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Abstract: This paper considers a class of parametric models with nonparametric autore-

gressive errors. A new test is proposed and studied to deal with the parametric specification

of the nonparametric autoregressive errors with either stationarity or nonstationarity. Such a

test procedure can initially avoid misspecification through the need to parametrically specify

the form of the errors. In other words, we propose estimating the form of the errors and test-

ing for stationarity or nonstationarity simultaneously. We establish asymptotic distributions

of the proposed test. Both the setting and the results differ from earlier work on testing for

unit roots in parametric time series regression. We provide both simulated and real–data

examples to show that the proposed nonparametric unit–root test works in practice.
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1. Introduction

Consider a parametric linear model of the form

Yt = Xτ
t β + vt, t = 1, 2, · · · , T, (1.1)

where T is the sample size of the time series data {Yt : 1 ≤ t ≤ T}, {Xt} is a vector of

known deterministic functions, β = (β1, · · · , βp)τ is a vector of unknown parameters,

{vt} is a sequence of time series residuals. Existing studies mainly discuss tests for

the case where {vt} satisfies the first–order autoregressive (AR(1)) model of the form

vt = ρvt−1 + ut with {ut} being a sequence of independent and identically distributed

(i.i.d.) errors. Discussion about tests for |ρ| < 1 may be found in the survey papers by

King (1987), King and Wu (1997) and King (2001).

For the case of ρ = 1, there has been much interest in both theoretical and empirical

analysis of economic and financial time series with unit roots during the past three

decades or so. Various tests for unit roots have been proposed and studied both

theoretically and empirically. Models and methods used have been based initially

on parametric linear autoregressive moving average representations with or without

trend components. Existing studies may be found in the survey paper by Phillips and

Xiao (1998). Other studies include Dickey and Fuller (1979, 1981), Evans and Savin

(1981, 1984), Phillips (1987), Phillips and Perron (1988), Dufour and King (1991),

Kwiatkowski et al (1992), Phillips (1997), Lobato and Robinson (1998), and Robinson

(2003).

As pointed out in the literature (Vogelsang 1998; Zheng and Basher 1999), there

are cases where there is no priori knowledge about either the form of the residuals or

whether the residuals are I(0) or I(1). This motives us to consider using a nonpara-

metric autoregressive error model of the form

vt = g(vt−1) + ut, t = 1, 2, · · · , T, (1.2)

where g(·) is an unknown function defined over R1 = (−∞,∞), {ut} is a sequence of

stationary errors with mean zero and finite variance σ2
u = E[u2

1], {vt : t ≥ 1} is also a

sequence of errors with E[vt] = 0, and v0 is an initial value. Note that v0 can be either

a given initial value or any OP (1) random variable. We however set v0 = 0 to avoid

some unnecessary complications in exposition.

Combining model (1.2) into model (1.1) produces a semiparametric time series

model of the form

Yt = Xτ
t β + vt with vt = g(vt−1) + ut. (1.3)
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Existing studies (see, for example, Masry and Tjøstheim 1995) already discuss the

case where β ≡ 0 and {vt} is strictly stationary when certain technical conditions are

imposed on the form of g(·). Meanwhile, various existing studies (see, for example,

Koul and Stute 1999; Gao 2007 and the references therein) focus on nonparametric

estimation and specification testing for the case where {vt} is stationary since the

publication of Robinson (1983).

To the best of our knowledge, semiparametric estimation of β and g(·) for the case

where {vt} is stationary has only been discussed in Hidalgo (1992). Nonparametric

estimation of g(·) for the case where vt = vt−1 + ut has been done in Phillips and Park

(1998), Karlsen and Tjøstheim (2001), and Wang and Phillips (2009).

Model (1.3) is quite general and covers many important cases. For example, in

order to test whether {Yt} follows a nonstationary model of the form

Yt =
d∑
i=0

γi t
i + Yt−1 + ut, (1.4)

it suffices to test whether H0 : vt = vt−1 +ut holds in a (d+ 1)–order polynomial trend

model of the form

Yt =
d+1∑
j=0

βj t
j + vt. (1.5)

This paper is then concerned with testing

H0 : g(v) = f0(v, θ0) versus H1 : g(v) = f1(v, θ1) (1.6)

for all v ∈ R1, where f0(v, θ0) is a known parametric function indexed by a vector of

unknown parameters θ0 and f1(v, θ1) is an unknown semiparametric function indexed

by a vector of unknown parameters θ1.

Forms of f0(v, θ0) include the case of f0(v, θ0) ≡ 0. In this case, vt = ut and thus

{vt} is a sequence of stationary errors. When θ0 = 1 is chosen such that f0(v, θ0) = v,

it means that there is a unit root in {vt}. Forms of fi(v, θi) may be chosen suitably

to include various existing cases such as a parametric AR(1) model of the form vt =

θ0vt−1 +ut against a partially linear AR(1) model of the form vt = θ1vt−1 +ψ(vt−1)+ut,

where ψ(·) is an unknown function such that minα,β E [ψ(v1)− α− βv1]2 ≥M for some

positive constant M . This is needed to ensure that both θ1 and ψ(·) are identifiable

and estimable.

In addition, forms of f1(v, θ1) include existing parametric nonlinear functions, such

as f1(v, θ1) = ρ1v + γ1v (1− exp {−η1v
2}) as discussed in Kapetanios, Shin and Snell

(2003), where θ1 = (ρ1, γ1, η1) is a vector of unknown parameters.
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Our discussion in this paper focuses on the following two cases.

Case A: f0(v, θ0) is chosen as f0(v, θ0) = θ0v with θ0 = 1. This implies vt =

θ0vt−1 + ut with θ0 = 1 under H0 while the form of f1(v, θ1) is chosen such that {vt} is

a sequence of strictly stationary errors under H1.

Case B: The form of each of fi(v, θi) for i = 0, 1 is suitably chosen such that {vt}
is a sequence of strictly stationary errors under either H0 or H1.

This paper then proposes a nonparametric test for H0 versus H1. Unlike existing

parametric tests, the proposed test has an asymptotically normal distribution even

when {vt} is a sequence of random walk errors. The main advantage of the proposed

nonparametric unit root test over existing tests in the parametric case is that it can

initially avoid misspecification through the need to parametrically specify the form of

{vt} as vt = ρvt−1 + ut for example. Such a test may be viewed as a nonparametric

counterpart of existing parametric tests proposed in the literature.

Theoretical properties for the proposed nonparametric test are established. Our

finite sample results show that the conventional Dickey–Fuller type test is more pow-

erful than the proposed nonparametric unit root test when the alternative model is

an AR(1) model of the form vt = ρvt−1 + ut. When the alternative is a parametric

nonlinear autoregressive model, however, the conventional parametric unit root test

seems to be inferior to the proposed nonparametric unit root test in the sense that it

is less powerful than the proposed nonparametric unit root test.

The rest of the paper is organised as follows. Section 2 establishes a nonparametric

test as well as its asymptotic distributional results. A bootstrap simulation procedure

is proposed in Section 3. Section 4 presents two examples to show how to implement

the proposed test in practice. Section 5 gives some extensions. Mathematical details

are relegated to Appendices A and B.

2. A nonparametric test

In the parametric linear case where vt = ρvt−1 + ut, existing tests for ρ = 0 in-

clude various versions of the DW test proposed in Durbin and Watson (1950, 1951)

as reviewed in King (1987), King and Wu (1997), King (2001) and others. Various

extensions of the DF test for ρ = 1 proposed in Dickey and Fuller (1979, 1981) have

been discussed in Phillips and Xiao (2003), and others.

In order to deal with the nonparametric case where vt = g(vt−1) + ut, we propose

using a nonparametric version of some existing parametric tests. Assuming that {vt}
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were observable, we would have a parametric autoregressive model of the form

vt = f0(vt−1, θ0) + ut (2.1)

with E[ut|vt−1] = 0 under H0. We thus have

E [utE (ut|vt−1) p(vt−1)] = E
[(
E2(ut|vt−1)

)
p(vt−1)

]
= 0 (2.2)

under H0, where p(·) is the marginal density function of {vt−1}.
Note that p(·) may depend on t when {vt} is nonstationary. Note also that

the sample analogue of E [utE (ut|vt−1) p(vt−1)] is 1
T

∑T
t=1 utE[ut|vt−1]p(vt−1). When

E[ut|vt−1]p(vt−1) is replaced by a kind of kernel–based sample analogue of the form
1
Th

∑n
s=1 Kh(vs−1 − vt−1)us, a kernel–based sample analogue of (2.2) is of the form

MT =
1

T

T∑
t=1

(
1

Th

T∑
s=1

us Kh(vs−1 − vt−1)

)
ut, (2.3)

where Kh(·) = K
( ·
h

)
with K(·) being a probability kernel function and h a bandwidth

parameter. This suggests using a centralized and then normalized kernel–based sample

analogue of (2.2) of the form

LT = LT (h) =

∑T
t=1

∑T
s=1, 6=t us Kh(vs−1 − vt−1) ut

σ̃T
, (2.4)

where σ̃2
T = 2

∑T
t=1

∑T
s=1, 6=t u

2
s K

2
h(vs−1 − vt−1) u2

t .

Note that existing literature (see, for example, Chapter 3 of Gao 2007) shows that
σ̃2
T

σ2
T
→P 1 as T → ∞ when both vt and ut are stationary, where σ2

T = E [σ̃2
T ]. In

the case where {vt} is nonstationary, however, we have only been able to show that
σ̃2
T

σ2
T
→ ξ2 in distribution for some random variable ξ. This is why the proposed test is

based on a stochastically normalized version. As a consequence, the proposed test is

asymptotically normal regardless of whether or not the errors are stationary, mainly

due to the applicability of Lemma B.1 in Appendix B below.

The form of LT (h) may be regarded as a nonparametric counterpart of the DW

test for the stationary case (see (5) of Dufour and King 1991) and the DF test for the

unit–root case (see (17) of Dufour and King 1991). For the case where the time series

involved is strictly stationary, similar versions have been used for nonparametric testing

of serial correlation (Li and Hsiao 1998) and nonparametric specification of time series

(Gao 2007). Such tests are extensions of existing tests proposed in Zheng (1996), Li

and Wang (1998), Li (1999), and Fan and Linton (2003).
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In the original working paper, Gao et al. (2006) propose using a version similar to

(2.4) for parametric specification in both the nonparametric autoregression model of

the form Xt = g(Xt−1) + ut and the nonparametric time series regression model of the

form Yt = m(Xt) + et with Xt = Xt−1 + ut, where {ut} is assumed to be a sequence of

independent and normally distributed errors. In the recent published papers, Gao et

al (2009a, 2009b) consider the specification testing problems for the case where {ut} is

assumed to be a sequence of independent and identically distributed errors.

Since {vt} and {ut} are unobservable, LT (h) will need to be replaced by

L̂T = L̂T (h) =

∑T
t=1

∑T
s=1,6=t ûs Kh(v̂s−1 − v̂t−1) ût̂̃σT , (2.5)

where ̂̃σ2

T = 2
∑T

t=1

∑T
s=1, 6=t û

2
s K

2
h(v̂s−1 − v̂t−1) û2

t and ût = v̂t − f0(v̂t−1, θ̂0), in which

v̂t = Yt−Xτ
t β̂, and θ̂0 and β̂ are consistent estimators of θ0 and β underH0, respectively.

To establish the asymptotic distribution of L̂T (h), we need to introduce Assumption

2.1 for Case A.

Assumption 2.1. (i) Let {ut} be a stationary ergodic sequence of martingale dif-

ferences satisfying E[ut|Ft−1] = 0 and E[u4
t |Ft−1] <∞ almost surely, where {Ft} is a

sequence of σ–fields generated by {us : 1 ≤ s ≤ t}. Let σ2
u = E[u2

1].

(ii) Suppose that {ut} has a symmetric marginal density function g(x). Let g(i)(x)

be the ith derivative of g(x) and g(i)(x) be continuous at x ∈ (−∞,∞) for i = 1.

For any m ≥ 2, let Sm,t = 1√
mσu

∑t+m
s=t+1 us, fm,t(x) be the marginal density function

of Sm,t and fm,t(x|Ft) be the conditional density function of Sm,t given Ft. Let f
(i)
m,t(x)

and f
(i)
m,t(x|Ft) be the respective ith derivatives of fm,t(x) and fm,t(x|Ft) with respect

to x and both f
(i)
m,t(x) and f

(i)
m,t(x|Ft) be continuous at x ∈ (−∞,∞). Suppose that for

i = 0, 1,

inf
δ>0

lim sup
m→∞

sup
t≥1

sup
|x|≤δ

f
(i)
m,t (x) <∞ and (2.6)

inf
δ>0

lim sup
m→∞

sup
t≥1

sup
|x|≤δ

f
(i)
m,t (x|Ft) <∞ with probability one. (2.7)

For Case B, we need the following assumption.

Assumption 2.2. (i) Let Assumption 2.1(i) hold. In addition, the marginal density

of {ut} is positive and lower–semicontinuous over R1.

(ii) f0(v, θ0) is bounded on any bounded Borel measurable set of R1. Suppose that

there is some constant |θ0| < 1 such that f0(v, θ0) = θ0v + o(|v|) as |v| → ∞.
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Assumption 2.1(i) assumes that {ut} is a sequence of stationary martingale differ-

ences. This is quite general in this kind of problem. Assumption 2.1(ii) imposes a

set of general conditions on the marginal and conditional density functions. Similar

conditions have been used by Assumption A4 of Chen, Gao and Li (2007) and As-

sumption 2.3(ii) of Wang and Phillips (2009). Since vt =
∑t

i=1 ui is a random walk

process under H0, we need to impose certain conditions on the distributional structure

of a normalized version of vt of the form Sm,t = 1√
mσu

(vt+m − vt) = 1√
mσu

∑t+m
s=t+1 us.

Equations (2.6) and (2.7) basically require that the density and conditional density

functions and their derivatives are bounded uniformly in t ≥ 1, m → ∞ and |x| ≤ δ

for all small δ > 0.

Equations (2.6) and (2.7) are justifiable. When {ut} is a sequence of independent

and identically distributed random variables for example, equation (2.7) reduces to

(2.6), which follows from as m→∞

sup
x
|φm(x)− φ(x)| → 0 and sup

x

∣∣φ(1)
m (x)− φ(1)(x)

∣∣→ 0, (2.8)

under the condition
∫∞
−∞ |v||ψ(v)|dv < ∞, where ψ(·) is the characteristic function of

u1, φ
(1)
m (x) and φ(1)(x) are the first derivatives of φT (x), which is the density function

of 1√
mσu

∑m
t=1 ut, and φ(x) = 1√

2π
e−

x2

2 is the density function of the standard normal

random variable N(0, 1), respectively. The proof of (2.8) is quite standard (see, for

example, the proof of Corollary 2.2 of Wang and Phillips 2009).

Assumption 2.2 implies that (see, for example, Tong 1990; Lu 1998; Meitz and

Saikkonen 2008) {vt} is strictly stationary and α–mixing with mixing coefficient

α(t) = sup{|P (A ∩B)− P (A)P (B)| : A ∈ Ωs
1, B ∈ Ω∞s+t}

for all s, t ≥ 1, where {Ωj
i} is a sequence of σ–fields generated by {vs : i ≤ s ≤ j}.

There exist constants cr > 0 and r ∈ [0, 1) such that α(t) ≤ crr
t for t ≥ 1.

We now establish the following theorem; its proof is given in Appendix A.

Theorem 2.1: Assume that either Assumptions 2.1 and A.1–A.3(i) for Case A or

Assumption 2.2, A.1–A.3(i) and A.4 for Case B hold. Then under H0

L̂T (h)→D N(0, 1) as T →∞. (2.9)

Theorem 2.1 shows that the standard normality can still be an asymptotic distribu-

tion of the proposed test even when nonstationarity is involved. Moreover, Theorem 2.1
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shows that the same asymptotically normal test can be used to deal with the stationary

and nonstationary cases.

It is our experience that in practice the proposed test L̂T (h) may not have good

small sample properties when using a large sample normal distribution to approximate

the small sample distribution of the test under consideration. In order to improve the

finite sample performance of L̂T (h), we propose using a bootstrap method in Section

3 below. Section 3 below also studies the power performance of L̂T (h) under H1.

3. Bootstrap simulation scheme

This section discusses how to simulate a critical value for the implementation of

L̂T (h) in practice. Before we look at how to implement L̂T (h) in practice, we propose

the following simulation scheme.

Simulation Scheme: The exact α–level critical value, lα(h) (0 < α < 1), is the

1− α quantile of the exact finite–sample distribution of L̂T (h). Because lα(h) may be

unknown, it cannot be evaluated in practice. We thus propose choosing a simulated

α–level critical value, l∗α(h), by using the following simulation procedure:

(i) Let Y ∗0 = y∗0 and X0 = x0 be the initial values. For t = 1, 2, · · · , T , generate

Y ∗t = Y ∗t−1 +(Xt −Xt−1)τ β̂+σ̂uu
∗
t for Case A, and Y ∗t = Xτ

t β̂+f0

(
Y ∗t−1 −Xτ

t−1β̂, θ̂0

)
+

σ̂uu
∗
t for Case B, where β̂, θ̂0 and σ̂2

u are the respective consistent estimators of β, θ0

and σ2
u based on the original sample WT = {(X1, Y1), · · · , (XT , YT )}, which acts in

the resampling as a fixed design, and {u∗t} is generated independently by an existing

parametric or nonparametric bootstrap method such that E [u∗t ] = 0, E [u∗2t ] = 1 and

E [u∗4t ] <∞.

(ii) Use the data set {(Xt, Y
∗
t ) : t = 1, 2, . . . , T} to re–estimate β, θ0 and σu. De-

note the resulting estimators by β̂∗, θ̂∗0 and σ̂∗u. Compute L̂∗T (h) that is the correspond-

ing version of L̂T (h) by replacing {(Xt, Yt) : t = 1, 2, · · · , T} and β̂, θ̂0 and σ̂u with

{(Xt, Y
∗
t ) : t = 1, 2, · · · , T} and β̂∗, θ̂∗0 and σ̂∗u. That is

L̂∗T = L̂∗T (h) =

∑T
t=1

∑T
s=1, 6=t û

∗
s Kh

(
v̂∗s−1 − v̂∗t−1

)
û∗t√

2
∑T

t=1

∑T
s=1, 6=t û

∗2
s K2

h

(
v̂∗s−1 − v̂∗t−1

)
û∗2t

, (3.1)

where û∗t = v̂∗t − f0(v̂∗t−1, θ̂
∗
0), in which v̂∗t = Y ∗t −Xτ

t β̂
∗.

(iii) Repeat the above steps M times and produce M versions of L̂∗T (h) denoted

by L̂∗Tm(h) for m = 1, 2, . . . ,M . Use the M versions of L̂∗Tm(h) to construct their

empirical bootstrap distribution function. The bootstrap distribution of L̂∗T (h) given
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the full sample WT is defined by P ∗
(
L̂∗T (h) ≤ x

)
= P

(
L̂∗T (h) ≤ x|WT

)
. Let l∗α(h)

satisfy P ∗
(
L̂∗T (h) ≥ l∗α(h)

)
= α and then estimate lα(h) by l∗α(h).

Define the size and power functions by

α∗(h) = P ∗
(
L̂T (h) ≥ l∗α(h)|H0

)
and β∗(h) = P ∗

(
L̂T (h) ≥ l∗α(h)|H1

)
. (3.2)

The objective is to choose an optimal bandwidth, ĥtest, such that the power function

β∗(h) is maximized at h = ĥtest while the size function α∗(h) is under control.

Let HT = {h : α− ε0 < α∗(h) < α + ε0} for some 0 < ε0 < α. Choose an optimal

bandwidth ĥtest such that

ĥtest = arg max
h∈HT

β∗(h). (3.3)

Since {vt} under H1 is stationary, existing results (§3 of Gao and Gijbels 2008)

suggest using an approximate version of the form

ĥtest = â−
1
2 Ĉ
− 3

2
T , (3.4)

where Ĉ2
T =

∑T
t=1(f̂1(v̂t−1,θ̂1)−f0(v̂t−1,θ̂0))

2
p̂(v̂t−1)

µ̂2
√

2ν̂2
∫
K2(v)dv

and â =
√

2K(3)(0)

3
(√∫

K2(u)du
)3 ĉ(p) with ĉ(p) =

1
T

∑T
t=1 p̂

2(v̂t−1)(√
1
T

∑T
t=1 p̂(v̂t−1)

)3 , in which µ̂2 = 1
T

∑T
t=1

(
v̂t − f0(v̂t−1, θ̂0)

)2

, ν̂2 = 1
T

∑T
t=1 p̂

2(v̂t−1),

f̂1(v, θ̂1) is a consistent estimate of f1(v, θ1), p̂(v) = 1

T ĥcv

∑T
t=1K

(
v̂t−1−v
ĥcv

)
with ĥcv

being chosen by a conventional cross–validation selection method, and K(3)(·) is the

three–time convolution of K(·) with itself.

We then use l∗α(ĥtest) in the computation of both the size and power values of

L̂T (ĥtest) for each case. Note that the above simulation is based on the so–called

regression bootstrap simulation procedure discussed in the literature, such as Chen

and Gao (2007). We may also use a block bootstrap (see, for example, Pararoditis and

Politis 2003) to generate a sequence of resamples for {u∗t}. Since the combination of

the proposed simulation procedure with the power–based bandwidth selection method

works well in this paper, we use the proposed bootstrap method for both theoretical

studies and practical applications.

Under H1, model (1.3) becomes

Yt = Xτ
t β + vt with vt = f1(vt−1, θ1) + ut, (3.5)

where f1(v, θ1) can be consistently estimated by f̂1(v, θ̂1), which depends on the speci-

fication of f1(v, θ1). For example, when f1(v, θ1) = g1(v, θ1) +ψ(v) with g1(v, θ1) being

9



parametric and ψ(v) being nonparametric, the form of f̂1(v, θ̂1) can be given by

f̂1(v, θ̂1) = g1(v, θ̂1) + ψ̂(v), (3.6)

in which

ψ̂(v) = ψ̂(v, θ1) =

∑T
s=1Kĥcv

(v̂s−1 − v) (v̂s − g1(v̂s−1, θ1))∑T
s=1Kĥcv

(v̂s−1 − v)
and (3.7)

θ̂1 = arg min
θ1

1

T

T∑
t=1

(
v̂t − g1(v̂t−1, θ1)− ψ̂(v̂t−1, θ1)

)2

, (3.8)

where ĥcv is chosen by a conventional cross–validation selection method.

To study the power properties of L̂T (ĥtest), we need to impose certain conditions

on f1(v, θ) under H1. Since we are only interested in testing nonstationarity versus

stationarity for Case A and stationarity versus stationarity for Case B, assumptions

under H1 are more verifiable than those conditions for the nonstationarity case.

In addition to Assumptions 2.1 and 2.2, we need the following assumption.

Assumption 3.1. (i) Let Assumption 2.2 hold under H1.

(ii) Let H1 be true. Then there are θ0 and θ1 such that:∫
[f1(v, θ1)− f0(v, θ0)]2 π2

1(v)dv > 0,

where π1(v) denotes the marginal density of {vt} under H1.

Assumption 3.1(i) is a set of quite general conditions and also standard in this kind

of stationary case, as assumed in the literature (see Li 1999 for example). Assumption

3.1(ii) assumes that there is some significant ‘distance’ between H0 and H1 in order for

the test to have power. It is obvious that there are various ways of choosing the forms

of fi(v, θi) for i = 0, 1. For example, we may consider testing an AR(1) error model

against a nonlinear error model of the form (Tong 1990; Granger and Teräsvirta 1993;

Granger, Inoue and Morin 1997; Gao 2007)

H0 : vt = ρ0 vt−1 + ut versus H1 : vt = ρ1 vt−1 −
vt−1

1 + v2
t−1

+ ut, (3.9)

where {ut} is a sequence of i.i.d. normal errors with E[ut] = 0 and E[u2
t ] = σ2

u < ∞,

and |ρ0| ≤ 1 and |ρ1| < 1 are suitable parameters. It is noted that {vt} under H0 is

stationary when |ρ0| < 1 and nonstationary when ρ0 = 1. Assumption 2.2 implies that

{vt} under H1 is stationary. In this case, Assumption 3.1(ii) becomes∫
[f1(v, θ1)− f0(v, θ0)]2 π2

1(v)dv =

∫ (
2(ρ0 − ρ1) +

1

1 + v2

)
v2

1 + v2
π2

1(v) dv

+

∫
(ρ1 − ρ0)2v2π2

1(v) dv > 0 (3.10)
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when ρ1 is chosen such that ρ1 ≤ ρ0. This implies that Assumption 3.1(ii) is verifiable.

We state the following theorem; its proof is given in Appendix A.

Theorem 3.1. (i) Assume that either Assumptions 2.1 and A.1–A.3 for Case A

or Assumptions 2.2 and A.1–A.5(i) for Case B hold. Then under H0

lim
T→∞

P
(
L̂T (h) > l∗α|WT

)
= α in probability.

(ii) Assume that either Assumptions 2.1, 3.1 and A.1–A.3 for Case A or Assumptions

2.2, 3.1 and A.1–A.5 for Case B hold. Then under H1

lim
T→∞

P
(
L̂T (h) > l∗α|WT

)
= 1 in probability.

Theorem 3.1(i) implies that l∗α is an asymptotically correct α–level critical value under

any model in H0, while Theorem 3.1(ii) shows that L̂T (h) is asymptotically consistent.

4. Examples of implementation

Example 4.1 compares the small and medium–sample performance of our test with

two natural competitors using a simulated example. A real–data application is then

given in Example 4.2.

Example 4.1. Consider a nonlinear trend model of the form

Yt = Xt β + vt with vt = fi(vt−1, θi) + ut, 1 ≤ t ≤ T, (4.1)

where Xt = sin
(

2πt
T

)
, {ut} is a sequence of i.i.d. N(0,1), and the forms of fi(v, θi) for

i = 0, 1 are given as follows:

f0(v, θ0) = v and f1(v, θ1) = v + θ1 v for Case A, or (4.2)

f0(v, θ0) = v and f1(v, θ1) = v + θ1 v +
θ1 v

1 + v2
for Case A, or (4.3)

f0(v, θ0) = 0 and f1(v, θ1) = θ1 v for Case B, or (4.4)

f0(v, θ0) = 0.5 v and f1(v, θ1) = 0.5v + θ1 v +
θ1 v

1 + v2
for Case B, (4.5)

where ρ0 = 1 for models (4.2) and (4.3), ρ0 = 0 for model (4.4) and ρ0 = 0.5 for model

(4.5), θ1 = −
√
T−1 log(log(T )) and ρ1 = ρ0 + θ1. The rate of θ1 = −T− 1

2

√
loglog(T )

is chosen because it is an optimal rate of testing in this kind of nonparametric kernel

testing problem as discussed in Chapter 3 of Gao (2007). The β parameter is estimated

by the conventional semiparametric least squares estimation method (see, for example,

11



Hidalgo 1992). Equations (3.6)–(3.8) are used in the estimation of θ1. We choose

K(x) = 1
2
I[−1,1](x) and ε0 = α

10
involved in (3.3) throughout this section.

To compute the size of L̂T (h) under H0 and the power of L̂T (h) under H1 for

(4.2)–(4.5), we first propose using L̂T (h) associated with ĥtest of (3.3). Let

L1test = L̂T (ĥtest). (4.6)

For models (4.2) and (4.3), we compare our test with the conventional DF (Dickey

and Fuller 1979) test of the form

L21 =

∑T
t=2(v̂t − v̂t−1)v̂t−1

σ̂22

√∑T
t=2 v̂

2
t−1

, (4.7)

where σ̂2
22 = 1

T−1

∑T
t=2 (v̂t − ρ̂0v̂t−1)2 with ρ̂0 =

∑T
t=2 v̂tv̂t−1∑T
t=2 v̂

2
t−1

.

For models (4.4) and (4.5), we also compare our test with the DK test (Dufour and

King 1991) of the form

L22 =

∑T
t=1

∑T
s=1 v̂s ast v̂t∑T

t=1

∑T
s=1 v̂s bst v̂t

, (4.8)

where {ast} is the (s, t)–th element of A0 given by A0 = −2(1− ρ0) IT + A1 − 2ρ0 C1

with IT being the T×T identity matrix, A1 and C1 being given in (6) and (7) of Dufour

and King (1991, p.120), and {bst} is the (s, t)–th element of Σ−1
0 , in which Σ0 = Σ(ρ0)

with Σ(ρ) being given above (G1) of Dufour and King (1991, p.118).

For i = 1, 2, let l∗2i,α be the corresponding simulated critical value of L2i. Each of

them is computed in the same way as has been proposed in the Simulation Scheme in

Section 3. Let zα be the 1−α quantile of the standard Normal distribution. Note that

z0.05 = 1.645 at the α = 5% level and z0.10 = 1.285 at the α = 10% level.

Let l∗1,α = l∗α(htest) and L1cv = L̂T (ĥcv), where ĥcv is chosen such that

ĥcv = arg min
h∈Hcv

1

T

T∑
t=1

(v̂t − ĝ−t(v̂t−1, h))2 , (4.9)

in which ĝ−t(v̂t−1, h) =
∑T
s=1,6=tK

(
v̂s−1−v̂t−1

h

)
v̂s∑T

u=1,6=tK
(
v̂u−1−v̂t−1

h

) and Hcv =
[
T−1, T−(1−δ0)

]
, where 0 <

δ0 < 1 is chosen such that ĥcv is achievable and unique in each individual case.

We choose N = 250 in the Simulation Scheme and use M = 1000 replications to

compute the two–sized power and size values of the tests in Tables 4.1–4.4 below. Let

ftest denote the frequency of L1test > l∗1,α, fcv be the frequency of L1cv > zα, and f2i be

the frequency of L2i > l∗2i,α for i = 1, 2 and at α = 5% or 10%.

12



Table 4.1. Sizes and power values for models (4.2) and (4.3)

at the α = 5% significance level

Observation Model (4.2) Model (4.3)

Null Hypothesis Is True

n fcv ftest f21 fcv ftest f21

250 0.007 0.045 0.046 0.005 0.048 0.058

500 0.003 0.042 0.051 0.006 0.054 0.049

750 0.005 0.053 0.057 0.003 0.044 0.052

Null Hypothesis Is False

n fcv ftest f21 fcv ftest f21

250 0.171 0.302 0.701 0.462 0.521 0.350

500 0.180 0.345 0.734 0.456 0.554 0.376

750 0.192 0.329 0.752 0.474 0.573 0.402

Table 4.2. Sizes and power values for models (4.2) and (4.3)

at the α = 10% significance level

Observation Model (4.2) Model (4.3)

Null Hypothesis Is True

n fcv ftest f21 fcv ftest f21

250 0.023 0.088 0.107 0.019 0.094 0.096

500 0.038 0.092 0.098 0.035 0.103 0.109

750 0.029 0.103 0.102 0.037 0.089 0.094

Null Hypothesis Is False

n fcv ftest f21 fcv ftest f21

250 0.201 0.432 0.821 0.536 0.631 0.473

500 0.199 0.469 0.847 0.547 0.655 0.489

750 0.234 0.487 0.862 0.561 0.649 0.512
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Table 4.3. Sizes and power values for models (4.4) and (4.5)

at the α = 5% significance level

Observation Model (4.4) Model (4.5)

Null Hypothesis Is True

n fcv ftest f22 fcv ftest f22

250 0.005 0.052 0.049 0.003 0.051 0.048

500 0.004 0.048 0.050 0.007 0.047 0.054

750 0.007 0.051 0.047 0.006 0.052 0.051

Null Hypothesis Is False

n fcv ftest f22 fcv ftest f22

250 0.112 0.164 0.348 0.349 0.423 0.312

500 0.107 0.182 0.387 0.361 0.456 0.331

750 0.132 0.191 0.372 0.358 0.481 0.342

Table 4.4. Sizes and power values for models (4.4) and (4.5)

at the α = 10% significance level

Observation Model (4.4) Model (4.5)

Null Hypothesis Is True

n fcv ftest f22 fcv ftest f22

250 0.031 0.110 0.097 0.023 0.089 0.101

500 0.040 0.097 0.102 0.038 0.101 0.097

750 0.033 0.103 0.096 0.033 0.098 0.095

Null Hypothesis Is False

n fcv ftest f22 fcv ftest f22

250 0.197 0.271 0.411 0.452 0.552 0.419

500 0.204 0.267 0.431 0.489 0.581 0.441

750 0.226 0.283 0.456 0.516 0.614 0.476

14



Tables 4.1 and 4.2 (columns 2–3 and 5–6) show that the test coupled with a boot-

strap critical value (bcv) is more powerful than that associated with the use of an

asymptotic critical value (acv) in each case, in addition to the fact that there is serious

size distortion when using an acv rather than a bcv. The main reasons are as follows:

(a) the rate of convergence of each L̂T (h) to an asymptotic normal distribution is quite

slow in this kind of nonparametric setting; and (b) the use of an optimal bandwidth

based on the cross–validation selection criterion may not be optimal for testing pur-

poses. By contrast, there is only small size distortion between using a bcv and an acv

for L21 and L22 in each implementation, although the version of the test associated with

a bcv has more stable size performance and better power property than that based on

an acv. We therefore compare our nonparametric tests with both L21 and L22 based

on a bcv in each case.

Moreover, Tables 4.1 and 4.2 show that the proposed test is less powerful than

the conventional DF test when the true model (4.2) is linear. When the true model

(4.3) is nonlinear, however, the DF test is still applicable but is less powerful than the

proposed test. Tables 4.3 and 4.4 also show that the proposed test is more powerful

than the DK test when the true model (4.5) is nonlinear. When the true model (4.4)

is linear, the DK test is more powerful than the proposed test. In summary, Tables

4.1–4.4 show that the proposed test is more powerful in the nonlinear case while the

sizes are comparable with the two competitors for the parametric linear case. This

supports that the proposed test, which is dedicated to the nonlinear case, is needed to

deal with testing stationarity in nonlinear time series models.

Example 4.2. This example examines the seven–day Eurodollar deposit spot rate

data given in Figure 1 below sampled daily over the period from 1 June 1973 to 25

February 1995, providing 5505 observations.

Let {Yt : t = 1, 2, · · · , 5505} be the set of the seven–day Eurodollar deposit spot

rate data. The data set has been studied extensively in the literature. Recent studies

(see, for example, Bandi 2002) are concerned with whether {Yt} follows a random walk

model of the form

Yt = µ0 + µ1t+ Yt−1 + ut, (4.10)

where {ut} is a sequence of strictly stationary errors.

We consider a special form of (1.3) with Xτ
t β = β0 + β1t + β2t

2. In this case, in
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Figure 1: Plot of the seven–day Eurodollar deposit spot rate data

order to apply model (1.3) to test whether {Yt} follows (4.10), it suffices to test

H0 : vt = vt−1 + ut for Yt = β0 + β1t+ β2t
2 + vt. (4.11)

To apply the test L̂T (ĥtest) to determine whether {Yt} follows a random walk model

of the form Yt = µ0 + µ1t + Yt−1 + ut, we need to propose the following procedure for

computing the p–value of L̂T (ĥtest):

• For the real data set, compute ĥtest and L̂T (ĥtest).

• Let Y ∗1 = Y1. Generate Y ∗t = Y ∗t−1 + (Xt −Xt−1)τ β̂ + u∗t for 2 ≤ t ≤ 5505,

where u∗t = ûtηt, in which ût = Yt − Yt−1 − (Xt −Xt−1)τ β̂ and {ηt} is chosen

as a sequence of independent random variables with the following distributional

structure: P
(
η1 = −

√
5−1
2

)
=
√

5+1
2
√

5
and P

(
η1 =

√
5+1
2

)
=
√

5−1
2
√

5
. Such two–

point distributional structure has been commonly used in the literature (see, for

example, Li and Wang 1998).

• Compute the corresponding version L̂∗T (ĥtest) based on {Y ∗t }.

• Repeat the above steps N times to find the bootstrap distribution of L̂∗T (ĥtest)

and then compute the proportion that L̂T (ĥtest) < L̂∗T (ĥtest). This proportion is

an approximate p–value of L̂T (ĥtest).

Our simulation results return the simulated p–values of p̂1 = 0.007 for L22 and

p̂2 = 0.013 for L̂T (ĥtest). While both of the simulated p–values suggest that there is
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no enough evidence of accepting the unit–root structure at the 5% significance level,

there is some evidence of accepting the unit–root structure based on L̂T (ĥtest) at the

1% significance level. This supports the existing conclusions made in Bandi (2002).

5. Conclusion. We have proposed a new nonparametric test for the parametric

specification of the residuals. An asymptotically normal distribution of the proposed

test has been established. In addition, we have also proposed the Simulation Scheme to

implement the proposed test in practice. The small and medium–sample results show

that both the proposed test and the Simulation Scheme are practically applicable and

implementable.

This paper has focused on the case where {Xt} is a vector of deterministic regressors.

The case where {Xt} is a vector of stochastic regressors is equally important. Discussion

of such a case requires developing new theory and also involves more technicalities. It

is therefore left for future research.
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Appendix A

In this appendix, we introduce several technical conditions and then give some

lemmas for the proofs of Theorems 2.1 and 3.1. Assumptions A.1–A.3 are imposed

for Case A and Assumptions A.1–A.5 are needed for Case B. To avoid adding some

non–essential technicalities, we assume the following initial values Y ∗0 = y∗0 = 0 and

X0 = x0 = 0, v0 = 0 and v∗0 = 0 throughout this appendix.

A.1. Assumptions

Assumption A.1. (i) Let K(·) be a symmetric probability density function with compact

support C(K). Let also the existence of K(3)(·), the three–time convolution of K(·) with itself.

In addition, there is some positive function M(·) such that

|K(x+ y)−K(x)| ≤M(x) |y|

for all x ∈ C(K) and any small y, where M(·) ≥ 0 is assumed to satisfy
∫
M2(u)du <∞.

(ii) For Case A, let h satisfy limT→∞ T
3
10h = 0 and lim supT→∞ T

1
2
−ε0h = ∞ for any

0 < ε0 <
1
5 . Let h satisfy limT→∞ h = 0 and lim supT→∞ Th =∞ for Case B.

17



Assumption A.2. For i = 1, 2, let

lim
T→∞

h
∑T

t=2

∑t−1
s=1

||Zt||i||Zs||i√
t−s

R2i
T λiT

= 0, (A.1)

lim
T→∞

∑T
t=2

∑t−1
s=1 ||Zt||i

||Zt−1−Zs−1||i√
t−s ||Zs||i

R3i
T λiT

= 0, (A.2)

where Zt = Xt −Xt−1 for Case A and Zt = Xt for Case B, λT = T
3
4

√
h, RT is chosen such

that Assumption A.3 below holds, and || · || denotes the Euclidean norm.

Assumption A.3. (i) Let H0 be true. Then there are some β̂ and RT →∞ such that

lim
T→∞

P
(
RT ||β̂ − β|| > B0

)
< ε0

for any ε0 > 0 and some B0 > 0.

(ii) Let H0 be true. There is an estimator β̂∗ such that for some positive constants B∗0 > 0

and ε∗0 the following inequality

lim
T→∞

P
(
RT ||β̂∗ − β̂|| > B∗0 |WT

)
< ε∗0

holds with probability one with respect to the distribution of WT , where RT →∞ is the same

as in (i).

Assumption A.4. (i) Let H0 be true. Then there is an estimator θ̂0 such that

lim
T→∞

P
(√

T ||θ̂0 − θ0|| > C0

)
< ε0

for any ε0 > 0 and some C0 > 0

(ii) Let π0(v) denote the marginal density of {vt} under H0 for Case B. Suppose that

π0(v) is continuous and that f0(v, θ) is differentiable in both v and θ. In addition,

0 <

∫ [
∂f0(v, θ0)

∂v

]2

π2
0(v) dv <∞ and 0 <

∫ ∣∣∣∣∣∣∣∣∂f0(v, θ0)

∂θ

∣∣∣∣∣∣∣∣2 π2
0(v) dv <∞.

Assumption A.5. (i) Let H0 be true. Then there is an estimator θ̂∗0 such that for some

positive constants C∗0 > 0 and ε∗0 the following inequality

lim
T→∞

P
(√

T ||θ̂∗0 − θ̂0|| > C∗0 |WT

)
< ε∗0

holds with probability one with respect to the distribution of WT .

(ii) Let H1 be true. There exists an estimator θ̂1 such that

lim
T→∞

P
(√

T ||θ̂1 − θ1|| > C1

)
< ε1

for any ε1 > 0 and some C1 > 0.
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(iii) Let π1(v) denote the marginal density of {vt} under H1 for either A or Case B.

Suppose that π1(v) is continuous and that f1(v, θ) is differentiable in both v and θ. In addition,

0 <

∫ [
∂f1(v, θ1)

∂v

]2

π2
1(v) dv <∞ and 0 <

∫ ∣∣∣∣∣∣∣∣∂f1(v, θ1)

∂θ

∣∣∣∣∣∣∣∣2 π2
1(v) dv <∞.

Assumption A.1(i) is a mild condition and holds in many cases. For example, Assumption

A.1(i) holds when K(x) = 1
2I[−1,1](x). While Assumption A.1(ii) imposes certain conditions,

which may look more restrictive than those for the stationary case, they don’t look unnatural

in the nonstationary case. The corresponding conditions on the bandwidth for nonparametric

testing in the stationary case are the same as the minimal conditions: limT→∞ h = 0 and

limT→∞ Th =∞ that are assumed for nonparametric kernel testing for the case where both

the regressors and errors are independent (see, for example, Gao 2007).

Assumption A.2 imposes some minimal conditions on the trend function such that poly-

nomial trends are included. Consider the case where Xt = t2 for Case A, we have for some

0 < C1, C2 <∞

T∑
t=2

t−1∑
s=1

|Zt|
1√
t− s

|Zs| ≤ C1

T∑
t=2

t−1∑
s=1

st√
t− s

= O
(
T

7
2

)
,

R2
T =

T∑
t=1

Z2
t = C2 T

3 and T
3
2

(
β̂ − β

)
→ N(0, σ2

1),

where Zt = Xt−Xt−1, β̂ =
∑T
t=1 Zt(Yt−Yt−1)∑T

t=1 Z
2
t

is the ordinary least squares estimator of β based

on a model of the form Yt − Yt−1 = (Xt −Xt−1)β + ut, and σ1 is a positive constant.

In this case, equations (A.1) and (A.2) become respectively

h
∑T

t=2

∑t−1
s=1

|Zt|·|Zs|√
t−s

R2
T λT

= O

(
T

7
2h

T 3+ 3
4

√
h

)
= O

(√
h

T
1
4

)
= o(1),

∑T
t=2

∑t−1
s=1 |Zt|

|Zt−1−Zs−1|√
t−s |Zs|

R3
T λT

= O

(
T

9
2

T
9
2

+ 3
4

√
h

)
= O

(
1

T
3
4

√
h

)
= o(1).

Similarly, in the case where Xt = t2 for Case B, we have for some 0 < D1, D2 <∞

T∑
t=2

t−1∑
s=1

|Xt|
1√
t− s

|Xs| ≤ D1

T∑
t=2

t−1∑
s=1

s2t2√
t− s

= O
(
T

11
2

)
,

R2
T =

T∑
t=1

X2
t = D2 T

5 and T
5
2

(
β̂ − β

)
→ N(0, σ2

2), (A.3)

where β̂ =
∑T
t=1XtYt∑T
t=1X

2
t

is the ordinary least squares estimator of β based on a model of the

form Yt = Xtβ + vt, and σ2 is a positive constant.
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In this case, equations (A.1) and (A.2) become respectively

h
∑T

t=2

∑t−1
s=1

|Xt|·|Xs|√
t−s

R2
T λT

= O

(
T

11
2 h

T 5+ 3
4

√
h

)
= O

(√
h

T
1
4

)
= o(1),

∑T
t=2

∑t−1
s=1 |Xt| |Xt−1−Xs−1|√

t−s |Xs|
R3
T λT

= O

(
T

15
2

T
15
2

+ 3
4

√
h

)
= O

(
1

T
3
4

√
h

)
= o(1).

Thus, equations (A.1) and (A.2) hold for i = 1. Similarly, we can show that the other

cases for (A.1) and (A.2) all hold. In addition, Assumption A.2 is satisfied automatically

when the trend functions are all continuous and bounded.

Assumption A.3 requires that the conventional rate of convergence for the parametric

case is achievable even when {vt} is nonstationary. When Xt = t2, it has been shown above

that the rate of convergence of β̂ to β is proportional to T
3
2 in Case A and T

5
2 in Case B.

Assumption A.4 imposes the differentiability conditions as well as the moment conditions

on f0(·, ·). As {vt} is strictly stationary, it is possible to verify Assumption A.4 in many cases.

Assumption A.5(i) is the bootstrap version of Assumption A.4(i). Assumption A.5(ii)(iii) is

a kind of corresponding version of Assumption A.4 under H1. Note that Assumptions A.4(i)

and A.5(i)(ii) may also be satisfied even when {ut} is correlated. In this case, an instrumental–

variable method may be used to construct a consistent estimator (see, for example, Frölich

2008)

A.2. Proof of Theorem 2.1 in Case A

Let σ2
u = E[u2

1] ≡ 1 throughout the rest of this paper. To avoid notational complication,

we introduce

ast = Kh

(
t−1∑
i=s

ui

)
and ηt = 2

t−1∑
s=1

ast us.

Observe that

M̂T ≡
T∑
t=1

T∑
s=1, 6=t

ûs Kh(v̂s−1 − v̂t−1) ût =

T∑
t=1

T∑
s=1,6=t

us Kh(vs−1 − vt−1) ut

+
T∑
t=1

T∑
s=1, 6=t

ũs Kh(v̂s−1 − v̂t−1) ũt + 2
T∑
t=1

T∑
s=1,6=t

us Kh(v̂s−1 − v̂t−1) ũt

+ MT4 ≡MT1 +MT2 +MT3 +MT4, (A.4)

σ̂2
T ≡ 2

T∑
t=1

T∑
s=1, 6=t

û2
s K

2
h(v̂s−1 − v̂t−1) û2

t = 2

T∑
t=1

T∑
s=1,s 6=t

u2
s K

2
h(vs−1 − vt−1) u2

t

+ 2

T∑
t=1

T∑
s=1, 6=t

ũ2
s K

2
h(v̂s−1 − v̂t−1) ũ2

t + 2

T∑
t=1

T∑
s=1,6=t

u2
s K

2
h(v̂s−1 − v̂t−1) ũ2

t

+ σ̃2
T4 ≡ σ̃2

T1 + σ̃2
T2 + σ̃2

T3 + σ̃2
T4, (A.5)
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where for Case A under H0: vt = vt−1 + ut,

ût = v̂t − v̂t−1 = Yt −Xτ
t β̂ −

(
Yt−1 −Xτ

t−1β̂
)

= (Xt −Xt−1)τ
(
β − β̂

)
+ vt − vt−1

= ut + (Xt −Xt−1)τ
(
β − β̂

)
≡ ut + ũt,

ũt = (Xt −Xt−1)τ
(
β − β̂

)
,

v̂s−1 − v̂t−1 = vs−1 − vt−1 + (Xs−1 −Xt−1)τ (β − β̂),

MT4 = M̂T −MT1 −MT2 −MT3,

σ̃2
T4 = σ̂2

T − σ̃2
T1 − σ̃2

T2 − σ̃2
T3.

In view of (A.4) and (A.5), in order to prove Theorem 2.1 for Case A, it suffices to show

that as T →∞

MT1

σ̃T1
→D N(0, 1), (A.6)

MT i

σ̃T1
→P 0 for i = 2, 3, 4, (A.7)

σ̃Tj
σ̃T1

→P 0 for j = 2, 3, 4. (A.8)

We will return to the proof of (A.7) and (A.8) in Lemma A.5 after having proved (A.6) in

Lemmas A.1–A.4 below. In order to prove (A.6), we need to apply Lemma B.1 of Appendix

B below.

Before verifying the conditions of the Lemma B.1, we introduce the following notation.

Let YTt = ηtut
σT1

, ΩT,s = σ{YTt : 1 ≤ t ≤ s} be a σ–field generated by {YTt : 1 ≤ t ≤ s},
GT = ΩT,M(T ) and GT,s be defined by

GT,s =

 ΩT,M(T ), 1 ≤ s ≤M(T ),

ΩT,s, M(T ) + 1 ≤ s ≤ T ,
(A.9)

where σ2
T,1 = var

[∑T
t=2 ηtut

]
and M(T ) is chosen such that M(T ) → ∞ and M(T )

T → 0 as

T →∞. Let Ũ2
M(T ) =

σ̃2
M(T ),1

σ2
M(T ),1

, where σ2
S,1 = var

[∑S
t=2 ηtut

]
for all 1 ≤ S ≤ T . We can show

that as T →∞
σ̃2
T1

σ2
T1

− Ũ2
M(T ) →P 0. (A.10)

Thus, condition (B.2) of the Lemma B.1 of Appendix B below can be satisfied. The proof of

(A.10) is given in Lemma A.4 below.

Therefore, in view of the Lemma B.1, in order to prove that as T →∞

MT1

σ̃T1
=

1

σ̃T1

T∑
t=2

ηtut →D N(0, 1), (A.11)
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it suffices to show that there is an almost surely finite random variable ξ such that for all

ε > 0,

T∑
t=2

E
[
Y 2
TtI{[YTt|>ε]}(YTt)|ΩT,t−1

]
→P 0, (A.12)

T∑
t=2

E [YTt|GT,t−1] =

M(T )∑
t=2

YTt +

T∑
t=M(T )+1

E [YTt|ΩT,t−1] =

M(T )∑
t=2

YTt →P 0, (A.13)

T∑
t=2

|E [YTt|GT,t−1]|2 =

M(T )∑
t=2

Y 2
Tt +

T∑
t=M(T )+1

|E [YTt|ΩT,t−1]|2 =

M(T )∑
t=2

Y 2
Tt →P 0, (A.14)

lim
δ→0

lim inf
T→∞

P

(
σ̃T1

σT1
> ε

)
= 1, (A.15)

where IA(x) is the conventional indicator of the form IA(x) = 1 when x ∈ A and IA(x) = 0

when x 6∈ A. The proof of (A.12) follows from Lemma A.2 below. The proof of (A.13) is

similar to that of (A.14), which follows from

M(T )∑
t=2

E
[
Y 2
Tt

]
= O

((
M(T )

T

) 3
2

)
→ 0 (A.16)

as T →∞, in which Lemma A.1 below is used.

In order to prove (A.12), it suffices to show that

1

σ4
T1

T∑
t=2

E
[
η4
t

]
→ 0, (A.17)

which is given in Lemma A.2 below.

The proof of (A.15) follows from

σ̃2
T1

σ2
T1

→D ξ2 > 0, (A.18)

which is given in Lemma A.3 below.

Before we establish several lemmas for the proof of Theorem 2.1, we need to introduce

the following notation.

For any t > s ≥ 1 and α = 1
2 , define vst = vt−1−vs−1

Cα(t−s)α , where 0 < Cα <∞ is a normalized

constant. We assume without loss of generality that Cα = 1 in this appendix. Recall that g(u)

is the marginal density of the stationary time series {ut}. Let fst(·) be the density function

of vst and gst(·) be the density function of ust = vt−1 − vs−1. Then, the i–th derivative of

gst(v) satisfies for i = 0, 1

g
(i)
st (v) =

1

Cα(t− s)(1+i)α
f

(i)
st

(
v

(t− s)α

)
. (A.19)

Similarly, let f(·|Fs) and g(·|Fs) be the conditional density functions of vst and ust given

Fs−1, where {Fs} is a sequence of σ–fields such that {vs} is adapted to Fs. Then

gst(v|Fs−1) =
1

Cα(t− s)α
fst

(
v

(t− s)α
|Fs−1

)
, (A.20)
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and the first derivatives of gst(·|Fs−1) and fst(·|Fs−1) satisfy

g
(1)
st (v|Fs−1) =

1

Cα(t− s)2α
f

(1)
st

(
v

(t− s)α
|Fs−1

)
. (A.21)

Assumption 2.1(ii) then implies the following useful results: as t− s→∞

sup
|x|≤δ

∣∣∣f (i)
st (x)

∣∣∣ = O(1), (A.22)

sup
|x|≤δ

∣∣∣f (i)
st (x|Fs−1)

∣∣∣ = OP (1) (A.23)

for i = 0, 1, where δ > 0 is some small constant. Equations (A.22) and (A.23) are used

repeatedly in the proofs of Lemmas A.1–A.5 below.

Lemma A.1. Let Assumptions 2.1 and A.1 hold. Then for large enough T

σ2
T1 = var

[
T∑
t=2

ηtut

]
=

16
∫
K2(x)dx

3
√

2π
T 3/2h (1 + o(1)). (A.24)

Proof: It follows from the definition that

σ2
T1 = E

[
T∑
t=1

ηtut

]2

= 2

T∑
t=1

T∑
s=1

E
[
a2
stu

2
su

2
t

]
+ 4

T∑
t=2

t−1∑
s1 6=s2=1

E
[
as1tas2tus1us2u

2
t

]
= 2σ2

u

T∑
t=1

T∑
s=1

E
[
a2
stu

2
s

]
+R1T , (A.25)

where R1T = 4σ2
u

∑T
t=2

∑t−1
s1 6=s2=1E [as1tas2tus1us2 ].

Let wst =
∑t−1

i=s+1 ui and gst(·, ·) be the joint density function of wst and us. Assumption

2.1(ii) then implies

E[a2
stu

2
s] =

∫ ∫
K2
h(wst + us)u

2
sgst(ust, us)dusdust

=

∫ ∫
K2
h(ust + us)u

2
sgst(wst|us)f(us)dusdust

=
1

(t− s− 1)α

∫ ∫
K2
h(wst + us)u

2
sfst

(
ust

(t− s− 1)α
|us
)
g(us)dusdust

=
h

(t− s− 1)α

∫ ∫
K2(xst)x

2fst

(
xsth

(t− s− 1)α
|us
)
g(x)dxdxst. (A.26)

Choose mT ≥ 1 such that mT →∞ and mT√
Th
→ 0 as T →∞. Observe that

T∑
t=2

t−1∑
s=1

E[a2
stu

2
s] =

T−1∑
s=1

T∑
t=s+1

E[a2
stu

2
s] = A1T +A2T , (A.27)

whereA1T =
∑T−1

s=1

∑
1≤(t−s)≤mT E[a2

stu
2
s] = O(TmT ) = o(T 3/2h) using the fact that E

[
a2
stu

2
s

]
≤

k2
0E
[
u2
s

]
= k2

0 due to the boundedness of the kernel K(·) by a constant k0 > 0.
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Using Assumption 2.1, it follows from (A.26) that

A2T =

T−1∑
s=1

∑
mT+1≤(t−s)≤T−1

E[a2
stu

2
s]

= (1 + o(1))C0

T−1∑
s=1

∑
mT+1≤(t−s)≤T−1

h

(t− s− 1)α

∫ ∫
K2(y)x2g(x)dxdy

=
4σ2

u

∫
K2(y)dy

3
C0T

3/2h(1 + o(1)). (A.28)

To deal with R1T , we need to introduce the following notation: for 1 ≤ i ≤ 2,

Zi = usi , Z11 =

t−1∑
i=s1+1

ui, Z22 =

s1−1∑
j=s2+1

uj , (A.29)

ignoring the notational involvement of s, t and others.

Let g(x11, x1, x22, x2) be the joint density of (Z11, Z1, Z22, Z2), g11(x11|x1, x22, x2) be the

conditional density function of Z11 given (Z1, Z22, Z2), g(x1|x22, x2) be the conditional density

function of Z1 given (Z22, Z2), and g22(x22|x2) be the conditional density function of Z22 given

Z2. Similarly to (A.26), we have that for large enough T

E [as1tas2tus1us2 ] = E

Kh

(
t−1∑
i=s1

ui

)
Kh

 t−1∑
j=s2

uj

us1us2


= E [Z1Z2Kh (Z2 + Z22)Kh (Z1 + Z2 + Z11 + Z22)]

=

∫
· · ·
∫
x1x2Kh(x1 + x2 + x11 + x22)Kh(x2 + x22)

× g(x11, x1, x22, x2)dx1dx2dx11dx22

=

∫
· · ·
∫
x1x2Kh(x1 + x2 + x11 + x22)Kh(x2 + x22)

× g11(x11|x1, x22, x2)g(x1|x22, x2)g22(x22|x2)g(x2)dx1dx2dx11dx22

(using yii = xi+xii
h )

= h2

∫
· · ·
∫
K (y22)K (y11 + y22)x1x2

×g11(y11h− x1|x1, y22h, x2)g(x1|hy22, x2)g22(hy22 − x2|x2)g(x2)

×dx1dx2dy11dy22

(using Taylor expansions)

= h2(1 + o(1))

∫
· · ·
∫
K (y22)K (y11 + y22)x1x2

× g11(−x1|x1, 0, x2)g(x1|0, x2)g22(−x2|x2)g(x2)dx1dx2dy11dy22

+ h4(1 + o(1))

∫
· · ·
∫
K (y22)K (y11 + y22)x1x2

× g′11(−x1|x1, 0, x2)g(x1|0, x2)g′22(−x2|x2)g(x2)dx1dx2dy11dy22
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= h2(1 + o(1))

∫
· · ·
∫
K (y22)K (y11 + y22)x1x2g(x1|0, x2)g(x2)

× 1

(t− s1 − 1)α
1

(s1 − s2 − 1)α
f11

(
−x1

(t− s1 − 1)α
|x1, 0, x2

)
× f22

(
−x2

(s1 − s2 − 1)α
|x2

)
dx1dx2dy11dy22

+ h4(1 + o(1))

∫
· · ·
∫
y11y22K (y22)K (y11 + y22)x1x2g(x1|0, x2)g(x2)

× 1

(t− s1 − 1)2α

1

(s1 − s2 − 1)2α
f ′11

(
−x1

(t− s1 − 1)α
|x1, 0, x2

)
× f ′22

(
−x2

(s1 − s2 − 1)α
|x2

)
dx1dx2dy11dy22. (A.30)

Thus, similarly to (A.27) and (A.28), we can show

T∑
t=2

t−1∑
s1 6=s2=1

E [as1tas2tus1us2 ] = 2

T∑
t=3

t−1∑
s1=2

s1−1∑
s2=1

E [as1tas2tus1us2 ]

= o
(
T 3/2h

)
+ 2C2

0h
2(1 + o(1))

T∑
t=3

t−1∑
s1=2

s1−1∑
s2=1

1

(t− s1 − 1)α
1

(s1 − s2 − 1)α

×
∫
· · ·
∫
K (y22)K (y11 + y22)x1x2g(x1|0, x2)g(x2)dx1dx2dy11dy22

+ o
(
T 3/2h

)
+ 2h4(1 + o(1))

T∑
t=3

t−1∑
s1=2

s1−1∑
s2=1

1

(t− s1 − 1)2α

1

(s1 − s2 − 1)2α

×
∫
· · ·
∫
y11y22K (y22)K (y11 + y22)x1x2g(x1|0, x2)g(x2)dx1dx2dy11dy22

= o
(
T 3/2h

)
(A.31)

using Assumption 2.1.

Equations (A.27), (A.28) and (A.31) show that for large enough T

σ2
T1 =

16
∫
K2(y)dy

3
√

2π
T 3/2h(1 + o(1)). (A.32)

The proof of Lemma A.1 is therefore finished.

Lemma A.2. Let Assumptions 2.1 and A.1 hold. Then for large enough T

lim
T→∞

1

σ4
T1

T∑
t=2

E
[
η4
t

]
= 0. (A.33)

Proof. Observe that

E
[
η4
t

]
= 16

t−1∑
s1=1

t−1∑
s2=1

t−1∑
s3=1

t−1∑
s4=1

E [as1tas2tas3tas4tus1us2us3us4 ] . (A.34)

We mainly consider the cases of si 6= sj for all i 6= j in the following proof. Since the other

terms involve at most triple summations, we may deal with such terms similarly. Without
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loss of generality, we only look at the case of 1 ≤ s4 < s3 < s2 < s1 ≤ t− 1 in the following

evaluation. Let

us1t = us1 +

t−1∑
i=s1+1

ui, us2t = us1 + us2 +

s1−1∑
i=s2+1

ui +

t−1∑
j=s1+1

uj ,

us3t = us1 + us2 + us3 +

s2−1∑
k=s3+1

uk +

s1−1∑
i=s2+1

ui +

t−1∑
j=s1+1

uj ,

us4t = us1 + us2 + us3 + us4 +

s3−1∑
l=s4+1

ul +

s2−1∑
k=s3+1

uk +

s1−1∑
i=s2+1

ui +

t−1∑
j=s1+1

uj .

Similarly to (A.29), let again Zi = usi for 1 ≤ i ≤ 4,

Z11 =
t−1∑

i=s1+1

ui, Z22 =

s1−1∑
j=s2+1

uj , Z33 =

s2−1∑
k=s3+1

uk, Z44 =

s3−1∑
l=s4+1

ul.

Analogously to (A.30), we may have

E

[
4∏
i=1

asitusi

]
= E

 4∏
j=1

ZjKh

(
j∑
i=1

[Zi + Zii]

)
=

∫
· · ·
∫
g(x11, x1, · · · , x44, x4)

×
4∏
j=1

(
Kh

(
j∑
i=1

[xi + xii]

)
xjdxjjdxj

)

=

∫
· · ·
∫
g11(x11|x1, · · · , x44, x4)g(x1|x22, · · · , x44, x4)

×g22(x22|x2, · · · , x44, x4)g(x2|x33, · · · , x44, x4)

×g33(x33|x3, x44, x4)g(x3|x44, x4)g44(x44|x4)g(x4)

×
4∏
j=1

(
Kh

(
j∑
i=1

[xi + xii]

)
xjdxjjdxj

)
(using yii = xi+xii

h and yi = xi)

= h4

∫
· · ·
∫
g11(y11h− y1|y1, · · · , hy44, y4)g(y1|hy22, · · · , hy44, y4)

×g22(hy22 − y2|y2, · · · , hy44, y4)g(y2|hy33, · · · , hy44, y4)

×g33(hy33 − y3|y3, hy44, y4)g(y3|hy44, y4)g44(hy44 − y4|y4)g(y4)

×
4∏
j=1

(
K

(
j∑
i=1

yii

)
yjdyjjdyj

)

= h4(1 + o(1))

∫
· · ·
∫
g11(−y1|y1, · · · , 0, y4)g(y1|0, · · · , 0, y4)

×g22(−y2|y2, · · · , 0, y4)g(y2|0, · · · , 0, y4)

×g33(−y3|y3, 0, y4)g(y3|0, y4)g44(−y4|y4)g(y4)

×
4∏
j=1

(
K

(
j∑
i=1

yii

)
yjdyjjdyj

)
, (A.35)
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where C22(K) ≡
∏4
j=1

∫
yjjK

(∑j
i=1 yii

)
dyjj <∞ involved in (A.35).

Hence, similarly to (A.31) we have by Assumption 2.1

T∑
t=2

∑
1≤s4<s3<s2<s1≤t−1

E [as1tas2tas3tas4tus1us2us3us4 ]

= O
(
h4
) T∑
t=2

∑
1≤s4<s3<s2<s1≤t−1

1√
t− s1

1√
s1 − s2

1√
s2 − s3

1√
s3 − s4

= O
(
T 3h4

)
= o

(
T 3h2

)
. (A.36)

Analogously, we can deal with the other terms of (A.34) as follows:

T∑
t=2

∑
1≤s2 6=s1≤t−1

E
[
a2
s1ta

2
s2tu

2
s1u

2
s2

]
= o

(
T 3h2

)
, (A.37)

T∑
t=2

∑
1≤s3 6=s2 6=s1≤t−1

E
[
a2
s1tas2tas3tu

2
s1us2us3

]
= o

(
T 3h2

)
, (A.38)

T∑
t=2

∑
1≤s2 6=s1≤t−1

E
[
a3
s1tas2tu

3
s1us2

]
= o

(
T 3h2

)
. (A.39)

Thus, the proof of (A.33) is completed using (A.34)–(A.39).

Lemma A.3. Let Assumptions 2.1 and A.1 hold. Then as T →∞

σ̃2
T1

σ2
T1

→D ξ2 > 0 (A.40)

with ξ2 =
√
π

2 M 1
2
(1), where M 1

2
(·) is a special case of the Mittag–Leffer process Mβ(·) with

β = 1
2 as described by Karlsen and Tjøstheim (2001, p.388).

Proof. To simplify the following proof, ignoring the higher–order term we rewrite

σ2
T1 =

16σ4
uJ02

3
√

2π
T 3/2h ≡ C10 T

3/2h. (A.41)

Let Q(u) = K2(u)
J02

and N(T ) be the same as T (n) in Karlsen and Tjøstheim (2001). It

then follows from Lemma B.2 below that as T →∞

max
1≤t≤T

∣∣∣∣∣ 1

N(T )h

T∑
s=2

Q

(
vs−1 − vt−1

h

)
− 1

∣∣∣∣∣ = o(1) almost surely. (A.42)

Meanwhile, Theorem 3.2 of Karlsen and Tjøstheim (2001, p.389) is applicable to the

current case of vt = vt−1 + ut under H0 to show that as T →∞

N(T )

L0

√
T
→D M 1

2
(1) (A.43)

when the slowly–varying function in this case is L0 = 2
√

2
3 .
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Therefore, equations (A.42) and (A.43) imply as T →∞

4

σ2
T1

T∑
t=1

(
T∑
s=1

a2
st

)
u2
t =

2

TC10

T∑
t=1

u2
t

(
1√
Th

T∑
s=1

a2
st

)

=
2L0J02

C10

N(T )

L0

√
T

1

T

T∑
t=1

u2
t

(
1

N(T )h

T∑
s=1

Q

(
vs−1 − vt−1

h

)
− 1

)

+
2L0J02

C10

N(T )

L0

√
T

1

T

T∑
t=1

u2
t →D

2 J02L0

C10
M 1

2
(1) =

√
π

2
M 1

2
(1) ≡ ξ2. (A.44)

Therefore, equation (A.44) completes the proof of Lemma A.3.

Lemma A.4. Let Assumptions 2.1 and A.1 hold. Then as T → ∞, M(T ) → ∞ and
M(T )
T → 0

σ̃2
T1

σ2
T1

−
σ̃2
M(T ),1

σ2
M(T ),1

→P 0. (A.45)

Proof. To simplify our proofs, we introduce the following lower case notation: m = T ,

n = M(T ), σ2
m = σ2

T1, σ2
n = σ2

M(T ),1, and for 1 ≤ i ≤ n, 1 ≤ j ≤ i− 1,

eij =
(
u2
i − E[u2

i ]
)
K2
h

 i−1∑
l=j

ul

u2
j and Wmi =

1

σ2
m

i−1∑
j=1

eij . (A.46)

w2
i =

i−1∑
j=1

K2
h

 i−1∑
l=j

ul

u2
j =

i−1∑
j=1

K2
h

 i−1∑
l=j+1

ul + uj

u2
j . (A.47)

Note that Wmi = 1
σ2
m

(
u2
i − E[u2

1]
)
w2
i .

Observe that

σ̃2
m1

σ2
m1

− σ̃2
n1

σ2
n1

=
m∑
i=1

Wmi −
n∑
j=1

Wnj + E[u2
1]

 1

σ2
m

m∑
i=1

w2
i −

1

σ2
n

n∑
j=1

w2
j


≡ Imn + E[u2

1] Jmn. (A.48)

In view of (A.47), in order to prove (A.45), it suffices to show that as m, n→∞

Imn →P 0 and Jmn →P 0. (A.49)

We start by proving the second part of (A.49). Observe also that

E
[
J2
mn

]
= E

 1

σ2
m

m∑
i=1

w2
i −

1

σ2
n

n∑
j=1

w2
j

2

= E

 1

σ2
m

m∑
i=n+1

w2
i +

σ2
n − σ2

m

σ2
m σ2

n

n∑
j=1

w2
j

2

=
1

σ4
m

m∑
i=n+1

m∑
k=n+1

E
[
w2
kw

2
i

]
+

(
σ2
n − σ2

m

)2
σ4
m σ4

n

n∑
j=1

n∑
k=1

E
[
w2
kw

2
j

]
− 2

σ2
m − σ2

n

σ4
m σ2

n

m∑
i=n+1

n∑
j=1

E
[
w2
iw

2
j

]
. (A.50)

28



We first deal with the first term. Recalling aji = Kh

(∑i−1
l=j ul

)
, we have

E

(
m∑

i=n+1

w2
i

)2

= E

 m∑
i=n+1

m∑
j=n+1

w2
i w

2
j

 =
m∑

i=n+1

E[w4
i ] +

m∑
i=n+1

m∑
j=n+1,6=i

E[w2
i w

2
j ]. (A.51)

We now evaluate the orders of
∑m

i=n+1E[w4
i ] and

∑m
i=n+1

∑m
j=n+1,6=iE[w2

i w
2
j ] respec-

tively. To do so, we now consider one of the cases: 1 ≤ t ≤ s− 1; 2 ≤ s ≤ j − 1;n+ 1 ≤ j ≤
i− 1;n+ 2 ≤ i ≤ m for the following term

E

 m∑
i=n+2

i−1∑
j=n+1

j−1∑
s=2

s−1∑
t=1

a2
siu

2
sa

2
tju

2
t

 =
m∑

i=n+2

i−1∑
j=n+1

j−1∑
s=2

s−1∑
t=1

E
[
a2
siu

2
sa

2
tju

2
t

]

=
m∑

i=n+2

i−1∑
j=n+1

j−1∑
s=2

s−1∑
t=1

E

K2
h

 j−1∑
c=s+1

uc +
i−1∑
c=j

uc + us

u2
s

× K2
h

(
s−1∑
d=t+1

ud +

j−1∑
d=s+1

ud + us + ut

)
u2
t

]
.

Other terms may be dealt with similarly. To simplify our calculation, we now introduce

the following simplistic symbols: Z11 =
∑s−1

d=t+1 ud, Z22 =
∑j−1

c=s+1 uc, Z33 =
∑i−1

c=j uc, Z1 = ut

and Z2 = us.

As in the proof of Lemma A.1, using the same techniques as in (A.35) we have

E

[
K2
h

(
2∑
i=1

(Zi + Zii)

)
K2
h (Z2 + Z22 + Z33)Z2

1Z
2
2

]

=

∫
· · ·
∫
K2
h

(
2∑
i=1

(xi + xii)

)
K2
h (x2 + x22 + x33) x2

1 x
2
2

× g(x33, x22, x2, x11, x1) dx33dx22dx11dx1dx2

=

∫
· · ·
∫
K2
h

(
2∑
i=1

(xi + xii)

)
K2
h (x2 + x22 + x33) x2

1 x
2
2

× g33(x33|x22, x2, x11, x1)g22(x22|x2, x11, x1)g(x2|x11, x1)g11(x11|x1)g(x1)

× dx33dx22dx11dx1dx2

(using yi = xi and yii = xi+xii
h for i = 1, 2 and y33 = x33

h )

= h3

∫
· · ·
∫
K2(y11 + y22)K2(y22 + y33) y2

1y
2
2

× g33(y33h|y22h− y2, y2, y11h− y1, y1)g22(y22h− y2|y2, y11h− y1, y1)

× g11(y11h− y1|y1)g(y2|y11h− y1, y1)g(y1) dy33dy22dy11dy1dy2

= h3(1 + o(1))

∫
· · ·
∫
K2(y11 + y22)K2(y22 + y33) y2

1y
2
2

× g33(0| − y2, y2,−y1, y1)g22(−y2|y2,−y1, y1)g11(−y1|y1)

× g(y2| − y1, y1)g(y1) dy33dy22dy11dy1dy2
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= h3(1 + o(1))

∫
· · ·
∫
K2(y11 + y22)K2(y22 + y33) y2

1y
2
2

× f33(0| − y2, y2,−y1, y1)f22

(
−y2

(j − s− 1)α
|y2,−y1, y1

)
× f11

(
−y1

(s− t− 1)α
|y1

)
g(y2| − y1, y1)g(y1) dy33dy22dy11dy1dy2. (A.52)

In view of (A.52) and (A.52), similarly to the calculations of (A.26), (A.27) and (A.28),

it can be shown that for large enough m and n,

E

 m∑
i=n+1

m∑
j=n+1, 6=i

w2
i w

2
j

 =
m∑

i=n+1

m∑
j=n+1, 6=i

E
[
w2
i w

2
j

]
= Ch3(1 + o(1))

m∑
i=n+2

i−1∑
j=n+1

j−1∑
s=2

s−1∑
t=1

1

(i− j)α
1

(j − s− 1)α
1

(s− t− 1)α

= Ch3(1 + o(1))(m− n)
5
2 . (A.53)

Similarly to (A.53), we may have for sufficiently large m and n,
m∑

i=n+1

E[w4
i ] = Ch2(1 + o(1))(m− n)

3
2 . (A.54)

E

 m∑
i=n+1

n∑
j=1

w2
i w

2
j

 = o
(
h3(m− n)

5
2

)
, (A.55)

E

 m∑
i=

n∑
j=1

w2
i w

2
j

 = o
(
h3(m− n)

5
2

)
(A.56)

using limm,n→∞
n
m = 0.

Thus, equations (A.50)–(A.56) imply that for large enough m and n,

E
[
J2
mn

]
= E

 1

σ2
m

m∑
i=1

w2
i −

1

σ2
n

n∑
j=1

w2
j

2

=
1

σ4
m

m∑
i=n+1

m∑
k=n+1

E
[
w2
kw

2
i

]
+

(
σ2
n − σ2

m

)2
σ4
m σ4

n

n∑
j=1

n∑
k=1

E
[
w2
kw

2
j

]
− 2

σ2
m − σ2

n

σ4
m σ2

n

m∑
i=n+1

n∑
j=1

E
[
w2
iw

2
j

]
= Ch

(
1− n

m

) 3
2

(1 + o(1)) = o(1) (A.57)

using again limm,n→∞
n
m = 0. We thus complete the second part of (A.49).

Let zi = u2
i − E[u2

1]. We now come back to prove the first part of (A.49). Note that for

n+ 1 ≤ i ≤ m and 1 ≤ j ≤ n,

Imn =
1

σ2
m

m∑
i=1

(
u2
i − E[u2

1]
)
w2
i −

1

σ2
n

n∑
j=1

(
u2
j − E[u2

1]
)
w2
j =

1

σ2
m

m∑
i=1

zi w
2
i −

1

σ2
n

n∑
j=1

zj w
2
j .

(A.58)
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Note that {w2
i } is a function of {uj : 1 ≤ j ≤ i− 1} while {zi} is a function of {ui}. Let

gzw(·, ·) be the joint density function of (zi, w
2
i ), gz|w(·|·) be the conditional density function

of zi given wi, and gw(·) be the marginal density function of w2
i . Obviously, gzw(z, w) =

gz(z)gw(w) when {ui} is assumed to be a sequence of independent random variables.

Thus, in view of the relationship gzw(z, w) = gz|w(z|w)gw(w) and the fact that the condi-

tional moments of zi given wi do not affect the order of E
[
I2
mn

]
, by using the same arguments

as in (A.50)–(A.57), we can show that for large enough m and n,

E
[
I2
mn

]
= E

 1

σ2
m

m∑
i=1

zi w
2
i −

1

σ2
n

n∑
j=1

zj w
2
j

2

=
1

σ4
m

m∑
i=n+1

m∑
k=n+1

E
[
zk w

2
k zi w

2
i

]
+

(
σ2
n − σ2

m

)2
σ4
m σ4

n

n∑
j=1

n∑
k=1

E
[
zk w

2
k zj w

2
j

]
− 2

σ2
m − σ2

n

σ4
m σ2

n

m∑
i=n+1

n∑
j=1

E
[
zi w

2
i zj w

2
j

]
= Ch

(
1− n

m

) 3
2

(1 + o(1)) = o(1). (A.59)

We therefore have completed the proof of Lemma A.4.

Lemma A.5. Let the conditions of Theorem 2.1 hold. Then as T →∞

MT i

σ̃T1
→P 0 for i = 2, 3, 4, (A.60)

σ̃Tj
σ̃T1

→P 0 for j = 2, 3, 4. (A.61)

Proof: Since
σ̃2
T1

σ2
T1
→D ξ2 as shown in Lemma A.3, in order to prove (A.60) and (A.61),

it suffices to show that as T →∞

MT i

σT1
→P 0 for i = 2, 3, 4, (A.62)

σ̃Tj
σT1

→P 0 for j = 2, 3, 4. (A.63)

Since the details are very similar, we prove only (A.62) for i = 2. Observe that

MT2 =

T∑
t=1

T∑
s=1, 6=t

ũs Kh(v̂s−1 − v̂t−1) ũt =

T∑
t=1

T∑
s=1, 6=t

ũs Kh(vs−1 − vt−1) ũt

+

T∑
t=1

T∑
s=1, 6=t

ũs (Kh(v̂s−1 − v̂t−1)−Kh(vs−1 − vt−1)) ũt

≡ MT21 +MT22. (A.64)
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For some B0 > 0, let Θ(β) =
{
β̂ : ||β̂ − β|| ≤ B0R

−1
T

}
and IΘ(β)(β̂) be the conventional

indicator function. Thus, for sufficiently large T and any given ε > 0,

P
(∣∣∣MT21IΘ(β)(β̂)

∣∣∣ ≥ εσT1

)
≤
E
∣∣∣MT21IΘ(β)(β̂)

∣∣∣
σT1ε

≤

∑T
t=1

∑T
s=1, 6=tE

[
|ũs| Kh(vs−1 − vt−1) |ũt| IΘ(β)(β̂)

]
σT1ε

≤ C
∑T

t=1

∑T
s=1, 6=t ||Xs −Xs−1|| E [Kh(vs−1 − vt−1)] ||Xt −Xt−1||

R2
TσT1

≤ C
2h
∑T

s=2

∑s−1
t=1 ||Xs −Xs−1|| 1√

s−t ||Xt −Xt−1||
R2
TσT1

= o(1) (A.65)

using ũt = (Xt −Xt−1)τ
(
β − β̂

)
, recalling the definition of Kh(·) = K

( ·
h

)
, the first part of

Assumption A.2 and for all s > t, E [Kh(vs−1 − vt−1)] ≤ Ch√
s−t , which follows from

E [Kh(vs−1 − vt−1)] = E

[
K

(
vs−1 − vt−1

h

)]
=

h√
s− t

∫
K(x)fst

(
xh√
s− t

)
dx

≤ C
h√
s− t

,

using the same argument as in (A.26) of the proof of Lemma A.1, where fst(·) is the density

of vst = vs−1−vt−1√
s−t and fst

(
xh√
s−t

)
is bounded by (2.6) of Assumption 2.1(i).

Therefore, for sufficiently small ε > 0

P (|MT21| ≥ εσT1) = P
(

(|MT21| ≥ εσT1) ∩
(
β̂ 6∈ Θ(β)

))
+ P

(
(|MT21| ≥ εσT1) ∩

(
β̂ ∈ Θ(β)

))
≤ P

(
||β̂ − β|| > B0R

−1
T

)
+ P

(∣∣∣MT21IΘ(β)(β̂)
∣∣∣ ≥ εσT1

)
→ 0 as T →∞. (A.66)

In view of v̂s−1− v̂t−1 = vs−1−vt−1 + (Xs−1 −Xt−1)τ (β− β̂) and using Assumption A.1,

we have

Kh(s, t) ≡

∣∣∣∣∣K
(
vs−1 − vt−1 + (Xs−1 −Xt−1)τ (β − β̂)

h

)
−K

(
vs−1 − vt−1

h

)∣∣∣∣∣
≤ M

(
vs−1 − vt−1

h

) ∣∣∣∣∣(Xs−1 −Xt−1)τ (β − β̂))

h

∣∣∣∣∣ .
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This implies that for large enough T

P
(
|MT22IΘ(β)(β̂)| ≥ εσT1

)
≤
E
∣∣∣MT22IΘ(β)(β̂)

∣∣∣
σT1ε

≤

∑T
t=1

∑T
s=1, 6=tE

[
|ũs| M

(
vs−1−vt−1

h

) ∣∣∣ (Xs−1−Xt−1)τ (β−β̂))
h

∣∣∣ |ũt| IΘ(β)(β̂)
]

σT1ε

≤ ε

∑T
t=1

∑T
s=1, 6=t ||Xs −Xs−1|| ||Xs−1 −Xt−1|| E

[
M
(
vs−1−vt−1

h

)]
||Xt −Xt−1||

R3
T h σT1

≤ C

∑T
s=2

∑s−1
t=1 ||Xs −Xs−1|| ||Xs−1−Xt−1||√

s−t ||Xt −Xt−1||
R3
TσT1

= o(1) (A.67)

using the second part of Assumption A.2.

We thus have that for sufficiently small ε > 0

P (|MT22| ≥ εσT1) = P
(

(|MT22| ≥ εσT1) ∩
(
β̂ 6∈ Θ(β)

))
+ P

(
(|MT22| ≥ εσT1) ∩

(
β̂ ∈ Θ(β)

))
≤ P

(
||β̂ − β|| > B0R

−1
T

)
+ P

(∣∣∣MT22IΘ(β)(β̂)
∣∣∣ ≥ εσT1

)
→ 0 as T →∞. (A.68)

As the detailed proofs for i = 3, 4 are very similar to those for the case of i = 2, we need

only to mention the proof for the case of i = 2. Similarly to (A.64), we can have

σ̃2
T2 = 2

T∑
t=1

T∑
s=1, 6=t

ũ2
s K

2
h(v̂s−1 − v̂t−1) ũ2

t = 2
T∑
t=1

T∑
s=1,6=t

ũ2
s K

2
h(vs−1 − vt−1) ũ2

t

+ 2

T∑
t=1

T∑
s=1, 6=t

ũ2
s

(
K2
h(v̂s−1 − v̂t−1)−K2

h(vs−1 − vt−1)
)
ũ2
t . (A.69)

Analogously to (A.66) and (A.68), using Assumption A.2 with i = 2 we can show that

for any given ε > 0

P
(
σ̃2
T2 ≥ ε σ2

T1

)
→ 0 as T →∞. (A.70)

This completes the proof of Lemma A.5 and thus the proof of Theorem 2.1 for Case A.

A.3. Proof of Theorem 2.1 in Case B

In view of (A.4) and (A.5), in order to prove Theorem 2.1 for Case B, it suffices to show

that equations (A.6)–(A.8) hold. These proofs are given in Lemmas A.6 and A.7 below.

Lemma A.6. Let Assumptions 2.2 and A.1 hold. Then under H0 : vt = f0(vt−1, θ0)+ut∑T
t=1

∑T
s=1, 6=t us Kh(vs−1 − vt−1) ut√

2
∑T

t=1

∑T
s=1, 6=t u

2
s K

2
h(vs−1 − vt−1) u2

t

→D N(0, 1) as T →∞. (A.71)
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Proof: The asymptotic normality in (A.71) is a standard result for the case where {ut} is

a sequence of martingale differences and {vt} is a strictly stationary and α–mixing sequence.

The proof follows from Lemma A.1 of Gao and King (2004) or Theorem A.1 of Gao (2007).

As the details are very similar to the proof of Theorem 2.1 of Gao and King (2004), they are

omitted here.

Lemma A.7. Let Assumption 2.2, A.1–A.3(i) and A.4 hold. Then as T →∞
MT i

σT1
→P 0 for i = 2, 3, 4, (A.72)

σ̃Tj
σT1

→P 0 for j = 2, 3, 4. (A.73)

Proof: Since {ut} is a sequence of martingale differences and {vt} is a strictly stationary

and α–mixing time series in Case B, the proofs of (A.60) and (A.61) remain true, but become

more standard through using Assumptions 2.2, A.3(i) and A.4.

A.4. Proof of Theorem 3.1(i)

Recall the notation introduced in the Simulation Scheme in Section 3 and let

ṽ∗t = Y ∗t −Xτ
t β̂ = ṽ∗t−1 + σ̂u u

∗
t , for Case A,

ṽ∗t = Y ∗t −Xτ
t β̂ = f0(ṽ∗t−1, θ̂0) + σ̂u u

∗
t , for Case B,

v̂∗t = Y ∗t −Xτ
t β̂
∗ = ṽ∗t +Xτ

t

(
β̂ − β̂∗

)
,

ũ∗t = Xτ
t (β̂ − β̂∗) + f0(ṽ∗t−1, θ̂0)− f0

(
ṽ∗t−1 +Xτ

t−1(β̂ − β̂∗), θ̂∗0
)
,

û∗t = v̂∗t − f0(v̂∗t−1, θ̂
∗
0) = σ̂u u

∗
t + ũ∗t ,

v̂∗s−1 − v̂∗t−1 = ṽ∗s−1 − ṽ∗t−1 + (Xs−1 −Xt−1)τ
(
β̂ − β̂∗

)
.

We thus have

M̂∗T ≡
T∑
t=1

T∑
s=1, 6=t

û∗s Kh(v̂∗s−1 − v̂∗t−1) û∗t =
T∑
t=1

T∑
s=1,6=t

σ̂uu
∗
s Kh(ṽ∗s−1 − ṽ∗t−1) σ̂uu

∗
t

+

T∑
t=1

T∑
s=1, 6=t

ũ∗s Kh(v̂∗s−1 − v̂∗t−1) ũ∗t + 2

T∑
t=1

T∑
s=1, 6=t

σ̂uu
∗
s Kh(v̂∗s−1 − v̂∗t−1) ũ∗t

+ M∗T4 ≡M∗T1 +M∗T2 +M∗T3 +M∗T4, (A.74)

σ̂∗2T ≡ 2

T∑
t=1

T∑
s=1, 6=t

û∗2s K2
h(v̂∗s−1 − v̂∗t−1) û∗2t = 2

T∑
t=1

T∑
s=1,s 6=t

σ̂2
uu
∗2
s K2

h(v̂∗s−1 − v̂∗t−1) σ̂2
u u
∗2
t

+ 2

T∑
t=1

T∑
s=1, 6=t

ũ∗2s K2
h(v̂∗s−1 − v̂∗t−1) ũ∗2t

+ 2
T∑
t=1

T∑
s=1, 6=t

σ̂2
uu
∗2
s K2

h(v̂∗s−1 − v̂∗t−1) ũ∗2t + σ̃∗2T4 ≡
4∑
j=1

σ̃∗2Tj , (A.75)
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where σ̃∗2T4 = σ̂∗2T − σ̃∗2T1 − σ̃∗2T2 − σ̃∗2T3 and M∗T4 = M̂∗T −M∗T1 −M∗T2 −M∗T3.

In view of (A.74) and (A.75), to prove Theorem 3.1(i), it suffices to show that as T →∞

M∗T1

σ̃∗T1

→D N(0, 1), (A.76)

M∗T i
σ̃∗T1

→P 0 for i = 2, 3, 4, (A.77)

σ̃∗Tj
σ̃∗T1

→P 0 for j = 2, 3, 4. (A.78)

Note that ṽ∗t = ṽ∗t−1 + σ̂uu
∗
t = ṽ∗0 + σ̂u

∑t
s=1 u

∗
s = σ̂u

∑t
s=1 u

∗
s. Note also that σ̂2

u =

E[u2
1] + oP (1). Thus, in order to prove equations (A.76)–(A.78), in view of the fact that

{u∗t } is a sequence of independent and identically distributed errors with E [u∗t ] = 0 and

E
[
u∗2t
]

= 1, and also independent of {Ys} for all s, t ≥ 1, it suffices to complete the proofs

of the bootstrapping versions of Lemmas A.1–A.5 by successive conditioning arguments.

As a matter of the fact, the derivations in the proofs of Lemmas A.1–A.5 now become less

technical and tedious due to the fact that {u∗t } is a sequence of independent and identically

distributed errors. Using the conditions of Theorem 3.1(i), in view of the notation of L̂∗T (h)

introduced in the Simulation Scheme in Section 3, we thus may show that as T →∞

P ∗
(
L̂∗T (h) ≤ x

)
→ Φ(x) for all x ∈ (−∞,∞) (A.79)

holds in probability with respect to the distribution of the original sample WT .

Let zα be the 1−α quantile of Φ(·) such that Φ(zα) = 1−α. Then it follows from (A.79)

that as T →∞

P ∗
(
L̂∗T (h) ≥ zα

)
→ 1− Φ(zα) = α. (A.80)

This, together with P ∗
(
L̂∗T (h) ≥ l∗α

)
= α by construction, implies that as T →∞

l∗α − zα →P 0. (A.81)

Using the conclusion of Theorem 2.1 and (A.79) again, we have that as T →∞

P ∗
(
L̂∗T (h) ≤ x

)
− P

(
L̂T (h) ≤ x

)
→P 0 for all x ∈ (−∞,∞) (A.82)

holds in probability. This, along with the construction that P ∗
(
L̂∗T (h) ≥ l∗α

)
= α again,

shows that as T →∞

lim
T→∞

P
(
L̂T (h) > l∗α

)
= α (A.83)

holds in probability. Therefore the conclusion of Theorem 3.1(i) is proved.

A.4. Proof of Theorem 3.1(ii)
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Note that under H1 : vt = f1(vt−1, θ1) + ut

ût = v̂t − f0

(
v̂t−1, θ̂0

)
= Xτ

t

(
β − β̂

)
+ vt − f0

(
v̂t−1, θ̂0

)
= ut +Xτ

t

(
β − β̂

)
+ f1(vt−1, θ1)− f0

(
v̂t−1, θ̂0

)
≡ ut + ũt,

ũt = Xτ
t (β − β̂) + f1(vt−1, θ1)− f0

(
vt−1 +Xτ

t (β − β̂), θ̂0

)
= Xτ

t (β − β̂) + f1(vt−1, θ1)− f0(vt−1, θ0)

+ f0(vt−1, θ0)− f0

(
vt−1 +Xτ

t (β − β̂), θ̂0

)
. (A.84)

To complete the proof of Theorem 3.1(ii), we need the following lemma.

Let

ΛT1 =
T∑
t=1

T∑
s=1, 6=t

ũs Kh(vs−1 − vt−1) ũt and

ΛT2 =

T∑
t=1

T∑
s=1,6=t

f10(vs−1) Kh(vs−1 − vt−1) f10(vt−1).

Then we have the following lemma.

Lemma A.8. Let the conditions of Theorem 3.1(ii) hold. Then as T →∞

σT1 Λ−1
T1 →P 0. (A.85)

Proof: Let f10(v) = f1(v, θ1)− f0(v, θ0). In view of (A.84), using Assumptions A.4 and

A.5(ii), in order to prove (A.85), it suffices to show that as T →∞

σT1 Λ−1
T2 →P 0, (A.86)

which follows from σT1 = O
(
T
√
h
)

and

T∑
t=1

T∑
s=1, 6=t

E [f10(vs−1) Kh(vs−1 − vt−1) f10(vt−1)]

= T 2h(1 + o(1)) ·
(∫

f2
10(x) π2

1(x) dx

) (∫
K(y) dy

)
= O

(
T 2h

)
,

using Assumption 3.1, where π1(v) denotes the marginal density of {vt} under H1. Note that

in such cases where {vt} is strictly stationary and α–mixing, existing results for the α–mixing

case (such as Lemmas A.1 and A.2 of the Appendix of Gao 2007) can be used to show that

E [ψ(v1+τ1 , . . . , v1+τl)] can be approximated by E [ψ(z1+τ1 , . . . , z1+τl)] with certain rate of

convergence related to the α–mixing coefficient for all 2 ≤ l ≤ 4, where {zi} is a sequence

of independent random variables having the same marginal density π1(·) as {vi} and each

ψ(x1, · · · , xl) is a symmetric function.
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Proof of Theorem 3.1(ii): In view of the definition of L̂T (h) and the proofs of Lemmas

A.6–A.8, it may be shown that as T →∞

L̂T (h) =

∑T
t=1

∑T
s=1,6=t ûs Kh(v̂s−1 − v̂t−1) ût√

2
∑T

t=1

∑T
s=1, 6=t û

2
s K

2
h(v̂s−1 − v̂t−1) û2

t

= (1 + oP (1))

∑T
t=1

∑T
s=1,6=t us Kh(vs−1 − vt−1) ut

σT1

+ (1 + oP (1))

∑T
t=1

∑T
s=1,6=t f10(vs−1) Kh(vs−1 − vt−1) f10(vt−1)

σT1
.

The proof of Theorem 3.1(ii) then follows from Lemma A.8.

Appendix B

In this appendix, we give two secondary lemmas for the proofs in Appendix A above.

Lemma B.1. Assume that the probability space (Ωn,Fn, Pn) supports square integrable

random variables Sn,1, Sn,2, · · · , Sn,kn, and that the Sn,t are adapted to σ–algebras Fn,t, 1 ≤
t ≤ kn, where

Fn,1 ⊂ Fn,2 ⊂ · · · ⊂ Fn,kn ⊂ Fn.

Let Xn,t = Sn,t − Sn,t−1, Sn,0 = 0 and U2
n,t =

t∑
s=1

X2
n,s. If Gn is a sub–σ–algebra of Fn, let

Gn,t = Fn,t ∨ Gn (the σ–algebra generated by Fn,t ∪ Gn) and let Gn,0 = {Ωn, φ} denote the

trivial σ–algebra. Moreover, suppose that

n∑
t=1

E
(
X2
n,tI{[|Xn,t|>δ]}(Xn,t)|Gn,t−1

)
→P 0 (B.1)

for some δ > 0, and there exists a Gn–measurable random variable u2
n, such that

U2
n,kn − u

2
n →P 0, (B.2)

n∑
t=1

E (Xn,t|Gn,t−1)→P 0, (B.3)

and
n∑
t=1

|E (Xn,t|Gn,t−1)|2 →P 0. (B.4)

If

lim
δ→0

lim
n→∞

inf P {Un,kn > δ} = 1, (B.5)

then
Sn,kn
Un,kn

→D N(0, 1) as n→∞.

Proof. The proof of Lemma B.1 follows from Corollary 3.1 and Theorem 3.4 of Hall and

Heyde (1980).
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Lemma B.2 below is concerned with uniform strong convergence of nonparametric kernel

density estimate of a nonstationary time series of the form vt = vt−1 + ut. The proof of

Lemma B.2 follows from that of Proposition 3.1 of Chen, Gao and Li (2007).

Recall that N(T ) is defined in the same way as T (n) in Karlsen and Tjøstheim (2001)

and define

f̂(v) = f̂s(v) =
1

N(T )h

T∑
l=1

K

(
vl−1 − v

h

)
. (B.6)

Lemma B.2. Let Assumptions 2.1(i) and A.1 hold. Then under H0 : vt = vt−1 + ut

and as T →∞

max
1≤t≤T

∣∣∣f̂(vt−1)− 1
∣∣∣ = o(1) almost surely. (B.7)

Note that in the random walk case, the invariant measure πs of {vt} is proportional to the

Lebesgue measure on R1, i.e., dπs(x) = cs dx with cs being a proportionality factor. Referring

to the uniqueness discussion in Remark 3.1 of Karlsen and Tjøstheim (2001), we can choose s

such that cs = 1 and dπs(x) = dx, the Lebesgue measure. This means that πs has a constant

density f(x) = fs(x) ≡ 1. This choice shows why the limit in (B.7) is one.
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Frölich, M., 2008. Parametric and nonparametric regression in the presence of endogenous control

variables. International Statistical Review 76, 214–227.

Gao, J., 2007. Nonlinear Time Series: Semiparametric and Nonparametric Methods. Chapman &

Hall/CRC, London.

Gao, J., Gijbels, I., 2008. Bandwidth selection in nonparametric kernel testing. Journal of the Amer-

ican Statistical Association 484, 1584–1594.

Gao, J., King, M. L., 2004. Adaptive testing in continuous–time diffusion models. Econometric The-

ory 20, 844–882.

Gao, J., King, M. L., Lu, Z., Tjøstheim, D., 2006. Specification testing in nonlinear time series with

nonstationarity. Working paper available from http://www.adelaide.edu.au/directory/jiti.gao.

Gao, J., King, M. L., Lu, Z., Tjøstheim, D., 2009a. Specification testing in nonstationary time series

autoregression. Annals of Statistics 37, 3893–3928.

Gao, J., King, M. L., Lu, Z., Tjøstheim, D., 2009b. Nonparametric specification testing for nonlinear

time series with nonstationarity. Econometric Theory 25, 1869–1892.

Granger, C. W. J., Inoue, T., Morin, N., 1997. Nonlinear stochastic trends. Journal of Econometrics

81, 65–92.
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