in the third and the

sixth columns of Table 5.1 suggests that the diurnal adjusted price duration series of both

IBM and AMP still strongly exhibit these peculiar time series features. Hence, the use of

the SEMI–ACD procedure to model the stochastic component of price duration processes is

essential.

To this end, a number of previous studies in the field of nonparametric kernel estimation

have suggested that the choice of the kernel function is much less critical than the bandwidth

choice. To estimate the SEMI–ACD model, we employ the quartic kernel function

K(u) =


(

15
16

)
(1− u2)2 if |u| ≤ 1

0 otherwise
(5.3)

An estimation–based optimal bandwidths for each of the iteration step is selected using an

adaptive cross validation algorithm as discussed in Section 4.1. Finally, we select m∗ = 7 by

using a similar procedure discussed in detail in Wongsaart et al. (2011).

Hereafter, we let “IBM–ACD” and “AMP–ACD” abbreviate the SEMI–ACD(1,1) models

of IBM and AMP, respectively. In the IBM–ACD and AMP–ACD models, the kernel WLSE

estimates of the unknown parameter γ are 0.0363(0.1459) and 0.1852(0.1585), respectively.

(The values in the parentheses are the standard errors.) Furthermore, the left and right

panels of Figure 5.2 present the empirical estimate of g in the IBM–ACD and the AMP–

ACD models, respectively. Even though the two curves look similar in shape, the figure

suggests a much stronger influence of previous durations on the dynamics of the duration

process for AMP. On the contrary, the IBM–ACD suggests that the dynamics of the process

is mainly driven by the lag value of conditional duration. Furthermore, in obtaining these

results, we also find that the estimation–based optimal bandwidths selected for the SEMI–

ACD algorithm are close to 0.3 for IBM–ACD, while they are about 1.25 for the case of

AMP–ACD.
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Figure 5.2. Empirical estimate of the unknown real valued function g(·).

To proceed with the hypothesis testing, the empirical estimates of the standardized

durations must now be computed based on the formula

ε̂t,m∗ =
νt

φ̂h(it−1)ψ̂t,m∗
. (5.4)

The descriptive statistics of the series is presented in Table 5.1 above.

There are numerous suggestions in the duration literature on how the baseline hazard for

the price durations can be empirically estimated. We consider in this paper an alternative

approach, which is to (1) estimate the density of the empirical standardized durations using

kernel density estimation, (2) compute the associated survival function and (3) take the

quotient of the two to obtain the baseline hazard. The survival function of ε is the function

Sε defined by Sε(e) = Pr(ε > e) for all e. Let us define f̂ε(e) as a nonparametric kernel

density estimate of the form

f̂ε(e) =
1

Th

T∑
t=1

k

(
et − e
h

)
, (5.5)

where h is the bandwidth parameter. If k(z) is the normal kernel function, Wongsaart et al.

(2011) suggest that we estimate Sε(e) using

Ŝε(e) =
1

T

T∑
t=1

Φ

(
et − e
h

)
(5.6)
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where Φ(u) = 1√
2π

∫ u
−∞ exp

{
−u2

2

}
du. In order to use the formulae in (5.5) and (5.6), we only

have to replace et by ε̂t,m∗ .

Figures 5.3 and 5.4 present the kernel density estimates of the density functions of

the standardized durations for IBM and AMP, respectively. In these cases, the bandwidth

parameter used is an estimation–based optimal bandwidth that is selected based on the

unbiased cross validation criterion; see, for example, Li and Racine (2007). The figures

illustrate graphically the impacts of the new semiparametric regression on the subsequent

density estimation by comparing the kernel density estimate based on the SEMI–ACD to

that of Engle and Russell’s Weibull ACD (WACD) model. There are clear differences in

the shape of the estimates for both IBM and AMP. Below, we employ our newly developed

testing procedure to investigate, if further evidence can be established in support of such

graphical findings.

Figure 5.3. Kernel density estimate of the density function for IBM: SEMI–ACD vs WACD.

However, unlike in the above finite sample studies, γ and g are both unknown in appli-

cations. Hence, in order to apply our testing procedure, we propose the following steps for

computing the p-values of L∗ε̂:

(5.1) Compute ψ̂t,m∗ and generate {ε̂∗t}, which is a sequence of i.i.d. bootstrap re–samples

generated under the null hypothesis.
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(5.2) Compute x̂∗t =
ψ̂t,m∗

ε̂∗t
and the corresponding L∗ε̂ based on

x̂∗t = γ̂ψ̂(h)xt−1 + ĝh(ψ̂t,m∗) + η̂∗t ,

where η̂∗t = ψ̂t,m∗(ε̂
∗
t − 1).

(5.3) Repeat the proceeding steps M times in order to produce M versions of L∗ε̂, i.e. L∗ε̂,m

for m = 1, 2, · · · ,M. Find the bootstrap distribution of L∗ε̂,m and then compute the

proportion in which L∗ε̂ < L∗ε̂,m. This proportion is then a simulated p-value of L∗ε̂.

Figure 5.4. Kernel density estimate of the density function for AMP: SEMI–ACD vs WACD.

There is also a few other practical issues that must be addressed prior to performing

our testing procedure. The first issue concerns the set of parameters to be used with the

distribution under the null hypothesis in step 5.1. Our experience suggests that the resulting

p-values can be vastly different from one type to another. In this paper, we first obtain the

maximum likelihood estimates of the parameters of the density function under the null

hypothesis, then use these to generate {ε̂∗t}.
Secondly, the use of the maximized version of the test statistic suggests that selection

HT can have significant impacts on the final conclusions of the results. For both estimation
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and testing, a specific formulation of HT employed here is a geometric grid of the form

HT = {h = hmaxa
k : h ≥ hmin, k = 0, 1, 2, . . .}, (5.7)

where 0 < hmin < hmax and 0 < a < 1. In this case, JT ≤ log1/a(hmax/hmin). More detailed

conditions on hmax and hmin are given in Appendix A. In order to perform hypothesis testings,

we choose a = 0.25 and b = 0.4.

Figure 5.5. Empirical estimate of baseline hazard for price durations.

The third issue involves choices of parametric marginal density functions to be tested.

Figure 5.5 gives the empirical estimates of the baseline hazards of the two sets of data,

namely IBM and AMP. Both panels of the figure display curves that are essentially downward

slopping. Therefore, an exponential distribution, which implies a constant hazard function,

can be safely excluded for both cases. In fact the monotonic shape of the curves in Figure

5.5 is consistent with that of the hazard functions of the gamma and weibull distributions.

Nonetheless, there are some aspects of the figures which suggest that overall the curves

might be U–shaped and are therefore consistent with a hazard function of a generalized

gamma distribution. In order to provide further evidence either for or against such findings,
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the parametric density functions that we will concentrate our testing on are those of the

gamma, weibull and the generalized gamma distributions.

Finally, it is well known that if a probability density function has bounded support, kernel

density estimates often overspill the boundaries and are consequently especially biased at

and near these edges (Jones (1993)). Even though our earlier experimental results perform

well in finite sample, in order to minimize the potential impact of such the problem and

given the fact, as can be evidenced in Figures 5.3 and 5.4, that only a small proportion of

the sample is near zero, the test statistics of all testings considered here are computed as

N̂T,ε̂(h) = h
T∑
t=1

{f̂(ε̂t,m∗)− f̃(ε̂t,m∗ , θ̃)}2 ω(ε̂t,m∗), (5.8)

where ω(·) is a weight function such that ω(y) =

 1 if |y| ≤ 0.05

0 otherwise
.

Hereafter, let us denote the standardized duration process of the WACD model and its

WACD based estimate by ξt and by ξ̂t, respectively. Our testing strategies are the following:

Test 1: We test the null H01 : ∃θ0 ∈ Θ such that fW (ξ, θ0) = f(ξ) against the alternative

hypothesis that there is no such θ0 ∈ Θ as a mean to assess the goodness of fit of the

weibull distribution assumption.

Test 2: For the sake comparison, we test the following hypotheses:

(i) H021 : ∃θ0 ∈ Θ such that f(ε) = fW (ε, θ0) against the alternative hypothesis that

there is no such θ0 ∈ Θ.

(ii) H022 : ∃θ0 ∈ Θ such that f(ε) = fG(ε, θ0) against the alternative hypothesis that

there is no such θ0 ∈ Θ.

Table 5.2 reports our test results. The table shows strong evidence of a misspecification

of the WACD model for both IBM and AMP. Such results are consistent with the findings in

Engle and Russell (1998). With regard to AMP, the nonlinearity in the SEMI–ACD model

is able to affect the testing result such that the null hypothesis of the weibull distribution is

no longer rejected at the 5% significance level; see Test 2(i). Nonetheless, this is not the case

for IBM. Even with the SEMI–ACD model, the null hypothesis of the weibull distribution

is still rejected at the 5% significance level. Furthermore, the null hypothesis of the gamma
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distribution also faces a similar rejection for both IBM and AMP. Therefore, we only are

able to find some empirical evidence based on the SEMI–ACD specification in support of

the gamma distribution for the case of AMP. Some further analysis is clearly required for

IBM.

Table 5.2. Hypothesis testing on the parametric density function of the standardized duration.

Testing Strategy Distribution IBM/AMP p-values

Test 1: Weibull IBM 0.024

AMP 0.000

Test 2(i): Weibull IBM 0.019

AMP 0.163

Test 2(ii): Gamma IBM 0.021

AMP 0.000

Note: p-values are based on the empirical distribution of the test statistic stemming from 200 artificial

bootstrap samples.

Figure 5.6. Kernel density estimate of the density function.
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The black–dotted line in Figure 5.6 presents the nonparametric estimate of the density

of the standardized duration, while the pink–dotted and blue–dotted lines display density

functions of the gamma distribution (with α = 0.75 and θ = 1) and the weibull distribution

(with θ = 1 and δ = 0.75), respectively. While the gamma distribution fits the empirical

estimate better for the values of the standardized durations below 1, the figure also shows

that the weibull distribution fits better for larger values. This graphical evidence suggests

that a mixture of the weibull and gamma distributions might be appropriate. This leads us

to the third testing strategy.

Test 3: We apply our test to testing

H03 : f(ε) = (1−c0)fW (ε, θ0)+c0fG(ε, θ0) versus H13 : f(ε) = (1−c1)fW (ε, θ1)+c1ϕ(ε),

where ϕ denotes a nonparametric density.

For the sake of comparison, Figure 5.7 presents the gamma density (with α = 0.65 and

θ = 1), the weibull density (with θ = 1 and δ = 0.70) and the weibull–gamma mixture

density (with the mixture parameter c = 0.61) of standardized durations, where α, δ and c

are estimated using a maximum likelihood method.

Table 5.3. Hypothesis testing on the parametric density function of the standardized duration.

Testing Strategy Distribution IBM/AMP p-values

Test 3: Mixture Weibull IBM 0.44

Generalized Gamma IBM 0.13

AMP 0.65

Note: p-values are based on the empirical distribution of the test statistic stemming from 200 artificial

bootstrap samples. The test of the null hypothesis of the generalized gamma distribution was implemented

in the Generalized Additive Models for Location Scale and Shape (GAMLSS) package in R.

With regard to the scale parameter, we set θ = 1. In order to implement the test,

the remaining parameters, namely α, δ and the mixture parameters, are estimated using

maximum likelihood estimation. Unlike in Table 5.2, for IBM, the results in Table 5.3

show that the null hypothesis of a mixture weibull–gamma distribution is not rejected at

the usual 5% significance level. Furthermore, the fact that the three distributions, namely

weibull, gamma and the mixture weibull–gamma, are all nested within the three–parameter

generalized gamma distribution, i.e. fGG(ε;α, θ, δ), suggests that it should also be interesting

38



to test the null hypothesis of such a generalized distribution. The results in Table 5.3

show, not surprisingly, that the null hypothesis of the three–parameter generalized gamma

distribution is not rejected at the usual 5% significance level for both IBM and AMP.

Figure 5.7. Gamma density, weibull density and weibull–gamma mixture density.

6. Conclusions

We have presented in this paper a two–step semiparametric kernel procedure to test the

parametric density function of financial durations. We have also illustrated that the non-

parametric kernel testing introduced here also performs well when implemented to test hy-

potheses based on stationary random variables in general. The procedure introduced in this

paper deviates significantly from that of Gao and King (2004). The most important feature

of our hypothesis testing in such environment is the fact that there exists a latency problem

that arises due to unobservability of the standardized duration. In this paper, we have shown

theoretically and experimentally the asymptotic costlessness of our testing procedure under

such the circumstance. Our experimental analysis also sheds further light on the issues of

boundary bias and bandwidth selection. While both are the most common problems facing
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nonparametric kernel testing, existing literature, such as Grammig and Maurer (2000), at-

tempt to address only the former. In this paper, although we concentrate mainly on the later,

we have also provided some experimental evidence that suggests that our testing procedure

performs better in the finite sample evaluation than its asymmetric kernel test counterpart.

Finally, we have demonstrated how our two–step procedure can be used to model and test

the price duration process in practice using data sets from the NYSE and the ASX. An

important finding obtained from such an exercise is the fact that the semiparametric func-

tional form specification of the conditional duration is able to influence the outcome of our

hypothesis testing of parametric density function. Furthermore, we have concluded that a

semiparametric mixture density can be a useful model for waiting–time in finance.

Appendices

Appendices A and B introduce a number of assumptions, which are required to establish that

the relevant asymptotic results established in Gao and King (2004) can be extended to deal with

the case where the unobserved {εt} is replaced by {ε̂t,m∗}. The proofs of (3.21) and Theorems

3.1–3.3 are given in Appendix C of the supplementary document.

Appendix A

Assumption A.1. (i) Assume that the processes {xt} are strictly stationary and α-mixing with

the mixing coefficient α(t) ≤ Cααt defined by

α(t) = sup{|P (A ∩B)− P (A)P (B)| : A ∈ Ω2
1, B ∈ Ω∞s+t}

for all s, t ≥ 1, where 0 < Cα < ∞ and 0 < α < 1 are constants and Ωj
i denotes the σ-field

generated by {xt : i ≤ t ≤ j}.

(ii) k is a symmetric probability kernel function and it is four–time differentiable on R1 =

(−∞,∞) with
∫ ∣∣k(r)(u)

∣∣ du < ∞ for r = 1, 2. In addition, k has an absolutely integrable

Fourier transform with
∫∞
−∞ u

2k (u) du <∞ and
∫∞
−∞ k

2(u)du <∞.

Assumption A.2. (i) The parameter space Θ ⊂ Rq is compact. In a neighborhood of the true

parameter θ0, f(ε, θ) is twice continuously differentiable in θ; E[(∂f(ε, θ)/∂θ)(∂f(ε, θ)/∂θ)τ ]

is full rank. In addition, assume that G(ε) is a positive and integrable function with E[G(εt)] <

∞ uniformly in t ≥ 1 such that supθ∈Θ |f(εt, θ)|2 ≤ G(εt) and supθ∈Θ ||∇
j
θf(εt, θ)||2 ≤ G(εt)

for j = 1, 2, 3, where for B = {bij}1≤i,j≤q, ||B2||2 =
∑q

i=1

∑q
j=1 b

2
ij .
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(ii) Assume that θ̃ is a
√
T -consistent estimator of θ0.

Assumption A.3. (i) Assume that the first three derivatives of f(ε) are continuous on Sω and

that f(ε) > cf > 0 on the interior of Sω for some cf > 0. In addition, E
[∣∣f (r)(ε1)

∣∣] <∞ for

1 ≤ r ≤ 3.

(ii) The initial random variable ε0 is distributed as f(ε).

Assumption A.4. The bandwidth parameter h satisfies the following conditions

lim
T→∞

h = 0, lim
T→∞

Th2 =∞ and lim sup
T→∞

Th5 <∞.

Assumption A.5. The parameter set Θ is an open subset of Rq for some q ≥ 1. The parametric

family F = {f(·, θ) : θ ∈ Θ} satisfies the following conditions.

(i) For each θ ∈ Θ, f(ε, θ) is continuous with respect to x ∈ D.

(ii) Assume that there is a finite C1 > 0 such that for every ε > 0

inf
θ,θ′∈Θ:||θ−θ′||≥ε

[f(ε1, θ)− f(ε1, θ
′)]2 ≥ C1ε

2

holds with probability one (almost surely).

Assumption A.6. (i) Let H0 be true. Then θ0 ∈ Θ and

lim
T→∞

P (
√
T ||θ̃ − θ0|| > CL) < ε

for any ε > 0 and all sufficiently large CL.

(ii) Let H0 be false. Then there is a θ∗ ∈ Θ such that

lim
T→∞

P (
√
T ||θ̃ − θ∗|| > CL) < ε

for any ε > 0 and all sufficiently large CL.

Assumption A.7. (i) Let HT be specified in (3.17) with

cminT
−γ = hmin < hmax = cmax (loglog(T ))−1 ,

where γ, cmin and cmax are some constants satisfying 0 < γ < 1 and 0 < cmin, cmax <∞.

(ii) Suppose that ∆T (ε) is continuous in ε and satisfies
∫∞
−∞∆T (ε)dε = 0 for all T ≥ 1.
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Appendix B

The list below shows the necessary assumptions for the establishment and the proofs of Theo-

rems 3.1 to 3.3.

Assumption B.1. Assume that function g on the real line satisfies the following Lipschitz type

contraction property:

|g(y)− g(x)| ≤ ϕ(x)|y − x| (B.1)

for each given x and y ∈ Sω, where Sω is the compact support of the weight function ω(·) as assumed

in Assumption B.3 below and ϕ(x) is a nonnegative measurable function such that

max
i≥1

E
[
ϕ2(ψi)|ψi−1, · · · , ψ1

]
≤ G2

with probability one for some 0 < G < 1.

Assumption B.2. (i) Suppose that the error process {εt} and the conditional duration {ψt} are

both strictly stationary and α–mixing with mixing coefficients αε(T ) and αψ(T ) satisfying

αε(T ) ≤ CεqTε and αψ(T ) ≤ CψqTψ , (B.2)

respectively, where 0 < Cε, Cψ <∞ and 0 < qε, qψ < 1.

(ii) Let {εt} satisfy E [ε1] = 1 and E
[
ε4+δ1

1

]
<∞ for some δ1 > 0. In addition, P{ψt > 0} = 1

for all t ≥ 1.

(iii) Suppose that {ψt} has a common marginal density f(·) and that g1, g2 and f have continuous

derivatives of up to the second order and are bounded on the interior of Sω. In addition,

infψ∈Sω f(ψ) > 0.

Assumption B.3. (i) Suppose that Assumption A.1(ii) above holds and that the second deriva-

tive, k(2)(u), is continuous.

(ii) Suppose that the nonnegative weight function ω(·) is continuous and bounded. In addition,

the support Sω is compact.

Assumption B.4. Recall zt = xt−1 − g2(ψt−1) and ψt = γxt−1 + g(ψt−1). Let E
(
|ψt|4+δ2

)
< ∞

and E
(
|zt|4+δ2

)
<∞ for some δ2 > 0.

Additionally, suppose that maxt≥1E
[∣∣ψt,0 − ψt,0∣∣] < B <∞ and sup

x∈Sω

|gj(x)| ≤ Bg <∞.
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