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Abstract

In this paper, we consider semiparametric estimation in a partially linear single–

index panel data model with fixed effects. Without taking the difference explicitly,

we propose using a semiparametric minimum average variance estimation (SMAVE)

based on a dummy–variable method to remove the fixed effects and obtain consistent

estimators for both the parameters and the unknown link function. As both the

cross section size and the time series length tend to infinity, we not only establish an

asymptotically normal distribution for the estimators of the parameters in the single

index and the linear component of the model, but also obtain an asymptotically

normal distribution for the nonparametric local linear estimator of the unknown link

function. The asymptotically normal distributions of the proposed estimators are

similar to those obtained in the random effects case. In addition, we study several

partially linear single–index dynamic panel data models. The methods and results

are augmented by simulation studies and illustrated by an application to a cigarette–

demand data set in the US from 1963–1992.
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1. Introduction

Panel data analysis has become increasingly popular in many fields, such as cli-

matology, economics and finance. The double–index models enable researchers to

estimate complex models and extract information that may be difficult to obtain by

applying purely cross–section or time–series models. There exists rich literature on

parametric linear and nonlinear panel data models. For an overview of statistical

inference and econometric analysis of parametric panel data models, we refer to the

books by Baltagi (1995), Arellano (2003) and Hsiao (2003). As in both the cross

section and time series cases, parametric panel data models may be misspecified, and

estimators obtained from such misspecified models are often inconsistent. To address

such issues, some nonparametric methods have been used in both panel data model

estimation and specification testing. Recent studies include Ullah & Roy (1998),

Hjellvik et al (2004), Cai & Li (2008), Henderson et al (2008), and Mammen et al

(2009).

In the multivariate setting with more than three covariates, the underlying re-

gression function cannot be estimated with reasonable accuracy due to the so–called

“curse of dimensionality”. How to circumvent the curse of dimensionality is an im-

portant issue in both nonlinear time series and panel data analysis. Many approaches

have been developed to address this issue (see, recent books by Fan & Yao 2003, Gao

2007, Li & Racine 2007 for example). One commonly–used approach is the semi-

parametric partially linear modeling. An advantage of the semiparametric partially

linear modeling is that any existing information concerning possible linearity of some

of the components can be taken into account in such models. This has been studied

extensively in both the time series and panel data cases (see, for example, Gao 2007,

Li & Racine 2007).

As is well known, however, the nonparametric components in the partially linear

models may only accommodate covariates X with low dimension and they are also

subject to the curse of dimensionality when the dimension ofX is larger than three. To

address this issue, we use the dimension reduction technique of single–index modelling.

Specifically, we consider a partially linear single–index panel data model of the form

Yit = Z⊤
itβ0 + η(X⊤

itθ0) + αi + vit, 1 ≤ i ≤ n, 1 ≤ t ≤ T, (1.1)
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where Zit = (Zit,1, · · · , Zit,d)
⊤ and Xit = (Xit,1, · · · , Xit,p)

⊤ are the respective d–

dimensional and p–dimensional covariate vectors, β0 = (β0,1, · · · , β0,d)
⊤ and θ0 =

(θ0,1, · · · , θ0,p)⊤ are unknown parameters with dimensions d and p, respectively, η(·)
is an unknown link function, αi are unobserved time-invariant individual effects, and

vit are the random errors. Note that Zit can be either continuous or discrete random

variables, while Xit are assumed to be continuous random variables.

Model (1.1) is called a fixed effects model if {αi} is correlated with {Zit} and

(or) {Xit} with an unknown correlation structure. Model (1.1) is called a random

effects model if {αi} is uncorrelated with both {Zit} and {Xit}. In this paper, we are

concerned with the fixed effects case. For the purpose of identification, we assume

that

(i)
n∑

i=1

αi = 0, (ii) ∥θ0∥ = 1 and the first component of θ0 is positive, (1.2)

where ∥ ·∥ := ∥ ·∥2 is the L2–distance. (i) is a commonly used identification condition

on the fixed effects (see, for example, Su & Ullah 2006, Sun et al 2009). (ii) is an

identification condition for the single–index structure in our model (see, for example,

Carroll et al 1997, Xia et al 2002).

Model (1.1) covers many interesting panel data models. When β0 ≡ 0, model

(1.1) reduces to a single–index panel data model (Bai et al 2009). When Xit are

scalar, model (1.1) becomes to a partially linear panel data model with fixed effects

(Su & Ullah 2006). When β0 ≡ 0 and η(·) is known, model (1.1) is a generalized

linear panel data model with fixed effects (Hsiao 2003).

Existing literature mainly focuses on both nonparametric and semiparametric es-

timation of random effects panel data models (see, for example, Li & Stengos 1996,

Ullah & Roy 1998, Henderson & Ullah 2005). Note that the random effects estima-

tors are inconsistent if the true model is one with fixed effects. In this paper, we will

develop a semiparametric estimation method associated with a local linear dummy

variable approach for model (1.1). The estimation method is consistent under either

the random effects setting or the fixed effects setting.

In this paper, we also allow that either Zit or Xit contain time lagged values of

Yit. In this case, model (1.1) covers several partially linear single–index dynamic

panel data models. In Section 4, we show that, for each i ≥ 1, {Yit : t ≥ 1} is

3



geometrically ergodic under some mild conditions, when it is generated by a type

of partially linear autoregressive models. This implies that stationarity and mixing

conditions on the underlying process are satisfied for each i ≥ 1. Furthermore, we

apply the partially linear single–index panel data model to analyze the dynamic de-

mand of cigarettes based on a panel data set from 46 states in the US. The data

set contains the consumption of cigarettes, the lagged consumption of cigarettes, the

average retail price, disposable income and the minimum price of cigarettes in any

neighboring state. Baltagi et al (2000) and Mammen et al (2009) respectively used

a parametric linear model and a nonparametric additive model to analyze the rela-

tionship among the variables. From the study by Mammen et al (2009), we can see

that there is some linear relationship between the consumption of cigarettes and its

lagged consumption. This suggests that model (1.1) might be a better option for such

a data set (see Section 5 for detail).

The main contribution of this paper can be summarized as follows. We first

propose using a semiparametric minimum average variance estimation (SMAVE) ap-

proach associated with a dummy variable method to estimate the parameters β0 and

θ0 as well as the unknown link function η(·). Under certain regularity conditions, we

are able to establish asymptotically normal distributions for the proposed parametric

estimators and nonparametric estimator when both n and T tend to infinity. Fur-

thermore, we find that the dummy variable approach proposed for the fixed effects

case enables us derive the same asymptotically normal distributions as in the case

where random effects are involved.

The rest of the paper is organized as follows. In Section 2, we introduce the

so–called SMAVE method to estimate β0, θ0 and η(·). Section 3 establishes the

asymptotic theory for the proposed estimators. Section 4 discusses some autoregres-

sion extensions of the proposed model. Section 5 illustrates the performance of the

proposed models and estimation methods using both simulated and real data exam-

ples. Technical assumptions and proofs of the main results are provided in Appendices

A–C. An additional appendix as Appendix D is given in a supplemental document.

2. Dummy variable based SMAVE approach

In the time series case (n = 1 and αi ≡ 0) of model (1.1), several estimation
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methods have been introduced (see, for example, Carroll et al 1997, Liang et al

2010, Wang et al 2010 for the profile likelihood method; Yu & Ruppert 2002 for the

penalized spline method; Xia and Härdle 2006 for the SMAVE method). However,

these methods cannot be readily used for the panel data model (1.1) due to the

presence of the fixed effects. The fixed effects, which are absent in time series models,

have to be eliminated in the estimation procedure so that consistent estimators can

be constructed. In linear panel data models, the conventional method of removing

the fixed effects is differencing, i.e., deducting either a cross–time average or the

observations for the previous time period from the observations for the current time

period (Henderson et al 2008). However, due to the single–index structure in model

(1.1), the differencing will complicate the estimation of the link function. Hence,

we will develop an estimation procedure based on a local linear dummy variable

approach, which is motivated by the least squares dummy variable approach used for

parametric panel data analysis (Hsiao 2003). In the dummy variable approach, the

unobserved fixed effects are brought explicitly into the model (1.1) and are treated

as the coefficients of the model. Having re-specified model (1.1) in this way, we can

estimate it by using the SMAVE method.

Apart from the fixed effects, another factor in the estimation of model (1.1) that is

different from the estimation of corresponding time series models is the involvement

of two indices: the time index t and the individual index i, which, as one might

expect, will add further complexity to the estimation of model (1.1). We will establish

asymptotic theory for the proposed estimators, as both the time–series dimension T

and the cross–sectional dimension n tend to infinity, by using the joint limit approach

introduced by Phillips and Moon (1999). The detailed proofs for such joint limiting

distribution results are more complicated than those for the asymptotic distribution

theory of time series models.

We next introduce the SMAVE method, which estimates both the parameters and

the unknown link function by minimizing a single common loss function. The SMAVE

method was first introduced by Xia et al (2002) for single–index time series models,

Recently, Xia (2006) established an asymptotic theory for this approach in time series

models and Xia & Härdle (2006) extended the approach and its asymptotic theory to

partially linear single–index time series models. However, extending this approach to
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the partially linear single–index panel data model (1.1) is challenging for the reasons

stated above. To address these issues, we will combine the dummy variable approach

with the SMAVE method and construct root–nT consistent parametric estimators.

We first introduce some notations for brevity of the presentation of our estimation

method. Let

Y = (Y11, · · · , Y1T , Y21, · · · , YnT )
⊤,

Z = (Z11, · · · ,Z1T ,Z21, · · · ,ZnT )
⊤,

V = (v11, · · · , v1T , v21, · · · , vnT )⊤,

η(X,θ) =
(
η(X⊤

11θ), · · · , η(X⊤
1Tθ), η(X

⊤
21θ), · · · , η(X⊤

nTθ)
)⊤

,

D0 = In ⊗ eT , α0 = (α1, · · · , αn)
⊤,

where In is the n× n identity matrix, eT is a T–dimensional vector with all elements

being 1, and ⊗ denotes the Kronecker product. With these notations, we can rewrite

model (1.1) as

Y = Zβ0 + η(X,θ0) +D0α0 + V. (2.1)

Furthermore, by the identification assumption
n∑

i=1

αi = 0, we have α1 = −
n∑

i=2

αi.

Letting D = [−en−1, In−1]
⊤ ⊗ eT and α = (α2, · · · , αn)

⊤, (2.1) can then be rewritten

as

Y = Zβ0 + η(X,θ0) +Dα+ V. (2.2)

For Xit close to x ∈ Rp, we have the following local linear approximation:

η(X⊤
itθ0) ≈ η(x⊤θ0) + η′(x⊤θ0)(Xit − x)⊤θ0,

where η′(u) is the derivative of η(u) at u. The basic idea of the SMAVE method is

to minimize

n∑
i=1

T∑
t=1

[
Y− Zβ −Dα− (enT ,Xit(θ)) (ait, bit)

⊤
]⊤

Wit

[
Y− Zβ −Dα− (enT ,Xit(θ)) (ait, bit)

⊤
]

(2.3)

with respect to β, θ, and (ait, bit)
⊤, where

Xit(θ) =
(
(X11 −Xit)

⊤θ, · · · , (X1T −Xit)
⊤θ, (X21 −Xit)

⊤θ, · · · , (XnT −Xit)
⊤θ
)⊤

and Wit = diag(w11,it, · · · , w1T,it, w21,it, · · · , wnT,it) is a diagonal matrix with its elements

satisfying
n∑

j=1

T∑
s=1

wjs,it = 1 for each pair (i, t).
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To solve the minimization problem (2.3), we will use an iterative procedure, which is

detailed as follows.

Step (i): For given β and θ, minimizing[
Y− Zβ −Dα− (enT ,Xit(θ)) (ait, bit)

⊤
]⊤

Wit

[
Y− Zβ −Dα− (enT ,Xit(θ)) (ait, bit)

⊤
]

(2.4)

with respect to α, we get

αit =
(
D⊤WitD

)−1
D⊤Wit

[
Y− Zβ − (enT ,Xit(θ)) (ait, bit)

⊤
]
. (2.5)

Then, letting α in (2.4) replaced by the right hand side of (2.5) and minimizing the

resulting weighted least squares with respect to (ait, bit)
⊤, we obtain the local linear

estimator of
(
η(X⊤

itθ), η′(X⊤
itθ)

)⊤
:

(ait, bit)
⊤ =

(
X⊤
it,∗(θ)WitXit,∗(θ)

)−1
X⊤
it,∗(θ)Wit (Yit,∗ − Zit,∗β) , (2.6)

where

Xit,∗(θ) =

[
InT −D

(
D⊤WitD

)−1
D⊤Wit

]
(enT ,Xit(θ)) ,

Yit,∗ = Y−D
(
D⊤WitD

)−1
D⊤WitY,

Zit,∗ = Z−D
(
D⊤WitD

)−1
D⊤WitZ.

Step (ii): For each pair (i, t), substitute α and (ait, bit)
⊤ in (2.3) with the right hand sides

of (2.5) and (2.6) and solve the resulting minimization problem with respect to β and

θ to obtain

(β⊤,θ⊤)⊤ =

 Z⊤
∗ WZ∗ Z⊤

∗ WX∗

X⊤
∗ WZ∗ X⊤

∗ WX∗


−1 Z⊤

∗

X⊤
∗

W (Y∗ − A∗) , (2.7)

where W = diag (W11, · · · ,W1T ,W21, · · · ,WnT ),

Y∗ =
(
Y ⊤
11,∗, · · · , Y ⊤

1T,∗, Y
⊤
21,∗, · · · , Y ⊤

nT,∗

)⊤
,

Z∗ =
(
Z⊤
11,∗, · · · ,Z⊤

1T,∗,Z⊤
21,∗, · · · ,Z⊤

nT,∗

)⊤
,

X∗ =
(
b11X⊤

11,∗, · · · , b1TX⊤
1T,∗, b21X⊤

21,∗, · · · , bnTX⊤
nT,∗

)⊤
,

Xit,∗ =

[
InT −D

(
D⊤WitD

)−1
D⊤Wit

]
Xit,

Xit = ((X11 −Xit), · · · , (X1T −Xit), (X21 −Xit), · · · , (XnT −Xit))
⊤ ,

A∗ =
(
a11e

⊤
11,∗, · · · , a1T e⊤1T,∗, a21e⊤21,∗, · · · , anT e⊤nT,∗

)⊤
,

eit,∗ =

[
InT −D

(
D⊤WitD

)−1
D⊤Wit

]
enT .
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Step (iii): With the updated values of β and θ, repeat the above two steps until conver-

gence.

As in Xia et al (2002), we use two sets of weights in the above iterative procedure. The

first is a set of multidimensional kernel weights defined as

wjs,it =
H ((Xjs −Xit)/h1)

n∑
j=1

T∑
s=1

H ((Xjs −Xit)/h1)

, (2.8)

where H(·) is a p–variate symmetric kernel function and h1 is a bandwidth. Choosing any

d–dimensional vector β and p–dimensional vector θ with ∥θ∥ = 1 and following the above

iterations, we can obtain initial estimators of β0 and θ0, which will later be shown to be

consistent. The initial estimators of β0 and θ0 are denoted β̃ and θ̃, respectively. However,

the estimators based on the p–variate kernel H(·) are not efficient due to the “curse of

dimensionality”. To improve the efficiency, we then use a set of single–index weights which

are defined as

wθ
js,it =

K
(
(Xjs −Xit)

⊤θ/h2
)

n∑
j=1

T∑
s=1

K ((Xjs −Xit)⊤θ/h2)

, (2.9)

where K(·) is a univariate symmetric kernel function and h2 is a bandwidth. Using the

initial estimates β̃ and θ̃ and following steps (i)–(iii) with the single–index weights, we then

obtain the final estimators β̂ and θ̂. By substituting β, θ and X⊤
itθ in (2.6) with β̂, θ̂ and

u, we obtain the estimator of η(u), which is denoted η̂(u).

3. Asymptotic theory

In this section, we establish the weak consistency of β̃ and θ̃ and then give the asymp-

totically normal distributions of β̂, θ̂ and the nonparametric local linear estimate of the

link function.

Theorem 3.1. Let Assumptions A1–A7 listed in Appendix A hold. Then, we have

β̃ − β0 = oP (1) and θ̃ − θ0 = oP (1). (3.1)

The proof of Theorem 3.1 is given in Appendix B below. Theorem 3.1 establishes the

weak consistency of β̃ and θ̃. Note that the detailed proof of Theorem 3.1 and related

technical lemmas in Appendix D of the supplemental document indicate that one can pos-

sibly strengthen the weak consistency result to strong consistency. The consistency of the

initial estimators of β0 and θ0 will help us to establish the root-nT convergence of the final

estimators β̂ and θ̂.
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Before giving the asymptotic distribution for β̂ and θ̂, we introduce some notations.

Let Z̃it,θ = Zit − vθ(Xit) and X̃it,θ = Xit − µθ(Xit), where vθ(x) = E
(
Z11|X⊤

11θ = x⊤θ
)

and µθ(x) = E
(
X11|X⊤

11θ = x⊤θ
)
. Define

Σ0 =

 Σ0(1) Σ0(2)

Σ⊤
0 (2) Σ0(3)

 and Σ1 =

 Σ1(1) Σ1(2)

Σ⊤
1 (2) Σ1(3)

 , (3.2)

where

Σ0(1) = E
(
Z̃11Z̃

⊤
11

)
, Σ0(2) = E

[
Z̃11η

′(X⊤
11θ0)X̃

⊤
11

]
,

Σ0(3) = E

[(
η′(X⊤

11θ0)
)2

X̃11X̃
⊤
11

]
, Σ1(1) =

∞∑
t=−∞

E
(
Z̃i1Z̃

⊤
itvi1vit

)
,

Σ1(2) =
∞∑

t=−∞
E
[
Z̃i1η

′(X⊤
itθ0)X̃

⊤
itvi1vit

]
and

Σ1(3) =

∞∑
t=−∞

E
[
η′(X⊤

i1θ0)η
′(X⊤

itθ0)X̃i1X̃
⊤
itvi1vit

]
.

The asymptotically normal distribution of β̂ and θ̂ is given in the following theorem.

Theorem 3.2. Let Assumptions A1–A7 and B1–B4 listed in Appendix A hold. Then, as

n, T → ∞ simultaneously, we have

√
nT

 β̂ − β0

θ̂ − θ0

 d−→ N
(
0, Σ−1

0 Σ1Σ
−1
0

)
, (3.3)

where 0 is a null–vector of dimension d+ p.

Theorem 3.2 shows that the final estimators resulting from the iterative procedure as-

sociated with the second set of weights achieve the root–nT rate of convergence. The

asymptotic distribution in (3.3) can be regarded as a natural and substantial extension

of existing results for time series case, such as Theorems 2 and 3 in Carroll et al (1997),

Theorem 1 in Xia & Härdle (2006) and Theorem 1 in Liang et al (2010). Furthermore,

if we assume that the error process {vit} is independent of {Zit} and {Xit}, and vit are

independent and identically distributed (i.i.d.) over i and t, the asymptotic variance in

(3.3) can be reduced to σ2Σ−1
0 , where σ2 = E[v2it]. This implies that the SMAVE method

achieves an semiparametrically efficient bound (see Carroll et al 1997 for details).

Under some mild conditions, we can show that the joint limit as both n and T tend

to infinity is identical to the sequential limit as T → ∞ first and then n → ∞ or the
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sequential limit as n → ∞ first and then T → ∞ (see, for example, Phillips & Moon 1999).

Additionally, we also find that, as T → ∞, the dummy variable approach proposed for the

fixed effects case provides the same asymptotically normal distribution as in the case where

random effects are involved. To the best of our knowledge, this is a set of new findings for

this type of nonlinear panel data models.

Let us turn to the asymptotic distribution of the the nonparametric estimator of the

link function. Let µk =
∫
ukK(u)du, νk =

∫
ukK2(u)du, bη(u) =

1
2µ2η

′′(u)h22 and σ2
η(u) =

ν0σ
2
θ0
(u)f−1

θ0
(u), where σ2

θ0
(u) = E(v2it|X⊤

itθ0 = u) and fθ0(·) is the density function of

X⊤
itθ0.

Theorem 3.3. Let the conditions of Theorem 3.2 hold. As n, T → ∞ simultaneously,

√
nTh2

(
η̂(x⊤θ̂)− η(x⊤θ0)− bη(x

⊤θ0)
)

d−→ N
(
0, σ2

η(x
⊤θ0)

)
. (3.4)

From the above theorem, the forms of the bias term bη(·) and the asymptotic variance

term σ2
η(·) are similar to those of the local linear estimator for panel data models with

random effects (see, for example, Theorem 3 in Cai & Li 2008). This implies that the

dummy variable approach proposed for the fixed effects case has similar asymptotically

normal distribution to that in the random effects case.

The proofs of Theorems 3.2 and 3.3 are given in Appendix C.

4. Dynamic partially linear single–index panel data models

This section introduces several dynamic models where the regressors Zit and (or) Xit in

(1.1) contain time–lagged values of Yit. Three types of partially linear single–index dynamic

panel data models are considered.

Case (i) Letting Zit = (Yi,t−1, · · · , Yi,t−d)
⊤, model (1.1) then becomes

Yit =

d∑
j=1

Yi,t−jβ0,j + η(X⊤
itθ0) + αi + vit, 1 ≤ i ≤ n, 1 ≤ t ≤ T. (4.1)

For each i, suppose that {Xit : t ≥ 1} and {vit : t ≥ 1} are two i.i.d. sequences, and

(Xit, vit) are independent of Yi,t−j , j ≥ 1. Then, a sufficient condition for the geometrical

ergodicity of {Yit : t ≥ 1} for each i is that

yd − β0,1y
d−1 − · · · − β0,d−1y − β0,d ̸= 0 for any |y| ≥ 1, (4.2)

which also leads to the stationarity of {Yit : t ≥ 1}.
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Case (ii) Consider the case where Xit contain time–lagged values of Yit with Xit =

(Yi,t−1, · · · , Yi,t−p)
⊤. Model (1.1) then becomes

Yit = Z⊤
itβ0 + η

 p∑
j=1

Yi,t−jθ0,j

+ αi + vit, 1 ≤ i ≤ n, 1 ≤ t ≤ T. (4.3)

For each i, suppose that {Zit : t ≥ 1} and {vit : t ≥ 1} are two i.i.d. sequences, and

(Zit, vit) are independent of Yi,t−j , j ≥ 1. Furthermore, assume that for any u ∈ R,

|η(u)| ≤ λ∗|u|/√p+ c∗, (4.4)

where 0 < λ∗ < 1 and 0 < c∗ < ∞. Then, following the same argument as in Example 3.5

of An and Huang (1996), we can show that {Yit : t ≥ 1} is geometrically ergodic for each i.

Case (iii) Consider the case where both Zit and Xit contain time–lagged values of Yit.

In this case, (1.1) becomes

Yit =
d∑

j=1

Yi,t−jβ0,j + η

 p∑
j=1

Yi,t−jθ0,j

+ αi + vit, 1 ≤ i ≤ n, 1 ≤ t ≤ T. (4.5)

Xia et al (1999) considered the time series case of (4.5) with αi ≡ 0 and gave some conditions

for the model to be identifiable. We now consider the geometrical ergodicity of {Yit : t ≥ 1}

in the panel data model (4.5) with αi ̸= 0 generally. Let ηi(u) = η(u) + αi. Then (4.5) can

be rewritten as

Yit =
d∑

j=1

Yi,t−jβ0,j + ηi

 p∑
j=1

Yi,t−jθ0,j

+ vit. (4.6)

Suppose that β0,1, · · · , β0,d satisfy (4.2), max
i

|αi| < ∞, lim
|u|→∞

∣∣∣ηi(u)u

∣∣∣ = lim
|u|→∞

∣∣∣η(u)u

∣∣∣ = 0,

and the probability density function of {vit} is positive everywhere. Then it can be shown,

following the proof of Theroem 3 in Xia et al (1999), that {Yit : t ≥ 1} is geometrically

ergodic for each i.

5. Numerical Examples

In this section, we first carry out a Monte Carlo simulation study to examine the finite

sample performance of the proposed estimation method, and then use the proposed model

and method to analyze a set of US cigarette demand data.

As introduced in Section 2, we use two sets of weights: one set of multivariate weights

for producing consistent initial estimates of β0 and θ0 and a set of single–index weights

for producing final estimates. Throughout this section, we use a product kernel H(x) =
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p∏
j=1

K(xj) for the multivariate weights, where K(u) = 3
4(1−u2)I(|u| ≤ 1). Equal bandwidth

of h1 = σ̂X(nT )−1/(4+p) is used for each variate of the multivariate weights, where σ̂X is

the sample standard deviation of Xit, 1 ≤ i ≤ n, 1 ≤ t ≤ T . The bandwidth h1 is simply

chosen under the following considerations: firstly it can reduce the computational burden

that we suffer from the iterations and secondly the bandwidth choice for the production of

initial estimates has little effect on the performance of the final estimates.

For the single–index weights, we use the quadratic kernel K(u) = 3
4(1 − u2)I(|u| ≤

1) and apply a leave–one–unit–out cross validation method for choosing the bandwidth.

The leave–one–out cross validation method was proposed in Sun et al (2009) and is an

extension of the conventional leave–one–out cross validation method. The idea is to remove

{(Zit,Xit, Yit) : 1 ≤ t ≤ T} from the data and use the rest of the (n− 1)T observations as

the training data to obtain estimates of β0, θ0 and η(·), which are denoted as β̂(−i), θ̂(−i)

and η̂(−i)(·). We thus choose an optimal bandwidth that minimizes a weighted squared

prediction error of the form(
Y−B(Z, β̂(−))− η(X, θ̂(−))

)⊤
M⊤M

(
Y−B(Z, β̂(−))− η(X, θ̂(−))

)
, (5.1)

where M = In×T − 1
T In ⊗ (eT e

⊤
T ),

B(Z, β̂(−)) =
(
Z⊤

11β̂(−1), · · · ,Z⊤
1T β̂(−1),Z

⊤
21β̂(−2), · · · ,Z⊤

2T β̂(−2), · · · ,Z⊤
n1β̂(−n), · · ·Z⊤

nT β̂(−n)

)⊤
and

η(X, θ̂(−)) =
(
η(−1)

(
X⊤

11θ̂(−1)

)
, · · · , η(−1)

(
X⊤

1T θ̂(−1)

)
, η(−2)

(
X⊤

21θ̂(−2)

)
, · · · , η(−n)

(
X⊤

nT θ̂(−n)

))⊤
.

The weight matrix M is constructed to satisfy MD = 0 so that the fixed effect term

Dα is eliminated from (5.1). In fact, M removes a cross-time average from each variable.

For example,

MY = (Y11 − Y1A, · · · , Y1T − Y1A, · · · , · · · , Yn1 − YnA, · · · , YnT − YnA)
⊤ ,

where YiA = 1
T

T∑
t=1

Yit for i = 1, · · · , n.

5.1. Simulated Examples

Example 5.1. We first use the following data generating process

Yit = 0.3Zit + sin
{
π
[
(Xit,1 +Xit,2 +Xit,3)/

√
3−A

]
/(B −A)

}
+ αi + vit, (5.2)
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where Zit = 0 for odd t and Zit = 1 for even t, Xit = (Xit,1, Xit,2, Xit,3)
⊤ are three–

dimensional random vectors with independent uniform U(0, 1) components and are i.i.d.

over both i and t, A = 0.3912 and B = 1.3409, αi = 0.5Z∗
iA + ui for i = 1, · · · , n − 1,

and αn = −
n−1∑
i=1

αi, in which Z∗
iA = 1

2T

T∑
t=1

(Zit,1 + Zit,2) and ui are i.i.d. N(0, 0.12) random

errors, vit are i.i.d. (over both i and t) N(0, 0.12) random variables. In addition, {Zit},

{Xit}, {ui} and {vit} are mutually independent.

The true parameters of model (5.2) are β0 = 0.3 and θ0 = (1, 1, 1)⊤/
√
3, and the link

function is η(u) = sin {π(u−A)/(B −A)}. The time series counterpart of this example

was used by Carroll et al (1997), Xia and Härdle (2006) and Liang et al (2010).

We start the iterative estimation procedure described in Section 2 with θ = (0, 1, 2)⊤/
√
5

as the initial values of θ0. The resulting estimates of the parameters over 200 realizations,

as well as their corresponding mean squared errors (MSEs) for samples of sizes n, T = 10,

20, 30 are summarized in Table 5.1 with the MSEs parenthesized. The estimates of the link

function η(·) from typical realizations of sample sizes n, T = 10, 20, 30 are given in Figure

5.1.

Table 5.1 indicates that the SMAVE method produces accurate estimates of both β0

and θ0, and as either n or T increases, the MSEs of the estimates become smaller and

smaller. Comparison of the results in Table 5.1 with those in the second panel of Table 1

in Xia and Härdle (2006) also suggests that the estimates and MSEs here are comparable

with those in Xia and Härdle (2006).

Example 5.2. Consider the following model

Yit = (2Zit,1 + Zit,2)/
√
5 + 2 exp

{
−(2Xit +Xi,t−1 + 2Xi,t−2)

2/3
}
+ αi + vit, (5.3)

where Zit = (Zit,1, Zit,2)
⊤ are two–dimensional i.i.d. (over both i and t) random vectors

with independent components that have binary distribution with P (Zit,j = 0) = P (Zit,j =

1) = 0.5, j = 1, 2, Xit = (Xit, Xi,t−1, Xi,t−2)
⊤ in which Xit = 0.4Xi,t−1 + xit and xit are

i.i.d. (over i and t) and uniformly distributed with xit ∼ U(−1, 1), vit are i.i.d. (over i

and t) with normal distribution N(0, 0.52), αi = 0.5Z∗
iA + ui for i = 1, · · · , n − 1, and

αn = −
n−1∑
i=1

αi, in which Z∗
iA = 1

2T

T∑
t=1

(Zit,1 +Zit,2) and ui
i.i.d.∼ N(0, 0.22). {Zit}, {xit}, {ui}

and {vit} are mutually independent.

The true parameters of model (5.4) are β0 = (2, 1)⊤/
√
5 and θ0 = (2, 1, 2)⊤/3, and the

true link function is η(u) = 2 exp{−3u2}.

The means as well as the MSEs of the estimates of the parameters over 200 replications

are given in Table 5.2. These results indicate that the SMAVE method estimates the
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parameters accurately, and its performance (in terms of MSE) improves as n or T increases.

Table 5.1. Means and MSEs of the estimates of the parameters in Example 5.1

n\T 10 20 30

True Value Mean MSE(×10−4) Mean MSE(×10−4) Mean MSE(×10−4)

10 β0 = 0.3000 0.2989 (4.3502) 0.3011 (2.1873) 0.3002 (1.4515)

θ0,1 = 0.5774 0.5789 (2.6539) 0.5783 (1.2542) 0.5769 (0.8428)

θ0,2 = 0.5774 0.5768 (2.6542) 0.5769 (1.2403) 0.5773 (0.8118)

θ0,3 = 0.5774 0.5763 (3.1450) 0.5768 (1.4429) 0.5778 (0.9853)

20 β0 = 0.3000 0.3012 (2.1887) 0.3006 (0.9868) 0.2998 (0.7108)

θ0,1 = 0.5774 0.5767 (1.3108) 0.5779 (0.6288) 0.5767 (0.4139)

θ0,2 = 0.5574 0.5786 (1.2686) 0.5766 (0.5951) 0.5771 (0.3705)

θ0,3 = 0.5774 0.5768 (1.4648) 0.5776 (0.6755) 0.5782 (0.4379)

30 β0 = 0.3000 0.2993 (1.5891) 0.2994 (0.6470) 0.3001 (0.4859)

θ0,1 = 0.5774 0.5770 (0.8558) 0.5767 (0.4155) 0.5769 (0.2822)

θ0,2 = 0.5774 0.5768 (0.8354) 0.5779 (0.3981) 0.5773 (0.2338)

θ0,3 = 0.5774 0.5783 (0.9518) 0.5775 (0.40812) 0.5778 (0.2374)
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Table 5.2. Means and MSEs of the estimates of the parameters in Example 5.2

n\T 10 20 30

True Value Mean MSE(×10−4) Mean MSE(×10−4) Mean MSE(×10−4)

10 β0,1 = 0.8944 0.8901 (100.0000) 0.8787 (45.0000) 0.8875 (44.0000)

β0,2 = 0.4472 0.4422 (105.0000) 0.4538 (48.0000) 0.4484 (36.0000)

θ0,1 = 0.6667 0.6683 (13.0000) 0.6612 (5.7443) 0.6642 (4.7835)

θ0,2 = 0.3333 0.3281 (27.0000) 0.3400 (14.0000) 0.3320 (9.1121)

θ0,3 = 0.6667 0.6635 (15.0000) 0.6668 (7.6202) 0.6684 (4.3630)

20 β0,1 = 0.8944 0.9036 (57.0000) 0.8950 (26.0000) 0.8897 (18.0000)

β0,2 = 0.4472 0.4460 (52.0000) 0.4499 (33.0000) 0.4473 (19.0000)

θ0,1 = 0.6667 0.6651 (6.5923) 0.6639 (4.8670) 0.6662 (2.2190)

θ0,2 = 0.3333 0.3299 (16.0000) 0.3308 (9.4963) 0.3291 (4.4093)

θ0,3 = 0.6667 0.6679 (4.8119) 0.6693 (3.8523) 0.6686 (2.1373)

30 β0,1 = 0.8944 0.9012 (47.0000) 0.8940 (14.0000) 0.8932 (11.0000)

β0,2 = 0.4472 0.4505 (37.0000) 0.4484 (17.0000) 0.4495 (14.0000)

θ0,1 = 0.6667 0.6662 (4.9653) 0.6647 (2.3813) 0.6671 (1.0029)

θ0,2 = 0.3333 0.3299 (14.0000) 0.3323 (4.7590) 0.3316 (3.3297)

θ0,3 = 0.6667 0.6669 (5.2189) 0.6685 (0.40812) 0.6667 (1.0682)

5.2. A Real Data Example

The real data example is about the cigarette demand in 46 states of the USA over the

period 1963–1992. The data set is from Baltagi et al (2000), who used a linear dynamic

panel data model of the form

lnCit = β0 + β1 lnCi,t−1 + θ1 lnDIit + θ2 lnPit + θ3 lnPNit + uit (5.4)

to analyze the demand for cigarettes, where i = 1, · · · , 46, denotes the i–th state, t = 1,

· · · , 29 denotes the t–th year, Cit is the real per capita sales of cigarettes (measured in

packs), DTit is the real per capita disposable income, Pit is the average retail price of a
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Figure 5.1. Curve estimates from single replications of the simulation study of Example 5.1. The

solid curves are the true functions η(X⊤
itθ0), the dashed curves are the corresponding estimated

functions η̂(X⊤
it θ̂), the dots denote Yit − Z⊤

itβ̂ − α̂i plotted against X⊤
it θ̂.

pack of cigarettes measured in real terms, PNit is the minimum real price of cigarettes in

any neighboring state, and the disturbance term uit in (5.4) is specified as

uit = µi + λt + vit, (5.5)

where µi denotes a state-specific effect, and λt denotes a year-specific effect, which can also

be interpreted as a trend in t.

Due to the presence of the time–specific effect or trend λt in all the variables, we first

remove the trend from the log-transformed observations as in Mammen et al (2009),

Yit = lnCit − sC(t), V 1it = Yi,t−1, V 2it = lnDIit − sDI(t),

V 3it = lnPit − sP (t), V 4it = lnPNit − sPN (t),

where sC(t), sDI(t), sP (t), and sPN (t) are the nonparametric estimates of the trends in

lnCit, lnDIit, lnPit and lnPNit, i = 1 · · · , 46, t = 1, · · · , 29. In Figure 5.3, we give the
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Figure 5.2. Curve estimates from single replications of the simulation study of Example 5.2. The

solid curves are the true functions η(X⊤
itθ0), the dashed curves are the corresponding estimated

functions η̂(X⊤
it θ̂), the dots denote Yit − Z⊤

itβ̂ − α̂i plotted against X⊤
it θ̂.

scatter plots of Y against V 1, V 2, V 3, and V 4. It is clear from Figure 5.3 that Y exhibits

strong linearity with V 1 (i.e. the lagged variable of Y ). For the other three covariates,

their linearities with Y are not as strong as that for the lagged-variable. Hence, we define

Zit = V 1it and Xit = (V 2it, V 3it, V 4it)
⊤, and put Zit in the linear term and Xit in the

single-index term of the following model

Yit = Zitβ + g(X⊤
itθ) + αi + vit, (5.6)

where θ = (θ1, θ2, θ3)
⊤, αi is a state–specific effect which may include religion, race, tourism,

tax, and education. αi corresponds to µi in model (5.4)–(5.5). Furthermore, as we detrended

lnCit, lnDIit, lnPit and lnPNit, the year-specific term λt that appeared in model (5.4)–

(5.5) is eliminated from model (5.6).

After applying the estimation method proposed in Section 2 to the data on Yit, Zit,

Xit, we can obtain the estimates of the parameters in (5.6), which are summarized in Table
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plotted against X⊤
it θ̂. The solid line denotes the estimated link function η̂(X⊤

it θ̂). The dash-dotted

lines represent the 95% confidence band.
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5.3. The estimated curve of the link function as well as its 95% confidence band is given in

Figure 5.4.

Table 5.3. Estimates of the parameters in the cigarette data example

parameter β θ1 θ2 θ3

estimate 0.8480 0.2594 -0.8735 0.4119

(SD) (0.0073) (0.0217) (0.0099) (0.0260)

Comparison of the results in Table 5.3 with that in Baltagi et al (2000) indicates that

our estimate of β is smaller than the estimates of the corresponding coefficient in Baltagi

et al (2000), where a value of 0.90 from the OLS method and a value of 0.91 from the GLS

method were obtained. In addition, compared with θ̂ = (0.2112,−0.9404, 0.2665)⊤ from the

OLS and θ̂ = (0.1602,−0.9503, 0.2669)⊤ from the GLS in Baltagi et al (2000), the absolute

value of our estimate of θ2 is smaller, while those of θ1 and θ3 are larger (note that due

to the identification condition ∥θ∥ = 1, one has to normalize the estimates of θ in (5.4)

before making comparisons). The computed coefficient of determination for model (5.6) is

R2 = 0.9698, which indicates a good fit to the data.

6. Conclusions and Discussion

This paper has considered a partially linear single–index panel data model with fixed

effects. A semiparametric minimum average variance estimation method associated with

a dummy–variable approach has been proposed to deal with the estimation of both the

parametric and nonparametric components of the model. We have shown that the proposed

estimators all have asymptotically normal distribution regardless of whether the effects

involved are random or fixed. We have then assessed the finite–sample performance of the

proposed estimation method through using both simulated and real data examples.

The paper certainly has some limitations. One question is whether the established

theory may be extended to the case where both {Xit} amd {Zit} are nonstationary over

t and cross–sectional dependent over i. How to answer such a question should be left in

future research.
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Appendix A: Assumptions

Let Zi = (Zit : 1 ≤ t ≤ T ), Xi = (Xit : 1 ≤ t ≤ T ) and Vi = (vit : 1 ≤ t ≤ T ). To derive

the consistency of the initial estimates β̃ and θ̃, we need the following set of regularity

conditions.

A1 (Zi,Xi, Vi), i = 1, · · · , n, are i.i.d. and {(Zit,Xit, vit) : t ≥ 1} is a stationary α–mixing

sequence with mixing coefficient αi(t) for each i. Furthermore, there exists a positive

coefficient function α(t) such that

sup
i

αi(t) ≤ α(t) with α(t) ≤ Cαt
−γ0 ,

where Cα > 0 and γ0 >
(2+δ∗)(2+δ)

2(δ−δ∗)
, in which δ and δ∗ are positive constants satisfying

δ > δ∗.

A2 The kernel function H(·): Rd → R+ is a bounded and Lipschitz continuous probabil-

ity density function with a compact support. Furthermore, H(x) is symmetric and∫
xx⊤H(x)dx is positive definite.

A3 The density function fX(·) of Xit is second–order continuous and has gradient f ′
X(·).

Moreover, fX(·) is positive and bounded in X :=
{
x : ∥x∥ ≤ C(nT )

1
2+δ

}
for any

C > 0 and E∥Xit∥2+δ < ∞, where ∥ · ∥ is the L2–distance and δ was defined in A1.

A4 Let g1(x) := E [Zit|Xit = x] and g2(x) := E
[
ZitZ

⊤
it |Xit = x

]
. Both g1(x) and g2(x)

have bounded and continuous derivatives. In addition, E∥Zit∥2+δ < ∞ and

E
{
(Zit − E(Zit|Xit)) (Zit − E(Zit|Xit))

⊤
}

is a positive definite matrix, where δ was defined in A1.

A5 {vit} is independent of {(Zit,Xit)} with E[vit] = 0, 0 < σ2 := E[v2it] < ∞ and

E[|vit|2+δ∗ ] < ∞ for δ∗ > 0 defined in A1.

A6 The link function η(·) has continuous derivatives up to the second order.

A7 The bandwidth h1 involved in the multivariate weights satisfies

h1 → 0,
log T

Thp+2
1

= O(1),
(nT )2γ0−4p(1+ 1

2+δ
)−3h

2pγ0+4p2+9p+2
1

log2γ0−4p+1(nT )
→ ∞,

where p is the dimension of Xit, and γ0 and δ were defined in A1.
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To establish asymptotic distribution for the final parametric estimators β̂ and θ̂, we

further need the following set of regularity conditions.

B1 The kernel function K(·): R → R+ is a bounded and symmetric probability density

function. Furthermore, K(·) is Lipschitz continuous and has a compact support.

B2 The density function fθ(·) of X⊤
itθ is positive and second–order continuous for θ in a

neighborhood of θ0. Moreover, fθ0(·) is positive and bounded in

U :=
{
u = x⊤θ0 : ∥x∥ ≤ C(nT )

1
2+δ

}
for any C > 0 and δ were defined in A1.

B3 The conditional expectation g3(u) := E[Zit|X⊤
itθ = u] has a bounded and continuous

derivative for θ in a neighborhood of θ0.

B4 The bandwidth h2 involved in the single–index weights satisfies

0 < lim
n,T→∞

(nT ) h52 < ∞.

Furthermore, there exists a relationship between n and T ,

T δ∗δ+2δ log5(2+δ)(2+δ∗)(nT )

n4δδ∗+10δ∗−2δ
= o(1).

In A1, we assume that (Zi,Xi, Vi), 1 ≤ i ≤ n, are cross–sectional independent (see, for

example, Su & Ullah 2006, Sun et al 2009) and each component time series is α–mixing

dependent, which can be satisfied by many linear and nonlinear time series (see, for ex-

ample, the discussion in Section 4). Assumption A2 involves some mild conditions on the

multivariate kernel function H(·). A3 and A4 are similar to the corresponding conditions

in Xia & Härdle (2006). Since αi are allowed to be correlated with (Xit,Zit), uit = αi + vit

thus may be correlated with (Xit,Zit) even though vit are independent of (Xit,Zit). As-

sumption A4 is needed to ensure that both (β0,θ0) and η(·) are identifiable and estimable.

Meanwhile, the independence between {(Zit,Xit)} and {vit} in A5 is imposed to simplify

our proofs and it can be removed at the expense of more tedious proofs. A6 is a common

condition for local linear estimators (see, for example, Fan & Gijbels 1996, Fan & Yao 2003).

We next show that the bandwidth restrictions in A7 are satisfied under mild conditions if

we take h1 ∼ (nT )−ϑ, 0 < ϑ < 1/(p+ 2). It is easy to check that h1 ∼ (nT )−ϑ = o(1) and

the second condition in A7 is also satisfied when n = O
(
T

1
ϑ(p+2)

−1
/ log

1
ϑ(p+2) T

)
. If we let
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p1 = 2γ0 −
4p(3+δ)
2+δ − 3, p2 = 2pγ0 + 4p2 + 9p+ 2 and p3 = 2γ0 − 4p+ 1, the left hand side

of the last term in A7 becomes

(nT )p1hp21
logp3(nT )

=
(nT )p1−p2ϑ

logp3(nT )

which tends to ∞ when p1 > p2ϑ. As ϑ < 1/(p + 2), 2 − 2pϑ > 0. By some elementary

calculation, it is easy to show that if

γ0 >
(4p2 + 9p+ 2)ϑ

2− 2pϑ
+

(4p+ 3)(2 + δ) + 4p

(2 + δ)(2− 2pϑ)
,

then p1 > p2ϑ and thus the third condition in A7 holds.

AssumptionsB1–B3 are natural extensions of conditions C2, C4 and C5 in Xia & Härdle

(2006). The rate of the bandwidth h2 in B4 is optimal for pooled local linear estimators.

In particular, if we take δ∗ = 1 and δ = 2,

δ∗δ + 2δ = 6, 5(2 + δ)(2 + δ∗) = 60, 4δδ∗ + 10δ∗ − 2δ = 14.

Then, the condition on the relationship between n and T in B4 would become

T 3 log30(nT )

n7
= o(1),

which includes two cases: (i) the time series length T is larger than the cross–sectional

dimension n, and (ii) the cross–sectional dimension n is larger than the time series length

T .

Appendix B: Proof of Theorem 3.1

Define ax = η(x⊤θ0), ait = η(X⊤
itθ0), bx = η′(x⊤θ0) and bit = η′(X⊤

itθ0). Let ãx, ãit,

b̃x, and b̃it be the local linear estimators obtained from (2.6) using the set of multivariate

weights in (2.8). Let ex,∗, Xx,∗, Xx,∗, Wx and Zx,∗ be the counterparts of eit,∗, Xit,∗, Xit,∗,

Wit and Zit,∗ when Xit are replaced by x. Furthermore, define

Dx,∗ = D −D
(
D⊤WxD

)−1
D⊤WxD,

Vx,∗ = V−D
(
D⊤WxD

)−1
D⊤WxV,

Vit,∗ = V−D
(
D⊤WitD

)−1
D⊤WitV.

For simplicity, define τ(T ) =
√

log T
Thp

1
, τnT (1) =

√
lognT
nThp

1
, τnT (2) =

√
lognT
nTh2

, ζβ = β−β0

and ζθ = θ − θ0.

22



To prove the weak consistency of β̃ and θ̃ in Theorem 3.1, we need to establish

the asymptotic uniform expansions of ãx and b̃x in {x : ∥x∥ ≤ CnT }, where CnT =

C0 (nT )1/(2+δ) and 0 < C0 < ∞.

Lemma B.1. Let Assumptions A1–A7 in Appendix A hold. Then, we have

ãx = ax + g⊤1 (x)(β0 − β) +OP

(
h21 + τ(T )

)
, (B.1)

and

b̃x = θ⊤θ0bx +OP

(
∥ζβ∥+ h21 + τ(T )

)
(B.2)

uniformly in {x : ∥x∥ ≤ CnT }, where g⊤1 (x) was defined in A4.

Proof. By the definition of ãx and b̃x, we have(
ãx, b̃x

)⊤
=

(
X⊤
x,∗(θ)WxXx,∗(θ)

)−1
X⊤
x,∗(θ)WxZx,∗(β0 − β)

+
(
X⊤
x,∗(θ)WxXx,∗(θ)

)−1
X⊤
x,∗(θ)WxDx,∗α

+
(
X⊤
x,∗(θ)WxXx,∗(θ)

)−1
X⊤
x,∗(θ)Wxηx,∗(X,θ0)

+
(
X⊤
x,∗(θ)WxXx,∗(θ)

)−1
X⊤
x,∗(θ)WxVx,∗

=
(
X⊤
x,∗(θ)WxXx,∗(θ)

)−1
X⊤
x,∗(θ)WxZx,∗(β0 − β)

+
(
X⊤
x,∗(θ)WxXx,∗(θ)

)−1
X⊤
x,∗(θ)Wxηx,∗(X,θ0)

+
(
X⊤
x,∗(θ)WxXx,∗(θ)

)−1
X⊤
x,∗(θ)WxVx,∗, (B.3)

where ηx,∗(X,θ0) = η(X,θ0)−D
(
D⊤WxD

)−1
D⊤Wxη(X,θ0).

By Taylor expansion of η(X⊤
itθ0), we have

η(X⊤
itθ0) = η(x⊤θ0)+η′(x⊤θ0)d

⊤
it(x)θ0+η′′(x⊤θ0)

(
d⊤it(x)θ0

)2
+O

((
d⊤it(x)θ0

)3)
, (B.4)

where dit (x) = Xit − x. By (B.4), the definition of ηx,∗(X,θ0) and following the proof of

Lemma D.2 in Appendix D of the supplemental document, we have(
X⊤
x,∗(θ)WxXx,∗(θ)

)−1
X⊤
x,∗(θ)Wxηx,∗(X,θ0) =

(
ax, θ⊤θ0bx

)⊤
+OP (h

2
1 + τ(T )).

(B.5)

By Lemmas D.4 and D.5 in Appendix D of the supplemental document, we have

(1, 0)
(
X⊤
x,∗(θ)WxXx,∗(θ)

)−1
X⊤
x,∗(θ)WxZx,∗ = g1(x) +OP

(
h21 + τ(T )

)
(B.6)

and (
X⊤
x,∗(θ)WxXx,∗(θ)

)−1
X⊤
x,∗(θ)WxVx,∗ = OP (τnT (1)) = oP (τ(T )) (B.7)
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uniformly in ∥x∥ ≤ CnT .

By (B.3), (B.5)–(B.7), we have proved that (B.1) holds.

On the other hand, by Lemma D.4, we have, uniformly in ∥x∥ ≤ CnT ,

(0, 1)
(
X⊤
x,∗(θ)WxXx,∗(θ)

)−1
X⊤
x,∗(θ)WxZx,∗ = OP

(
1 + h−1

1 τ(T )
)
. (B.8)

With (B.3), (B.5), (B.7) and (B.8), we have shown that (B.2) holds.

We next give the proof of Theorem 3.1 by making use of Lemma B.1.

Proof of Theorem 3.1. Note that for any small ε > 0,

P

(
max
1≤i≤n

max
1≤t≤T

∥Xit∥ > C(nT )1/(2+δ)

)
≤

n∑
i=1

T∑
t=1

P
(
∥Xit∥ > C(nT )1/(2+δ)

)

≤

n∑
i=1

T∑
t=1

E∥Xit∥2+δ

(C2+δ nT )
< ε

if C >
(
E∥Xit∥2+δ/ε

) 1
(2+δ) . Hence, we need only to consider the case of max

1≤i≤n
max
1≤t≤T

∥Xit∥ ≤

C (nT )
1

2+δ .

By (2.7) and (B.1), we have

β̃ − β0 =
(
E
[
ZitZ

⊤
it

])−1
E
[
g1(Xit)g

⊤
1 (Xit)

]
(β − β0) + oP (1). (B.9)

Since we use the multivariate kernel H(·) for producing initial estimates of β0 and θ0,

(B.9) does not involve θ. From (B.9), we have

β̃k+1 − β0 =
(
E
[
ZitZ

⊤
it

])−1
E
[
g1(Xit)g

⊤
1 (Xit)

]
(β̃k − β0) + oP (1), (B.10)

where β̃k is the estimate of β0 from the k-th iteration in the process of producing initial

estimates.

By Assumption A4 in Appendix A, it can be shown that the matrix E
[
ZitZ

⊤
it

]
−

E
[
g1(Xit)g

⊤
1 (Xit)

]
is positive definite. Similarly to the proofs of Lemma 1 and Theorem 1

in Xia & Härdle (2006), the eigenvalues of the matrix
(
E
[
ZitZ

⊤
it

])−1
E
[
g1(Xit)g

⊤
1 (Xit)

]
are

all less than 1. Hence, after a sufficiently large number of iterations,

β̃k − β0 = oP (1),

which implies that the first result in (3.1) holds.
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By (2.7) and (B.2), we have

θ̃ − θ0 =
(
θ⊤θ0

)−1 (
1− θ⊤θ0

)
θ0 +O(∥ζβ∥) + oP (1), (B.11)

which implies that

θ̃ =
(
θ⊤θ0

)−1
θ0 +O(∥ζβ∥) + oP (1). (B.12)

Following the proof of Lemma 1 in Xia & Härdle (2006), we can also show that the

second result in (3.1) holds.

Appendix C: Proofs of Theorems 3.2 and 3.3

For simplicity, let Wit(θ) be defined as Wit with the weights in (2.7) replaced by those

in (2.8), and eit,∗, Xit,∗, Xit,∗, Vit and Zit,∗ be defined in the same way as in Appendix B.

Throughout this section, âx, âit, b̂x, and b̂it are the local linear estimators obtained from

(2.6) using the single–index weights defined in (2.9). As in Appendix B, ex,∗, Xx,∗, Xx,∗,

Wx(θ), Vx,∗ and Zx,∗ are defined similarly to eit,∗, Xit,∗, Xit,∗, Wit(θ), Vit,∗ and Zit,∗ with

Xit replaced by x. Furthermore, define

dx(θ) =

((
d⊤11(x)θ

)2
, · · · ,

(
d⊤1T (x)θ

)2
,
(
d⊤21(x)θ

)2
, · · · ,

(
d⊤nT (x)θ

)2)⊤
,

dx,∗(θ) = dx(θ)−D
(
D⊤W(θ)D

)−1
D⊤W(θ)dx(θ),

where dit(x) was defined in the proof of Lemma B.1.

To prove the asymptotic distributions of β̂ and θ̂ given in Theorem 3.2, we need the

following asymptotic uniform expansions of âx and b̂x in {x : ∥x∥ ≤ CnT }.

Lemma C.1. Let Assumptions A1–A7 and B1–B4 in Appendix A hold. Then, uniformly

in {x : ∥x∥ ≤ CnT },

âx = ax + bxU
⊤
x (1)ζθ + U⊤

x (2)ζβ +Rx(1) + h22η
′′(x⊤θ0)Ux(3) +OP (h

3
2) (C.1)

and

b̂x = bx +Rx(2) +OP

(
h22 + ∥ζβ∥+ ∥ζθ∥

)
, (C.2)

where

U⊤
x (1) = (1, 0)

(
X⊤
x,∗(θ)Wx(θ)Xx,∗(θ)

)−1
X⊤
x,∗(θ)Wx(θ)Xx,∗,

U⊤
x (2) = (1, 0)

(
X⊤
x,∗(θ)Wx(θ)Xx,∗(θ)

)−1
X⊤
x,∗(θ)Wx(θ)Zx,∗,

Ux(3) = (1, 0)
(
X⊤
x,∗(θ)Wx(θ)Xx,∗(θ)

)−1
X⊤
x,∗(θ)Wx(θ)dx,∗(θ0),

(Rx(1), Rx(2))
⊤ =

(
X⊤
x,∗(θ)Wx(θ)Xx,∗(θ)

)−1
X⊤
x,∗(θ)Wx(θ)Vx,∗.
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Proof. By the definition of âx and b̂x, we have

(
âx, b̂x

)⊤
=

(
X⊤
x,∗(θ)Wx(θ)Xx,∗(θ)

)−1
X⊤
x,∗(θ)Wx(θ)Zx,∗(β0 − β)

+
(
X⊤
x,∗(θ)Wx(θ)Xx,∗(θ)

)−1
X⊤
x,∗(θ)Wx(θ)Dx,∗α

+
(
X⊤
x,∗(θ)Wx(θ)Xx,∗(θ)

)−1
X⊤
x,∗(θ)Wx(θ)ηx,∗(X,θ0)

+
(
X⊤
x,∗(θ)Wx(θ)Xx,∗(θ)

)−1
X⊤
x,∗(θ)Wx(θ)Vx,∗

=
(
X⊤
x,∗(θ)Wx(θ)Xx,∗(θ)

)−1
X⊤
x,∗(θ)Wx(θ)Zx,∗(β0 − β)

+
(
X⊤
x,∗(θ)Wx(θ)Xx,∗(θ)

)−1
X⊤
x,∗(θ)Wx(θ)ηx,∗(X,θ0)

+
(
X⊤
x,∗(θ)Wx(θ)Xx,∗(θ)

)−1
X⊤
x,∗(θ)Wx(θ)Vx,∗, (C.3)

where ηx,∗(X,θ0) is defined in the same way as in Appendix B with Wit replaced by Wit(θ).

By (C.3), Lemma D.3 in the supplementary document and the same Taylor expansion

for η(X⊤
itθ0) as in the proof of Lemma B.1, we complete the proofs of (C.1) and (C.2).

Before giving the proof of Theorem 3.2, we introduce the following notations. Let

U∗(j) =
(
U⊤
11,∗(j), · · · ,U⊤

1T,∗(j),U⊤
21,∗(j), · · · ,U⊤

nT,∗(j)
)⊤

,

U⊤
it,∗(j) = enTU

⊤
it (j)−D(D⊤Wit(θ)D)−1D⊤Wit(θ)enTU

⊤
it (j), j = 1, 2,

Ṽ∗ =
(
Ṽ⊤
11,∗, · · · , Ṽ⊤

1T,∗, Ṽ⊤
21,∗, · · · , Ṽ⊤

nT,∗

)⊤
,

where Uit(j) is defined in the same way as Ux(j) with x replaced by Xit, Ṽit,∗ is defined as

Vit,∗ with V replaced by V− Rit(1)enT , and Rit(1) is defined as Rx(1) with x replaced by

Xit.

Proof of Theorem 3.2. Since the main idea of the proof is a non–trivial extension of the

proof of Theorem 1 in Xia & Härdle (2006), we still need to provide the following details.

By Lemma C.1 and following the proof of Lemma 6.3 in Xia & Härdle (2006), we have

 β̂ − β0

θ̂ − θ0

 = J−1
nTMnT + J−1

nTUnT

 β − β0

θ − θ0


+ OP

(
∥ζr∥2 +

(
h2 + h−1

2 τnT (2)
)
∥ζr∥+ h32

)
, (C.4)
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where ζr =
(
ζ⊤β , ζ

⊤
θ

)⊤
, ζβ and ζθ were defined in Appendix B,

JnT =

 1
nT Z

⊤
∗ W(θ)Z∗

1
nT Z

⊤
∗ W(θ)X∗,

1
nT X

⊤
∗ W(θ)Z∗

1
nT X

⊤
∗ W(θ)X∗

 , MnT =
1

nT

 Z⊤
∗

X⊤
∗

W(θ)Ṽ∗,

UnT = diag

(
1

nT
Z⊤
∗ W(θ)U∗(2),

1

nT
X⊤
∗ W(θ)U∗(1)

)
.

Following the proof of Lemma D.4 in Appendix D of the supplemental document, we

have

JnT
P−→

 J11 J12

J⊤12 J22

 =: J (C.5)

and

UnT
P−→ diag

(
E
[
vθ0(X11)v

⊤
θ0
(X11)

]
,
1

2
J22
)

=: U, (C.6)

where

J11 = E
(
Z11Z

⊤
11

)
, J12 = E

[
Z11η

′(X⊤
11θ0)

(
µθ0

(X11)−X11

)⊤]
,

J22 = 2E

[(
η′(X⊤

11θ0)
)2 (

X11 − µθ0
(X11)

) (
X11 − µθ0

(X11)
)⊤]

,

µθ(x) = E
(
X11|X⊤

11θ = x⊤θ
)
, vθ(x) = E

(
Z11|X⊤

11θ = x⊤θ
)
.

Following the proof of Theorem 1 in Xia & Härdle (2006), it can be shown that Ñ :=(
J−1
)1/2U (J−1

)1/2
is a semi–positive definite matrix with rank d+p−1 and all eigenvalues

being less than 1. Let 1 > λ1 ≥ λ2 ≥ · · · ≥ λd+p−1 > 0 be the eigenvalues of Ñ.

Let JnT (k) and UnT (k) be the corresponding versions of JnT and UnT at the k–th

iteration. Then, by (C.5) and (C.6), the eigenvalues of

Ñ(k) :=
(
J−1
nT (k)

)1/2UnT (k)
(
J−1
nT (k)

)1/2
satisfy 1 > λ1(k) ≥ λ2(k) ≥ · · · ≥ λd+p−1(k) > 0, λ1(k) = λ1 + oP (1) for all k ≥ 1.

Define rk = J1/2nT (k)

((
β̂k − β0

)⊤
,
(
θ̂k − θ0

)⊤)⊤
. By (C.4), we have

rk+1 =
(
J−1
nT (k)

)1/2MnT (k) + Ñ(k)rk +OP

((
∥ζrk∥+ h2 + h−1

2 τnT (2)
)
∥ζrk∥+ h32

)
, (C.7)

which, together with the proof of Lemma D.5, implies∥∥∥ζrk+1

∥∥∥ ≤ τnT (2) + λ1(k)∥ζrk∥+ c0∥ζrk∥
2 + c0

(
h2 + h−1

2 τnT (2)
)
∥ζrk∥+ c0h

3
2, (C.8)

where c0 > 1 is a constant.
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By Theorem 3.1, we have ∥∥ζr1∥∥ ≤ (1− λ1)

3c0
. (C.9)

By the definition of τnT (2) and B4, we have

τnT (2) + c0h
3
2 ≤

(1− λ)2

9c0
and c0

(
h2 + h−1

2 τnT (2)
)
≤ (1− λ1)

3
. (C.10)

By (C.8)–(C.10) and the fact that λ1(k) ∼ λ1, we have

∥∥ζrk∥∥ ≤ (1− λ1)

3c0
. (C.11)

for all k ≥ 1. Then, following the proof of Theorem 1 in Xia & Härdle (2006), we have, for

sufficiently large k, ∥∥∥ζrk+1

∥∥∥ = OP

(
τnT (2) + h32

)
. (C.12)

Note that

nTh62 → 0,
√
nT
(
τ2nT (2) + h62

)
→ 0,

√
nT
(
h2 + h−1

2 τnT (2)
) (

h32 + τnT (2)
)
→ 0. (C.13)

By (C.5) and (C.6), we have

JnT − UnT
P−→ Σ0. (C.14)

By some standard arguments, it can be shown that the leading term of MnT is

M∗
nT =

1

nT

n∑
i=1

T∑
t=1

 Z̃it

η′(X⊤
itθ0)X̃it

 vit

as nT → ∞. Applying the central limit theorem for α–mixing processes (see, for example,

Theorem 2.21 of Fan and Yao 2003), we have

√
nTM∗

nT
d−→ N (0,Σ1) . (C.15)

By (C.4) and (C.13)–(C.15), we have shown that Theorem 3.2 holds.

Proof of Theorem 3.3. By the definition of local linear estimators, it is easy to show that

η̂(x⊤θ̂)− η(x⊤θ0)

= (1, 0)
(
X⊤
x,∗(θ̂)Wx(θ̂)Xx,∗(θ̂)

)−1
X⊤
x,∗(θ̂)Wx(θ̂)

(
Yx,∗ − Zx,∗β̂

)
− η(x⊤θ0)

=
(
S⊤
x (θ̂)ηx,∗(X,θ0)− η(x⊤θ0)

)
+ S⊤

x (θ̂)Vx,∗ + S⊤
x (θ̂)Zx,∗

(
β0 − β̂

)
=: ΠnT (1) + ΠnT (2) + ΠnT (3),
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where S⊤
x (θ̂) = (1, 0)

(
X⊤
x,∗(θ̂)Wx(θ̂)Xx,∗(θ̂)

)−1
X⊤
x,∗(θ̂)Wx(θ̂).

By Theorem 3.2, we have

ΠnT (3) = OP

(
(nT )−1/2

)
. (C.16)

Let us now consider ΠnT (1) and ΠnT (2). Note that

ΠnT (1) =
(
S⊤
x (θ̂)ηx,∗(X,θ0)− η(x⊤θ0)

)
=

(
S⊤
x (θ0)ηx,∗(X,θ0)− η(x⊤θ0)

)
+
(
S⊤
x (θ̂)− S⊤

x (θ0)
)
ηx,∗(X,θ0)

=: ΠnT (1, 1) + ΠnT (1, 2).

Noticing that ∥θ̂ − θ0∥ = OP

(
(nT )−1/2

)
by Theorem 3.2, we have

ΠnT (1, 2) = OP

(
(nT )−1/2

)
.

Meanwhile, by the property of local linear smoothing, we have

S⊤
x (θ0)ηx,∗(X,θ0)− η(x⊤θ0) =

1

2
h22η

′′(x⊤θ0)

∫
u2K(u)du+ oP (h

2
2)

= bη(x
⊤θ0) + oP (h

2
2).

Hence, we have

ΠnT (1) = bη(x
⊤θ0) + oP (h

2
2). (C.17)

We next turn to the asymptotic distribution of ΠnT (2). By B1, we have

K

(
(Xit − x)⊤ θ̂

h2

)
= K

(
(Xit − x)⊤ θ0

h2

)
+K ′

(
(Xit − x)⊤ θ∗

h2

)
(Xit − x)⊤ (θ̂ − θ0)

h2
,

whereK ′(·) is the first–order derivative ofK(·) and θ∗ = θ0+λ∗(θ̂−θ0) for some 0 < λ∗ < 1.

Hence,

1√
nTh2

n∑
i=1

T∑
t=1

K

(
(Xit − x)⊤ θ̂

h2

)
vit =

1√
nTh2

n∑
i=1

T∑
t=1

K

(
(Xit − x)⊤ θ0

h2

)
vit

+
1√
nTh2

n∑
i=1

T∑
t=1

K ′

(
(Xit − x)⊤ θ∗

h2

)
(Xit − x)⊤ (θ̂ − θ0)

h2
vit

=: ΠnT (2, 1) + ΠnT (2, 2).

By Theorem 3.2 and following the same argument as in the proof of Lemma D.5 of the

supplemental document, we have

ΠnT (2, 2) = oP (1), (C.18)
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which implies that the leading term of 1√
nTh2

n∑
i=1

T∑
t=1

K
(
(Xit−x)⊤θ̂

h2

)
vit is ΠnT (2, 1).

In a similar way to the proof of Theorem 2.21 of Fan and Yao (2003), applying Doob’s

large–block and small–block argument in the proof of asymptotic distribution for nonpara-

metric kernel estimator under α–mixing dependence, we can show that

ΠnT (2, 1)
d→ N

(
0, σ2

∗
)
, (C.19)

where σ2
∗ = σ2

θ0
(x⊤θ0)fθ0(x

⊤θ0)ν0. By (C.18), (C.19) and the uniform convergence results

in Appendix D of the supplemental document, we have

ΠnT (2)
d−→ N

(
0, σ2

η(x
⊤θ0)

)
, (C.20)

By (C.16), (C.17) and (C.20), Theorem 3.3 holds.
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Xia, Y. & Härdle, W. (2006). Semi–parametric estimation of partially linear single–index models.

Journal of Multivariate Analysis 97, 1162-1184.

31



Xia, Y., Tong, H. & Li, W. K. (1999). On extended partially linear single–index models. Biometrika

86, 831–842.

Xia, Y., Tong, H., Li, W. K. & Zhu L. (2002). An adaptive estimation of dimension reduction

space. Journal of the Royal Statistical Society Series B 64, 363-410.

Yu, Y. & Ruppert, D. (2002). Penalized spline estimation for partially linear single–index models.

Journal of the American Statistical Association 97, 1042-1054.

32




