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Abstract

We consider identi�cation in a �generalized regression model� (Han, 1987) for panel
settings in which each observation can be associated with a �group�whose members are
subject to a common unobserved shock. Common examples of groups include markets,
schools or cities. The model is fully nonparametric and allows for the endogeneity
of group-speci�c observables, which might include prices, policies, and/or treatments.
The model features heterogeneous responses to observables and unobservables, and
arbitrary heteroskedasticity. We provide su¢ cient conditions for full identi�cation of
the model, as well as weaker conditions su¢ cient for identi�cation of the latent group
e¤ects and the distribution of outcomes conditional on covariates and the group e¤ect.

Keywords: nonparametric identi�cation, binary choice, threshold crossing, censored
regression, proportional hazard model



1 Introduction

In the generalized regression model of Han (1987), an outcome Yi for �individual� i is

determined by the nonseparable nonlinear model

Yi = D (Y �
i ) (1)

Y �
i = F (Xi�;Ei)

where D is a known nondegenerate weakly increasing function, Xi is a vector of covariates

associated with individual i, Ei 2 R is an unobserved shock, and the index Y �
i is latent. This

formulation nests several common models of limited dependent variables, each arising from

a particular choice of D. Examples include models of binary choice or threshold crossing,

censored regression, and the proportional hazard model.

We consider the identi�ability of a nonparametric heterogeneous generalization of this

model for �large-N large-T�panel settings in which each individual i is associated with a

�group� t.1 We are motivated by a variety of applications in which group members are

subject to a common unobserved shock that may be correlated with group-level observables

a¤ecting outcomes. Examples of �groups�include schools, hospitals, �rms, neighborhoods,

retailers, and markets. In applications, one is often interested in counterfactuals involving

exogenous changes in covariates that a¤ect individual outcomes. We propose a model that

generalizes (1) in a way that makes it possible to de�ne such counterfactuals while still

allowing for rich heterogeneity in individual responses to observables and unobservables. We

then consider identi�cation of this model for environments in which one observes outcomes

for many individuals from each of many groups.

Our model takes the form

1It would be more precise to let ti represent the group to which i belongs. We use the simpler notation
but emphasize that we do not assume an environment in which an individual appears in di¤erent groups.
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Yit = D (Y �
it ) (2)

Y �
it = Fi (Si; Xt; Ut (Si)) :

Here Si and Xt are, respectively, individual- and group-speci�c covariates, Ut (Si) is an

unobserved scalar unobservable, and Fi is a random function on � � supp(Si; Xt; Ut (Si)).

We will refer to Ut (Si) as a �group e¤ect�even though it is permitted to vary with both Si and

t.2 The nonparametric random function Fi, de�ned formally below, generalizes traditional

random coe¢ cients models to allow rich heterogeneity across individuals.

Two examples illustrate the types of applications that motivate our study.

Example 1 (Binary Choice Demand). Each consumer i chooses between two substitute

goods.3 A consumer falls into a market t, de�ned by time or geography. The covariates

Xt describe observable characteristics of the goods or markets; Si denotes observed consumer

characteristics; Ut (s) represents unobserved taste among consumers in market t with charac-

teristics Si = s, and/or the value �type�s consumers place on unobserved characteristics of

the goods in market t. The latent index Y �
it represents the di¤erence between the consumer�s

conditional indirect random utilities of the two goods; i.e.,

Fi (Si; Xt; Ut (Si)) = vi1t (Si; Xt; Ut (Si))� vi0t (Si; Xt; Ut (Si))

where vijt is a random function representing the conditional indirect utility of consumer i

2The �group e¤ect� in this model has characteristics of both �xed e¤ects and random e¤ects, although
the literature does not always agree on de�nitions. We avoid this terminology altogether.

3Obviously this is only one example of binary choice. Others that may be suited to our setup include a 1)
�rms�decisions regarding entry or technology adoption, with market-speci�c unobservables and unobserved
heterogeneity in �rms�pro�t functions; 2) a student�s decision to drop out or stay in school, with school-
speci�c unobservables and heterogeneity in students�returns to education, labor market productivity, etc;
3) voters� choices of presidential candidate, with heterogeneous preferences and local unobservables; 4)
workforce participation decisions, with region-speci�c unobserved labor market conditions and individual
heterogeneity in labor market opportunities and labor-leisure tradeo¤; 5) consumer purchase decisions on
repeated shopping trips, with persistent consumer-speci�c e¤ects.
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for good j in market t. The transformation D maps the sign of this utility di¤erence into

a zero-one purchase decision. At least one of the Xt characteristics, price, will typically be

correlated with the market demand shock, Ut (Si). A possible instrument for price would be

a market-level cost shifter.

Example 2 (Patient Outcomes). Consider a model of health outcomes of patients i treated

in hospitals t. The latent Y �
i might represent a continuos measure of actual health status

which is transformed into the observed outcome Yi, which could be a duration (e.g., length

of stay or days survived), a censored variable such as a binned measure of post-treatment

function, or a binary indicator for survival vs. death. The vector Si can re�ect characteristics

of the patient, her diagnosis and/or the treatment she receives. The vector Xt captures

observed characteristics of hospitals: treatment protocols, sta¢ ng ratios, for-pro�t status and

so forth. The unobserved Ut (Si) may re�ect unobserved characteristics of hospital t and/or

unobserved characteristics of patients in hospital t. Although we restrict Ut (s) to be a scalar,

we allow it to vary freely with s and t. This permits responses to hospital unobservables

(and their interactions with hospital observables) to vary with patient observables. For

example, an unobserved hospital characteristic that is helpful for patients with one Si vector

(e.g., age/diagnosis/co-morbidity pro�le) may be harmful to other patients. In addition, the

random variation across patients in the fuction Fi allows for heterogeneous responses, even

among observably identical patients.

Although we use the terms �individual�and �group� to interpret the indices i and t ,

other interpretations are possible. For example, t could indicate the person whose outcomes

are recorded as a large number of observations i. In that case, what we call a �group e¤ect�

would be a person-speci�c e¤ect.

Not all applications will have the structure we consider, but many do. For such settings,

our model (2) generalizes (1) in several ways.4 First, it incorporates the latent group e¤ect

4One may wonder whether there is redundancy here, since Si enters directly as an argument of Fi and
as an index on UtSi . If instead Fi (s; x; u) = Fi(x; u) for all (s; u), this would rule out heterogeneity
(across observations with di¤erent Si) in responses to group unobservables or in the interactions between
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Ut (Si). Second, by specifying the latent index Y �
it as a random function, (2) provides a very

general representation of heterogeneity across individuals in responses to covariates and the

group e¤ect. Finally, we drop the requirement that covariates act through an index, instead

allowing a fully nonparametric speci�cation with arbitrary heteroskedasticity.

As already noted, we focus on one type of endogeneity: correlation between group-level

observables Xt and unobservables Ut (Si). This focus enables us to separate the unobserved

variation responsible for endogeneity (i.e., Ut (Si)) from that responsible for heterogeneity in

responses and heteroskedasticity (i.e., the variation in the index functions Fi). With this

structure, our model can characterize responses in outcomes to exogenous changes in the

covariates Xt. In such a counterfactual, Ut (Si) should typically be held �xed while the full

distribution of the latent responses Y �
it (not just its mean, e.g.) is permitted to respond to

the change in Xt: This is not possible in models like (1) with a single stochastic element.

We consider the question of nonparametric identi�ability primarily to better understand

what can be learned from common types of data in the context of models nested in the

generalized regression framework. As emphasized since Koopmans (1945), identi�cation and

estimation are related but distinct. Even when estimation is likely to be carried out using

parametric or semiparametric speci�cations, it is useful to understand whether such a priori

restrictions are merely useful approximations in �nite samples or are essential regardless of

sample size.

We provide two types of nonparametric identi�cation results. The �rst addresses full

identi�cation of the model, i.e., identi�cation of the latent group e¤ects and the distribution

of Y �
it jSi; Xt; Ut (Si). These are the primitives of the model (2). The second, which we

refer to as identi�cation of the structural outcome distribution, concerns the identi�ability

of the group e¤ects and the conditional distribution of outcomes, i.e., of YitjSi; Xt; Ut (Si).

Knowledge of the structural outcome distribution is su¢ cient for many (perhaps most) coun-

group observables and unobservables. On the other hand, setting UtSi � Ut would restrict the e¤ect of
unobservables on outcomes to be perfectly correlated across subpopulations in the same group but with
di¤erent si. Further, with the monotonicity property assumed below, this would require the e¤ect of a
change in the group e¤ect to have the same sign for all subpopulations.
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terfactuals that motivate estimation in practice. For example, it describes how any moment

(or quantile) of outcomes would change in response to an exogenous change in Si or Xt.

Thus, identi�cation of average (or quantile) treatment e¤ects is implied. Not surprisingly,

the structural outcome distribution is identi�ed under weaker conditions than those required

for full identi�cation.

The �rst challenge to identi�cation is that group-level covariates may be correlated with

group unobservables. We show that results from the recent literature on nonparametric in-

strumental variables regression (Chernozhukov and Hansen (2005)) can be applied to obtain

identi�cation of the latent group e¤ects. Identi�cation of the structural outcome distrib-

ution then follows. To obtain full identi�cation of the model, we combine this result with

additional separability and support conditions that enable us to apply standard arguments

to trace out the conditional distribution of the latent index Y �
it . The result does not rely on

an �identi�cation at in�nity�argument, and the separability and large support assumptions

are each testable.

As this sketch suggests, the results are obtained by applying well known ideas from the

literatures on limited dependent variables and on nonparametric instrumental variables re-

gression. Our main contribution is showing how these ideas can be combined to deliver

new identi�cation results for a rich class of models useful in a wide range of applications.

Although our model involves limited dependent variables and permits high-dimensional het-

erogeneity, the structural outcome distribution is identi�ed under the same instrumental

variables conditions used by Chernozhukov and Hansen (2005) to show identi�cation of

quantile treatment e¤ects or a nonparametric regression model. Further, for applications

where identi�cation of the structural outcome distribution does not su¢ ce, full identi�ca-

tion is obtained by adding the same kind of separability and support conditions previously

used in even the simplest semiparametric models of limited dependent variables.

In the following section we discuss related literature. We describe the model and ob-

servables in sections 3 and 4. We present the identi�cation results in section 5 and conclude

in section 6.
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2 Related Literature

Han (1987) introduced the generalized regression model (1), assuming Ei j= Xi. Manski

(1987) considered binary choice in a panel setting and was the �rst to consider identi�cation

(and estimation) of nonlinear �xed e¤ects model outside the small class of parametric models

to which a traditional �di¤erencing�is easily applied.5 Abrevaya (2000) considered estima-

tion of � in a �xed-e¤ects version of (1), Yit = D � F (Si�; Ut; Eit) with Eit 2 R.6 This is

similar to a semiparametric version of our model. In addition to restricting individual unob-

servables to a scalar Eit, Abrevaya�s model excludes the group-level covariates and variation

in the group-level unobservable with Si that we permit. We are able to allow these because

we consider a di¤erent panel structure� a �large-N large-T�environment in contrast to the

�small-T large-N�setup studied by Manski (1987) and Abrevaya (2000).

Altonji and Matzkin (2005) considered the model Yit = g (Xit; Ut; Eit), which is similar

to our model (2) with g = D � F .7 They permit Ut to be a vector and do not require our

�large-N large-T�environment. Like us, they rely on an exclusion restriction. Whereas

we rely on conventional instrumental variables assumptions for nonseparable models, they

assume existence of an excluded variable Zit such that the conditional density restriction

f (Ut; EitjXit; Zit) = f (Ut; EitjZit) holds.8 An important limitation is that they consider

identi�cation only of a local average response.

Honoré and Lewbel (2002) studied a related semiparametric binary choice panel model

Yit = 1
n
X
(1)
it +X

(2)
it � + Ut + Eit > 0

o
. They permit Ut to be correlated with

�
Eit; X

(2)
it

�
but require that Ut+Eit be independent of X

(1)
it conditional an excluded Zit. They focus on

identi�cation and estimation of �, using a di¤erencing strategy that relies on the additive

5He refers to this as a random e¤ects model. See Chamberlain (1984) and Newey (1994) for related
models.

6To ease comparisons, we have reversed the indices i and t from Abrevaya�s setup, which focuses on
individual �xed e¤ects instead of group or time e¤ects.

7They consider two types of estimators, one of which rules out qualitative response models and censoring.
Our discussion here focuses on their �rst estimator, which admits such models.

8This is closely related to control function approaches in triangular models (e.g., Chesher (2003), Imbens
and Newey (2006)). See also Matzkin (2004).
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separability of the index function in (Ut + Eit).

Much prior work has considered identi�cation in binary choice/threshold crossing models

that are special cases of (1). Examples include Manski (1985), Manski (1988), Matzkin

(1992), Lewbel (2000), Hong and Tamer (2004), Blundell and Powell (2004), Lewbel (2005),

and Magnac and Maurin (2007). Work focusing on identi�cation of an average derivative

or average treatment e¤ect includes Vytlacil and Yildiz (2007), Shaikh and Vytlacil (2005),

and Hoderlein (2008). Ichimura and Thompson (1998) and Gautier and Kitamura (2007)

studied binary choice in a linear random coe¢ cients model, a special case of the model we

consider, but without group e¤ects.9 Matzkin (2004) (section 5.1) considers a binary choice

model making a distinction between group-speci�c unobservables and an additive preference

shock, but without heteroskedasticity.10 Blundell and Powell (2004), Matzkin (2004), and

Hoderlein (2008) consider binary choice in semiparametric triangular models, leading to the

applicability of control function methods or the related idea of �unobserved instruments.�

In work simultaneous to our own, Chiappori and Komunjer (2009) study identi�cation

and testable restrictions of the cross-sectional model Yi = F (g (Xi) + Ei), where F 0 >

0. Aside from the panel environment we consider, a second fundamental di¤erence is our

distinction between unobservables that give rise to endogeneity and sources of randomness

responsible for conditional heterogeneity in outcomes. As discussed above, this is essential

for many types of counterfactuals in applications with both endogeneity and heterogeneity.

Finally, our own recent work (Berry and Haile (2009a), Berry and Haile (2009b)) considers

identi�cation of multinomial choice demand models, in some cases applying ideas used here as

well. However, those results are obtained under more restrictive conditions than those here.

For example, the results on identi�cation of structural outcome distributions (i.e., �demand�)

in Berry and Haile (2009a) and Berry and Haile (2009b) rely on an index restriction on the

way market- (group-) level unobservables enter utilities.11 The results here show that this

9Generalizations to multinomial choice have been considered by Briesch, Chintagunta, and Matzkin (2005)
and Fox and Gandhi (2009).
10See also Matzkin (2007a) and Matzkin (2007b).
11In Berry and Haile (2009b) we also require individual-level covariates (permitted but not required here)
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restriction can be dropped in the case of binary choice, allowing identi�cation of demand in

a rich heterogeneous random utility model with endogeneity without any functional form or

distributional assumption. For example, relative to the model of Ichimura and Thompson

(1998), the specialization of the results here to binary choice allow us to drop their linearity

restriction, add the group-level unobservable, and allow for endogeneity.

3 Model

We consider the generalized regression model (2), where the index function Fi of individual

i is a speci�ed as a random function on � �supp(Si; Xt; Ut (Si)) : Letting (
;F ;P) denote

a probability space, we de�ne

Fi (Si; Xt; Ut (Si)) = F (Si; Xt; Ut (Si) ; !i)

where !i 2 
. Thus the model (2) can be written

Yit = D � F (Si; Xt; Ut (Si) ; !i) : (3)

Note that the measure P does not vary with (Si; Xt; Ut (Si)). This is without loss

since arbitrary dependence of the distribution of Y �
it on (Si; Xt; Ut (Si)) is already permitted

through the function F .12 Note also that there is no variation in the measure P across groups.

This re�ects the important assumption, already made, that the scalar Ut (s) captures the

e¤ects of all unobservables common to individuals in group t with characteristics Si =

s. This generally rules out multidimensional group-speci�c unobservables, although we do

permit Ut (s) to vary freely across s and t.

Aside from the restriction to a scalar group e¤ect, we have placed no restriction on the

and require separability and support conditions even for identi�cation of the structural outcome distribution
(not required here). One quali�cation is that, unlike some results in Berry and Haile (2009b) and Berry and
Haile (2009a), in the present context we require fully independent (not just mean independent) instruments.
12Below we will discuss our assumptions on observables.
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random index functions Fi. Note in particular that !i is not a random variable but an

elementary event in 
; any number of random variables can be de�ned as functions of !i.

The following example illustrates.

Example 3. A special case of our model is obtained with the linear random coe¢ cients

speci�cation

F (Si;Xt; Ut (Si) ; !i) = Si
 +Xt�i + Ut (Si) + Eit

where the random variables (�i; Eit) can be de�ned on (
;F ;P) as, for example,

�i =
�
�(1) (Si; !i) ; : : : ; �

(K) (Si; !i)
�

Eit = E(Si; Xt; !i):

Although this special case of our model involves a strong functional form restriction, it per-

mits an arbitrary joint distribution of
�
�
(1)
i ; : : : ; �

(K)
i ; Eit

�
; dependence of �i on Si, and

dependence of Eit on (Si; Xt).

Because Ut (Si) is unobservable and enters as a nonseparable argument of a nonpara-

metric function, it requires a normalization. We will assume for simplicity that Ut (Si) is

continuously distributed in the population. Then, without further loss, for each s, we let

u = Pr (Ut (Si) � ujSi = s), normalizing Ut (Si) to have a uniform [0,1] distribution condi-

tional on each value of Si.

Throughout our analysis we will maintain the following assumption.

Assumption 1. For each s in the support of Si, there exists a known ~y 2 R such that

Pr (D � F (Si; Xt; Ut (Si) ; !i) � ~yjSi = s;Xt = x; Ut (Si) = u) is strictly decreasing in u for

all x.

If we had assumed Fi = F , monotonicity of F in Ut (Si) would be without loss, merely

de�ning an order on the latent group e¤ect (for each si). Because we allow the index

functions Fi to di¤er across individuals, Assumption 1 is a restriction. A strong su¢ cient

condition is that F strictly increase in Ut (Si), as in Example 3.
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4 Observables

We assume that the population distribution of Yit is observed in every group t; conditional

on the covariates (Si; Xt) and excluded instruments ~Zt.

Assumption 2. For all y 2suppYi, PrP
�
Yi � yjt; Si; Xt; ~Zt

�
is observed for all t and all

Si; Xt; ~Zt:

Observation of
�
t; Yit; Si; Xt; ~Zt

�
for all i; t su¢ ces, in which case we can think loosely of

observing many individuals from each of many groups (�large N; large T�). However, this

is not necessary. For example, in Example 1 it is su¢ cient to observe Xt and the market

share of good 1 by demographic group (value of Si) in many markets t.

Note that in general Assumption 2 rules out selection of Si on individual-speci�c unob-

servables: conditional on any (si; xt:ut (si)) the observable distribution of outcomes Yit is the

the same as the conditional distribution in the population. As discussed previously, this

re�ects a choice to focus on endogeneity of group-level characteristics that arises through

the group-level unobservable Ut (Si).

5 Results

5.1 Identi�cation of the Structural Outcome Distribution

We �rst consider the identi�ability of the structural outcome distribution, i.e., of the group

e¤ects and the distribution of Yit conditional on Si; Xt; Ut (Si). Fix Si = s and let ~y be the

value referred to in Assumption 1. Then , because conditioning on t �xes Ut (s),

Pr P (Yit � ~yjt;Xt) = Pr P (Yit � ~yjXt; Ut (s))

= � (Xt; Ut (s)) (4)

where � is an unknown function that is strictly decreasing in its last argument by Assumption

1.
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Absent endogeneity, identi�cation of the function � would follow immediately from stan-

dard arguments (see, e.g., Matzkin (2003)). Because we allow for correlation between

Xt and Ut (Si) conditional on Si, identi�cation of � will require instrumental variables. Let

Zt denote the exogenous conditioning variables at the group level. These may include some

components of Xt as well as excluded instruments ~Zt. We will require fully independent

instruments:

Assumption 3. Ut (Si) j= Zt conditional on Si:

Now condition on a value of Wt � Xt \ Zt, still �xing Si = s. To simplify notation, let

Xt now represent only the endogenous group covariates, with Ut representing the random

variable Ut (s).

Without loss, we may assume that Yit and Xt have been transformed to have bounded

support. We will focus on the case of continuous Xt; assuming Xt has a conditional density

function fX (�jZt).13 Let f� (�jXt; Zt) denote the conditional density of the random variable

� (Xt; Ut).14 Fix some small positive constants �q; �f > 0 and for each � 2 (0; 1) de�ne L (�)

to be the convex hull of functions m (�; �) satisfying

(i) for all z 2suppZt, Pr (� (Xt; Ut) � m (Xt; �) j� ; Zt = z) 2 [� � �q; � + �q]; and

(ii) for all x 2suppXt, m (x; �) 2 px � f� : f� (�jx; z) � �f 8z with fx (xjz) > 0g.

Assumption 4. (i) For any � 2 (0; 1), for any bounded function B (x; �) = m (x; �)�� (x; �)

with m (�; �) 2 L (�) and "t � � (Xt; Ut) � � (xt; �), E [B (Xt; �) (Xt; Zt; �) jZt] = 0 a.s.

only if B (Xt; �) = 0 a.s. for  (x; z; �) =
R 1
0
f" (�B (x; �) jx; z) d� > 0; (ii) the densityR 1

0
f" (ejx; z) of �t is bounded and continuous in e on R a.s.; (iii) � (x; �) 2 px for all (x; �).

Assumption 4 is a �bounded completeness�condition ensuring that the instruments in-

duce su¢ cient variation in the endogenous variables. This condition, which we take from

13Discrete endogenous group covariates can be accommodated by appealing below to Theorems 2 and 4
(and their associated rank conditions) in Chernozhukov and Hansen (2005) instead of their Theorem 4.
14Chernozhukov and Hansen�s �rank invariance�property holds here because the same unobservable Ut

determines potential values of � (Xt; Ut) for all possible values of Xt.
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Chernozhukov and Hansen (2005) (Appendix C), plays the role of the standard rank condi-

tion for linear models, but for the nonparametric nonseparable model

Pit = � (Xt; Ut)

obtained from (4). With Assumptions 1�4, identi�cation of � (x; u) at each x and u now

follows directly from Theorem 4 of Chernozhukov and Hansen (2005). With the function �

identi�ed, so is each ut: The argument can be repeated for every value of (Wt; Si). Then,

since the distribution of Yitjt; Si; Xt is observed and the value of each Ut (s) is now known,

we have proved the following result.

Theorem 1. Suppose Assumptions 1�4 hold. Then (i) the value of Ut (si) is identi�ed for

each t and si; and (ii) the distribution of YitjSi; Xt; Ut (Si) is identi�ed.

5.2 Full Identi�cation

To obtain full identi�cation we employ two additional assumptions: a separability restriction

on the index function F; and a large support condition. Together these conditions enable the

observed outcome distribution identify the distribution of the latent index using standard

arguments.

We �rst consider the case in which the separability is in a group-level covariate. Partition

Xt as
�
X
(1)
t ; X

(2)
t

�
with X(1)

t 2 R.

Assumption 5. suppX(1)
t j
�
Si; X

(2)
t ; Ut (Si)

�
= R.

Assumption 6. F (Si; Xt; Ut (Si) ; !i) = X
(1)
t + f

�
Si; X

(2)
t ; Ut (Si) ; !i

�
:

Assumption 5 is a �large support�condition, familiar from the literature on identi�ca-

tion of binary choice models (e.g., Manski (1985), Matzkin (1992), Lewbel (2000)). This

condition provides a standard benchmark for understanding what might be learned under

ideal circumstances from the types of data typically available. Intuitively, extreme values

of observables are needed to trace out the tails of the distribution of the random index.
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Assumption 6 has two parts. The �rst restricts (3) by requiring additive separability

of F in X(1)
t . This provides a mapping between observed probabilities over Yit and units of

the latent Y �
it .
15 The second part is a requirement of a unit coe¢ cient on X(1)

t . If Yit takes

on only two distinct values, the generalized regression model is a binary threshold crossing

model, for which it is well known that one must choose the scale of the index function. In

the case of binary choice, this is a normalization of the utility function and without loss.

In a binary model where the units of Y �
it are meaningful, the unit coe¢ cient on X

(1)
t is a

restriction. Aside from binary models, however, the unit coe¢ cient requirement is without

further loss. This is because when Yit takes on more than two values, any coe¢ cient on

X
(1)
t is identi�ed as long as Assumption 5 holds; thus, by rescaling X(1)

t we can obtain the

required unit coe¢ cient. This is shown in the following result, which also demonstrates that

Assumption 6 is testable.

Proposition 2. If Yit takes on at least three distinct values and F (Si; Xt; Ut (Si) ; !i) =

X
(1)
t � + f

�
Si; X

(2)
t ; Ut (Si) ; !i

�
, then under Assumptions 1�5, (i) � is identi�ed and (ii)

Assumption 6 is testable.16

Proof. Let y0 < y1 < y2 be three distinct values in the support of Yit, and suppose y0 is the

value ~y referred to in Assumption 1.17 De�ne D�1 (y) = sup f� : D (�) � yg. Because D (�)

15For binary choice, if Fi (Si; Xt; Ut (Si)) is assumed to be strictly increasing in X
(1)
t , then the event

fFi (Si; Xt; Ut (Si)) > 0g is equivalent to the event
n
X
(1)
t > F�1i (0;Si; Ut (Si))

o
. This leads to an observa-

tionally equivalent model with separability in X(1)
t . This is well known. Nonetheless, additive separability

is not without loss under these assumptions. This is because there may be no monotonic transformation
of the original utility function that leads to the separable form. For example, suppose that according to
Fi (Si; Xt; Ut (Si)) the marginal rate of substitution between X

(1)
t and St varies with X

(1)
t . This property

would be preserved by any monotonic transformation but fails under separability. An implication is that
there can be simultaneous changes in X(1)

t and Si that would raise welfare under one model but lower welfare
under the other. Thus, although the separable structure preserves individuals�ordinal rankings of the outside
good and any inside good, it need not preserve their ordinal rankings of alternative inside goods. Nonethe-
less, the observational equivalence demonstrates why it may be di¢ cult to obtain full identi�cation without
a restriction like the separability we assume. Note that quasilinearity also provides a cardinal representation
of utility, enabling one to make aggregate welfare statements in the binary choice environment.
16Additional testable restrictions can be obtained if Yit takes on at least four distinct values.
17If instead ~y = y1 the argument follows the same logic, but starting by setting the observed probability

below to � at y = y0 instead of at y = y1. If ~y = y2 then a similar argument applies, but using the function
D�1 (y) = inf f� : D(�) � yg :
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is weakly increasing, we must have �1 < D�1(y0) < D�1(y1) <1. For all y we observe

Pr (Yit � yjSi; Xt; Ut (Si)) = Pr
�
D
�
X
(1)
t � + f

�
Si; X

(2)
t ; Ut (Si) ; !i

��
� y

�
(5)

= Pr
�
f
�
Si; X

(2)
t ; Ut (Si) ; !i

�
� D�1 (y)�X

(1)
t �

�
:

Recall that by Theorem 1, each ut (si) is known. Now �x
�
Si; Ut (Si) ; X

(2)
t

�
and choose any

� 2 (0; 1). Let x (y1) denote the supremum over the values of X(1)
t setting (5) to � when

y = y1: For y 2 fy0; y1g, let x (y) denote the supremum over the values of X(1)
t that set (5)

equal to �. Then since D�1(y0) and D�1(y1) are known, distinct, and �nite, � is uniquely

determined by

� =
D�1(y1)�D�1(y0)

x (y1)� x (y0)
: (6)

Part (ii) follows by noting that (6) must hold for any Si; Ut (Si) ; X
(2)
t ; �. �

The following result demonstrates that the preceding assumptions are su¢ cient for full

identi�cation of the model.

Theorem 3. Suppose Assumptions 1�6 hold. Then the distribution of Y �
it jSi; Xt; Ut (Si) is

identi�ed:

Proof. The hypotheses of Theorem 1 hold, so each ut (si) can be treated as known. Let

D�1 (~y) = sup fqjD (q) � ~yg. Let ~y be the value referred to in Assumption 1. Under As-

sumption 6,

Pr
�
Yit � ~yjt; Si = s;Xt =

�
x(1); x(2)

��
= Pr

�
Y �
it � D�1(~y)

�� t; Si = s;Xt =
�
x(1); x(2)

��
= Pr

�
f
�
s; x(2); ut (s) ; !i

�
� D�1(~y)� x(1)

�
:

Since the left side is observed and the value D (~y) is known, Assumption 5 ensures that

the full CDF of f
�
s; x(2); ut (s) ; !i

�
is identi�ed for all

�
s; x(2); ut (s)

�
. Since Y �

it = X
(1)
g +

f
�
Si; X

(2)
t ; Ut (Si) ; !i

�
, this gives the result. �

Essentially the same argument can be applied if the separability is instead in a component

14



of Si. A quali�cation is that we must restrict the speci�cation of the group e¤ect. Let

Si =
�
S
(1)
i ; S

(2)
i

�
with S(1)i 2 R and suppose that Ut (Si) = Ut

�
S
(2)
i

�
. With this restriction,

we can allow S
(1)
i to play the role of the �special regressor.� Consider now the following

alternatives to Assumptions 5 and 6, noting that the same interpretations apply.

Assumption 7. supp S(1)i
����S(2)i ; Xt; Ut

�
S
(2)
i

��
= R:

Assumption 8. F (Si; Xt; Ut (Si) ; !i) = S
(1)
i + f

�
S
(2)
i ; Xt; Ut (Si) ; !i

�
:

Theorem 4. Suppose Ut (Si) = Ut

�
S
(2)
i

�
and that Assumptions 1�4, 7, and 8 hold. Then

the distribution of Y �
it jSi; Xt; Ut

�
S
(2)
i

�
is identi�ed.

Proof. The hypotheses of Theorem 1 hold, so each ut (si) can be treated as known. Let

~y be the value referred to in Assumption 1 and let D�1 (~y) = sup fqjD (q) � ~yg. Under

Assumption 8

Pr
�
Yi � ~yjt; Si =

�
s(1); s(2)

�
; Xt = x

�
= Pr

�
Y �
i � D�1(~y)

�� g; Si = �s(1); s(2)� ; Xt = x
�

= Pr
�
f
�
s(2); x; ut

�
s(2)
�
; !i
�
� D�1(~y)� s(1)

�
:

Since the left side is observed and D (~y) is known, Assumption 7 ensures that the full CDF

of f
�
s
(2)
i ; xt; ut

�
s
(2)
i

�
; !i

�
is identi�ed for all

�
s
(2)
i ; xt; ut

�
s
(2)
i

��
. The result then follows.

�

It should be clear from the proofs of Theorems 3 and 4 that testing the large support

conditions is straightforward. Indeed, when the relevant support condition fails, the result is

that the distribution of Y �
it jSi; Xt; Ut (Si) will be still be identi�ed on a subset of its support.

This also makes clear that the large support condition is required only to identify the tails

of the distribution, not for an �identi�cation at in�nity�argument.

6 Conclusion

We have studied a nonparametric nonseparable generalized regression model in a panel set-

ting with a �group�structure. Our model allows for individual level heterogeneity and for
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endogeneity through the group e¤ect. We showed that the structural outcome distribution

is identi�ed under standard instrumental variables conditions. Because the structural out-

come distribution is often the only primitive required for counterfactual simulations, this is

an encouraging result. We should not be surprised that instrumental variables conditions

are required in the presence of endogeneity. And despite the rich heterogeneity and the

limited dependent variables setting, the conditions required are the same as those required

in the simpler context of regression with a scalar unobservable.

We also considered full identi�cation of the model and showed that this follows when

standard separability and large support conditions are added. Although strong, the type

of support condition we consider is commonly used to prove identi�cation of simpler models

of limited dependent variables. Further, these additional assumptions are testable, and

identi�cation is robust to relaxation of the large support condition in the sense that the tails

of the support are required only for identi�cation of tail probabilities.

Although identi�ability is a necessary condition for existence of a consistent estimator,

additional work would be needed to develop semi-parametric or nonparametric estimation

methods for the kinds of models we have considered. Our identi�cation results may suggest

new estimation strategies, but this is a topic we leave to future work.
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