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Abstract
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An important infrastructure policy issue for rapidly 
growing cities in developing countries is how to raise 
fiscal revenues to finance basic services in a fair and 
efficient manner. This paper applies hedonic analysis that 
explicitly accounts for spatial spillovers to derive the value 
of improved access to water in the Indian cities of Bhopal 
and Bangalore. The findings suggest that by looking 

This paper—a product of the Sustainable Rural and Urban Development Team, Development Research Group—is part of 
a larger effort in the department to understand the contribution of urban public services to household welfare and overall 
quality of life. Policy Research Working Papers are also posted on the Web at http://econ.worldbank.org. The author may 
be contacted at udeichmann@worldbank.org.  

at individual or private benefits only, the analysis may 
underestimate the overall social welfare from investing in 
service supply especially among the poorest residents. The 
paper further demonstrates how policy simulations based 
on these estimates help prioritize spatial targeting of 
interventions according to efficiency and equity criteria.
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I. Introduction  

 

The population of Indian cities is currently growing at a rate of 3 to 4 percent per year, in line 

with the urban growth rates of cities in developing countries as a whole. This implies that their 

population will double within the next 17 to 23 years. Even if growth rates continue to decrease 

from their highs of more than 5 percent in the 1960s and 1970s, this means that local policy 

makers need to deal with a significant increase in the demand for public services while, at the 

same time, addressing the backlog of investments in under-serviced areas.  

 

Municipal managers face these challenges in an environment in which they have been given 

significant new responsibilities. As in many other developing countries, urban policy in India had 

historically been formulated centrally by the national government with relatively little concern for 

local needs and interests. City officials simply implemented policies using funds allocated by 

state and national government. This changed with the passing of the 74th Amendment of the 

Indian Constitution in 1993. Since then, more and more administrative and fiscal authority has 

been devolved to local governments. Greater local control should lead to more appropriate local 

policy making. But it will also require cities to become financially more independent by 

expanding local revenue generation. 

 

Cities are therefore exploring options to generate funds locally, either through user charges and 

fees or through property taxes (Lall and Deichmann 2006a). Successful introduction of such 

revenue schemes in an environment where residents are used to heavily subsidized or free service 

access depends on demonstrating that the charges realistically represent the benefits obtained by 

households in return. At the same time, policy makers need reliable estimates of potential revenue 

generation to relate benefits to the actual costs of service provision which in turn influence 

financing strategies. Furthermore, equity concerns guide many policy decisions. Urban managers 

require tools that enable prioritization of investments according to chosen equity-efficiency 

considerations, for instance, by targeting the poorest areas first or those areas where returns are 

highest. 

 

This paper contributes to this debate by proposing an improved strategy for estimating benefits 

from infrastructure investments in urban neighborhoods. We assume that public services are 



capitalized in the value of a dwelling unit. Hedonic analysis of house prices or rents conditional 

on service access will therefore yield estimates of the contribution of individual housing unit 

characteristics and thus the willingness-to-pay (WTP) of residents for those characteristics. In 

contrast to the standard hedonics and WTP literature, we use a spatial framework that allows us to 

measure both direct effects and externality spillovers from upgrading by neighbors. We illustrate 

this approach in a valuation of water services in two Indian cities, Bangalore and Bhopal, and 

compare the results with those obtained from a standard WTP questionnaire. The results suggest 

that standard hedonic analysis considerably underestimates the benefits from service upgrading. 

The higher spatial econometric estimates are surprisingly consistent with households’ expressed 

WTP. Finally, we present a policy analysis based on simulation of different upgrade scenarios 

that is based on predicted values for individual observations in our household survey rather than 

on marginal willingness-to-pay. 

 

The remainder of the paper is structured as follows. The next section discusses the use of hedonic 

models for valuation purposes. Section III describes the estimation strategy. The data used in this 

analysis and estimation results are described in Sections IV and V.  We derive the marginal 

willingness to pay for improved water availability in Section VI and present a policy analysis 

using a simulation exercise in Section VII.  Section VIII concludes. 
 

II. Hedonic Analysis of Housing Characteristics and Public Services 

Valuation of public services and other housing attributes has been addressed through methods 

such as contingent valuation (Whittington 2002), conjoint and discrete choice analysis (Earnhart 

2002) and hedonic specifications (Malpezzi 2002). In hedonic models, dwelling unit prices 

represent the sum of expenditures on a bundle of characteristics that can be priced separately. If 

z=(z1,…,zn) is a set of characteristics of the home, the price of the home is determined by some 

hedonic function, p(z), according to prevailing market clearing conditions. The set of 

characteristics that determine home values consists of structural attributes of the home itself, such 

as the floor area, lot size, and construction material, as well as the availability of public services 

such as clean water supply or electricity. Such models have been used in developing countries to 

determine the optimum housing characteristics for low income groups (Follain and Jimenez, 

1985) and for valuation of access to specific services (North and Griffin, 1993; Crane et al., 1997; 

Oliveira and De Morais, 2000, and Knight et al. 2004 among others). 



 

Estimating the hedonic price function using a set of observed housing values and dwelling unit 

characteristics yields a set of implicit prices for housing characteristics that are essentially 

willingness-to-pay estimates. These can then be used in a second stage analysis, where the WTP 

estimates are used as the dependent variable in an inverse demand function. Estimates of income 

elasticities of demand can then be derived for various parts of a city or subgroups of the 

population. This allows analysis of various upgrading scenarios, for instance, in low-income 

neighborhoods. 

 

Recent empirical econometric work has addressed the potential bias and loss of efficiency that 

can result when spatial effects are ignored in the estimation of hedonic models (e.g., Pace and 

LeSage 2004). Spatial patterns in the housing markets arise from a combination of spatial 

heterogeneity and spatial dependence (Anselin, 1998). Spatial heterogeneity—essentially the 

existence of discrete submarkets—can originate from characteristics of the demand, supply 

factors, institutional barriers or racial discrimination that cause house price differentials across 

neighborhoods. Spatial autocorrelation or spatial dependence, on the other hand, means that 

prices or characteristics of houses that are nearby are more similar than those of houses that are 

farther apart—that is, housing prices vary more continuously due, for instance, to spatial 

spillovers. In practice, spatial autocorrelation may be observationally equivalent to spatial 

heterogeneity and (Anselin, 2001) or it may result from spatial heterogeneity that is not correctly 

modeled (Baumont, 2004).  

 

Besides being the result of some substantive underlying process such as spatial spillover or some 

form of contagion, spatial dependence may also arise from measurement problems in explanatory 

variables, omitted variables, and other forms of model misspecification. The presence of spatial 

autocorrelation has significant bearing on parameter estimation. If it is ignored, OLS may lead to 

inconsistent estimates and incorrect statistical test results. If the residuals are spatially correlated, 

OLS estimation would underestimate the residual variance and the t-statistics would be upwards 

biased. This may lead to erroneously concluding significance of some parameters. Some 

examples of the use of spatial hedonic models in the context of valuation of environmental 

amenities are Kim et al. 2003, Beron et al. 2004, Brasington and Hite 2005, Anselin and Le Gallo 

2006, and Anselin and Lozano-Gracia 2007a.  The present paper extends spatial hedonic 



approaches to the analysis of service access in developing country cities. 

 

 

III. Estimation Strategy 

We estimate a log-linear hedonic function for house rents in Bhopal and Bangalore and take an 

explicit spatial econometric approach by testing for spatial autocorrelation and controlling for its 

presence in the final specification estimated. The spatial econometric literature (see Anselin 

1988) differentiates between two types of spatial dependence that result in two main spatial 

models: the spatial lag and spatial error models. The spatial lag model accounts for spatial 

dependence by introducing a spatially lagged dependent variable into the model, while the spatial 

error specification includes a spatially correlated error term.  
 

Following Anselin (1988), we carry out a so-called forward specification analysis (see also Florax 

et al. 2003), and first obtain ordinary least squares (OLS) estimates for the hedonic model. Next, 

we test the residuals for the presence of spatial autocorrelation using Lagrange Multiplier test 

statistics for error and lag dependence, as well as their robust forms, and proceed with the 

alternative spatial regression model thus selected (Anselin et al. 1996). The estimation results 

consistently show very strong evidence of positive residual spatial autocorrelation favoring the 

spatial lag alternative (see Appendix 1, Tables AA1 and AA2). 

 

In a hedonic model, a spatial lag model can be specified as follows: 
 
     p = ρWp + Xβ + u  
 
where p  is an  vector of observations on the dependent variable, n ×1 X  is an  matrix of 

explanatory variables,  is an n  vector of i.i.d. error terms, 

n × k

u ×1 β  is a k ×1vector of regression 

coefficients, ρ  is the spatial autoregressive parameter, and W is a n × n  spatial weights matrix. 

A spatial weights matrix incorporates the neighborhood relations between observations and is a 

standard tool employed in spatial econometric analysis (see Anselin 2006 for extensive 

discussion).5  It should be noted that since the house locations constitute a sample, the 
                                                 
5 For this application we used a queen contiguity criterion to define neighbors. This is obtained by first 
taking the point coordinates of the house locations and creating a Thiessen polygon tessellation centered on 
each house. Polygons with common sides and vertices designate house locations as queen neighbors. On 
average, the weights matrix contains 7 neighbors for each location. In addition, we also used two weights 



neighborhood relations in the spatial weights are only proxies for the true neighbors. The 

underlying assumption is that the spatial variation among sampled “neighbors” is representative 

of that among the true neighbors, an assumption commonly taken in spatial hedonic models. We 

are comfortable that the sample design employed in these surveys supports the conclusions we 

draw from this analysis. However, ideally it would be desirable to employ sampling designs that 

consider neighborhood structure explicitly, for instance by sampling households randomly and 

then including a number of direct neighbors for each households. Very few surveys have 

employed such as design, the US American Housing Survey being an exception (Ioannides 2002). 

 

IV. Data and Variables 

 

Detailed household data for developing country cities are scarce. Most such data are collected at 

the national level through Living Standards Measurement Surveys or Demographic and Health 

Surveys.  These tend to distinguish urban and rural areas, but the number of observations in each 

urban area is too small for city-specific analysis.  In this paper we use comprehensive and 

geographically referenced information from urban household surveys for 2905 households in 

Bangalore and 2508 households in Bhopal (for further details on this data see Deichmann et al. 

2003, Lall et al. 2004, Lall and Deichmann 2006b). These surveys were conducted in 2001 and 

2003 respectively. The available variables differ slightly across the two cities since the original 

surveys were not totally identical. The key indicator in hedonic housing market analysis is the 

price or rent of the dwelling unit. Due to high official transaction costs, most recorded sales in 

Indian real estate markets do not reflect actual transaction amounts. Rents are also often 

artificially low due to rent control and therefore do not always match actual market rents. The 

surveys therefore asked households to report what they believe would be the market rent for a 

similar house in their neighborhood. Therefore this variable represents an estimated value 

reported by the surveyed individual. The survey team compared these values selectively to 

transactions revealed by real estate agents in the survey cities. This confirmed that, overall, 

residents have a fairly good idea of market rents. In our regression analyses, we apply a log 

                                                                                                                                                 
matrices based on a nearest neighbor relation among the locations, for respectively 7 and 14 neighbors. The 
three weights matrices are used in row-standardized form. Although the remaining analysis refers only to 
the results using a queen weights matrix, the results are consistent for the alternative weights matrices 
based on a nearest neighbor relation.  
 



transformation to correct for the high degree of skewness. House characteristics such as size, 

number of rooms, number of bathrooms, material of walls, roof, and floor, and alternative sources 

of water and electricity are also contained in the survey. Table 1 describes the variables included 

in the hedonic regressions and indicates when they are not available for both cities. 
 
Table 1: Description of Variables Used in Hedonic Models 

 
Dependent Variable 

Lnrent Log of estimated house rent 
 

House Characteristics 
Size Size of house plot in sq. ft. 
Number of Rooms Number of rooms 
Number of Bathrooms Number of bathrooms 
Floors Indicator variable for floors of stone of better material 
Walls Indicator variable for walls of brick of better material 
Roof Indicator variable for Roof of Brick of better material 
Kitchen Kitchen inside the house 
Electricity Indicator for access to metered electricity 
Toilet-Sewer Indicator for toilet connected to sewer system 

 
Neighborhood Characteristics 

Women safe a One if neighborhood feels safe for women, zero otherwise 
Crime decr. b One for crime decrease in last five years 
Open Dump a No open dump near house 

 
Access to Water 

Water - DPW Days per week water is available through direct connection 
 

Other sources of Water: Indicator Variables 
Else’s Someone else’s connection 
Hand Pump Individual Hand Pump Well 
Tube Well Individual Tube Well 
Fountain Public Fountain 
Community Tube Community Tube Well 
Community Tap Community Tap 
Community Hand Pump Community well/hand pump 
Tanker Tanker 
Other Other vendor 
Rain Rainwater harvesting 
Surface Surface water 

 
Ward Dummies 

Ward Indicator variable for every ward 
Notes: (a) Bhopal only; (b) Bangalore only. 
 



Table 2  Bangalore: Descriptive Statistics 

Variable Name Mean Std. Dev Min. Max. 

House Rent 3085.398 3254.841 99 45000 
Size 1100.871 873.5702 100 18000 
Number of Rooms 4.554208 2.75 1 25 
Number of Bathrooms 1.2565 0.7743 0 25 
Floors .98787 0.1094 0 1 
Walls 0.9629 0.1863 0 1 
Roof 0.8144 0.3888 0 1 
Kitchen 0.9941 0.0764 0 1 
Electricity 0.9889 0.1044 0 1 
Toilet-Sewer 0.3605 0.4802 0 1 
Crime decr. 0.2179 0.4129 0 1 
Water - DPW 3.3399 2.1079 0 7 
Hand Pump 0.0077 0.0875 0 1 
Tube Well 0.1345 0.3412 0 1 
Fountain 0.1907 0.3929 0 1 
Community Tube 0.0606 0.2387 0 1 
Tanker 0.0040 0.0634 0 1 
Other 0.0102 0.1009 0 1 
Surface 0.0025 0.0506 0 1 
 
Table 3  Bhopal: Descriptive Statistics 

Variable Name Mean Std. Dev Min. Max. 

House Rent 1704.315 2706.4 50 50000 
Size 760.2766 772.0118 70 8000 
Number of Rooms 3.5526 2.7912 1 35 
Number of Bathrooms 1.1343 0.5522 0 5 
Floors 0.8703 0.3360 0 1 
Walls 0.8114 0.3912 0 1 
Roof 0.5354 0.4988 0 1 
Kitchen 0.9901 0.0990 0 1 
Electricity 0.7505 0.4328 0 1 
Toilet-Sewer 0.1750 0.3800 0 1 
Women safe 0.8713 0.3348 0 1 
Open Dump 0.4859 0.4999 0 1 
Water - DPW 3.1593 3.4391 0 7 
Else’s 0.0375 0.1900 0 1 
Hand Pump 0.0151 0.1219 0 1 
Tube Well 0.0666 0.2495 0 1 
Community Tube 0.0552 0.2284 0 1 
Community Tap 0.3234 0.4679 0 1 
Community Hand Pump 0.1093 0.3121 0 1 
Tanker 0.0270 0.1623 0 1 
Other 0.0010 0.0322 0 1 
Rain 0.0005 0.0228 0 1 
Surface 0.0020 0.0456 0 1 
 
 



V. Regression Results 

 

In both cities, we use the log of house rent as the dependent variable. For the main policy variable 

of interest, water availability, we use the number of days per week water is available in the house 

through a direct connection. The estimation results show the expected patterns in terms of signs 

and significance. For Bhopal, positive and very significant coefficients are observed for Size, 

Baths, Rooms, Floor, Walls, Roof, and Electricity (see Table AA1). Water availability measured 

through DPW is positive and significant. Among additional water sources different from an 

individual water connection, only the presence of a tube well has a negative and significant effect 

while the coefficient for Rain is positive and significant.  Indicator variables are included for 

every Ward to account for neighborhood characteristics for which data are not available. Some of 

these variables remain significant even after introducing the spatial lag into the model. The 

coefficient estimated for the spatial lag is above 0.24 and very significant in all cases. The LM 

statistic for remaining spatial autocorrelation in the LAG model suggests the presence of 

remaining spatial autocorrelation of unspecified form. Therefore, following the approach 

suggested in Anselin and Lozano-Gracia (2007a), it is appropriate to use the Kelejian-Prucha 

Heteroskedasiticity and Autocorrelation Consistent estimator (HAC) (Kelejian and Prucha 2007). 

We employ three alternative kernels (epanechnikov, bisquare, and triangular) to further assess the 

robustness of our findings. We also compare the results to estimated standard errors that only 

correct for unspecified heteroskedasticity (White 1980). For the standard errors and confidence 

intervals using two standard deviations shown in Table AA1 we find that the largest changes in 

standard errors are seen when we go from classical to the White correction, with a much smaller 

effect for the spatial adjustment. 
 

Estimates for Bangalore are shown in Table AA2. We observe a positive and very significant 

coefficient estimate for water availability measured through DPW. House characteristics have 

positive and significant effects as expected; the coefficient of number of bathrooms, however, 

loses its significance when going from the Classical to the HAC standard errors. The bathroom 

variable is significant at the 1% level when looking at the classical standard errors but only 

significant at 5% when moving to the more appropriate HAC standard errors.  Other sources of 

water availability that show negative and significant results are fountain and community tube 

well. The coefficient for the spatial lag is also above 0.24 and very significant as is the case for 

Bhopal. The LM statistic for the lag model confirms the presence of remaining spatial 



autocorrelation and heteroskedasticity suggesting the need to use the HAC estimator. The more 

realistic measure of standard errors provided by the HAC estimator is particularly important in 

assessing the precision of the derived welfare measures discussed in the following section.  
 

VI. Marginal Willingness to Pay for Changes in Water Availability 

 

In this section we look at the valuation of water accessibility computed from the parameter 

estimates discussed in the previous sections. In a hedonic framework the MWTP is defined as the 

derivative of the hedonic price equilibrium equation with respect to the characteristic of interest, 

in this case access to water. In a non-spatial log-linear model, the MWTP equals the estimated 

coefficient for the water variable (DPW) times the price (P), 6 or  
 

     MWTPg =
∂p
∂g

= β̂ p,   (1) 

 
where  is DPW. g
 

For the spatial lag model, the total effect consists of the direct effect and a spatial multiplier 

which is due to the fact that benefits from a household’s improved water access spill over to 

neighbors which, in turn, benefit the household.7 This spatial multiplier effect needs to be 

accounted for to accurately compute the MWTP, as shown in Kim et al. (2003). For a uniform 

change across all observations, the multiplier effect is:  
 

     MWTPg =
∂p
∂g

= β̂ p
1

1− ρ̂
⎛
⎝⎜

⎞
⎠⎟

,   (2) 

 
with ρ̂ , as the estimate of the spatial autoregressive coefficient. Small and Steimetz (2006) stress 

the need to separately estimate the direct effect in (1) and the multiplier effect included in (2). In 

their view, the multiplier effect should only be considered as part of the welfare calculation in the 

case of a technological externality associated with a change in amenities. In the case of a purely 

pecuniary externality, the direct effect is the only correct measure of welfare change.  

 

                                                 
6 We use the mean house rent in the sample to calculate the MWTP 
7 In other words, each location is its neighbor’s neighbor, similar to the reflection problem in Manski (1993). This is a 
main difference to dependence in time series models which is uni-directional. 



A strong argument in favor of using a spatial lag specification (where warranted by the data) is 

that it allows the two effects to be considered explicitly which clarifies the tradeoffs between 

spatial and non-spatial effects in a policy context.  In Tables 4 and 5 we report the calculated 

MWTP for changes in DPW of water availability for the cities of Bangalore and Bhopal 

respectively. For the lag models, we include both the direct effect as well as the total effect. In 

addition to point estimates, we list a confidence band of +/ − two standard errors around the point 

estimate. In the non-spatial models and for the direct effect computation, the standard errors are 

those reported for the regression coefficients. In the spatial multiplier estimation, the standard 
error of and β̂ ρ̂  need to be accounted for jointly, which we implement by means of the delta 

method (see, e.g., Greene 2003, for further computational details).  

 

We report the results for a queen spatial weights matrix and with standard errors based on the 

classic form, the White and the HAC formulation using an epanechnikov kernel8. MWTP are 

estimated for a change of one day per week. For both cities we see some difference between the 

OLS estimate and the result from the LAG model, with, in general, the LAG estimate being 

larger. For Bhopal, the OLS estimate would suggest a point estimate of INR 44 (Table 4). The 

LAG estimate on the other hand, gives an estimated MWTP of INR 54. For the case of 

Bangalore, MWTP values are reported in Table 5. The OLS estimated MWTP is INR 101 while 

the LAG model gives an estimate of INR 117. On average, households have access to water 

around 3 days per week in both cities. However, the distribution of water availability is quite 

different for Bhopal and Bangalore. While for Bhopal more than 80% of the households are 

concentrated on the tails of the distribution of water access, having either zero or seven days of 

water availability, in Bangalore 50% of the households have water available for 4 days in a week. 

From Tables 4 and 5 we see that for a similar change in water availability, on average, 

households in Bangalore are willing to pay almost twice as much as households in Bhopal. This is 

not surprising given that house rents are almost twice as much in Bangalore compared to Bhopal. 
 

                                                 
8 Results were consistent when using bisquare and triangle kernels.  



Table 4  Bhopal: Estimated MWTP and confidence intervals (INR) 

 BHOPAL 
 OLS LAG- Direct LAG – With Multiplier 
MWTP – water (dpw) 44 41 54 
Confidence Intervals    

Classic 13 - 69 14 - 69 19 - 90 
White 13 - 70 14 - 70 19 - 90 

HAC -epanechnikov 11 - 72 12 - 71 16 - 93 
 
Table 5  Bangalore: Estimated MWTP and confidence intervals (INR) 

 BANGALORE 
 OLS LAG- Direct LAG – With Multiplier 
MWTP – water (dpw) 101 89 117 
Confidence Intervals    

Classic 48- 153 37 - 140 49 – 185 
White 46 - 155 35 - 142 46 - 188 

HAC -epanechnikov 41 - 160 33 - 144 43 - 191 
 
 

Since local public service provision was one of the main concerns in the two household surveys, 

the survey instrument also included a standard WTP questionnaire. Households were asked how 

much they would be willing to pay for improved water access using a stochastic payment card 

(e.g., Wang and Whittington 2005). Rather than presenting households with only one charge, this 

design starts with a very high charge which is then gradually reduced. At each step, the household 

is asked whether they would be willing to pay this charge with answers precoded as definitely not, 

probably not, not sure, probably yes, and definitely yes. For Bangalore, the resulting point 

estimate of WTP for “definitely yes” is INR 119.62, while for Bhopal it is INR 45.14.  For 

“probably yes” they are INR 170.12 and INR 119.34 respectively. This suggests a surprising 

degree of consistency between our estimated WTP and the survey responses. Although evidence 

from only two surveys is insufficient to draw general conclusions, the similarity of the two 

estimates lends credence to the hedonic estimation approach and also suggests that residents are 

able to quite accurately judge the value of water supply services. 
 

VII. Simulations and Policy Analysis 

As an alternative to the traditional analytical derivation of marginal willingness to pay (MWTP) 

presented in the previous section, we also implement a simulation approach following a 

methodology similar to the one outlined in Anselin and Le Gallo (2006). The essence of the 

approach is that valuation is based on the computation of predicted values for individual 

observations given their actual household characteristics. Average valuation of a given policy 



change is then obtained by adding the change in the predicted value relative to a benchmark and 

dividing by the total number of observations. A major advantage of the simulation approach is 

that it allows greater flexibility, both in the specification of the type of policy experiment (e.g., 

differential changes in water access) as well as in the valuation. Since the valuation is computed 

for individual house observations, the results can be obtained for any desired level of spatial 

aggregation, such as by ward. In essence this boils down to a discrete approximation to the notion 
of marginal willingness to pay. Given a vector of coefficient estimates , the conditional 

expectation E[p | Z] is obtained as  

β̂

 
     E       (3)  [ p | Z ] = p̂ = Zβ̂
 
since E[μ | Z ] = 0 by assumption.  

For the sake of simplicity, assume that interest is focused on attribute Zk and separate the matrix 

of observations and corresponding coefficient vector into Zk and the other variables, as Z = [ Z-k 

zk] and β  = [β−k βk ]. The predicted value can then be decomposed into a part that does not 

change with the value of zk and a part that does:  
 
    p̂ = Z−kβ−k + zkβk = p̂−k + zkβk .      (4)  
 
Consider the prediction using the observed values for Z-k and zk. Now, consider a new vector 

of attributes z1
k , reflecting a policy change, such as a given percentage increase in access to 

water. The new vector of predicted values follows as:  

p̂0

 
     ,        (5) p̂1 = p̂−k + zk

1βk

 
with the change in valuation as , or  . Since this is a vector of observation-

specific changes, it can be averaged over all observations or over any relevant spatial subset of 

observations.  

p̂0 − p̂ (zk
1 − zk )βk

 

The presence of a spatially lagged dependent variable in the hedonic equation complicates this 
approach slightly. Instead of the simple difference, ( , the total effect is obtained as 

, where 

zk
1 − zk )βk

(I − ρ̂W )−1(zk
1 − zk )βk ρ̂  is the estimated spatial autoregressive coefficient and 

is the inverse of a n × n matrix, of the same dimension as the data set. In large 

samples, a power approximation is used to avoid numerical problems. These procedures are 

implemented in the PySAL library of routines for spatial analysis (Rey and Anselin 2007).  A 

(I − ρ̂W )−1



slight complication pertains to the application of this idea to a log-linear hedonic equation. As is 
well known, , but a bias correction needs to be applied to the exponentiated 

predicted value. As shown in Aitchinson and Brown (1957), the conditional expectation is a 

function of the variance. In our particular case, the conditional expectation would take the 
form , where  is approximated using its mean squared error 

estimate. 

E[ p | Z ] ≠ eE[ln p |Z ]

] = e( I −ρW )−1 Xβ + (σ 2 /2)E[ p | Z σ 2

 

Approximate confidence intervals can be computed for the point estimates of the changed 

valuation in a number of ways. In the current application, we limit our attention to point estimates 

and use upper and lower bounds for the estimated coefficients to recompute the predicted value. 

Specifically, this is based on the estimate plus or minus two standard errors.  As a starting point, 

we simulate a uniform change in water availability in the two cities, increasing it by one day for 

all households. The valuation from this simulation is comparable to the MWTP value obtained 

from the estimation of the hedonic model.  
 

When considered relative to the mean DPW in each city, one day may constitute a non-marginal 

change, given that the average availability is around 3 days per week. Therefore, we refine the 

analysis by focusing on those households that do not attain the mean (DPW < 3). We assess both 

a uniform as well as a non-uniform change. First, we assess the impact of a 33% change (1 day on 

average) and a 10% change (around 7 additional hours on average) for those households. More 

interestingly, we consider non-uniform targeted policy interventions as well. Specifically, we 

assess a scenario where those same households are “moved up to” 3 DPW of water availability 

and a scenario where they are guaranteed one day a week of water through a direct connection.  
 

The average valuation from simulating a uniform increase of 33% (one day on average) for the 

city of Bangalore is INR 196 which is somewhat higher than the MWTP obtained from the lag 

specification of the hedonic model (INR 117).9 Similar changes in water availability are 

simulated for the city of Bhopal. A uniform increase of 33% (one DPW on average) in water 

access through a direct connection would lead to an average change on house rents of INR 98. 

For both cities, the total difference in value is divided by the number of observations to obtain the 

average changes in house rents reported in Table 6. Both Direct and Total (With Multiplier) 

changes are reported as it was done in the previous section for the MWTP estimates. Table 6 

                                                 
9 All simulations consider the constraint that access to water must be less than or equal to seven days.  



shows the differences in the average changes in house prices if we ignore the multiplier effect. 

Numbers in parenthesis give the lower and upper bounds for a confidence interval created using 

two standard deviations from the estimated coefficients. 
 
Table 6: Policy Simulations: Mean Change in House Rents (INR) 

Bangalore Bhopal 
Policy Intervention Simulated 

Direct With Multiplier Direct With Multiplier 

Uniform Increase of 33%  20.98 
(7.13–37.57) 

196.36 
(25.42-1202.7) 

13.20 
(3.04-26.29) 

97.64 
(10.97-504.1) 

Increase of 33% for <3 DPW 2.50 
(0.89 – 4.28)  

22.23 
(3.09 –125.75) 

0.76 
(0.2-1.34) 

5.89 
(0.70-27.41) 

Increase of 10% for <3 DPW 0.75 
(0.27 – 1.28) 

6.68 
(0.93 – 37.59) 

0.23 
(0.06-0.40) 

1.78 
(0.21-8.25) 

Increase to 3 all with <3 DPW 5.28 
(1.92 – 5.28) 

47.61 
(6.72 – 264.5) 

6.01 
(1.54-10.72) 

46.40 
(5.45-219.22) 

Increase to 1 all with <1 DPW 1.67 
(0.62 – 2.74) 

15.12 
(2.17 – 82.71) 

1.94 
(0.51-3.40) 

15.01 
(1.79-69.71) 

 
 

Figure 1: Bangalore: Direct vs. Total (With Multiplier) effects for an increase of 10% in water 
availability (days per week, DPW) for all households with less than 3 days per week 10 

 

                                                 
10 C10%_3 shows for the total effect while the dotted line labeled C10%_3d shows the direct effect that 
ignores the multiplier from the spatial model. 



Figure 2: Bangalore: Direct vs. Total (With Multiplier) effects for increasing water availability (days 
per week) to one day for all households with less or no access. 11 

 
Figure 3: Bangalore: Direct effects from three alternative policy changes (see text). 

 
 

We also consider the average changes for different levels of water accessibility. Figure 1 shows 

the average change in house prices by levels of water availability for a non-uniform change. This 
                                                 
11 C1_1 shows for the total effect while the dotted line labeled C1_1d shows the direct effect that ignores 
the multiplier from the spatial model. 



figure pertains to the simulation exercise where water availability is increased by 10% only for 

those households that currently have less than the mean water availability (3 DPW). Focusing 

only on the direct price effect, only those households with less than 3 days of water per week will 

face a change in their house prices (rents). More interestingly, if we also take into account the 

spatial spill-over effect and consider the multiplier changes in house prices as well, we observe 

not only that the change in house prices is much larger for all households below the mean water 

availability but also that all households (even those whose water access levels did not change) 

experience changes in their house values. Figure 2 shows similar results when comparing direct 

and total (with multiplier) effects of increasing to one DPW the availability of all households that 

currently have no water access through a direct connection in Bangalore.  Figure 3 summarizes 

the changes in prices resulting from the three scenarios in water access change. It is interesting to 

note that in all cases we see that all households experience increased house values. The use of a 

spatial lag model allows us to observe the spill-over effects on house prices of a localized change 

in water availability that would otherwise be ignored in a traditional non-spatial specification.  
 

For Bhopal the picture is very similar. Direct changes pertain only to the houses directly affected 

by the policy scenarios and therefore underestimate the effect on house prices over the entire city, 

as shown in Figures 4 and 5. Figure 6 shows the average changes for the three simulations for 

different levels of accessibility. For the city of Bhopal, it is interesting to see that for a non-

uniform increase, households with higher levels of availability that are not directly facing the 

changes in water also experience higher house prices. Interestingly, the spillover effects seem to 

be higher for a policy that guarantees that everyone has at least one day a week of water. This 

may be a result of a general improvement of the conditions in the city by guaranteeing access.  
 



Figure 4: Bhopal: Direct vs. Total (With Multiplier) effects for an Increase of 10% in water 
availability (days per week) for all households with less than 3 days per week. 12 

 
Figure 5: Bhopal: Direct vs. Total (With Multiplier) effects for increasing water availability (days per 
week) to one day for all households with no access. 13 

 

                                                 
12 C10%_3 shows the total (with multiplier) effect while the dotted line labeled C10%_3d shows the direct 
effect that ignores the multiplier from the spatial model. 
13 C1_1 shows the total effect while the dotted line labeled C1_1d shows the direct effect that ignores the 
multiplier from the spatial model. 



Figure 6: Bhopal: Direct Effects from three alternative policy changes. 33% and 10% increases for 
households with less than 3 days per week and bringing availability to at least 3 days per week. 

 
Finally, we consider the spatial distribution of the impacts by computing an estimate for the 

average change by ward. This is obtained by taking the average change in value for all the houses 

in the sample that are located in a given ward. This allows for an assessment of the spatial 

distribution of the impact of the policy change. Figures 7 through 10 summarize this for the cities 

of Bhopal and Bangalore. The spatial distribution of the average changes is very different from 

one policy to the other in both cities.  
 

To illustrate this point, we illustrate the case of Bangalore. For a 10% increase in water access for 

those households below the mean level, in Bangalore the highest average changes (dark red) are 

observed for the ward of Kodandaramapura in the North and Hanumanthanagara in the South-

West of the city. For the policy to increase the availability to one day per week for the same 

households, the highest change in average house rents (dark red) are observed in five Eastern 

wards: Kaval Bairasandra, Banasavadi, Benniganahalli, Lingarajapura and Sir C.V. 

Ramannagara.  
 



Figure 7: Bangalore: Average Change in Water Availability by Ward (10% Increase for all 
households with less than 3 DPW) 

         
Figure 8: Bangalore: Average Change in Water Availability by Ward (all households with less 1 
DPW are guaranteed 1DPW) 

 
 



Figure 9: Bhopal: Average Change in Water Availability by Ward (10% Increase for all households 
with less than 3 DPW) 

  
Figure 10: Bhopal: Average Change in Water Availability by Ward (all households with less 1 DPW 
are guaranteed 1DPW) 

 

VIII. Conclusions 

This paper presents a spatially explicit approach to estimating willingness to pay for water supply 

in two Indian cities. By incorporating neighborhood effects in spatial hedonic estimates of the 



capitalization of improved water supply, we show that total benefits that include direct effects and 

neighborhood multipliers are considerably higher than estimates from non-spatial estimation. For 

Bangalore and Bhopal, the spatial estimates exceed standard MWTP estimates by 23 percent and 

16 percent, respectively. Although we cannot isolate the specific underlying process by which 

neighbors’ quality of access affects each other, there are a number of possibilities. Generally, real 

estate markets tend to factor in neighborhood quality, so upgrading of a dwelling unit or 

maintenance of yards on a block has an effect on the value of all houses on the block. High 

quality water supply and sanitation also has considerable health benefits. One could thus interpret 

these neighborhood effects as specific health externalities as neighbors’ improved living 

conditions reduce the risk of communicable diseases. Beyond these more speculative conclusions, 

the policy implications of these results are clear. By looking at individual or private benefits only, 

we may underestimate the overall social welfare from investing in service supply especially 

among the poorest residents in developing country cities. In decision making under strict 

efficiency rules, this may lead to an underinvestment in critical infrastructure.  

 

Besides presenting estimates of MWTP, we also report on a number of policy simulations that 

show how benefit estimates can be derived for each household on the basis of its actual (rather 

than mean) characteristics. The resulting information can be mapped geographically which 

informs prioritization and sequencing of investment decisions. This approach results in a flexible 

framework in which urban investment options can be evaluated. Using efficiency criteria, 

investments could be prioritized in areas where returns in the form of housing value increases 

(and thus user fee or tax increases) are highest. Introducing equity concerns would possibly alter 

the investment schedule to first target the poorest households where returns may be lower, but 

welfare benefits and positive health spillovers may be highest. 
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APPENDIX 
 

Table AA 1: Estimates hedonic price (rent) equation, Bhopal 

BHOPAL 
 

 OLS LAG 
VARIABLES   
   
WATER DPW  0.0257 0.0242 

Classic (0.0083) * (0.0082) * 
White  (0.0083) * (0.0082) * 

HAC-ep (0.0092) * (0.0089) * 
   
W_RENT ---- 0.2421 

Classic ---- (0.0390) * 
White  ---- (0.0366) * 

HAC-ep ---- (0.0380) * 
   
SIZE 0.0002 0.0002 

Classic (0.0000) * (0.0000) * 
White  (0.0000) * (0.0000) * 

HAC-ep (0.0000) * (0.0000) * 
   
ROOMS 0.0529 0.0542 

Classic (0.0069) * (0.0068) * 
White  (0.0088) * (0.0088) * 

HAC-ep (0.0090) * (0.0088) * 
   
BATHROOMS 0.2786 0.2637 

Classic (0.0301) * (0.0299) * 
White  (0.0336) * (0.0329) * 

HAC-ep (0.0354) * (0.0336) * 
   
FLOOR 0.2488 0.2339 

Classic (0.0538) * (0.0533) * 
White  (0.0451) * (0.0445) * 

HAC-ep (0.0480) * (0.0461) * 
   
WALLS 0.1377 0.1197 

Classic (0.0507) * (0.0503) ** 
White  (0.0455) * (0.0446) ** 

HAC-ep (0.0486) * (0.0478) ** 
   
ROOF 0.4517 0.4145 

Classic (0.0415) * (0.0415) * 
White  (0.0425) * (0.0423) * 

HAC-ep (0.0455) * (0.0439) * 
   
KITCHEN 0.1366 0.1656 

Classic (0.1523) (0.1509)  
White  (0.1272)  (0.1199)  

HAC-ep (0.1288)  (0.1201)  
   
WOMEN SAFE -0.0049 -0.0164 



Classic (0.0449) * (0.0445)  
White  (0.0415) * (0.0418)  

HAC-ep (0.0465) * (0.0461)  
   
ELECTRICITY 0.1772 0.1649 

Classic (0.0433) * (0.0429) * 
White  (0.0415) * (0.0408) * 

HAC-ep (0.0446) * (0.0425) * 
   
NO DUMP 0.0366 0.0282 

Classic (0.0339) * (0.0336)  
White  (0.0330) * (0.0330)  

HAC-ep (0.0322) * (0.0318)  
   
TOILET-SEWER 0.1417 0.0963 

Classic (0.0472) * (0.0473) ** 
White  (0.0459) * (0.0462) ** 

HAC-ep (0.0555) ** (0.0534)  
   
ELSE  0.0574 0.0295 

Classic (0.0866)  (0.0859)  
White  (0.0946)  (0.0941)  

HAC-ep (0.0926)  (0.0918)  
   
HAND PUMP 0.1034 0.0662 

Classic (0.1283)  (0.1272)  
White  (0.1191)  (0.1221)  

HAC-ep (0.1233)  (0.1284)  
   
TUBE WELL 0.1764 0.1801 

Classic (0.0688) ** (0.0681) 
White  (0.0694) ** (0.0693) ** 

HAC-ep (0.0719) ** (0.0721) ** 
   
COMMON TUBE WELL 0.0117 -0.0034 

Classic (0.0733)  (0.0726)  
White  (0.0724)  (0.0722)  

HAC-ep (0.0848)  (0.0832)  
   
COMMON TAP -0.0760 -0.0549 

Classic (0.0536)  (0.0532)  
White  (0.0543)  (0.0539)  

HAC-ep (0.0592)  (0.0585)  
   
COMMON HAND PUMP -0.1266 -0.0968 

Classic (0.0598) ** (0.0594)  
White  (0.0565) ** (0.0562)  

HAC-ep (0.0615) ** (0.0592)  
   
TANKER -0.0414 -0.0408 

Classic (0.0988)  (0.0979)  
White  (0.1096)  (0.1074)  

HAC-ep (0.1141)  (0.1060)  
   
OTHER  -0.1409 -0.2070 

Classic (0.4654)  (0.4611)  



White  (0.4054)  (0.4347)  
HAC-ep (0.4507)  (0.4715)  

   
RAIN  0.8814 1.1967 

Classic (0.6558)  (0.6514)  
White  (0.1598)  (0.1649)  

HAC-ep (0.1579)  (0.1682)  
   
SURFACE -0.2928 -0.4021 

Classic (0.3315)  (0.3287)  
White  (0.1201)  (0.1649)  

HAC-ep (0.1401)  (0.1831)  
   
BOTTLED -0.1118 -0.0144 

Classic (0.3257)  (0.3229)  
White  (0.2065)  (0.2142)  

HAC-ep (0.1998)  (0.2063)  
   
CONSTANT 5.2237 3.6260 

Classic (0.1917) * (0.3199) * 
White  (0.1671) * (0.2913) * 

HAC-ep (0.1872) * (0.2927) * 
R-squared (var ratio) 0.6438 0.6517 
   
 STATISTIC p-value 
LM-Err 6.818 0.009 
LM-Lag 31.56 0.000 
Robust LM-Err 4.52 0.033 
Robust LM-Lag 29.27 0.000 
Anselin Keleijian 7.37 0.006 

   
* Significant only at 1%  ** Significant only at 5% 



Table AA2: Estimates hedonic price (rent) equation, Bangalore 

BANGALORE 

 OLS LAG 
VARIABLES   
   
WATER DPW 0.0326 0.0287 

Classic (0.0084)* (0.0083)* 
White  (0.0088)* (0.0086)* 

HAC-ep (0.0096)* (0.0090)* 
   
W_RENT --- 0.2429 

Classic --- (0.0368)* 
White  --- (0.0396)* 

HAC-ep --- (0.0439)* 
   
SIZE 0.000 0.0001 

Classic (0.0000)* (0.0000)* 
White  (0.0000)* (0.0000)* 

HAC-ep (0.0000)* (0.0000)* 
   
ROOMS 0.0438 0.0444 

Classic (0.0054)* (0.0053) 
White  (0.0070)* (0.0068)* 

HAC-ep (0.0079)* (0.0076)* 
   
BATHROOMS 0.1782 0.1667 

Classic (0.0180) (0.0178) 
White  (0.0806) ** (0.0770) ** 

HAC-ep (0.0830) ** (0.0792) ** 
   
FLOOR -0.1462 -0.1544 

Classic (0.1166)  (0.1150)  
White  (0.1607)  (0.1544)  

HAC-ep (0.1568)  (0.1501)  
   
WALLS 0.3217 0.2964 

Classic (0.0731) (0.0722) 
White  (0.0772) (0.0759) 

HAC-ep (0.0846) (0.0826) 
   
ROOF 0.5638 0.5371 

Classic (0.0375) (0.0372) 
White  (0.0424) (0.0416) 

HAC-ep (0.0446) (0.0421) 
   
KITCHEN -0.0304 0.0489 

Classic (0.1587)  (0.1569)  
White  (0.1771)  (0.1779)  

HAC-ep (0.1814)  (0.1825)  
   
CRIME DECR. -0.0359 -0.0421 

Classic (0.0304)  (0.0300)  



 
 
 
 
  0.6357  

* Significant only at 1%         ** Significant only at 5% 

White  (0.0300)  (0.0293)  
HAC-ep (0.0332)  (0.0316)  

   
ELECTRICITY 0.6420 

Classic (0.1197)* (0.1180)* 
White  (0.1286)* (0.1253)* 

HAC-ep (0.1496)* (0.1391)* 
   
TOILET-SEWER 0.2516 0.2293 

Classic (0.0297)* (0.0294)* 
White  (0.0316)* (0.0308)* 

HAC-ep (0.0357)* (0.0342)* 
   
TUBE WELL 0.0784 0.0737 

Classic (0.0403) ** (0.0397) ** 
White  (0.0407) ** (0.0396) ** 

HAC-ep (0.0426) ** (0.0409) ** 
   
TANKER 0.1876 0.2120 

Classic (0.1944)  (0.1917)  
White  (0.1126)  (0.1285)  

HAC-ep (0.1151)  (0.1338)  
   
OTHER -0.1360 -0.0365 

Classic (0.1299)  (0.1290)  
White  (0.1502)  (0.1533)  

HAC-ep (0.2007)  (0.1867)  
   
SURFACE 0.3951 0.4147 

Classic (0.2398)  (0.2364)  
White  (0.1431)  (0.1342) ** 

HAC-ep (0.1416)  (0.1295) 
   
FOUNTAIN -0.2775 -0.2638 

Classic (0.0448)* (0.0442)* 
White  (0.0471)* (0.0465)* 

HAC-ep (0.0505)* (0.0487)* 
   
COMMON TUBE -0.3279 -0.3182 

Classic (0.0557)* (0.0549)* 
White  (0.0664)* (0.0661)* 

HAC-ep (0.0757)* (0.0740)* 
   
CONSTANT 6.0573 4.1224 

Classic (0.2515)* (0.3842)* 
White  (0.2813)* (0.4069)* 

HAC-ep (0.2998)* (0.4586)* 
R-squared (var ratio) 0.5620 0.5687 
   
 STATISTIC p-value 
LM-Err 37.94 0.000 
LM-Lag 82.02 0.000 
Robust LM-Err 2.32 0.127 
Robust LM-Lag 46.40 0.000 
Anselin Keleijian 3.84 0.05 


