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HAVE VOLATILITY SPILLOVER EFFECTS OF COINTEGRATED
EUROPEAN STOCK MARKETS INCREASED OVER TIME?

KLAUS GROBYS

Abstract. In this study volatility spillover effects in preselected cointegrated European
stock markets are investigated. The data generating processes are estimated by applying
Vector-Auto Regression (VAR) models. Thereby, the impacts of volatility spillovers are
measured by a new concept being denoted here as Volatility Impulse Response Density
Functions (VIRDF) being an advancement of the Volatility Impulse Response Functions
(VIRF) methodology. A sample-split analysis covering daily data from 26.11.1990-05.10.2000
and 06.10.2000-28.05.2010 reveals that the volatility spillover impact from the German stock
market to the Swedish and British stock markets have increased by 73.87%, respectively,
15.52%.

1. Introduction

The studies of the transmission of shocks in financial markets across economies have become
an important issue in the international financial literature. Eun and Shim (1989) and Becker et
al. (1990) investigate such spillover effects for instance. Thereby, their models involve Vector
Autoregressive (VAR) models or a set of single linear equations attempting to capture the
dependencies between international equity returns. These contributions though are focused on
the asset return series and on the question how returns are correlated across different economies.
Consequently, they consider only interdependence through the mean of the stochastic process. A
recent study of Gklezakou and Mylonakis (2010) support the previous finding that correlations
between different economies’ stock markets have empirically increased over time.
Apart from the concept of correlation, other studies are focused on searching for cointegration

relationships between stock markets in order to figure out interdependencies between these
markets. Corhay et al. (1993), for instance, finds cointegration relationships among stock
prices in different European countries except for Italy. Arshanapalli and Doukas (1993) find
interdependencies between US and European markets, like the British, German, and French
stock markets using the bivariate Engle and Granger (1987) methodology. Furthermore, Pascual
(2003) figures out evidence of increasing financial integration for France. His result is confirmed
by the presence of significant trends in the responsiveness of the French stock market to the
level of the British, German, and French stock prices.
Other contributions focus explicitly on the volatility of asset returns, suggesting the exis-

tence of second order dependencies. In this context, Hamao et al. (1990) employs univariate
generalized autoregressive conditional heteroskedastic (GARCH) models to figure out the dy-
namic behaviors of international stock markets against the background of the 1987 US-stock
market crash. They find evidence of significant price-volatility spillover effects arising from the
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US-stock market passing over the British and Japanese markets and from the British market
merging to the Japanese market with respect to the post-crash period.
Panopoulou and Pantelidis (2005) investigate the international information transmission be-

tween the U.S. and the rest of the G-7 countries employing daily stock market return data
covering 20 years (i.e. from 31.12.1985 to 08.10.2004). Their sample-split analysis gives evi-
dence that the linkages between the markets have substantially changed in the more recent era
(i.e. post-1995 period), suggesting increased interdependence in the volatility of the markets
under consideration.
In contrast to most of the other studies focusing on spillover effects stemming from the US-

market, in the following work though European stock markets are considered only. On Thursday,
the 20.05.2010, the Swedish stock index OMX 30 decreased by 2.30% even though there was no
evidence given of a significant change (i.e. extraordinary bad news) at the Swedish stock market.
The Swedish newspaper Dagens Nyheter reported the day afterwards that more rigorous rules
concerning short sales in Germany stood behind this response.1 On the 20.05.2010 a new law
was adopted in Germany that short sales of some financial stocks are forbidden prospectively.
But have these spillover effects increased over time in general? In the following contribution, a
model will be suggested which exhibits both, adequate estimates concerning the stock markets’
mean processes and a method to determine changes concerning second-order moments over
time. The model being based on VAR and a refinement of multivariate GARCH models shows
that volatility spillover impacts from the German to the Swedish and British stock markets
increased by 73.87%, respectively, 15.52% when comparing the last two decades.

2. Literature Review

Traditional impulse response analysis is applied for orthogonal transformations of the dis-
turbance vector. These transformations involve a causality scheme which researchers have to
assume a priori. Assuming pre-specified causality patterns is often used when analyzing macro-
economic systems, for instance. Hafner and Herwartz (2001) mention, however, that it appears
hardly feasible to impose realistic causality structures a priori in the context of financial time
series, as they are typically highly interrelated and observed at high frequencies. News is via
definition inherently uncorrelated over time. If there were any predictable patterns of news,
Hafner and Herwartz (2001) argue that hedge portfolios could be constructed which would at
least partially eliminate the risks being associated. However, this would contradict the assump-
tion of news being unsystematic risk and unhedgeable. Therefore, Hafner and Herwartz (2001,
2006) define news to be risk sources that are independent over time and thus unpredictable.
Panopoulou and Pantelidis (2005) mention that the concept of volatility impulse response

functions (VIRF) as introduced by Hafner and Herwartz (2001, 2006) accounts for the following:
First, this method allows researchers to determine exactly how a shock to one market influences
the dynamic adjustment of volatility to another market as well as the persistence of these
spillover effects. Second, VIRFs depend on both, the state of the actual system’s volatility
and the unexpected returns vector, ξ0, denoting the initial volatility shock. The third point
is that in contrast to typical impulse response functions, this specific method avoids typical
orthogonalization as well as ordering problems which would be hardly feasible in the presence
of highly interrelated financial time series.
The following methodology is organized as follows: First, the data generating mean process

of preselected European stock markets will be modeled. Thereby, the concept of cointegration
matters. Whether time series are cointegrated, the spurious regression problem can be ne-
glected. The presence of a cointegration relationship between financial time series gives reasons
for causality per definition. Moreover, estimating a model involving cointegrated assets via OLS
exhibits parameter estimates that are in line with Stock (1987) super-consistent. Since modeling

1See Dagens Nyheter, (Ekonomi) 21.Mai 2010, p.5.
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the second-order moment is based on estimated disturbances, the property of super-consistency
may exhibit more accurate estimates concerning spillover effects.
Thereby, the concept of volatility impulse response functions is refined to the concept of

volatility impulse response density functions being able to capture the overall volatility impact
from one stock market to another. As volatility shocks are continuous random variables, the
probability of such shocks have to be taken into account, too. Thus, volatility impulse response
density functions give a precise estimation of the overall volatility spillover effects occurring
within a certain time window. As a consequence, increasing or decreasing volatility spillover
effects may be estimated as the difference of the volatility spillover effects between different
time windows.

3. Statistical Model

In line with Johansen (1988, 1991), Johansen and Juselius (1990, 1991) the multivariate
trace test for cointegration is employed to test whether the stock indices have a cointegration
relationship. The Johansen procedure employs the maximum likelihood estimates of a fully
specified error correction model which is given by

∆Yt = μ
kX
i=1

Γi∆Yt−1ΠYt−1 + εt (3.1)

where ∆Yt exhibits the vector of the stock markets’ price changes in logarithms at time t, μ is
a constant vector, Γ represent the short-run impact, and Π denotes the long-run impact matrix
having reduced rank under cointegration. If rank of Π is equal to one, the stock indices will
be cointegrated. To determine the rank r of the estimated long-run matrix bΠ, the eigenvalueseλi have to be calculated. Thereby, the number of significantly nonzero eigenvalues shows the
rank of bΠ, and can be evaluated by the trace test. Then, the trace test statistic is the result of
testing the restriction r ≤ q(q < n) against the completely unrestricted model r ≤ n:

λtrace = −T
nX

i=q+1

ln(1− eλi) (3.2)

where T is the sample size and eλr+i, ..., eλn are in line with Kaiser and Füss (2007) the n − r
smallest squared canonical correlations. Stock (1987) has shown that OLS estimators will be
super consistent if stochastic processes are cointegrated. Therefore, the price processes of the
stock indices can be modeled via Vector Auto-Regression (VAR) of lag-order L which is given
by

Yt = υ0 +AtYt−1 + ...+ALYt−L + εt (3.3)

where Yt exhibits the stock markets’ prices in logarithms where υ0 is a constant vector, A1, ..., AL

are parameter matrices, and εt ∼ (0,Σ0). The covariance matrix Σ0 exhibits the unconditional
variances and covariances concerning the whole sample. To determine whether the volatility
spillover effects have changed over time, the whole sample of sample size T is divided into two
subsamples of equal length. Moreover, the covariance matrices Σ1,t and Σ2,t of the first, respec-
tively, second sample are in line with Hafner and Herwartz (2001, 2006) allowed to vary over
time t = 1, ..., T1 (i.e. the first subsample) and t = T1 + 1, ..., T2 (i.e. the second subsample).
Thereby, it is assumed that Σ1,t and Σ2,t follow a bivariate GARCH(1,1) model given by

vech(Σt) = c+

pX
i=1

Aivech(ut−iu
0
t−i) +

qX
i=1

Bivech(Σt−i) (3.4)

where q = p = 1. The vech-operator denoted by vech(.), stacks the lower fraction of a quadratic
matrix of the dimension N into a vector N(N + 1)/2. Hafner and Herwartz (2001, 2006) and
Panopoulou and Pantelidis (2005) suggest employing the BEKK representation as introduced
by Engle and Kroner (1995) which is given by



86 KLAUS GROBYS

Σt = C 00C0 +
KX
k=1

pX
i=1

D0
kiεt−1ε

0
t−1Dki +

KX
k=1

pX
i=1

G0kiΣt−1Gki (3.5)

where Σt denotes the conditional covariance matrix at time t, C0 denotes an upper triangu-
lar matrix, Dki and Gki are parameter matrices, and εt−1 is a vector of lagged disturbances
originating from the subsample’s corresponding VAR processes. The BEKK representation
satisfies according to Hafner and Herwartz (2001, 2006) two issues evolving in multivariate
GARCH-modelling: On the one hand one obtains a restricted multivariate GARCH model
which generates always a positive definite covaricance matrix εt−1 regardless the parameter
estimates for Dki and Gki, respectively. On the other hand the BEKK representation allows
for direct dependency of the conditional variance of one variable on past disturbances as well
as past variances of the other variables within the system.
Comparing both subsamples volatility processes though, requires further assumptions. Since

the parameter matrices of equation (3) exhibit super consistency, the disturbance vectors of
both subsamples will be restricted such that bΣ1 = bε∗0t bε∗t and bΣ2 = bε∗0t bε∗t withbε∗t = Yt − bυ0 − bA1Yt−1 − ...− bALYt−L (3.6)

for t = 1, ..., T1 and t = T1 + 1, ..., T2.
The matrix bΣ1denotes the estimated covariance matrix of the first subsample running from

t = 1, ..., T1, whereas bΣ2 denotes the estimated covariance matrix concerning the second sub-
sample running from t = T1+1, ..., T2. Consequently, the BEKK model estimates will be based
on the restricted VAR model residuals of equation (6), as it is assumed that the stock markets’
data generating processes with respect to the first order moment is constant over time. While
the covariance matrix Σ0 captures the overall volatility and covariance, Σ1and Σ2 use only the
information of the corresponding subsamples.
In order to analyze volatility spillovers from one stock market to the other, volatility impulse

response functions (VIRF) are employed as introduced by Hafner and Herwartz (2001, 2006).
The volatility impulse response methodology accounts for shocks in volatility which is generated
by the underlying data generating processes. Unlike the traditional impulse response analysis,
the shock does not occur in the VAR error term ε∗t , but in the iid error term ξt instead:

vech(Σt) = c+

pX
i=1

Aivech(ε
∗
t−1ε

∗0
t−1) +

qX
i=1

Bivech(Σ0,t−i) (3.7)

where ε∗t = Σ
1/2
t ξt, and consequently for q = p = 1

Vt=1(ξ0) = c+A1vech(Σ
1/2ξ0ξ

0
0Σ

1/2) +B1vech(Σ0) (3.8)

for t = 1 and

Vt=2(ξ0) = c+ (A1 +B1)(c+A1vech(Σ
1/2ξ0ξ

0
0Σ

1/2) +B1vech(Σ0)) (3.9)

for t = 2 and

Vt≥2(ξ0) = c+ (A1 +B1)Vt−1(ξ0) (3.10)

in general for t ≥ 2. Determining the square root of the covariance matrix is necessary to
calculate the volatility impacts concerning the term vech(Σ1/2ξ0ξ

0
0Σ

1/2). Hafner and Herwartz
(2006) suggest using the Jordan decomposition. The Jordan decomposition is for every matrix
which is of full rank unique. Let λti be the eigenvalues of the covariance matrix Σt with
Σt ∈MN,N and i = {1, ..., N}. Then, for each eigenvalue there is one corresponding eigenvector
existing denoted by γti with γti ∈ MN,1. As Σt is symmetric, Σ

1/2
t is symmetric as well and

due to the Jordon decomposition defined as

Σ
1/2
t = ZtΛ

1/2
t Z 0t (3.11)
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where Zt ∈ {γt1, ..., γtN} and Λ
1/2
t = diag(λt1, ..., λtN) such that Σ

1/2
t Σ

1/2
t = Σt. In contrast to

traditional impulse response analysis, by using the Jordan decomposition, it can be avoided to
impose any zero restrictions. Moreover, shocks can be considered as they occur independently
from each other since the innovation vector ξt is assumed to be multivariate normally distributed
with ξt ∼ (0, IN ). The Σ

1/2
t matrix links the multivariate normally distributed innovation vector

with the disturbance vector ε∗t and thus, generates the time varying correlations.
The VIRF methodology as introduced by Hafner and Herwartz (2006) allows considering,

respectively, tracing volatility spillover effects of different shocks scenarios. Thereby, the shock
vector is set equal to the initial shock scenario under consideration and the dynamic patterns
of this shock can be traced over time. For instance, setting the vector ξ0t = (1, 0), the volatility
spillover effects stemming from other stock market can be traced over time. However, in order
to capture all possible shock scenarios, the volatility density has to be calculated such that
ξ0t = (x, 0) with x ∈ (−∞,∞), in principle. In contrast to the VIRF methodology, estimating
the density functions allows to determine the overall volatility impact at all. Thereby, all
possible shocks are weighted with the corresponding probability. Since Grobys (2009) points
out that the corresponding conditional probability distribution of each shock occurring in the
vector ξt for ξ

0
t = (x, 0) is chi-square distributed with one degree on freedom, the volatility

density ϕ(t, x) at time t given the initial shock ξ0t = (x, 0) with x ∈ (−∞,∞) can be calculated
by

ϕt=1(t, ξ0) = c+

∞Z
x=−∞

A1vech(Σ
1/2ξ0ξ

0
0Σ

1/2)f(x) +B1vech(Σ0) (3.12)

for t = 1,

ϕt=2(t, ξ0) = c+

∞Z
x=−∞

(A1 +B1)(c+A1vech(Σ
1/2ξ0ξ

0
0Σ

1/2)f(x) +B1vech(Σ0)) (3.13)

for t = 2,

ϕt≥2(t, ξ0) = c+

∞Z
x=−∞

(A1 +B1)ϕt−1(t, ξ0) (3.14)

for t > 2, where the function f(x) weights each shock in the term vech(Σ1/2ξ0ξ
0
0Σ

1/2) with its
corresponding probability distribution being chi-square distributed with one degree of freedom.
In other words, the volatility density as defined here is summing up all possible shocks which
may occur at the stock market while taking into account the corresponding probability of each
shock. As ξ0 is assumed to be multivariate normally distributed, the conditional distribution
(i.e. under the condition that the shock in the stock market under consideration is set equal to
zero) will be normally distributed. In the term vech(Σ1/2ξ0ξ

0
0Σ

1/2), however, the latter random
variable is squared and as a consequence, chi-square distributed with one degree of freedom.

4. Limitations of the Dataset

Stock market data availability is limited especially concerning long-run horizons. The data
set here contains high frequented stock market data which is available only from 26.11.1990-
28.05.2010 with respect to the stock markets being analyzed. Data of the European stock
indices DAX 302, FTSE 1003 and CAC 404 are downloaded from yahoo.com being in line with
Alexander and Dimitriu (2005) who also employ data from this data source which is available
for free. However, stock market data for the index OMX 305 can be downloaded on the index

2The DAX 30 is the German’s leading stock index containing the largest 30 companies in Germany.
3The FTSE 100 is the British’s leading stock index containing the largest 100 companies in Great Britain.
4The CAC 40 is the French’s leading stock index containing the largest 40 companies in France.
5The OMX 30 is the Swedish’s leading stock index containing the largest 30 companies in Sweden.
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provider’s homepage nasdaqomxnordic.com. Index notations in different countries may deviate
from each other due to red-letter days for instance. The whole sample accounting for 4792 daily
observations is consequently adjusted such that for each accounted trading day every index
exhibits a price notation. Moreover, the whole sample is divided such that sample 1 contains
data from 26.11.1990-05.10.2000, whereas sample 2 contains data from 06.10.2000-28.05.2010.
Thus, both samples contain 2396 observations corresponding to 10 years.

5. Results

The correlation-matrix (see exhibit 1) shows that the correlation between all stock indices has
increased over time. The lowest increase in correlation is between the French and the German
stock index being 29% and the largest relative change in correlation is between the British and
the Swedish stock index which is 44%. Testing the whole sample pair wise for cointegration
(see exhibit 2) shows that the German stock index has a cointegration relationship with the
British and Swedish stock index. These results hold even if the trace-test statistic accounts for
a trend term. The German and British stock markets exhibit for both samples a cointegration
relationship as long as the trace test statistic accounts for a constant and trend term (i.e.
p-value=0.03 and p-value=0.02). However, the German and the Swedish stock markets have
a cointegration relationship for the second sample only, irrespective if the trace test statistic
does account for a trend term or not (i.e p-value=0.00 for both samples). Considering the
overall sample though, a cointegration relationship can be ascertained between the German
and the Swedish stock market as well as the German and the British stock market, irrespective
if the trace test statistic does account for a trend term or not. Against the background of the
20.05.2010, in the following, volatility spillover effects will be analyzed that arise at the German
stock market and cross over other European stock markets. As the French stock market does
not show a cointegration relationship with the German stock market, volatility spillovers to the
Swedish and British stock markets are investigated, only. As the Schwarz Criterion suggests a
lag-order of L=2, the estimated VAR models of the overall sample are as follows (t-values in
parenthesis):∙

y1t
y2t

¸
=

⎡⎣0.04(4.72)

0.02
(3.06)

⎤⎦+
⎡⎣ 0.94(46.31)

0.06
(2.86)

0.09
(4.02)

0.96
(47.23)

⎤⎦∙y1t−1
y2t−1

¸
+

⎡⎣ 0.05(2.42)
−0.05
(−2.44)

−0.09
(−4.29)

0.05
(2.25)

⎤⎦∙y1t−2
y2t−2

¸
+

∙
ε1t
ε2t

¸
(5.1)

where Yt = (log(DAXt), log(OMXt))
0 and∙

y1t
y2t

¸
=

⎡⎣−0.03(−2.30)
−0.01
(0.87)

⎤⎦+
⎡⎣ 0.96(44.43)

0.04
(1.27)

0.06
(3.37)

0.92
(42.67)

⎤⎦∙y1t−1
y2t−1

¸
+

⎡⎣ 0.03(1.43)
−0.03
(−0.95)

−0.06
(−3.42)

0.08
(3.51)

⎤⎦∙y1t−2
y2t−2

¸
+

∙
ε1t
ε2t

¸
(5.2)

where Yt = (log(DAXt), log(FTSEt))
0. Since cointegration between DAX and OMX, respec-

tively, DAX and FTSE holds (see exhibit 2), the parameter matrices A1 and A2 of both equa-
tions are super-consistent and therefore used to estimate bΣ1 = bε∗0t bε∗t and bΣ2 = bε∗0t bε∗t for both
models. The covariance matrices bΣ1 (i.e. covariance matrix of sample 1) and bΣ2 (i.e. covariance
matrix of sample 2) are allowed to vary over time. The BEKK-model parameter matrices (see
appendix) of both samples are employed to estimate the volatility impulse response functions
(VIRF) for each sample. Thereby, the volatility state Σ0 of equations (8)-(10) is for both sam-
ples chosen with respect to the unconditional covariance matrix of the whole sample, as given by
equation (3), respectively equations (15) and (16). Thus, the volatility shocks being integrated
have the same origin, respectively, the same state of the system. Integrating all possible shocks
while accounting for the probability being chi-square distributed with one degree of freedom
leads to the volatility impulse response density functions as shown in figures 1 and 2, respec-
tively. Both stock markets show an increase in volatility spillover effects. Taking into account
75 trading days, the volatility spillover effects concerning the Swedish stock market increased
73.87% when comparing the time windows 26.11.1990-05.10.2000 and 05.10.2000-28.05.2010,
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while the spillover effects with respect to the British stock market increased only 15.52% dur-
ing the same periods.

Figure 1. Volatility impulse response density function DAX-OMX

Figure 2. Volatility impulse response density function DAX-FTSE
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Table I. Correlation-matrix of European stock indices

Correlation Matrix DAX FTSE CAC OMX
Sample: 26.11.1990-28.05.2010 1.00 0.74 0.80 0.69

0.74 1.00 0.82 0.69
0.80 0.82 1.00 0.71
0.69 0.69 0.71 1.00

Sample 1: 26.11.1990-05.10.2000 1.00 0.60 0.68 0.58
0.60 1.00 0.68 0.55
0.68 0.68 1.00 0.58
0.58 0.55 0.58 1.00

Sample 2: 06.10.2000-28.05.2010 1.00 0.81 0.88 0.77
0.81 1.00 0.91 0.79
0.88 0.91 1.00 0.82
0.77 0.79 0.82 1.00

Relative change of correlation - 35% 29% 33%
35% - 34% 44%
29% 34% - 41%
33% 44% 41% -

6. Discussion

The results of Gklezakou and Mylonakis (2010) that correlations between different economies’
stock markets have increased empirically over time can be supported. However, Gklezakou and
Mylonakis (2010) do not focus on European stock markets only. Furthermore, they employ
logarithmic daily closing prices from 01.01.2000 to 20.02.2009 including 2385 daily observations,
whereas the study here accounts for a time horizon of 20 years. Furthermore, Gklezakou’s and
Mylonakis’ (2010) findings verify previous studies suggesting that the DAX seriously affect
other indices independent of the prevailing bear or bull market conditions. However, it could
be shown here that these effects are even related to the second order moment, respectively, the
stock-markets’ volatilities.
Furthermore, Pascual’s (2003) findings that cointegration tests do not show evidence of

changes in the degree of financial integration for the British and German stock market can
only be supported if the trace-test statistic includes a trend term (i.e. p-value=0.03 in sample
1 and p-value=0.02 in sample 2). Considering sample 1, the trace-test statistic suggest that
the Swedish stock market and the German stock market are not cointegrated, irrespective if
it is accounted for a trend term or not (i.e. p-value=0.46 and p-value=0.07). The second
sample, though suggests the opposite namely that the German and Swedish stock markets are
cointegrated. Consequently, the integration of other European stock markets (i.e. the Swedish
stock market) can be stated, too. Exhibit 2 shows also that the Swedish and the French stock
markets show a cointegration relationship concerning the second subsample as long as the test
statistic accounts for a trend term (i.e. p-value=0.05).
Panopoulou and Pantelidis (2005) investigate the international information transmission be-

tween the U.S. and the rest of the G-7 countries and use daily stock market return data covering
20 years (31.12.1985-08.10.2004) including 4896. A similar approach is taken into account here
while accounting for daily observations from 26.11.1990-28.05.2010 including 4792 observations
after adjusting the data set. However, Panopoulou and Pantelidis (2005) model the first order
moment by employing log-returns while the Vector-Auto-Regession (VAR) model being em-
ployed in this study takes into account the log-prices involving lagged log-prices of lag-order
L=2. This approach makes sense in this context because OLS-parameter estimates of cointe-
grated time series exhibit super consistency and thus, are more robust.
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Furthermore, the parameter matrices being used to estimate both samples covariance matri-
ces (see equation 6) are restricted with respect to the parameter estimates of the whole sample
in order to make the models comparable, whereas Panopoulou and Pantelidis (2005) take ini-
tial values for the estimation of the BEKK models by setting no further restrictions. Moreover,
they divide the whole sample in two subsample of equal length where the first sample ends on
the 31.12.1994. The same approach is taken into account in this study at hand where the first
sample ends on 05.10.2000. While Panopoulou and Pantelidis (2005) find out that volatility
spillover effects stemming from the US-stock markets have increased over time, the study here
shows that volatility spillovers from the German to the Swedish and British stock markets have
increased over time, too. Consequently, both sample-split analyses reveal that the linkages
between stock markets have changed substantially.

Table II. Testing European stock indices for Cointegration

Matrix of Trace-test
p-values (constant
term)

DAX FTSE CAC OMX

Sample: 26.11.1990-28.05.2010 0.00 0.00 0.83 0.00
0.00 0.00 0.10 0.07
0.83 0.10 0.00 0.10
0.00 0.07 0.10 0.00

Sample 1: 26.11.1990-05.10.2000 0.00 0.04 0.70 0.70
0.04 0.00 0.04 0.13
0.70 0.04 0.00 0.38
0.70 0.13 0.38 0.00

Sample 2: 06.10.2000-28.05.2010 0.00 0.17 0.70 0.00
0.17 0.00 0.55 0.05
0.70 0.55 0.00 0.34
0.00 0.05 0.34 0.00

Matrix of Trace-test
p-values (constant
and trend term)

DAX FTSE CAC OMX

Sample: 26.11.1990-28.05.2010 0.00 0.00 0.99 0.01
0.00 0.00 0.30 0.13
0.99 0.30 0.00 0.28
0.01 0.13 0.28 0.00

Sample 1: 26.11.1990-05.10.2000 0.00 0.03 0.92 0.46
0.03 0.00 0.24 0.35
0.92 0.24 0.00 0.89
0.46 0.35 0.89 0.00

Sample 2: 06.10.2000-28.05.2010 0.00 0.02 0.31 0.00
0.02 0.00 0.14 0.00
0.31 0.14 0.00 0.05
0.00 0.00 0.05 0.00

Volatility impulse response functions (VIRF) as introduced by Hafner and Herwartz (2001,
2006) and applied by Panopoulou and Pantelidis (2005), for instance, trace a specific shock
in the dynamic system of financial time series data. Thereby, the shock vector ξ0 is set to
the initial shock and then the dynamic features are figured out. This concept though lacks in
the involved probability of each shock. Of course, given that a shock occurred, VIRFs may
provide a forecast of how the persistency concerning the following periods might be. However,
it is not accounted for how high the probability of such shocks actually may be. The concept
of volatility impulse response density functions (VIRDF), as suggested here does not provide
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a forecast of how the dynamics of a specific isolated shock will be, but it displays rather the
overall impact of volatility spillovers from one specific market to the other. However, the
methodology as being introduced here assumes that the underlying stochastic process is stable
and not changing in both subsamples (see equation 6). Even though the whole sample shows
a cointegration relationship between the stock markets being considered, the previous section
reveals that this may not be true for all stock markets. For instance, only the DAX and the
FTSE show a stable cointegration relationship for both subsamples as long as a trend term is
included (see exhibit 2), whereas the DAX and the OMX show a cointegration relationship for
the second subsample only.

7. Concluding Remarks

The correlations between European stock markets have increased over time. Cointegration
though can be considered as powerful statistical tool that, in a sense, generalizes the concept
of correlation to non-stationary time series. Three of four analyzed European stock markets
are cointegrated which means that they follow the same stochastic trends. Consequently, the
home-bias problem cannot be solved by investing in other European countries any longer. Fur-
thermore, examining the second order moment shows that volatility spillover effects increased
over time, too. The Swedish stock market shows that volatility spillover effects stemming from
the German stock market are during the last decade 73.87% larger compared to the decade
before.
Figuring out changes concerning the second order moment requires different assumptions.

First, the first order moment being estimated must be valid and stable over time. In this
analysis, the stock markets log-prices are employed in order to estimate VAR-models. Em-
ploying log-prices instead of the log-returns may be justified by a cointegration relationship.
Consequently, VAR-model parameter matrices will exhibit estimated parameter matrices being
super consistent. Restricting both samples to those parameter matrices makes sense because
it is assumed that the stochastic process generating the first order moment is not changing
over time. Second, the volatility state being chosen to estimate the VIRF is consistent with
the unconditional covariance matrix of the overall sample. Consequently, the BEKK-model
parameter matrices involve substantial information being related to the restricted disturbances
(i.e. stemming from the restricted VAR-models of each sample).
In contrast to ordinary VIRF, integrating all possible volatility shock scenarios while ac-

counting for the corresponding probability makes it possible to determine the overall volatility
impact from one stock market to the other. This concept can also be applied to discover volatil-
ity impacts in other kind of financial markets. The knowledge of volatility impacts between
stock markets may be an important issue in financial management that aims to minimize risks.
Increasing volatility spillover impacts makes it more difficult to diversify away portfolio risk,
for instance. A route for further investigation may be the extension of this isolated bivariate
analysis to a higher order one, allowing for interactions among three or more stock-markets.
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Appendix

A 1) BEKK-model parameter estimates DAX-OMX sample 1
D G⎡⎣2.24e− 01(10.11)
2.88e− 02

(1.27)

2.08e− 02
(0.99)

2.61e− 01
(11.91)

⎤⎦ ⎡⎣ 9.50e− 01(94.68)
−2.86e− 02

(−2.55)
−3.51e− 03

(−0.39)
9.53e− 01
(100.41)

⎤⎦
C0 Modulus of Eigenvalues⎡⎣1.23e− 03(11.47)
1.06e− 03

(9.13)

0.00
(0.00)

6.43e− 04
(5.66)

⎤⎦ 9.61718e− 01
9.61718e− 01
9.61718e− 01
9.62660e− 01

Note: p-values in parenthesis.
A 2) BEKK-model parameter estimates DAX-OMX sample 2

D G⎡⎣ 3.43e− 01(13.93)
−6.98e− 02

(−3.03)
−2.59e− 02

(−1.12)
3.17e− 01
(14.53)

⎤⎦ ⎡⎣9.25e− 01(88.65)
2.95e− 02

(2.82)

7.25e− 03
(0.97)

9.38e− 01
(112.90)

⎤⎦
C0 Modulus of Eigenvalues⎡⎣1.17e− 03(16.66)
5.47e− 04

(5.47)

0.00
(0.00)

4.62e− 04
(6.32)

⎤⎦ 9.76915e− 01
9.76915e− 01
9.79799e− 01
9.74877e− 01

Note: p-values in parenthesis.
A 3) BEKK-model parameter estimates DAX-FTSE sample 1

D G⎡⎣2.13e− 01(9.78)
5.02e− 02

(3.34)

1.93e− 02
(0.53)

2.15e− 01
(9.02)

⎤⎦ ⎡⎣9.40e− 01(86.55)
−3.50e− 02

(−4.13)
2.54e− 02

(1.70)
9.83e− 01
(98.25)

⎤⎦
C0 Modulus of Eigenvalues⎡⎣1.20e− 03(11.62)
4.99e− 04

(5.71)

0.00
(0.00)

2.85e− 04
(1.91)

⎤⎦ 9.68356e− 01
9.68356e− 01
9.73438e− 01
9.69022e− 01

Note: p-values in parenthesis.
A 4) BEKK-model parameter estimates DAX-FTSE sample 2

D G⎡⎣ 3.90e− 01(15.65)
6.88e− 02

(3.57)

−1.50e− 01
(−5.03)

2.52e− 01
(10.10)

⎤⎦ ⎡⎣9.02e− 01(100.03)
−3.78e− 02

(−4.97)
7.46e− 02

(7.42)
9.75e− 01
(107.48)

⎤⎦
C0 Modulus of Eigenvalues⎡⎣7.46e− 04(8.94)
5.98e− 04

(7.82)

0.00
(0.00)

3.47e− 04
(6.92)

⎤⎦ 9.92024e− 01
9.77804e− 01
9.77804e− 01
9.91663e− 01

Note: p-values in parenthesis.


