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Abstract. We characterize the optimal job design in a multitasking environment when
the �rms rely on implicit incentive contracts (i.e., bonus payments). Two natural forms of
job design are compared: (i) individual accountability, where each agent is assigned to a
particular job and assumes full responsibility for its outcome; and (ii) team accountability,
where a group of agents share responsibility for a job and are jointly accountable for its
outcome. The key trade-o¤ is that team accountability mitigates the multitasking problem
but may weaken the implicit contracts. The optimal job design follows a cut-o¤ rule: �rms
with high reputation concerns opt for team accountability, whereas �rms with low reputation
concerns opt for individual accountability. Team accountability is more likely the more acute
the multitasking problem is. However, the cut-o¤ rule need not hold if the �rm combines
implicit incentives with explicit pay-per-performance contracts.

1. Introduction

Firms frequently give work assignments to a group of employees (or �teams�) and hold
them jointly accountable for the outcome of the assignment. In fact, �rms often adopt such
a strategy even when it is technologically feasible to assign each worker to a particular job,
and hold him solely accountable for his own performance (Bartol and Hagmann, 1992; Shaw
and Schneier, 1995). Such a practice may seem counterintuitive because team performance
can obscure individual contributions and blunt incentives. There is a vast literature on
agency theory that studies the optimal incentive provisions in teams, but Corts (2007) is
perhaps the �rst to explore how, in a multitasking environment, team accountability may
arise endogenously when individual accountability is still a technologically feasible option.
Corts argues that team accountability may optimally balance the trade-o¤between mitigating
the multitasking problem and exposing the workers to a higher performance volatility.
This article contributes to the recent literature on endogenous job design by drawing out

the implications for team accountability in the presence of implicit contracts, i.e., an informal
promise by the �rm to reward its worker(s) that is sustained through the threat of future
retaliation of the worker(s) should the �rm renege on its promise.1 Indeed, it is not hard
to �nd real life examples where the �rms o¤er implicit incentives in an environment where
both multitasking and job design play a crucial role. Consider the mutual fund industry.
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Managing a mutual fund may require a fund manager to exert e¤ort to �nd new investment
opportunities as well as to gather information about the risks associated with such invest-
ments. Even though both risks and returns signi�cantly a¤ect the overall pro�tability of the
�rm, a fund manager may be tempted to undertake high return investments without paying
su¢ cient attention to the underlying risks.2 Traditionally each fund was individually man-
aged by an assigned manager. However, there is a recent trend to move towards �comanaged�
and/or �team managed� funds, where a group of employees are jointly responsible for the
performance of a set of funds (see, e.g., Prather and Middleton, 2000; Chen, et al., 2004;
and Massa, 2008).3 Implicit contracts, in the form of bonus payments, are ubiquitous in this
industry.
As is the case with the mutual fund industry, there are two natural job designs: (i) indi-

vidual accountability, where each agent is assigned to a particular job. An agent performs
all of the tasks associated with the job, and the agent is solely responsible for the outcome
of job he has been assigned to. (ii) Team accountability, where a group of agents share the
responsibility for a job, each agent performs a subset of tasks associated with the job, and
all agents are jointly accountable for the job outcome.4

In this article, we argue that while team accountability might mitigate the multitasking
problem, it may make implicit contracts harder to sustain. Consider the following example
that illustrates this trade-o¤: Suppose that the �rm hires a worker (or a team of workers) to
perform a job that involves two tasks� task 1 and 2. Let ei be the e¤ort in task i, and the
worker�s cost of e¤ort is e2i =2. The workers�e¤ort produces a value for the �rm that is equal
to e1+ e2: That is, the �rm cares about both tasks equally. Hence, the �rst-best e¤ort levels
(i.e., those that maximize the joint surplus e1 + e2 �

�
e21=2 + e

2
2=2
�
) are one unit of e¤ort in

each task (e1 = e2 = 1) and the resulting surplus level is 1. The �rm cannot observe the e¤ort
levels but can observe an imperfect measure of job performance, say, �success�or �failure,�
where Pr(�success�) = 0:2e1 + 0:3e2. The �rm promises a bonus if the job is a �success.�
Note that even if the �rm cares equally about both tasks, the worker has an incentive to
exert more e¤ort on task 2. E¤ort in task 2 has a higher marginal impact on the performance
measure (or, probability of success) that determines the worker�s bonus amount. Such an
imperfection of the performance measure is the source of the multitasking problem.

2This might be particularly the case when the manager is primarily interested in increasing the fund�s
returns in the short run. The most visible signal of the manager�s performance is perhaps the fund�s returns
over the last few quarters rather than the details of where the fund has been invested and what type of
underlying risks it bears.

3In some cases, however, the di¤erence between the two may not be one of job design but merely an issue
of whether the �rm is willing to share the credit (and blame) of the fund�s performance with its employees
(Massa, et al., 2008). The �rm may also exploit potential economies of scope in production by assigning the
same manager for both the tasks: �nding investment and assessing risk. In this article we will abstract away
from this issue of the production economies in order to stay focused on the multitasking problem. In fact,
as we will discuss shortly, the bene�t of individual accountability in our model stems from the economies of
scope in incentive provision rather than the economies of scope in production.

4We use the terms �individual accountability� and �team accountability� in conformity with the existing
literature on endogenous team formation (Corts, 2007). Note that this terminology indicates a classi�cation of
job design based on the associated incentive schemes. Alternatively, one can also think about this classi�cation
as one based on the type of specialization asked from the worker. Under �individual accountability,�the worker
specializes in a �job,�whereas under �team accountability,� the worker may specialize in a �task� (without
any loss of generality, the model we use in Section 2 can be reformulated in this way). It is also important
to note that the term �team�is used here in a slightly unconventional fashion. The term �team�often refers
to a production process where no production is feasible unless a group of workers collaborate (mainly due to
complementarities). In such settings, the �rm assigns the job to a group of workers, and it is up to the workers
to decide how they want to divide up the di¤erent tasks associated with the job. In contrast, we use the term
�team�as a form of task assignment, where the �rm instructs multiple workers to perform di¤erent parts of
a job, even when it is technologically feasible for one worker to work on all parts.
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The �rm decides whether to hire one worker to do both task 1 and 2 (i.e., adopt �individual
accountability�) or to hire two workers and assign each worker to one of the two tasks (i.e.,
adopt �team accountability�). Observe that if the �rm resorts to individual accountability,
to elicit the total e¤ort (between the two tasks) under �rst-best� i.e., two units� the �rm
needs to o¤er $4 in bonus: the worker chooses e1 = 0:8 and e2 = 1:2. Note that, while the
aggregate e¤ort level is two units, the worker overemphasizes task 2, creating an allocational
ine¢ ciency. The joint surplus produced is 0:96, less than the �rst-best level. Indeed, it is
not possible to ensure equal e¤ort in the two tasks because the �rm must provide a single
bonus payment to provide incentives for both tasks. Such a misalignment of e¤ort across
tasks re�ects the underlying multitasking problem and leads to a loss of joint surplus.
Now suppose that the �rm splits the job between the two workers: A is in charge of task 1

and B is in charge of task 2. The �rm can now resolve the multitasking problem by o¤ering
$5 bonus to A and $3:33 bonus to B. Under these incentives, both A and B exert exactly
one unit of e¤ort, and, consequently, the �rst-best surplus is attained. The key issue to note
is that, under team accountability, the �rm can vary the power of incentives for the two
workers, even if their pays are based on the same performance measure. Such �exibility in
the incentive provisions alleviates the multitasking problem. However, observe that the total
bonus requirement is now $8:33; this is much higher than the bonus required to elicit two
units of aggregate e¤ort under individual accountability. Consequently, the �rm�s gains from
reneging on its promise is also higher and it is harder for the �rm to credibly commit to such
a bonus pool.5 This is the basic trade-o¤ with team accountability that we will explore in
this article.
The bene�t of team accountability in solving the multitasking problem has been discussed

by several authors (Dewatriport, et al., 2000; Corts, 2007). The novel part of our analysis
is to highlight the cost of team accountability in terms of weaker implicit incentives (or,
equivalently, the need for larger bonus pool), and to draw out the implications of the trade-
o¤ between mitigating the multitasking problem and weaker implicit incentives on the �rm�s
job design decisions.
It is important to note that the necessity for a larger bonus pool under team account-

ability can be interpreted in terms of economies of scope in incentive provision. To see this
point, consider the example discussed above. Under individual accountability, a single bonus
payment (based on the job performance) o¤ers incentives for e¤orts in both tasks associated
with the job. The resulting economies of scope in incentive provision reduces the size of
the bonus pool the �rm needs to commit to. In contrast, under team accountability the job
performance measure must be used twice to provide incentives for each of the two e¤orts
separately (therefore two bonuses are required). Therefore the �rm must commit to a larger
bonus pool vis-a-vis the individual accountability case to provide the same incentive. One can
also interpret the larger bonus requirement under teams as a cost of solving the underlying
free-riding problem. The �rm needs to o¤er separate bonus payments for each of the two
tasks solely because a worker does not internalize the impact of his e¤ort on the other agent�s
payo¤ (we will further elaborate on this issue in Section 3).
We formalize this trade-o¤ between the mitigating multitasking problem and weakening

of the implicit incentives in a stylized model similar to the example discussed above. We
consider an environment where an in�nitely lived principal (�rm) hires two in�nitely lived
agents (workers). In each period, the two agents exert e¤ort to perform two jobs. Both
jobs involve two tasks each (i.e., there are four tasks in total). The e¤ort exerted in each
of the four tasks cannot be observed by the �rm; this gives rise to a moral hazard problem.

5This e¤ect is in sharp contrast with the credibility of promise discussed in the models of multilateral
implicit contracts (e.g., Levin, 2002). In these models implicit contracts are easier to sustain when promises
are multilateral rather than bilateral. We will further elaborate on this issue in section 3.
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However, each of the two jobs yields an observable performance measure. The �rm can o¤er
incentives by tying an agent�s compensation to the observed performance in the job(s) he has
been assigned to. We further assume that the outcomes of both jobs are nonveri�able. Thus,
the �rm can only o¤er an implicit contract (i.e., bonus payment) to provide incentives for
the two jobs.
The e¤ort exerted in all four tasks has the same marginal bene�t to the �rm. But the

e¤ort spent on each of the two tasks related to any particular job a¤ects the observed job
performance di¤erently. This gives rise to a multitasking problem. At the beginning of the
game, the �rm chooses between two alternative job designs: individual accountability and
team accountability. In such a setting, we characterize the optimal job design as a function
of the �rm�s discount factor (�) that parameterizes its reputation concerns.
We show that the optimal job design follows a cut-o¤ rule: team accountability is strictly

optimal only if the �rm�s discount factor is su¢ ciently high. The intuition behind this result
is simple but subtle. Recall that while team accountability allows the �rm to overcome the
multitasking problem, certeris paribus, it requires the �rm to credibly commit to a larger
bonus pool vis-a-vis individual accountability. If the �rm�s discount factor (�) is su¢ ciently
high, the threat of future punishment is signi�cantly large for the �rm, which, in turn, allows
the �rm to credibly promise to a larger bonus pool. Consequently, team accountability
becomes optimal for �rms with high �. However, for low �, the �rm lacks credibility to o¤er
a large bonus payments, and the �rm is better o¤ by resorting to individual accountability.
Under individual accountability, even a small bonus payment gives sharper incentives because
it elicits e¤ort in all tasks associated with a particular job. In other words, individual
accountability allows the �rm to exploit the economies of scope in incentive provision. A
single bonus payment provides some work incentives in all tasks, and the stronger incentives
can outweigh the ine¢ ciencies originating from the multitasking problem.
Given this basic intuition on how job design may interact with the implicit incentive

provisions, we consider a more general setting where the workers�performances in a subset of
jobs are indeed veri�able. In such an environment the �rm may opt to provide incentives to
its workers though a combination of explicit and implicit incentives. It may o¤er explicit pay-
per-performance contracts to the agents assigned to the jobs where contractible performance
measures are available and promise implicit contracts to the others.6

The scenario described above can be readily accommodated in our basic model. However,
a new e¤ect originates in the presence of the explicit contract: team accountability makes
implicit incentives more fragile by enhancing the �rm�s punishment payo¤. Following a break-
down of the implicit contract, the �rm may only rely on the explicit contract for motivating
the agents on the punishment path. Indeed, the �rm�s punishment payo¤ is simply the pro�t
it earns from the jobs that are compensated by the explicit contracts. Because team account-
ability allows the �rm to mitigate the multitasking problem, the explicit contracts are more
e¢ cient under team, and therefore, the �rm�s punishment payo¤ is higher under team ac-
countability than under individual accountability. This makes implicit incentives even more
fragile under team accountability. In other words, in the presence of explicit contracts, the
punishment threats are weaker under team accountability, and this, in turn, increases the
�rm�s temptation to cheat on its bonus promises.
This new e¤ect invalidates the cut-o¤ rule discussed above. Instead, we �nd that the

optimal job design must be one of the following: (i) Only the �rms with very high or very
low � opt for team accountability, while the �rms with intermediate � opt for individual
accountability. (ii) Team accountability is optimal for all �. The former is the case when

6As we will discuss in section 4, the commercial insurance industry is a typical example of such a multi-
tasking environment.
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the extent of the multitasking problem is low; the latter is the case when the multitasking
problem is severe.
The intuition behind this result is similar to the case of the cut-o¤ result discussed above,

except in the case of su¢ ciently low �. What drives the optimality of teams for low �? For
� su¢ ciently small, the �rm has low reputation concerns, and hence, the implicit incentives
are infeasible under both types of job designs. The �rm�s pro�t under team accountability
is higher because the explicit incentive can elicit e¤ort more e¢ ciently (for the explicitly
contracted job) under team setting by mitigating the multitasking problem. However, if the
multitasking problem is su¢ ciently large, then even for a moderate �, the stronger implicit
incentives under individual accountability need not be enough to compensate the associated
multitasking problem. In this case, team accountability remains optimal for all values of �.
The main results of the article yield interesting comparative statics predictions by inter-

linking the key parameters to the �rm�s job design decision. For example, the cut-o¤ result
discussed above indicates that when only implicit incentives are available, team accountability
becomes more likely as the �rm�s reputation concerns increase. Our results also imply that
team accountability is more likely to be the optimal job design when the extent of the mul-
titasking problem is severe. This �nding, however, is quite intuitive, because the key bene�t
of team accountability that we highlight in this model is that of overcoming the multitasking
problem. Thus, when the multitasking problem is severe, it favors team accountability over
individual accountability.

Related literature: This article relates to two broad strands of literature on agency theory�
incentives in team and implicit contracts� and highlights how team accountability may arise
endogenously as the optimal job design in the presence of implicit contracts.
Both explicit and implicit contracts in teams are well studied in the literature (Holmström,

1982; Che and Yoo, 2003; Kvaloy and Olsen, 2006, Bar-Issac, 2007; Rayo, 2007). However,
this literature generally assumes that team accountability arises exogenously and focuses
solely on the incentive issues that may arise in teams. Two important exceptions are Itoh
(1991) and Bar-Issac (2007), who argue that teamwork may indeed originate endogenously.
But none of these authors considers the role of multitasking in team formation.7 Our article
is perhaps more closely related to Corts (2007) who studies how team accountability may
endogenously emerge as the optimal job design in a multitasking environment with explicit
pay-per-performance contracts. Similar to our article, Corts highlights the bene�t of team in
overcoming the multitasking problem. However, he considers a di¤erent cost of team: teams
make the agents�income more noisy, for which the risk-averse agents must be o¤ered a higher
risk premium. Corts shows that team accountability might be the optimal job design when
the extent of the multitasking problem is high and/or the extent of risk aversion among the
agents is low. Our article complements Corts� article by highlighting a di¤erent trade-o¤
associated with the team accountability in the presence of implicit incentives. We abstract
away from the risk aversion issue by assuming that the agents are risk neutral, but introduce
a new friction in terms of implicit contracts. Drawing parallel to Corts, we �nd that team
accountability emerges as an optimal job design when the extent of multitasking problem is
large and/or the �rm�s concerns for future reputation (as represented by its discount factor)
is high.
Another article that is closely related to ours is Levin (2002). Levin discusses the costs and

bene�ts of multilateral contracting over bilateral contracting in employment relationships. In
a multilateral contracting, similar to team accountability, the �rm makes commitments to a

7Itoh�s argument relies on the need to foster collaborations among employees (also see Ramakrishnan
and Thakor, 1991). Bar-Issac shows how a team formed with the old and the young workers can restore the
reputation concerns of the old workers, who otherwise have nothing more to prove to the outside labor market.
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large group of employees, whereas under bilateral contracting, similar to individual account-
ability, the �rm makes commitments to individuals or small groups. There is no multitasking
issue in Levin�s model, and he highlights the trade-o¤ that while multilateral contracting
are di¢ cult to adjust in response to exogenous shocks to the business environment, it facil-
itates implicit contracts. The latter e¤ect is in sharp contrast with our article where team
accountability hinders implicit incentive provisions. We will revisit this issue in Section 3.
Finally, our article is also related to two �sub-branches�of the agency theory literature:

(i) multitasking (Holmström and Milgrom, 1991; Dewatripont, et al., 2000; Besanko, et al.,
2005) and (ii) interaction between explicit and implicit incentives (Gibbons and Murphy,
1992; Baker, et al., 1994). In contrast with our article, the existing literature on multitasking
primarily focuses on the explicit incentives. And the literature on the interaction between
incentives primarily discusses the characteristics of the optimal contract (that emerges from
such interplay between incentives) and is silent about its potential implications on job design
in a multitasking environment. An important exception is Schöttner (2008). Schöttner
investigates when to split three tasks between two agents, where both explicit and implicit
contracts may be feasible. In her model, task-spliting can elicit the �rst-best e¤ort level in
one of the three tasks, but implicit contracts are sharper under �no-task-splitting.�However,
these bene�ts and costs of task-spliting originate from very di¤erent reasons (compared to
our model), namely, speci�c restrictions on the agents�cost function and larger punishment
threats when tasks are not split. Also, in contrast to our results, Schöttner �nds that task-
splitting can be optimal only when implicit contracts are infeasible.

The article is organized as follows. Section 2 discusses the basic model and section 3
characterizes the optimal job design. The role of explicit contracts is discussed in section
4. Section 5 discusses the empirical implications of our main results and their robustness to
alternative modeling assumptions. Finally, section 6 concludes. Unless mentioned otherwise,
all proofs are in the appendix.

2. The Basic Model

Players. A long-run �rm, F , hires two long-run agents, A and B, to manage two funds.8

Stage game
In what follows we will describe the stage game that is played between the �rm and the

agents in each period � 2 f1; 2; :::g. The stage game is de�ned in terms of its four key
ingredients: technology, job design, contracts, and the players�payo¤s. We elaborate below
on each of these four ingredients.9

Technology. The technology is modelled after the canonical task allocation model of
Dewatripont et. al (2000). There are three central features to this class of models: (i) The
�rm only cares about the impact of the agents�e¤ort to its bottom line (de�ned below as V );
however, V is not observed by the agents, (ii) the agents�compensations are based on a set
of performance measures (de�ned below as x) that are observable but that are distinct from
the �rm�s bottom line, and (iii) the marginal impact of the agents�e¤orts on V and x are
di¤erent; this gives rise to a multitasking problem.10 The detailed description of the model
is as follows.

8The reference to the mutual fund industry is only to maintain a parallel with the example discussed in
the introduction. The model presented here does not purport to be a model of mutual funds but a general
model of multitasking with implicit incentives.

9For the sake of clarity, while describing the stage game we will suppress the time su¢ x � associated with
each variable.

10A similar model is also adopted in Corts (2007).
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Suppose F owns two funds, say 1 and 2, where in each period a fund performance can
either be good or bad. Let xi 2 f0; 1g be the index for the fund�s performance, where xi = 1
if the fund�s performance is good and xi = 0 if it is bad (i = 1; 2). We de�ne managing
a fund as a �job� (thus there are two jobs in total). Each job consists of two tasks: (i)
�nding investment opportunities that yield higher returns and (ii) assessing the underlying
risks associated with such an investment opportunity. We denote tasks 1 and 2 as the tasks
required for job 1, and tasks 3 and 4 as those required for job 2. Task j 2 f1; 2; 3; 4g requires
an e¤ort level of ej 2 [0; 1]. Let the cost of e¤ort in task j be c (ej) = e2j=2. The tasks a¤ect
the value, V , that F receives from the two funds, where

V (e) = �� (e1 + e2 + e3 + e4) ;

and � > 0. The value V is not observable to the agents. One may interpret V as the
impact of the agent�s e¤ort in various tasks to the bottom line of the �rm�s pro�tability. This
value accrues directly to the �rm and may not be clearly observed by the rank-and-�le of
a hierarchical organization. Furthermore, e¤orts are also unobservable, but each of the two
jobs has performance measures, x1 and x2, that are observable. The e¤orts in each of the
two jobs determine their performance as follows:

(1)
Pr (x1 = 1 j e) = e1 + e2;
Pr (x2 = 1 j e) = e3 + e4;

where  > 1. While x1 and x2 are observable, neither of them are veri�able.11 The parameter
 measures the extent of multitasking problem. An agent who is compensated on the basis
of x1 (or x2) has incentives to substitute away from e1 (or e3) and concentrate more on e2
(or e4), even though all tasks have the same marginal impact on the �rm�s value (V ). We
assume the following parametric restriction to ensure that the probabilities in equation (1)
are well de�ned (i.e., probabilities lie between 0 and 1) in any equilibrium of this game:

Assumption 1. � < 1= (1 + ) :

Assumption 1 requires � to be small when  is large and vice versa. An important issue to
note about this technology speci�cation is that it rules out all interactions across e¤orts in
di¤erent tasks. The costs (c) and value (V ) are additively separable in e¤orts ruling out any
substitutability or complementarity across tasks. The assumption of additive separability
streamlines the model and improves the exposition of the key trade-o¤ between multitasking
and implicit incentives. This trade-o¤ itself is not driven by this assumption, and we will
discuss the impact of relaxing this assumption in section 5.

Job design. Each agent is responsible for exactly two tasks. The type of allocation of
tasks between the two agents is referred to as the job design. The �rm chooses between two
alternative job designs: individual accountability and team accountability. The agents have
individual accountability when one is assigned to tasks 1 and 2 and the other is assigned
to tasks 3 and 4: Thus, under individual accountability, one agent is responsible for job 1
(i.e., sole responsibility of managing fund 1), while the other one is responsible for job 2 (i.e.,
fund 2). Without loss of generality, we assume that under individual accountability, A is
responsible for job 1 (i.e., tasks 1 and 2), while B is responsible for job 2 (i.e., tasks 3 and
4). In contrast, we assume that under team accountability, agent A is assigned to the tasks 1

11We will relax this assumption in section 4.
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and 4, while agent B is assigned to tasks 2 and 3. This is to say that, in a team, both agents
have responsibility for both jobs.
It is important to note that in order to form teams one can also consider grouping tasks

(1 and 3) and (2 and 4). This con�guration has a natural interpretation that, under team
accountability, each agent specializes in a task (say, �-task�or �non--task�) and performs
this task for all jobs. However, we specify the grouping (task 1 and 4) and (task 2 and 3) to
maintain a parallel with the case of individual accountability where each agent is responsible
for exactly one �-task�(i.e., task 2 or 4). Such a speci�cation is without loss of generality,
because both con�gurations yield the same surplus to the �rm (the total bonus requirement
to implement a given e¤ort pro�le e remains the same under the two con�gurations).12

Assumption 2. F decides on the job design at the beginning of the game, and its decision
is irreversible.

Once a particular design is chosen, it is prohibitively costly to change it at a future date.
This assumption simpli�es the analysis of the �rm�s punishment payo¤ and allows us to draw
out the implications of the key trade-o¤ between the multitasking problem and sustenance
of implicit contract more succinctly.13 With a slight abuse of notation, we add an auxiliary
period, say � = 0, at the beginning of the game to denote the stage when the �rm makes
its job design decision (this formulation will be useful below in de�ning the history and the
strategies in the game).

Contracts. Because the performance in both jobs is nonveri�able, the �rm can only o¤er
an implicit contract promising (in each period) a bonus payment if the fund performance turns
out to be good. So, under individual accountability (where agent A is assigned to job 1, and
B is assigned to job 2), a contract o¤ered to agent A (in each period) is a tuple (WA; �A),
whereWA is a lump sum wage and �A an implicitly contracted bonus payment that is o¤ered
only if x1 = 1. The contract o¤ered to agent B is of similar form. In contrast, in a team
setting, a contract o¤ered to agent k 2 fA;Bg (in each period) is a tuple (Wk; �k1; �k2),
where Wk is a lump sum wage and �ki is an implicitly contracted bonus payment that is
o¤ered only if xi = 1.14

12Also note that a related feature of such team formation is that every agent is a member in multiple teams.
This feature is, however, a modeling artifact and it is not essential for capturing the main trade-o¤ we are
interested in. One can use an alternative model similar to the numerical example discussed in the introduction
where there is only one job involving two tasks. In this case, the question of job design boils down to the
question of whether to hire one agent for both tasks or to hire two agents for each of the two tasks. We did
not use such a model, because it has a potential drawback: the number of agents in the environment changes
across the two forms of job design. Hence the �rm�s payo¤s under team and individual accountability may
not be readily comparable (especially when the reservation wages of the agents are strictly positive) leading
to an additional complexity in our analysis.

13Note that this assumption does not a¤ect the key trade-o¤ between multitasking and sustenance of
implicit contracts, and therefore, it does not a¤ect the qualitative nature of our results. However, if this
assumption is relaxed, on the punishment path, the �rm will always choose the job design that leads to
the highest punishment payo¤. This e¤ect will (weakly) increase the �rm�s punishment payo¤ under both
individual and team accountability and enhance its temptation to cheat.

14An important implication of such contract speci�cation is that bonuses are assumed to be additively
separable across jobs. While such a speci�cation rules out certain interesting types of compensation schemes,
e.g., relative performance evaluation, in some situations implementation of a �nonseparable� compensation
scheme may not be feasible or it may involve additional costs to the �rm (e.g., the job performance signals
may not be public, it may create incentives for sabotage, it may encourage the workers to collude and shirk,
etc.) However, as we will discuss in section 5, this assumption is not crucial for the qualitative nature of our
�ndings but we maintain this assumption because it considerably improves the analytical tractability of our
model.
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Payoffs. We assume that both the �rm and the two agents are risk neutral. The payo¤
of the �rm is simply the overall value that the �rm receives from the two funds net of its
expected wage payments. The payo¤ of an agent is the expected wages he receives net of the
cost of e¤ort. The exact expressions for the payo¤s will depend on the job design. Under
individual accountability, the �rm�s payo¤ in each period is

�I = V (e)�WA � �A Pr (x1 = 1 j e)�WB � �B Pr (x2 = 1 j e) ;

and the payo¤s of agent A and B are de�ned as

uIA =WA + �A Pr (x1 = 1 j e)� c (e1)� c (e2) ;
uIB =WB + �B Pr (x2 = 1 j e)� c (e3)� c (e4) ;

respectively. In contrast, under team accountability, the �rm�s payo¤ is

�T = V (e)�
X

k2fA;Bg
[Wk + �k1 Pr (x1 = 1 j e) + �k2 Pr (x2 = 1 j e)] ;

the payo¤ of the agent A (who is assigned to the tasks 1 and 4) and B (who is assigned to
the tasks 2 and 3) are

uTA =WA + �A1 Pr (x1 = 1 j e) + �A2 Pr (x2 = 1 j e)� c (e1)� c (e4) ;
uTB =WB + �B1 Pr (x1 = 1 j e) + �B2 Pr (x2 = 1 j e)� c (e2)� c (e3) ;

respectively. The outside option of both agents is assumed to be 0.

Time line. The sequence of events in a stage game (in an arbitrary period � � 1) is
summarized as follows:

� At date � :1 (beginning of the period): F o¤ers contracts to the two agents (W;�).
Agents decide whether to accept or reject their contract. Game goes to period � :2 if
at least one agent accepts his contract. Else the game ends.

� At date � :2: Agents exert e¤ort e in the tasks they have been assigned to.
� At date � :3: Performance signals x1 and x2 in the two jobs are realized.
� At date � :4 (end of the period): F pays the contracted lump sum wages (W ) and a
bonus ~� (which may be di¤erent from the implicitly promised bonus �).

Repeated game
The repeated game is simply the aforementioned stage game repeated in each period. Both

the �rm and the agents discount the future payo¤ at a common per period rate of � 2 [0; 1).

History of the game. We denote the public history of play within period � (or in
the � th stage game) by h� . For � = 0, this history consists of F�s choice of job design
d 2 fteam accountability, individual accountabilityg. Thus, h0 = d. For � � 1, h� is a tuple
that reports: (i) the contract o¤ered by F to the two agents (WA� ;WB� ); (ii) A and B�s
decisions on whether to accept the contract, zi� 2 faccept; rejectg, i 2 fA;Bg; (iii) the
outcomes in jobs 1 and 2, x1� and x2� ; and (iv) F�s actual bonus payments at the end of
period � , ~�� . That is, h� = ((WA� ;WB� ); (zA� ; zB� ); (x1� ; x2� ); ~�� ). We denote the public
history of the game at the beginning of period � by h� and the set of all possible public
histories of the game at the beginning of period � by H� . For � � 1, h� = (h1; h2; ::; h��1).
With a slight abuse of notation, we de�ne h0 = ? and H0 = ?.
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Strategies, Implicit contracts and equilibrium. We focus on pure strategy equi-
libria due to their analytical tractability. A strategy of F , �F , consists of the following
decisions: (i) the decision made in period one on the job design d; (ii) the decisions made at
the beginning of each period � � 1 on the contracts (WA� ;WB� ), given the history h� 2 H� ;
and (iii) the decisions made at the end of each period � � 1 on the actual bonus payments
~�� , given the history h

� 2 H� , contracts (WA� ;WB� ) and outcomes (x1� ; x2� ). A strategy of
agent i 2 fA;Bg, �i, consists of the following decisions: (i) whether to accept the contract
o¤ered by F at the beginning of each period � � 1, given the history h� 2 H� ; and (ii)
the e¤ort decisions in each period � in which he accepts F�s contract o¤er, given the history
h� 2 H� and contract (WA� ;WB� ).
For each period � � 1 and every history h� 2 H� , an implicit contract between the �rm

and the two agents describes: (i) the compensation the �rm should o¤er (and that should
be paid) to both agents; (ii) whether the agents should accept or reject the �rm�s o¤er; and
in the event of acceptance (iii) the agents� e¤ort levels in the tasks they are assigned to.
Because a part of the compensation (the bonuses) in this contract is only promised, the �rm
may have the incentive to renege on them once production occurs.
An implicit contract is self-enforcing if it constitutes a Perfect Public Equilibrium (PPE) in

trigger strategies of the repeated game.15 A strategy pro�le h�F ; �A; �Bi constitutes a PPE
in trigger strategies if: (i) given any public history, the strategy pro�le h�F ; �A; �Bi induces
a Nash Equilibrium in the continuation game, and (ii) both agents revert back to playing
their static best responses forever if F reneges on its promise to any of the two agents.16

3. Optimal Job design

The optimal job design is derived by comparing the �rm�s payo¤under individual and team
accountability when the associated incentive contracts are optimally chosen. Therefore, a
characterization of the optimal job design requires a characterization of the optimal contracts.
But before we do so, we brie�y discuss the �rst-best solution to the �rm�s contracting problem.
The �rst-best solution serves as a benchmark for comparing the e¢ cacy of each of the two

job designs. The �rst-best solution is the one that maximizes the joint surplus between the
�rm and the two agents. That is, the �rst-best e¤ort levels, eFB, solve maxe V (e)�

P
c (ej),

or, equivalently, must satisfy the �rst-order conditions

(2) � = eFBj 8j:

Equation (2) suggests that the �rst-best e¤ort in all four tasks should be the same and equal
to �, the marginal bene�t of e¤ort to the �rm.
We now focus on the optimal contracting under individual and team accountability and

compare the e¢ ciency of such contracts with the �rst-best outcome. The following lemma
(à la Levin, 2003) simpli�es the analysis by ensuring that without loss of generality, one can
restrict attention to the class of stationary contracts; i.e., we can characterize the optimal
contract in the repeated game as a tuple (WA;WB; �A; �B) under individual accountability
and as a tuple (WA;WB; �A1; �B1; �A2; �B2) under team setting, where the optimal contract
does not vary over time. (We omit the proof as it directly follows from the proof of Theorem
2 in Levin�s article)

15See Fudenberg et. al (1994) for a detailed discussion of the PPE solution concept.
16Note that we have assumed that irrespective of the job design both agents trigger punishment if the �rm

cheats on at least one of the two agents. This speci�cation, however, is not essential for our main results.
For example, one can consider alternative speci�cations where under individual accountability agents do not
observe each other�s performance, and hence, the �rm can cheat on one agent without drawing any punishment
for the other.
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Lemma 1. (Levin, 2003) If an optimal contract exists, there exists a stationary contract that
is also optimal.

Based on this observation we characterize below the optimal contracts under di¤erent job
designs.

3.1. Individual Accountability. The optimal contract must satisfy three constraints: (i)
Individual rationality (IR), i.e., the contract must o¤er both agents rents at least as large as
their outside options. (ii) Incentive compatibility (IC), i.e., given the incentives, both agents
choose their e¤ort levels to maximize their expected payo¤s. And �nally, (iii) dynamic
restriction (DR), i.e., the �rm�s promise of bonus payments must be credible. We elaborate
on each of these constraints below.
As the outside options of both agents are equal to 0, given the contracts (WA; �A) for

agent A and (WB; �B) for agent B and the prescribed e¤ort levels e, the (IR) constraints for
agent A and B are:

(IRIA) WA + �A Pr (x1 = 1 j e)� c (e1)� c (e2) � 0;

(IRIB) WB + �B Pr (x2 = 1 j e)� c (e3)� c (e4) � 0:

Next, consider the (IC) constraints. As we have discussed above, under individual ac-
countability, agent A is responsible for tasks 1 and 2 (i.e., job 1), and agent B is responsible
for tasks 3 and 4 (i.e., job 2). Given the implicitly contracted bonus payments �A (o¤ered if
x1 = 1) and �B (o¤ered if x2 = 1), the optimization problems for the two agents are:

max
e1;e2

WA + �A Pr (x1 = 1 j e)� c (e1)� c (e2) ;
max
e3;e4

WB + �B Pr (x2 = 1 j e)� c (e3)� c (e4) :

Thus, for any credible promise of bonus amounts, the agents� choice of e¤ort levels must
satisfy the following incentive compatibility conditions:

(ICIA) �A = e1 = e2=;

(ICIB) �B = e3 = e4=:

The (IC) constraints above highlight the multitasking problem. Consider the case of job 1
that is assigned to agent A (the case of job 2 is analogous). Given that both task 1 and task 2
are compensated based on the performance outcome in job 1, the e¤ort levels exerted in these
two tasks are linked by the relation e1 = e2=. Because  > 1, for any value of �A, agent A
will exert more e¤ort in task 2 than in task 1 (similarly for �B). And there cannot exist any
values of �A and �B that can ensure the �rst-best allocation e1 = e2 = � = e

FB
1 = eFB2 .

Finally, consider the dynamic restriction (DR) constraint. If the bonus promises are to be
credible, the discounted value of the �rm�s payo¤ stream from o¤ering such bonus payments
(i.e., equilibrium payo¤) must be greater than the bonus amount that the �rm forfeits by
reneging on its promise, plus the discounted value of the payo¤ stream the �rm may earn if
it reneges on its promise to one or both agents (i.e., punishment payo¤). Now, by modeling
speci�cations, if the �rm reneges on its promise to at least one of the two agents, both agents
revert back to their static best response, and do not exert any e¤ort. Consequently, if the �rm
decides to renege on its promise, it is optimal to renege on both agents and its continuation
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payo¤ on the punishment path is zero. Hence, we must have the following constraint on �A
and �B to ensure that reneging on bonus payments is not a pro�table deviation for the �rm:

(DRI)
�

1� ��
I � �A + �B:

The optimal contracting problem for the �rm can now be written as follows:

max
e;WA:WB ;�A;�B

V (e)�WA �WB � �A Pr (x1 = 1 j e)� �B Pr (x2 = 1 j e)

s:t:
�
IRIA

�
;
�
IRIB

�
;
�
ICIA

�
;
�
ICIB

�
; and

�
DRI

�
:

This problem can be written as follows by eliminating WA, WB, and e by using the (IR) and
(IC) constraints:

max
�A;�B

�I (�A; �B) = � (1 + ) (�A + �B)� 1
2

�
1 + 2

� �
�2A + �

2
B

�
s:t: �

1���
I (�A; �B) � �A + �B

�
DRI

�
We can further simplify this problem by observing the fact that for any �A and �B, �

I (�A; �B) =
�I (�A; 0) + �

I (0; �B) and �
I (�A; �B) is concave in both �A and �B. This observation im-

plies that at the optimum, �A = �B � � (say), and the �rm�s optimal contracting problem
boils down to:

PI :

8><>:
�I� � max

�
2
�
� (1 + )� � 1

2

�
1 + 2

�
�2
�

s:t: �
1��

�
� (1 + )� � 1

2

�
1 + 2

�
�2
�
� �:

�
DRI

�
Let r = (1� �) =�. Lemma 2 below characterizes the optimal pro�t of the �rm associated

with the above contracting problem.

Lemma 2. The optimal pro�t under individual accountability is a continuous and monoton-
ically decreasing function in r, given as follows:

(3) �I�(r) =

8<: �2(1 + )2=
�
1 + 2

�
if r � 1

2� (1 + )
4
�
�(1 + )r � r2

�
=(1 + 2) if 1

2� (1 + ) < r < �(1 + )
0 if r � �(1 + )

:

For r su¢ ciently large (i.e., � su¢ ciently low), the optimal pro�t is simply equal to the pun-
ishment payo¤ of the �rm, because no implicit incentives are feasible, even on the equilibrium
path. As r decreases (i.e., for larger values of �) the �rm gains more credibility in promising
implicit contracts. The resulting stronger implicit incentive induces greater e¤ort and leads
to an increase in the �rm�s pro�t until the maximal pro�t under individual accountability is
achieved.17

17Observe that the maximal pro�t under individual accountability is less than the pro�t associated with
the �rst-best, because the multitasking problem continues to prevail irrespective of how strong an implicit
incentive the �rm can credibly o¤er.
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While we present the formal proof of Lemma 2 in the Appendix, it is instructive to discuss
the basic argument behind this lemma as it highlights the nature of the optimal incentive
contract. Note that the solution to PI is simply the highest � feasible under

�
DRI

�
until the

unconstrained maxima is reached. We can rewrite the
�
DRI

�
constraint as

(4) RI(�) := �(1 + )� � 1
2
(1 + 2)�2 � r�:

The function RI(�) re�ects the credibility of the �rm when it promises a bonus of the amount
�, and this function can be interpreted as the �reputation capital�(or per-period reputational
capital) of the �rm, given the bonus �. Thus, for any given r, the optimal � is simply the
largest � that the �rm can credibly promise until the value of � that solves the unconstrained
version of PI becomes credible. The optimal bonus payment thus obtained, say �I� (r), is given
as:

(5) �I� (r) =

8<: � (1 + ) =
�
1 + 2

�
if r � 1

2� (1 + )
(2�(1 + )� 2r) =

�
1 + 2

�
if 1

2� (1 + ) < r < �(1 + )
0 if r � �(1 + )

;

The optimal pro�t under individual accountability can now be obtained by plugging the value
of �I� (r) in �

I .
Having characterized the optimal contract and the associated pro�t of the �rm under

individual accountability, we next analyze the case of team accountability.

3.2. Team Accountability. Recall that without any loss of generality, we assumed that un-
der team accountability, agent A is responsible for tasks 1 and 4, while agent B is responsible
for tasks 2 and 3. As in the case with individual accountability, we �rst discuss the (IR),
(IC), and (DR) constraints associated with the optimal contracting problem. The (IR)
constraints are analogous to the case of individual accountability and are given as follows:

(IRTA) WA + �A1 Pr (x1 = 1 j e) + �A2 Pr (x2 = 1 j e)� c (e1)� c (e4) � 0;

(IRTB) WB + �B1 Pr (x1 = 1 j e) + �B2 Pr (x2 = 1 j e)� c (e2)� c (e3) � 0:

However, the nature of the (IC) and the (DR) constraints is signi�cantly di¤erent com-
pared to the previous case. Consider the (IC) constraints �rst. Given the bonus payments
�A1 and �B1 (o¤ered if x1 = 1) and the bonus payments �A2 and �B2 (o¤ered if x2 = 1), the
optimization problem for the two agents are:

max
e1;e4

WA + �A1 Pr (x1 = 1 j e) + �A2 Pr (x2 = 1 j e)� c (e1)� c (e4) ;

max
e2;e3

WB + �B1 Pr (x1 = 1 j e) + �B2 Pr (x2 = 1 j e)� c (e2)� c (e3) :

Thus, the (IC) constraints that the optimal contract must satisfy are:

(ICTA) �A1 = e1; �A2 = e4=;

(ICTB) �B1 = e2=; �B2 = e3:
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The (IC) constraints above highlight both the bene�t and the cost of team accountability.
First, on the bene�t side, it shows how team can mitigate the multitasking problem. Consider
the case of job 1, where task 1 is performed by agent A and task 2 is performed by agent
B (the case of job 2 is analogous). Under team accountability, the �rm can vary the power
of the incentives o¤ered to agents A and B for each of the two tasks associated with job
1. Because two di¤erent agents are performing the two tasks, they can be paid di¤erently
for the same performance outcome in job 1 (i.e., �A1 need not be equal to �B1). Thus, the
e¤ort levels exerted in tasks 1 and 2 are no longer interlinked (as is the case with individual
accountability), and for �A1 = � and �B1 = �=, the �rst best allocation (e1 = e2 = �) can
be attained. Second, on the cost side, it shows why team accountability requires a higher
bonus pool (compared to individual accountability) to extract the same amount of e¤ort.
Under individual accountability, the �rm enjoys economies of scope in incentive provision.
By promising a bonus payment of $1 in a job, say job 1, the �rm can elicit e¤ort in both tasks:
one unit of e¤ort in task 1 and  units of e¤ort in task 2. But under team accountability,
such economies of scope disappear. In order to elicit the same level of e¤ort, the �rm must
pay $1 to each of the two agents, i.e., the total amount of bonus that the �rm must commit
to is $2. The need for a larger bonus pool can also be interpreted as a free-riding problem in
teams� an agent chooses his e¤ort levels to maximize his own payo¤ and ignores its impact
on the other agent.18

Next, consider the dynamic restriction (DR) constraint. Similar to the case of individ-
ual accountability, even under team accountability, both agents become aware of the �rm�s
deviation (and hence, trigger punishment), even if the �rm reneges its promise only with
one of the two agents. Thus, if the �rm decides to deviate, it is optimal to renege on both
agents, and the punishment payo¤ of the �rm would be 0. Consequently, the relevant (DR)
constraint is

(DRT )
�

1� ��
T � �A1 + �B1 + �A2 + �B2:

The optimal contracting problem can now be formulated as follows:

max
e;WA:WB ;�A1;�A2;�B1;�B2

V (e)�WA �WB � (�A1 + �B1) Pr (x1 = 1 j e)

� (�A2 + �B2) Pr (x2 = 1 j e)

s:t:
�
IRTA

�
;
�
IRTB

�
;
�
ICTA

�
;
�
ICTB

�
; and

�
DRT

�
.

Using the (IR) and (IC) constraints to eliminate WA, WB and e, we can rewrite the
problem as:

18As re�ected by the agents�(IC) constraints, we implicitly assume that the agents cannot collude between
themselves. This is a natural assumption in our model, because we are primarily interested in exploring how
the optimal job design is in�uenced by the reputation concerns of the �rm (rather than the agents). Indeed,
one can interpret the in�nitely lived agents as a sequence of short-lived agents with perfect observability of
the game�s history (i.e., at the beginning of each period, two new agents are hired who leave the environment
at the end of the period). This interpretation makes our model perhaps more realistic as most �rms face a
nontrivial rate of turnover in their workforce.
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max
�A1;�B1;�A2;�B2

�T � � (�A1 + �B1 + �B2 + �A2)� 1
2�

2
A1 � 1

2
2�2B1 � 1

2�
2
B2 � 1

2
2�2A2

s:t: �
1���

T � �A1 + �B1 + �A2 + �B2:
�
DRT

�
This problem can further be simpli�ed by virtue of the following observation: because, the
agents are ex ante symmetric, and �T is concave and additively separable in �s, at the
optimum, we must have �A1 = �B2 and �B1 = �A2. Using this fact, we can rewrite the �rm�s
problem as:

PT :

8><>:
�T� � max

�A1;�B1
2
�
� (�A1 + �B1)� 1

2

�
�2A1 + 

2�2B1
��

s:t: �
1��

�
� (�A1 + �B1)� 1

2

�
�2A1 + 

2�2B1
��
� �A1 + �B1:

�
DRT

�
The above optimization program PT is similar in spirit to its individual accountability

counterpart PI : However three issues are important to note.
First, the

�
DRT

�
constraint o¤ers a neat representation of the key trade-o¤ associated

with the team accountability. The
�
DRT

�
constraint indicates that, compared to individual

accountability, under team accountability, the �rm must commit to a larger bonus pool to
elicit the same e¤ort levels (because a separate bonus payment must be o¤ered for each task).
Consequently, team accountability makes implicit contracts di¢ cult to sustain. However,
given an aggregate bonus pool (i.e., �A1 + �B1) the �rm can vary the power of incentives
o¤ered for the two tasks (i.e., �A1 and �B1 do not have to be equal) and overcome the
multitasking problem.19

Second, the
�
DRT

�
constraint is in sharp contrast with the dynamic restrictions discussed

in the models of multilateral implicit contracts (Levin, 2002). In Levin�s model, the dynamic
restriction under multilateral contracts simply requires that the dynamic restriction under
bilateral contracts must hold at the aggregate level (i.e., summed over all agents). Thus,
the multilateral implicit contracts are easier to sustain. A similar e¤ect is also discussed by
Bernheim and Whinston (1990) in the context of multimarket contacts. In contrast, in the
current setting,

�
DRT

�
is not an aggregate version of

�
DRI

�
(i.e., the (DR) constraint under

individual accountability as given in the program PI).
Third, the solution technique is slightly more complex than the method used in the case of

individual accountability. This is due to the fact that now the �rm needs to maximize with
respect to two bonus amounts, �A1 and �B1, instead of one (as is the case in PI). We solve
this problem in two steps. First, for a given value of total bonus payments � = �A1+�B1 we
characterize the optimal individual bonus payments �A1 and �B1. Second, given the optimal
�A1 and �B1 as a function of �; we �nd the optimal � that the �rm can sustain.
The following lemma characterizes the optimal pro�t of the �rm under team accountability.

19Note that in our model, the free-riding problem in teams does not restrain the �rm from achieving the
�rst-best. As shown by Holmsrtom (1982), the free riding problem necessarily leads to a loss of e¢ ciency in
the absence of any �budget breaker�(i.e., under the constraint that the total wage bill for the team must be
equal to the total output produced). Indeed, in our model, the �rm is the residual claimant and works as the
�budget breaker.�Therefore, if the �rm can o¤er su¢ ciently strong incentives, there is no loss of surplus due
to free-riding and the �rst-best can be achieved (as we will show below).
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Lemma 3. The optimal pro�t under team accountability is a continuous and monotonically
decreasing function in r given as follows:

(6) �T� (r) =

8>>><>>>:
2�2 if r � �

+1

2rK (r) =2 if �
+1 < r �

1
2�( + 1)

4r (� � r) =2 if 1
2�( + 1) < r < �

0 if r � �

;

where K (r) = �(1 + )� r(1 + 2) +
h�
�(1 + )� r(1 + 2)

�2
+ 2(1� )2�2

i1=2
.

For r su¢ ciently large (i.e., � su¢ ciently small), the �rm has little reputation concern,
and hence, cannot credibly commit to any bonus payments. Consequently, it cannot induce
any e¤ort and makes zero pro�t. When r decreases (i.e., � increases), the �rm can credibly
commit to a positive but small amount of bonus payment. As discussed below in the context
of equation (7), when the �rm can only commit to a small amount of bonus payments, it
o¤ers bonuses only for the -tasks (e2 and e4). As r decreases even further, the �rm �nds it
optimal to o¤er bonus for both tasks, and �nally, for r su¢ ciently small, the �rst-best e¤ort
level becomes feasible.
A discussion of the basic argument behind Lemma 3 is useful in understanding the nature

of optimal contract under team accountability. We solve this problem in two steps. The �rst
step is to solve an auxiliary problem of maximizing the �rm�s pro�t by choosing �A1 and �B1
when it can commit to a �xed amount of total bonus � (= �A1 + �B1). The following are
the solutions to �A1 and �B1 in terms of the total bonus � (for � � � ( + 1) =):

(7)

�T
�

A1 = 0; �T
�

B1 = � if � < ��1
2

�T
�

A1 =
2���(�1)

1+2
; �T

�
B1 =

�+�(�1)
1+2

if ��1
2

� � < �+1
�T

�
A1 = �; �T

�
B1 =

�
 if � = �+1 :

(Note that if � > � ( + 1) =, the solution is trivial, because the maximal pro�t is always
attained by setting �T

�
A1 = � and �

T �
B1 = �=:)

This solution has two important implications: First, it suggests that when the size of
the available bonus pool (�) is small, the �rm should optimally give incentives only for the
�-task� (i.e., task 2). However, as the amount of total available bonus increases, the �rm
starts o¤ering bonuses for both tasks and eventually reaches the �rst best e¤ort levels. The
intuition behind this �nding is as follows: for a dollar of bonus payment (o¤ered if x1 = 1),
the marginal bene�t of e¤ort is higher if the e¤ort is spent on the -task, i.e., task 2 (recall
that  > 1). Thus, as long as the marginal cost of e¤ort is moderate, a dollar promised for
task 2 elicits more e¤ort from the agent than a dollar promised for task 1. When the �rm
cannot o¤er large bonus payments, the associated e¤ort level is low, and so is the marginal
cost of e¤ort. Thus, in such a scenario, the �rm is better o¤ by o¤ering the entire sum on task
2: But when a larger sum of bonus is o¤ered, more e¤ort is spent on task 2, and the marginal
cost of e¤ort associate with this task increases. Consequently, the marginal return of a dollar
of bonus payment (in terms of the increment in e¤ort induced) on task 2 decreases. In such
a scenario, the �rm �nds it optimal to split the available bonus pool between the two tasks
such that the marginal returns from bonus dollars o¤ered for each task are equal. When the
available bonus pool is signi�cantly large, both �A1 and �B1 can be chosen appropriately so
that the �rst-best e¤ort levels become available.
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Second, equation (7) suggests that under the optimal contract, di¤erent members of the
team receive di¤erent bonuses based on the same measure of performance (i.e., �T

�
A1 6= �T

�
B1).

Moreover, the relative size of an agent�s bonus is inversely related to his marginal contri-
bution to the team�s measured performance (x). For example, as  increases, e¤ort in task
2 has larger impact on the outcome of job 1. But agent B�s (agent assigned to task 2)
bonus payment, �T

�
B1, decreases in .

20 This observation simply highlights the fact that team
accountability allows the �rm to align incentives with tasks within a job to mitigate the
multitasking problem.
In the second step, we write the �rm�s pro�t function, and hence, the

�
DRT

�
constraint

in terms of the total bonus pool � using the solution as in equation (7). Now, similar to
the case of individual accountability, the

�
DRT

�
constraint can be written as RT (�) � r�

where RT (�) is the �reputation capital�of the �rm when it promises a total bonus pool of �.
Therefore, the �rm�s optimization problem boils down to the problem of �nding the largest
value of � subject to the (DR) constraint: RT (�) � r�.21 The optimal � thus obtained is
given as follows:

(8) �T� (r) =

8>>><>>>:
1
� ( + 1) if r � �

+1
1
2
K (r) if �

+1 < r �
1
2�( + 1)

2
2
(� � r) if 1

2�( + 1) < r < �

0 if r � �

;

where the function K (r) is as de�ned in Lemma 3. When � is very low (i.e., r is very high)
the �rm does not have enough credibility to promise any bonus payment. As � increases (i.e.,
r decreases) the �rm gradually gains credibility in committing to an increasing amount of
bonus payment. When � is su¢ ciently large (i.e., r is su¢ ciently low) the �rm has enough
credibility to promise a large bonus pool that can implement the �rst-best e¤ort levels. The
optimal pro�t under team accountability can now be obtained by plugging the value of �T

�
ki s

in �T .
Equipped with the complete characterization of the �rm�s pro�t under team accountability

and individual accountability, we can now address the issue of optimal job design.

3.3. Optimal job design. The optimal job design for a given value of r (and hence, for a
given �) is the one that yields the highest pro�t to the �rm. A comparison between the optimal
pro�ts under individual and team accountability leads to the following characterization of
the optimal job design.

Proposition 1. There exists a value of r, say r�, such that team accountability is strictly
optimal if and only if r < r�.

20This �nding is similar in spirit with a well-established result in incentive theory that the power of
incentive may inversely vary with the sensitivity of the observed performance measure with respect to e¤ort
(see Banker and Datar, 1989). Indeed, the workers� incentive contracts often intentionally ignore certain
observed performance measures so as to avoid the potential multitasking problem. For example, employment
contracts for school teachers usually do not specify that teachers�pay be conditioned on the standardized test
scores of their students, even though such scores are easily observed by both the employer and the employees.

21Of course, this is the case only until the unconstrained argmax value of � is obtained.
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This proposition suggests that the optimal job design follows a cut-o¤ rule: team account-
ability is optimal only for the �rms with su¢ ciently high reputation concerns, i.e., su¢ ciently
high � (or, equivalently, su¢ ciently low r). And individual accountability is optimal other-
wise. The key idea behind Proposition 1 is shown in �gure 1 below. Figure 1 depicts an
illustrative example of the optimal payo¤ from team

�
�T�
�
and individual accountability

�
�I�
�

as a function of the �rm�s discount rate represented by r. The optimal payo¤ functions inter-
sect each other at only one point, r�, where the payo¤ from team lies above the payo¤ from
individual accountability for all r < r�.
The intuition behind this result is simple. Recall that while team accountability allows

the �rm to overcome the multitasking problem, it also requires the �rm to credibly commit
to a larger bonus pool in order to elicit e¤ort in all tasks. If the �rm�s discount factor (�)
is su¢ ciently high, the threat of future punishment is signi�cantly large for the �rm, which,
in turn, allows the �rm to credibly promise a high level of bonus payments. Thus, team
accountability becomes optimal. However, for low �, the �rm may not have the credibility
to o¤er high bonus payments. In such a setting, the �rm might be better o¤ by resorting
to individual accountability. Individual accountability o¤ers economies of scope in incentive
provisions where a single performance bonus payment based on the job outcome can simulta-
neously provide incentives for all tasks associated with the job. The sharper incentives under
individual accountability may outweigh the ine¢ ciencies that originate from the multitasking
problem.

6

-
r

�

�
1+

r� �(1+)
2

� �(1 + )

�2(1+)2

1+2

2�2

�T� (r)

�I�(r)

s

c
c

Figure 1. The maximal pro�ts under team and individual
accountability (team is optimal for r < r�)

Proposition 2. The threshold r� is increasing in :

The proposition above suggests that as the multitasking problem becomes more severe
(i.e., as  increases), team accountability is more likely to be the optimal job design . This
�nding is quite intuitive, because the key bene�t of team accountability is that it mitigates
the multitasking problem. Thus, the more acute is the multitasking problem, the more likely
it is that the �rm will opt for teams.
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4. Interaction between explicit and implicit incentives

The previous section is instructive in drawing out the key trade-o¤ associated with team
accountability. But it does so under a simple framework where implicit contracts are the only
form of incentives available. However, in many real life scenarios, �rms augment implicitly
contracted bonus incentives with explicit pay-per-performance contracts. A typical example
of such an environment is the commercial insurance industry. The insurers rely on the agents
(brokers) to perform two key jobs: (i) search for (commercial) clients who are willing to buy
insurance coverage (i.e., search job) and (ii) elicit information about the clients�risk and cov-
erage requirement to ensure that the insurer�s o¤ered coverage matches the clients�needs (i.e.,
match job).22 The performance of an agent on the search job has a contractible measure� the
amount of business he brings to the insurer� and the agent is compensated through an ex-
plicitly contracted commission rate. The performance in the match job is, however, relatively
hard to verify. Often, the agents are compensated for the match job through an implicitly
promised bonus payment, or �contingency fee.�23 Both search and match jobs may involve
multitasking problems. E¤ective search may require active solicitation of new business from
existing clients as well as advertising the insurer�s products to a broader clientele. Similarly,
e¤ective matching may require the agent to not only advise the client on the appropriate
coverage but also to elicit accurate information about the risks borne by the clients.24 How
would the presence of explicit contracts a¤ect the optimal job design? This section discusses
this issue.
In order to accommodate explicit incentives in our model, we can simply �relabel� job 1

as the veri�able job and job 2 as the nonver�able job. In other words, we assume that x1 is
a veri�able signal while x2 continues to be nonveri�able. Let the piece-rates associated with
job 1 under individual accountability be bA and under team accountability be bA1 and bB1.
Thus, the �rm now chooses the tuple (WA;WB; bA; �B) under individual accountability and
the tuple (WA;WB; bA1; bB1; �A2; �B2) under team accountability.
Observe that for given values of bs and �s, the presence of explicit contracts does not change

the agents�incentives in any substantive way (compared to the case where all incentives are
implicit). It is merely a matter of relabelling �s as bs. Thus, it does not a¤ect the (IR) and
(IC) constraints. However, the (DR) constraint changes substantially for two reasons. First,
instead of both jobs, only the incentives associated with job 2 are now implicitly contracted
upon. Second, and more importantly, the presence of explicit contracts changes the �rm�s
punishment payo¤. This is due to the fact that the �rm can continue to rely on the explicit
incentives to elicit some e¤ort from the agents, even on the punishment path (this issue is
similar to the one discussed in Baker et al., 1994). Therefore, while discussing below the
optimal contracts under individual and team accountability, we will primarily focus on the
(DR) constraint.

22Commercial insurance coverage can often be a complex product, and it may be di¢ cult for the client
to assess his exact needs and the best suitable coverage. An important role of the agents is to o¤er �risk
analysis,� i.e., to infer the type and degree of risk borne by the client and to advice her on the appropriate
coverage.

23The success in the match job can be measured by observing how a particular client�s account has per-
formed in a given time period. One may expect that if the agents were successful in eliciting the information
on the level of risk borne by the client, the insurer would tailor its o¤ered coverage appropriately (and would
set the premium rate accordingly) to ensure that the account would be a pro�table one. Even though this
measure is observable, it is often not veri�able. Insurance claims may take several years to settle. The insurer
can manipulate reported performance of the account in a given �nancial year by using discretion as to when
and how to enter the claim record in its books (Wilder, 2002).

24�Misselling� of products is indeed a major concern in the insurance industry and, in general, in the
�nancial sector (see Indrest and Ottavianni, 2008).
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Consider �rst the case of individual accountability. On the punishment path, agent B
reverts back to the static best response and does not exert any e¤ort, i.e., e3 = e4 = 0. Con-
sequently, the optimal explicit contract on the punishment path simply solves the following
program (after eliminating WA, WB and e using (IR) and (IC)):

max
bA

�̂I � bA�(1 + )�
1

2
b2A(1 + 

2):

The optimal bA thus obtained is bIA = � (1 + ) =
�
1 + 2

�
, and the optimal punishment payo¤

is:

(9) �̂I =
1

2
�2
(1 + )2

1 + 2
:

Now, analogous to the program PI (i.e., the optimization problem of the �rm when both
jobs are implicitly contracted, as discussed in the previous section) the �rm�s optimization
problem can be written as (again, after eliminating WA, WB and e using (IC) and (IR)):

P̂I :

8>><>>:
�̂I� � max

bA;�B
�̂I (bA; �B) = � (1 + ) (bA + �B)� 1

2

�
1 + 2

� �
b2A + �

2
B

�
s:t: �

1��
�
�̂I (bA; �B)� �̂I

�
� �B: (dDRI)

It is important to note the following about P̂I : As before, �̂I (bA; �B) is additively separable
in bA and �B. Thus, �xing �B, the optimal bA; say b

�
A, is independent of �B and is exactly

equal to bIA. In other words, the �rm continues to o¤er the same explicit contract on both
the equilibrium and the punishment paths. An implication of this observation is that P̂I can
be rewritten as:

�̂I� � max
�B

�̂I (b�A; �B) = � (1 + ) (b
�
A + �B)� 1

2

�
1 + 2

� �
b�2A + �

2
B

�
= �̂I + � (1 + )�B � 1

2

�
1 + 2

�
�2B

s:t: �
1��

�
� (1 + )�B � 1

2

�
1 + 2

�
�2B
�
� �B: (dDRI)

This program is identical to the program PI , except for the fact that the objective function
in P̂I , �̂I (b�A; �B) is a linear transformation of the objective function in PI . Thus, one readily
obtains the following relationship between the pro�ts associated with the optimal contracts
in the two scenarios:

(10) �̂I� =
1

2
�I� + �̂

I :

The above equation is quite intuitive given the additive separability of the �rm�s optimiza-
tion problem with respect to the incentives o¤ered to each of the two agents. There are two
key di¤erences between the case where only implicit contracts are o¤ered to the two agents
and the case where explicit and implicit incentives are combined: (i) In the latter case, only
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one of the two agents faces an implicit contract and the strength of this implicit contract is
the same across the two cases. Hence, he generates a pro�t of �I�=2. (ii) The other agent, the
one who is responsible for job 1, faces an explicit contract that is the same on the punishment
path and on the equilibrium path. Hence, he always generates a pro�t of �̂I .
The same logic holds in the case of team accountability. But of course, the punishment

payo¤ under team accountability is di¤erent from its individual accountability counterpart.
On the punishment path under team accountability, both agents exert e¤ort only in response
to the explicit incentives. Thus, e3 = e4 = 0 as job 2 is compensated only through implicit
contracts. For e¤orts associated with job 1, the (IC) constraints for the agents imply that
e1 = bA1, and e2 = bB1. Therefore, analogous to the case of individual accountability, the
optimal explicit contract on the punishment path simply solves the following program (after
eliminating WA, WB, and e using (IR) and (IC)):

max
bA1;bB1

�̂T � �(bA1 + bB1)�
1

2
(b2A1 + 

2b2B1):

The optimal bA and bB thus obtained are bTA1 = �, and b
T
B1 = �=, and the optimal punish-

ment payo¤ is:

(11) �̂T = �2:

Now, analogous to the case of individual accountability (i.e., as given in equation (10)),
the equilibrium payo¤ under team accountability, say, �̂T� , is given as follows:

(12) �̂T� =
1

2
�T� + �̂

T :

Equations (10) and (12) o¤er a simple characterization of the �rm�s equilibrium payo¤
under team and individual accountability when explicit contracts are combined with implicit
incentives. Using these relationships, the following proposition shows that the optimal job
design no longer follows a cut-o¤ rule in the presence of explicit incentives.

Proposition 3. If  is su¢ ciently large, team accountability is optimal for all values of r.
Else, there exist two values of r, say r1 and r2, such that individual accountability is optimal
for all r 2 [r1; r2], and team accountability is strictly optimal otherwise.

The intuition behind this result is similar to the cut-o¤ result discussed in Proposition 1,
particularly when r is not too large. For r su¢ ciently small (i.e., � su¢ ciently large), the �rm�s
reputational capital is su¢ ciently large. Thus, the �rm can o¤er strong implicit incentives
even under team accountability. Consequently, team accountability becomes optimal because
it overcomes the multitasking problem. In contrast, for moderate values of r, individual
accountability dominates. This is due to the fact that for a moderate r, the �rm has some
reputational capital that allows it to o¤er implicit incentives. In such a scenario, the implicit
incentives are sharper under individual accountability. This is because the �rm only needs to
promise a bonus payment to one of the two agents, and hence, can credibly promise a larger
bonus amount than it could if it were to promise a bonus payment to each of the two agents
(as is the case with team accountability). When the multitasking problem is not too large
(i.e., moderate ), this incentive e¤ect outweighs the multitasking problem associated with
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individual accountability. But what drives the optimality of teams for su¢ ciently large r?
For r su¢ ciently large (i.e., � su¢ ciently small), the �rm has little reputation concerns, and
hence, the implicit incentives are infeasible under both types of job designs. The �rm�s pro�t
under team accountability is higher because the explicit incentive can elicit more search e¤ort
under team setting by mitigating the multitasking problem.
However, if the multitasking problem is su¢ ciently large, then even for a moderate r, the

stronger implicit incentives under individual accountability need not be enough to compensate
for the associated multitasking problem. In this case, team accountability remains optimal
for all values of r.
Figure 2 depicts an illustrative example of the case where individual accountability is

optimal for intermediate values of r.

6

-
r

�

r1 r2

�2(1+)2

1+2

2�2

�T� (r)

�I�(r)

s s

c
c

Figure 2. The maximal pro�ts under team and individual
accountability in the presence of explicit incentives: The case
where  is small (team is optimal for r < r1 and r > r2)

The following proposition presents a comparative statics with respect to the .

Proposition 4. Both r1 and r2 are increasing in : Moreover, there exist two threshold
values of , say  and , such that (i) for  < , r2 � r1 (the size of the interval for which
individual accountability is optimal) may increase or decrease in ; (ii) for  <  < , r2�r1
decreases in , and (iii) for all  > , team accountability is always optimal.

The proposition above suggests that if  is not too small to begin with, team accountability
becomes more likely to be the optimal job design as the extent of multitasking problem ()
increases. Indeed, when  is su¢ ciently large, individual accountability is never optimal.
This result is similar in spirit to Proposition 2, but with one caveat: for su¢ ciently low ,
an increase in the extent of the multitasking problem may favor individual accountability.
This happens for the following reason. An increase in  has two e¤ects on the �rm�s payo¤:
(i) Incentive e¤ect: It increases the e¤ort level in the -tasks as the marginal bene�t of task
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2 and task 4 increases with . This e¤ect favors both individual and team accountability.25

However, it is a priori unclear under which job design this e¤ect is more pronounced. (ii)
Multitasking e¤ect: It accentuates the multitasking problem, and, therefore, increases the
loss of e¢ ciency due to the misallocation of e¤ort across tasks. This e¤ect works in favor of
team accountability. When  is su¢ ciently small, the loss of surplus due to the multitasking
problem is small. Thus, if the underlying parameters are such that the incentive e¤ect is
signi�cantly stronger under individual accountability, it may dwarf the multitasking e¤ect.
Therefore, when  is su¢ ciently small to begin with, an increase in  may favor individual
accountability.
We conclude this section with the following observation: our assumption that the job design

is irreversible even on the punishment path may appear even more stringent in the current
setting since on the punishment path, we allow the �rm to change its explicit contract. So,
one may ask: if the �rm can rearrange the optimal explicit contract, why cannot it change its
job design on the punishment path? The key motivation behind maintaining this assumption
is that changing job design might be costly and time consuming (e.g., workers may need to
be trained for their new tasks) and therefore, the �rm may not be able to change its job
design as promptly as it can change its contracts with the workers. Having said that, it is
worth emphasizing that the statement of Proposition 3 remains unchanged (but of course,
the cuto¤ values r1 and r2 will be di¤erent) if we relax the �irreversibility of job design�
assumption. Overall, team accountability becomes more likely to be the optimal job design
if this assumption is relaxed. The proof of Proposition 3 when job design is indeed reversible
on the punishment path is given in the appendix.

5. Extensions and discussion

The results discussed in the previous sections (Propositions 1 and 3) o¤er a sharp char-
acterization of the optimal job design. However, as noted in description of the basic model,
these results are derived under a technology speci�cation that rules out any interaction be-
tween e¤orts in di¤erent tasks. To what extent are the key results robust to an alternative
technology speci�cation that allows interaction between e¤orts? Can one generalize our re-
sult in a model with an arbitrary number of jobs, tasks, and agents? Also, does the main
result continues to hold if a more general class of contracts becomes feasible? This section
discusses the robustness of our main results to each of these two issues. It also explores some
of the salient empirical implications of our results.

5.1. Substitutability between e¤orts in di¤erent tasks. Many of the multitasking mod-
els in the current literature assume that e¤orts in di¤erent tasks are substitutes in the agents�
cost functions (e.g., Holmström and Milgrom, 1991). In these models, substitutability of ef-
fort is one of the main sources of the multitasking problem. In contrast, in the model used
above, the cost of e¤ort is assumed to be additively separable. While such additive separabil-
ity improves the analytical tractability of the model, it rules out any room for substitutability
between e¤orts in di¤erent tasks. However, it turns out that the key insights of our basic
model (as discussed in the context of Proposition 1) continue to hold, even if one allows for
substitutability between e¤orts in the agents�cost function. The purpose of this subsection
is to illustrate this point.
In order to introduce substitutability between e¤orts, we insert an interaction term in the

agents�cost functions. Keeping all other aspects of the model unchanged, we assume that
the total cost of e¤ort for agent k 2 fA;Bg when he is assigned to tasks i and j is

25It is straightforward to see this e¤ect from the agents�(IC) constraints. For example, for agent A, under
individual accountability,

�
ICIA

�
implies e2 = �A and

�
ICTA

�
implies e4 = �A2. Thus, in equilibrium, an

increase in  increases both e2 and e4.
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c (ei; ej) =
1

2
e2i +

1

2
e2j + �eiej ;

where � 2 (0; 1] is a measure of substitutability between e¤orts in di¤erent tasks. Thus, agent
A�s total cost of e¤ort under individual accountability (when he is assigned to tasks 1 and
2) is c (e1; e2) = e21=2 + e

2
2=2 + �e1e2, and under team accountability (when he is assigned to

tasks 1 and 4) is c (e1; e4) = e21=2 + e
2
4=2 + �e1e4 (similarly for agent B). Note that when

� = 0, we revert back to the basic model. And at the other extreme, when � = 1, the e¤orts
in the two tasks become perfect substitutes. The following proposition highlights that when
the extent of substitutability is not too large, the key insights of the basic model continue to
hold.

Proposition 5. For � > 1=, team accountability is always optimal. Else, there exists a
value for r, say r̂, such that team accountability is optimal for all r < r̂, and individual
accountability is optimal otherwise.

The proposition above is similar in spirit to Proposition 1 with one important addition: for
� su¢ ciently large, team accountability is always optimal. The intuition behind this �nding
is as follows: Recall that the parameter � measures the extent of substitutability between
e¤orts in di¤erent tasks. Thus, when � is high, high e¤ort in one task signi�cantly increases
the marginal cost of e¤ort in the other task. This e¤ect makes the multitasking problem
more severe. The agent now has a stronger incentive to focus on the �-task�(at the expense
of the other task) not only because the e¤ort in the -task has a higher marginal impact on
the performance signal, but also because a high e¤ort in the -task makes the e¤ort in the
other task more costly.
In such a scenario, team accountability is even more e¤ective (compared to the case in the

basic model) in eliciting higher e¤orts in both tasks. As discussed before, team accountability
helps the �rm overcome the multitasking problem that emanates from the fact that the e¤orts
in the two tasks have di¤erent marginal impacts on the performance signal (modelled through
the parameter ). In addition, by varying the incentives for e¤ort in the two tasks, team
accountability can also o¤set the e¤ort substitution towards the �-task�that emanates from
the substitutability of e¤ort in the agents�cost function (modelled through the parameter �).
For example, the �rm can leave the incentives for the �-task�unchanged, but increase the
incentive for the other task (�non--task�) to compensate the agent for the higher marginal
cost of e¤ort in the �non--task�that stems from the high e¤ort in the �-task.�This e¤ect
makes team accountability more desirable when e¤orts are strong substitutes in the agents�
cost function.

Corollary 1. When e¤orts are perfect substitutes in the agents� cost function (i.e., when
� = 1), team accountability is always optimal.

This observation follows directly from Proposition 5 (hence we omit the proof in the Ap-
pendix). As  > 1; when � = 1, the condition � > 1= is trivially satis�ed, and this ensures
the optimality of team accountability irrespective of the �rm�s reputation concerns
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5.2. Generalization to multiple jobs, tasks, and agents. The basic intuition behind
our �nding continues to hold in a more general setup with an arbitrary number of jobs, tasks,
and agents. Suppose there are N agents, N jobs, and each job involves N tasks. Denote ejk
as the e¤ort exerted on task k in job j. Let V (e) = �

P
k;j ejk and Pr(xj = 1 j e) =

P
k kejk;

and k 6= k0 for some tasks k and k0 in job j. We continue to maintain the assumption that
the total cost of e¤ort to an agent is

P
e2jk=2 (where the sum is taken over all the tasks that

have been assigned to the agent). Observe that the key trade-o¤ between multitasking and
the sustenance of implicit contracts continues to prevail. E¤ort in each task has the same
marginal impact on the �rm�s value, but an agent assigned to job j will continue to exert more
e¤ort on the tasks that have higher impact on the performance measure xj (i.e., that have
higher  coe¢ cient in the Pr(xj = 1 j e) function). As before, under team accountability,
the �rm can assign each of the k tasks to k di¤erent agents and �ne-tune its incentives to
overcome the multitasking problem. But, the �rm now has to commit to a larger bonus pool,
because it has to make separate payments to each of the k di¤erent agents to elicit e¤ort in
all of the k tasks.
In fact, the cut-o¤ result discussed in Proposition 1 continues to hold in a general setting.

For analytical tractability, suppose that there are K1 jobs that are �non- jobs�(i.e., K = 1
forK = 1; 2; :::;K1) andK2 �-jobs�(i.e., K =  forK = K1+1; :::;K), whereK1+K2 = N .
Proposition 6 shows that team accountability is still optimal only for the �rms with su¢ ciently
high reputation concerns (low r).

Proposition 6. There exists a value of r, say r��, such that team accountability is strictly
optimal if and only if r < r��.

Two issues are worth mentioning in this regard. First, one may ask the following: if there
are arbitrary number of jobs, tasks, and agents (i.e., the number of jobs, tasks and agents
need not be equal to each other), under what condition does team accountability necessarily
solve the multitasking problem (i.e., elicit the �rst-best e¤ort in all tasks in all jobs)? The
answer to this question directly follows from Corts (2007). He shows that team accountability
can elicit �rst-best e¤ort allocation as long as there are enough agents so that in order to elicit
e¤ort in all tasks in all jobs, the �rm does not have to assign any agent to more tasks than
there are jobs.26 The intuition is that, in order to overcome the multitasking problem, the
team must generate a su¢ ciently rich set of performance measures for all agents. If an agent
is assigned to more tasks than there are jobs, then it must be the case that his performance
in at least two tasks is rewarded based on the outcome of a single job. Consequently, the
multitasking problem prevails.
The second issue concerns the comparative statics predictions. In the basic model, if one

increases the multitasking problem by increasing , team accountability becomes more likely
to be the optimal. In the general model one can also increase the extent of the multitasking
problem by increasing the number of tasks in each job (i.e., increase K). Does an increase in
K also favor team accountability? It may not. The reason is that an increase in the number of
tasks cuts both ways: it aggravates the multitasking problem under individual accountability
and favors team accountability, but it also requires more agents to be assigned in the same
job (albeit in di¤erent tasks) to overcome the aggravated multitasking problem. This calls
for an increased bonus pool (equivalently, a more severe free-riding problem) in teams that
the �rm may not be able to commit to.

26Note that this condition is trivially satis�ed in our basic model as well as in this general discussion. In
the general case, the number of jobs, tasks and agents are all equal to N . The basic model is a special case of
the general model where N = 2.
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5.3. General class of contracts. In the model we have considered a class of contracts
that is additively separable across jobs. While nonseparable compensations schemes may
have their own disadvantages (such as incentives for sabotage or collusion among coworkers)
additively separable contracts rule out certain interesting compensation schemes such as
relative performance evaluations. For example, under individual accountability, agent A�s
bonus following a success in job 1 may depend on whether agent B is also successful (Levin
(2002) shows that such contracts can be optimal in some settings).
The qualitative nature of our results does not change even if we allow for such relative per-

formance evaluations. To see this, consider a general contract under individual accountability
that is de�ned as follows: the contract o¤ered to agent i 2 fA;Bg consists of a �xed wage
Wi and bonus payments �ix given the performance outcome in jobs 1 and 2, x = (x1; x2).

27

Now, the agents�optimization problems are given by

max
e1;e2

WA +
P
x
�Ax Pr (x j e)� c (e1)� c (e2)

and
max
e3;e4

WB +
P
x
�Bx Pr (x j e)� c (e3)� c (e4) ;

where Pr (x j e) is the probability of outcome x 2 f(0; 0); (0; 1); (1; 0); (1; 1)g given e =(e1; e2; e3; e4).
Solving these problems one �nds that the optimal e¤ort choice of agent A is:28

(13) e1 =
�A10 + (1 + 

2)�B01(�A11 � �A10)
1� (1 + 2)2(�A11 � �A10)(�B11 � �B01)

and e2 = e1;

and that of agent B is:

(14) e3 =
�B01 + (1 + 

2)�A10(�B11 � �B01)
1� (1 + 2)2(�A11 � �A10)(�B11 � �B01)

and e4 = e3:

Two issues are important to note in the solutions above. First, the multitasking problem
continues to hold under individual accountability. For any arbitrary contract, e1 and e2
cannot be perfectly aligned (similarly for e3 and e4). Second, relative performance evaluation
might be optimal when the �rm has little reputation concerns. For example, from (13) one
�nds @e1=@�A10 = 1 � (1 + 2)�B01 when �A10 = �A11 (i.e., when the initial contract does
not consider relative performances). But �B01 must be less than the total bonus, say �,
that the �rm can credibly commit to. Hence, when � is su¢ ciently small and �A10 = �A11,
@e1=@�A10 > 0. In other words, when the �rm does not have the credibility to promise a
large bonus, it is more e¢ cient to pay a higher bonus to a successful agent A when agent B
fails than when agent B succeeds. An analogous argument holds for agent B.
Note that this �nding does not a¤ect the qualitative nature of our main result. If we

allow for relative performance contract, the �rm�s payo¤ under individual accountability is
(weakly) larger when � is low (i.e., when the size of the total bonus pool is low). But for
low �, individual accountability dominates team accountability, even under the additively

27Thus, because there are four possible outcomes of the performance measures in jobs 1 and 2, there are
four possible bonuses for agent A: �A11 (if x = (1; 1)), �A10 (if x = (1; 0)), �A01 (if x = (0; 1)) and �A00 (if
x = (0; 0)). The same holds for agent B.
28The associated �rst-order conditions reveal that the optimal e¤ort of an agent, say agent A, is driven

only by the di¤erences in the bonus payments �A10 � �A00 and �A11 � �A01 (similarly for agent B). Thus, in
the optimal contract, we will normalize �A01 = �A00 = �B10 = �B00 = 0.
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separable compensation scheme. Therefore, the feasibility of relative performance evaluation
would only reinforce our �ndings.
One can also consider a more general contract under team accountability where the �rm

promises an additional bonus when both jobs are successful. For example, the �rm may
promise a bonus, say �A, to agent A in addition to the bonuses �A1 (paid when job 1 is
successful) and �A2 (paid when job 2 is successful). Similarly, the �rm can promise an
additional bonus �B to agent B.
However, the qualitative nature of our main �nding� that team accountability is optimal

for high � and individual accountability is optimal for low �� continues to hold even if such
contracts are in place. When the �rm has low reputation concerns, it is optimal to set �A
and �B to zero because such incentives are less e¢ cient in eliciting e¤ort than the more direct
bonus incentives �A1, �A2; �B1 and �B2. Because �A and �B are o¤ered only if both jobs are
successful, the agent will collect them only with probability Pr (x1je) �Pr (x2je). When the
�rm cannot promise a strong implicit contract, e¤orts will be small and the marginal impact
of e¤ort on the product Pr (x1je) �Pr (x2je) would be signi�cantly smaller than the marginal
impact of e¤ort on each of these individual probabilities. Hence, the �rm gets more e¤ort
per dollar of bonus when the bonus is o¤ered as a direct incentives (i.e., �A1, �A2; �B1 and
�B2). Consequently, when the �rm�s reputational capital is very low (or when � is small), not
allowing for such bonus is without loss of generality and individual accountability continues
to dominate team accountability when � is small.

5.4. Empirical implications. Propositions 1 and 3, along with their corollaries, have im-
portant empirical implications. They highlight the fact that when bonus incentives are used
in a multitasking environment, a key parameter that a¤ects the �rm�s job design decision
(and hence, its performance) is the �rm�s discount factor, �. Furthermore, these results sug-
gest that the relationship between � and the optimal job design crucially depends on the
type(s) of incentives that are in place (i.e., explicit and/or implicit). When only implicit
incentives are feasible, team accountability is more likely for �rms with high �. In contrast,
when both implicit and explicit contracts are in place, team accountability becomes more
likely for �rms with either su¢ ciently low or su¢ ciently high �. The extent of the multi-
tasking problem also plays an important role. However, the comparative statics with respect
to  is relatively straightforward: for a given �, team accountability is more likely when the
multitasking problem is more severe (i.e., when  is large).
A potential challenge in testing these predictions is that the appropriate empirical measures

of  and � in a given industry might be di¢ cult to obtain. Also, in many cases a �rm�s job
design decision may be an artifact of the underlying production technology rather than a
strategic choice made by the �rm. However, the results of our model can be put to the
test in the context of certain industries where these measures are perhaps easier to obtain.
The mutual funds industry may be one such candidate. One can use a fund�s liquidation
probability as a measure of � (Getmansky et al., 2004). But �nding an empirical measure of 
is more challenging. Information on the types of assets a fund is invested in may be indicative
of the extent of the multitasking the fund�s managers are exposed to. For example, a fund
that is primarily invested in government bonds and treasury bills faces lower risks compared
to a fund that is entirely invested in the stock market. One may argue that the manager of
the latter fund faces a higher multitasking problem because she not only is responsible for
increasing the returns of the investment but also has to pay close attention to the underlying
risks that the fund is bearing.29 As discussed before, mutual funds often classify themselves
as �comanaged�or �team managed�funds, where a group of employees are jointly responsible

29However, one must be careful of a potential endogeneity problem stemming from the fact that the type
of assets in which the fund is invested is also a choice variable for the �rm.
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for the performance of a set of funds. If one can interpret sole managed funds as individual
accountability and team managed funds as team accountability, data on mutual funds may
be used to test the predictions discussed above. For example, our result suggests that, if
implicit contracts are the only incentive device used by the funds, one may expect to �nd
that funds with low liquidation probabilities (high �) and relatively risky portfolio (high )
are team-managed, whereas funds with high liquidation probabilities (low �) and relatively
safe portfolio (low ) are individually managed.
Several authors have studied the relative pro�tability of the individual- and team-managed

funds (Prather and Middleton, 2002; Massa, 2008),30 but empirical studies on the impact of
the �rms� reputation concerns on job design are scarce. Our �ndings indicate that in the
presence of multitasking and implicit contracts, a �rm�s discount factor can indeed play a
key role in its job design decision. Therefore, in such an environment, it might be important
that an empirical investigation of the pro�tability of di¤erent job designs controls for the
�rms�reputation concerns in order to avoid any potential selection bias.

6. Conclusion

In many industries, �rms often adopt team accountability, even when individual account-
ability remains a technologically viable option. This article highlights how team accountabil-
ity may emerge endogenously in a multitasking environment, where the �rm relies on implicit
contracts, i.e., bonus payments. In the presence of implicit contracts, team accountability
involves an interesting trade-o¤: it alleviates the multitasking problem but weakens the im-
plicit incentives. The contribution of this article is to formalize this trade-o¤ and to draw
out its implications on the �rms�optimal job design policy.
The key result is that the optimal job design follows a cut-o¤ rule. Only the �rms with

high enough reputation concerns (i.e., discount factor) opt for team accountability. The
more acute the multitasking problem is, the more likely it is that the �rm would opt for
team accountability. However, when, in addition to implicit contracts, explicit pay-per-
performance contracts are also feasible, the cut-o¤ rule stated above is no longer optimal.
In such a scenario, �rms with both su¢ ciently high and su¢ ciently low reputation concerns
opt for team accountability, and �rms with moderate reputation concerns opt for individual
accountability.
Overcoming the multitasking problem need not be the only driver of a �rm�s job design

decision. For example, team accountability may emerge to manipulate career concerns of
the agents by obscuring their individual contributions to the project�s overall performance
(Massa et al., 2008). Teams may also originate from the need to facilitate cooperation
within organization (Shaw and Schneier, 1995). But the main contribution of this article is
in extending our understanding of how job design interacts with implicit contracts and how
�rms may pro�t from adopting team accountability in a multitasking environment when they
must rely on implicit incentives.

Appendix

Proof of Lemma 2. The optimal pro�t under individual accountability is obtained by solv-
ing program PI . Let b�I(�) = 2

�
� (1 + )� � 1

2

�
1 + 2

�
�2
�
, which is the function being

maximized in PI ; and note that that constraint DRI in PI can be written as RI(�) :=
�(1 + )� � 1

2(1 + 
2)�2 � r�. The remainder of the proof is given by the following steps.

30However, as noted earlier, in both of these articles factors other than the mutlitasking problem may also
drive the choice between individual and team accountability.
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Step 1. Suppose that r � � (1 + ) =2. In this case, the DRI constraint is satis�ed when
� = � (1 + ) =

�
1 + 2

�
, which is the (unconstrained) argmax b�I(�). Thus, in this case,

� = � (1 + ) =
�
1 + 2

�
must be the solution to PI .

Step 2. Suppose that r � �(1 + ). In this case, RI0(0) � r . Because RI(0) = 0 and RI
is concave, this implies that RI(�) < r� for all � > 0; and the only value of � that satis�es
the DRI constraint is � = 0. Thus, in this case, � = 0 is the solution to PI .
Step 3. Suppose that � (1 + ) =2 < r < �(1 + ). Because r > � (1 + ) =2, the DRI

constraint is violated for all � � � (1 + ) =
�
1 + 2

�
. Thus, from direct inspection of the

DRI constraint and b�I(�), it immediately follows that the solution to PI is the highest value
of � that satis�es the DRI constraint. Because r < �(1+), RI0(0) > r. This, together with
the fact that RI is concave and RI(�) < r� for all � � � (1 + ) =

�
1 + 2

�
, implies that the

highest value of � that satis�es the DRI constraint is given by the condition RI(�) = r�.
Thus, in this case, � = (2�(1 + )� 2r) =

�
1 + 2

�
is the solution to PI .

To obtain �I�(r) as given in the statement of the Lemma, simply plug the solutions obtained
for � in Steps 1-3 in b�I(�).
Proof of Lemma 3. The optimal pro�t under team accountability is obtained by solving
problem PT . We solve this problem in two steps. First, for a given value of total bonus
payments � = �A1 + �B1, we characterize the optimal individual bonus payments �A1 and
�B1. Second, given the optimal �A1 and �B1 as a function of �, we �nd the optimal � that
the �rm can sustain.
The optimal individual bonus payments �A1 and �B1 given total bonus �, solve the fol-

lowing problem:

RT (�) := max
�A1;�B1

� (�A1 + �B1)� 1
2

�
�2A1 + 

2�2B1
�

s:t: �A1 + �B1 � �; �A1 � 0; and �B1 � 0

Note the RT (�) denotes the reputational capital that is achievable given total bonus �. Using
the Kuhn-Tucker optimization method, we obtain that the solution to this problem is as given
in (7):

�T
�

A1 = 0; �T
�

B1 = � if � < ��1
2

�T
�

A1 =
2���(�1)

1+2
; �T

�
B1 =

�+�(�1)
1+2

if ��1
2

� � < �+1
�T

�
A1 = �; �T

�
B1 =

�
 if � = �+1 :

This solution implies that

RT (�) =

8><>:
�� � 1

2
2�2 if � < ��1

2�
2��(1 + ) + �2(1� )2 � 2�2

�
=2
�
1 + 2

�
if ��1

2
� � < �+1

�2 if � � �+1
.

Now the �rm�s optimization problem boils down to: �T� � max 2RT (�) s.t. RT (�) � r�.
Using the same procedure that is used to solve program PI (see the proof of Lemma 2), we
obtain that the solution to this problem is

�T� (r) =

8>>><>>>:
1
� ( + 1) if r � �

+1
1
2
K (r) if �

+1 < r �
1
2�( + 1)

2
2
(� � r) if 1

2�( + 1) < r < �

0 if r � �

;
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where the functionK (r) = �(1+)�r(1+2)+
h�
�(1 + )� r(1 + 2)

�2
+ 2(1� )2�2

i1=2
.

To obtain �T� (r) as given in the statement of the Lemma, plug this solution in 2R
T (�).

Proof of Proposition 1. The proof is given by the following steps.
Step 1. We �rst show that for r 2 [� (1 + ) =2; �], �I� (r) and �

T
� (r) cannot inter-

sect. To prove this fact we simply note the following. First,
��@�I�=@r�� < ��@�T� =@r�� for

r 2 [� (1 + ) =2; �]. Second, �T� (� (1 + ) =2) = �2
�
1� �2

�
< �2(1 + )2=

�
1 + 2

�
=

�I� (� (1 + ) =2).
Step 2. For r 2 [�= (1 + ) ; � (1 + ) =2], �I� (r) and �T� (r) must intersect at an unique

point. To see this, note that for all r 2 [�= (1 + ) ; � (1 + ) =2] ; �I� (r) = �2(1+)2=
�
1 + 2

�
.

But @�T� =@r < 0 for r 2 [�= (1 + ) ; � (1 + ) =2] and �T� (� (1 + ) =2) = �2
�
1� �2

�
<

�2(1 + )2=
�
1 + 2

�
< 2�2 = �T� (�= (1 + )). So, by Mean Value Theorem, there must

exist a value of r 2 [�= (1 + ) ; � (1 + ) =2], say r�, such that �T� (r�) = �I� (r�) = �2(1 +
)2=

�
1 + 2

�
. Finally, r� is unique as �T� is monotone for r 2 [�= (1 + ) ; � (1 + ) =2].

Proof of Proposition 2. As shown in the proof of Proposition 1, r� solves 2r�K (r�) =2 =
�2(1+)2=

�
1 + 2

�
: This equation has two solution for r:Using the fact that r� < �= ( + 1),

the only admissible solution is r� = � (1 + )2 =4
�
1 + 2

�
. Observe that @r�=@ =

�
�
1 + 

�
4 + 2 + 2

��
=4
�
1 + 2

�2
> 0:

Proof of Proposition 3. The proof is similar in spirit to the proof of Proposition 1, and it
is given by the following steps.
Step 1. We �rst show that 8r 2 [� (1 + ) =2; �], �̂I� (r) and �̂T� (r) can intersect at most

once. To prove this fact we proceed as follows: For r 2 [� (1 + ) =2; �] denote �(r) =
�̂T� � �̂I�. Thus, if �̂I� (r) and �̂T� (r) intersect for any value of r, say r̂, �(r̂) = 0. Now,
�0 (r) = �2 (2r + � ( � 1)) =

�
2 + 4

�
< 0: Thus, there cannot exist more than one value

of r such that �(r) = 0.
Step 2. Because �0 (r) < 0, and � > � (1 + ) =2, we need to consider three cases:

(i) �(�) > 0 () �(� (1 + ) =2) > 0), (ii) �(�) < 0; �(� (1 + ) =2) > 0, and (iii)
�(� (1 + ) =2) < 0 () �(�) > 0). The rest of the proof characterizes the nature of
intersection of �̂I� (r) and �̂

T
� (r) in each of these three cases.

Step 3. If �(�) > 0 (which is the case if  is su¢ ciently large) �(r) > 0 for
all r 2 [� (1 + ) =2; �]. In this case �̂T� (r) > �̂I� (r) 8r. To see this, note that 8r 2
(0; � (1 + ) =2], �̂I� (r) = �̂I� (� (1 + ) =2) < �̂T� (r) (where the last inequality follows from
the fact that �̂T� (r) is a (weakly) decreasing function in r, and �(� (1 + ) =2) > 0 ,
�̂T� (� (1 + ) =2) > �̂I� (� (1 + ) =2)). Similarly, 8r 2 (�;1), �̂T� (r) = �̂T� (�) > �̂I� (r)
(where the last inequality follows from the fact that �̂I� (r) is a (weakly) decreasing function
in r, and �(�) > 0, �̂T� (�) > �̂

I
� (�)).

Step 4. If �(�) < 0 but �(� (1 + ) =2) > 0, then �̂I� (r) and �̂
T
� (r) intersect at exactly

two points. By Mean Value Theorem, there exists an value of r, say r1 2 [� (1 + ) =2; �]
such that �(r1). Also, for the argument discussed in Step 3 above, there cannot exist any
value of r < � (1 + ) =2 such that �(r) = 0. However, there must exist another value
of r 2 (�;1), say r2, such that �(r2) = 0: The argument is as follows: 8r 2 (�;1),
�̂T� (r) = �

2. But �̂I� (�) > �
2 = �̂T� (�) (because we start with the premise that�(�) < 0)

and �̂I� (� (1 + )) = �
2 (1 + )2 =2

�
1 + 2

�
< �2 = �̂T� (� (1 + )). As �̂

I
� is continuous and

monotone, by Mean Value Theorem, there must exist a unique value of r, say r2, such that
�̂I� (r2) = �

2 = �̂T� (r2).
Step 5. Finally, consider the case where �(� (1 + ) =2) < 0. Because �0 (r) < 0 8r 2

[� (1 + ) =2; �], there cannot exist any value of r 2 [� (1 + ) =2; �] such that �(r) = 0.
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However, there must exist a value of r 2 (0; � (1 + ) =2), say r1, such that �(r1) = 0. The
argument is as follows: For r � �= (1 + ), �̂T� (r) = 2�2 > �2 (1 + )

2 =
�
1 + 2

�
= �̂I� (r) ;

and by assumption, �̂T� (� (1 + ) =2) < �̂
I
� (� (1 + ) =2) = �

2 (1 + )2 =
�
1 + 2

�
. As �̂T� (r)

is continuous and monotonically decreasing, by Mean Value Theorem, there exists a unique
value of r, say r1, such that �(r1) = 0. Also, by the argument discussed in Step 4, there
must exist a unique value of r 2 (�;1), say r2, such that �(r2) = 0. This observation
completes the proof.

This proposition also continues to hold when job design is assumed to be reversible on the
punishment path. The modi�ed proof is given by the following steps:

Step 1: Note that if assumption 2 is relaxed, only �I� is a¤ected since the �rm would
prefer to revert to team accountability on the punishment path. Using the steps discussed
in the proof of lemma 2 in the article, one obtains that the �rm�s payo¤ under individual
accountability is:

�I�(r) =8><>:
�2(1 + )2=

�
1 + 2

�
if r � 2 �

+1

[�2(1 + 2) + r� (1 + )� r2 + r
p
(2�� r) (2�� r)]=

�
1 + 2

�
if 2 �

+1 < r < 2�
1
2�
2(1 + )2=

�
1 + 2

�
if r � 2�

Also recall that the �rm�s payo¤ function under team accountability is:

�T� (r) =

8>>><>>>:
2�2 if r � �

+1

2rK (r) =2 if �
+1 < r �

1
2�( + 1)

4r (� � r) =2 if 1
2�( + 1) < r < �

0 if r � �

where K (r) = �(1 + )� r(1 + 2) +
h�
�(1 + )� r(1 + 2)

�2
+ 2(1� )2�2

i1=2
.

Step 2: Fix � at an arbitrary value in (0; 1=2) (note that by assumption 1 and the fact
that  > 1, � 2 (0; 1=2)). Now, depending on the value of  we need to consider multiple
cases (and subcases):
Step 2a (Case 1:  � 3): In this case 1

2�( + 1) > 2�. Several subcases must be
considered:
Case 1.1:  is high enough so that �T� (r) > �I�(r) for all r. Clearly in this case, the

functions never cross and team is always better.
Case 1.2:  is such that �T� (2�


+1) > �

I
�(2�


+1) = �

2(1+)2=
�
1 + 2

�
and �T� (r) < �

I
�(r)

for some r. In this case, �T� (r) > �I�(r) for all r 2 [0; 2� 
+1 ]. So �

T
� (r) < �I�(r) for some

r > 2� 
+1 . Moreover, since

1
2�(+1) > 2� (because  � 3), we know that �

T
� (r) > �

I
�(r) for

all r 2 [2�;1]. It remains to analyze what happens for r 2 [2� 
+1 ; 2�]. We can check that

�I�(r) is concave in [2�

+1 ; 2�]. We can also check that �

T
� (r) is convex in [2�


+1 ;

1
2�(+1)]

which means that �T� (r) is convex in [2�

+1 ; 2�] since

1
2�( + 1) > 2� in this case ( � 3).

From the fact that �I�(r) is concave and �
T
� (r) is convex in [2�


+1 ; 2�], it follows that �

I
�(r)

and �T� (r) cross two times. Let the crossing points be r1 and r2. If �
T
� (2�) > limr"2� �

I
�(r),

then r2 < 2�, else r2 = 2� (strictly speaking it is not a crossing point in this case since �I�
is not continuous at r = 2�, but let us allow this abuse of language.) So in both cases, we
obtain that �T� (r) < �

I
�(r) if r 2 [r1; r2] and �T� (r) > �I�(r) if otherwise, as claimed.

Case 1.3:  is such that �T� (2�

+1) < �

I
�(2�


+1) = �

2(1+)2=
�
1 + 2

�
. This immediately

implies that �T� and �
I
� cross once in [0; 2�


+1 ]. Denote this crossing point by r1. From the
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fact that �I�(r) is concave and �
T
� (r) is convex in [2�


+1 ; 2�], it follows that �

I
�(r) and �

T
� (r)

cross at most once in [2� 
+1 ; 2�]. Denote this crossing point by r2. If �

T
� (2�) > limr"2� �

I
�(r),

then r2 < 2�, else r2 = 2� (strictly speaking it is not a crossing point in this case since �I�
is not continuous at r = 2�, but we admit the abuse of language for the sake of brevity.) So
in both cases, we obtain that �T� (r) < �

I
�(r) if r 2 [r1; r2] and �T� (r) > �I�(r) if otherwise, as

claimed.

Step 2b (Case 2:  < 3): In this case 1
2�( + 1) < 2�. Again, several subcases must be

considered:
Case 2.1:  is high enough so that �T� (r) > �

I
�(r). Clearly in this case, the functions never

cross and team is always better.
Case 2.2:  is such that �T� (

1
2�( + 1)) > �

I
�(
1
2�( + 1)) and �

T
� (r) < �

I
�(r) for some r.

Since �I�(r) is constant for r < 2�

+1 and is concave in [2�


+1 ; 2�] and �

T
� (r) is convex in

[2� 
+1 ;

1
2�(+1)], it follows that �

T
� (r) and �

I
�(r) cross twice in [0;

1
2�(+1)]. Moreover, one

can check that in this case @�T� (r)=@r > @�
I
�(r)=@r for all r 2 [12�( + 1); 2�]. This implies

that �T� (r) > �I�(r) for all r 2 [12�( + 1); 2�]. Thus, there must exist r1 and r2 such that
�I�(r) > �

T
� (r) for all r 2 [12�( + 1); 2�] and �

I
�(r) < �

T
� (r) for the other values of r.

Case 2.3:  is such that �T� (
1
2�(+1)) < �

I
�(
1
2�(+1)). Since (a) �

I
� is constant and �

T
� is

decreasing for r 2 [0; 2� 
+1 ] and (b) �

I
� is concave and �

T
� is convex in [2�


+1 ;

1
2�( + 1)], it

follows that �I� and �
T
� cross at most once in [0;

1
2�(+1)]. Now, we can check that in this case

�T� � �I� is convex in [12�( + 1); 2�], which implies that �
T
� (r) and �

I
�(r) cross at most once

in r 2 [12�( + 1); 2�]. Since �
T
� (2�) > �I�(2�), we know they cross (eventually at r = 2�).

Therefore, there must exist r1 and r2 such that �I�(r) > �
T
� (r) for all r 2 [12�( + 1); 2�] and

�I�(r) < �
T
� (r) for the other values of r.

Proof of Proposition 4. The proof is given in the following steps.
Step 1. (comparative statics for r1) Recall from the proof of Proposition 3, that if

r1 < � (1 + ) =2, r1 solves

(15) �2(1 + )2=
�
1 + 2

�
= �2 + r1K (r1) =

2;

whereas if r1 � � (1 + ) =2, r1 solves

(16) �2 + 2r1 (� � r) =2 =
�
�2 (1 + )2 + 4� (1 + ) r � 4r2

�
=2
�
1 + 2

�
:

If r1 < � (1 + ) =2, then �̂T� (� (1 + ) =2) < �̂I� (� (1 + ) =2). This holds only if  < 4:
015 4. From equation (15) one obtains r1 = 2� � (2=(2 + 1)) � ((

p
2 + 1)=(3 + 2

p
2 � ))

(this is the only root of equation (15) in the relevant interval of values of r, i.e., in [�=( +
1); �(+1)=2]). Now, from direct inspection of r1, it follows that r1 is an increasing function
of  in the interval (1; 4:0154).
If r1 > � (1 + ) =2, from equation (16) one obtains r1 = 1

2(
p
2 � 1)� ( � 1) (this is the

only positive root of equation (16)). Now, @r1=@ = 1
2(
p
2� 1)� (2 � 1) > 0.

Step 2. (comparative statics for r2) Recall from the proof of Proposition 3, that r2 solves

(17) �2 =
�
�2(1 + )2 + 4�(1 + )r2 � 4r22

�
=2(1 + 2):

The only positive root of equation (17) is r2 = 1
2�(1+

p
)2. Thus, @r2=@ = 1

2�(1+1=
p
) >

0:
Step 3. (Upper threshold for ) De�ne  as the value of  for which r1 = �. Now,

for all r 6= r1, �T� > �I�. To see this, note the following: for r > r1, �T� > �I� as �
I
� is

decreasing in r for r 2 (� (1 + ) =2; � (1 + )), but, by de�nition of r1, for all r > r1 = �;
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�T� (r) = �
T
� (r1) = �

I
� (r1) (note that this implies r1 = r2 = �). Also, for r < r1, �

T
� > �

I
�.

The argument is as follows. Because �T� (�) = �I� (�), and for all r 2 (� (1 + ) =2; �) ;
�T 0� (r) < �

I0
� (r) (see step 1 of the previous proof), �

T
� (� (1 + ) =2) > �

I
� (� (1 + ) =2). Now,

for all r < � (1 + ) =2, �T� (r) > �
T
� (� (1 + ) =2) > �

I
� (� (1 + ) =2) = �

T
� (r). Now, because

r1 > � (1 + ) =2, for  = , r1 must solve (16). But such an r1 is increasing in  (by step 2).
So, for all  > , r1 > �, which is inadmissible by de�nition of r1. Thus, �T� > �

I
� for all r:

Step 4. (Lower threshold for ) De�ne  as the value of  for which r1 = �(1 + )=2,
or  = 4:0154. For  >  (and  < ), r1 must solve equation (16) (see Step 1 of this
proof). Now, for  2 (; ), r1 is given by the solution to equation (16), and r2 is given by
the solution to equation (17). Therefore, r2 � r1 = 1

2(
p
2� 1)� ( � 1)� 1

2�(1 +
p
)2:

Step 5. Finally, compute @ (r2 � r1) =@ = 1
2(1=

p
 + 2 �

p
2 (2 � 1)). Observe that

@ (r2 � r1) =@ < 0 for  =  = 4:0154, and @2 (r2 � r1) =@2 < 0. Therefore, for all  > ,
@ (r2 � r1) =@ < 0.
Proof of Proposition 5. This proof closely follows the proof of Proposition 1. So, for
the sake of brevity, we omit some of the details that are already discussed in the proof of
Proposition 1 and highlight the key di¤erence between this case and the proof of Proposition
1.
The key di¤erence lies in the agents� (IC) constraints. With substitutability between

e¤orts, one obtains the following:

(ICIA)

(
e1 =

�A(1��)
1��2 ; e2 =

�A(��)
1��2 if � < 1=

e1 = 0 e2 = �A if � � 1=

(the ICIB is obtained from ICIA by substituting �A by �B, e1 by e3 and e2 by e4), and

(ICTA)

8<:
e1 = 0; e4 = �A2 if �A1 < ��A2
e1 =

�A1���A2
1��2 ; e4 =

�A2���A1
1��2 if ��A2 < �A1 <


��A2

e1 = �A1; e4 = 0 if �A1 >

��A2

(the ICTB is obtained from ICTA by substituting �A1 by �B2, �A2 by �B1, e1 by e3 and e4 by
e2). Given this, by following the same steps as in Section 3, one obtains the �rms�optimal
pro�t functions.
Under individual accountability, the �rm�s optimal pro�t function is as follows. For � <

1=,

�I�(r) =

8<: �2� ( + 1) � if r � ��=2
4r (�� r (� + 1) + �) � if ��=2 < r � ��
0 if r > ��

,

where � = ( + 1)=(� + 1) and � = (1� �) =(2 � 2� + 1). For � � 1=,

(18) �I�(r) =

8<: �2 if r � �=2
4r (�� r) =2 if �=2 < r � �
0 if r > �

.

In both cases, �I�(r) is a continuous and decreasing function of r.
Under team accountability, the �rm�s optimal pro�t function is as follows. Let � =�
2� + 2 + 1

�
(1� �) = (� + 1). For � < 2,

(19) �T� (r) =

8>>>><>>>>:
2�2=(� + 1) if r � �=((� + 1) ( + 1))
r(�+ (�2 + #)1=2)=2 if �=((� + 1) ( + 1)) < r � r0
�2 if r0 < r � �=2
4r (�� r) =2 if �=2 < r � �
0 if r > �

,
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where � = 2� ( + 1) � 2r
�
2� + 2 + 1

�
, # = (2� ( � 1))2 (1� �) = (� + 1) and r0 =

�=(2( + 1� �1=2)). For � > 2,

�T� (r) =

8>><>>:
2�2=(� + 1) if r � �=[(� + 1) ( + 1)]
r(�+ [�2 + #]1=2)=2 if �=[(� + 1) ( + 1)] < r � r1
4r (�� r) =2 if r1 < r � �
0 if r > �

,

where r1 = �(+2�+2��1=2)=(2(2�+)) and � = 2� (� +  � 1)
�
2� + 2 + 1

�
=(1+�).

In both cases, �T� (r) is a continuous and decreasing function of r. The reminder of the proof
is given in the following steps.
Step 1. We �rst show that for � � 1=, �I�(r) � �T� (r). Note that � > 1= implies

that (1 + �)= (1� �) >
�
2� + 2 + 1

�
=2, which is equivalent to � < 2. Thus one has to

compare �I�(r) as given in (18) with �
T
� (r) as given in (19). For r > �=2, �I�(r) = �T� (r).

For r � �=2, �T� (r) � �2, since �T� (r) is decreasing in r and �
T
� (�=2) = �2. Thus, for

r � �=2, �T� (r) � �2 = �I�(r).
Step 2. We next show that for � < 1=, �T� (r) and �

I
�(r) must intersect at a unique

point for r 2 [0;maxf�; ��g]. First note that when � < 1=, �T� (0) = 2�2=(� + 1) >
�2� ( + 1) � = �I�(0). Also note that when � < 1=,  < �, implying that � < ��. Thus,
�I�(�) > 0 = �

T
� (�). So, by Mean Value Theorem, there must exist a value of r 2 [0; ��], saybr, such that �T� (br) = �I� (br). Furthermore, independent of whether � < 2 or � > 2, when

� < 1=, �T� (��=2) < �I�(��=2). Hence, br 2 (0; ��=2). In (0; ��=2), �I�(r) is constant, and
�T� (r) is either constant or decreasing. Moreover, 8 r 2 (0; ��=2) such that @�T� (r)=@r = 0,
�T� (r) 6= �T� (r). Thus, �

T
� (r) and �

I
�(r) intersect only once in (0; ��=2). Finally, note that��@�T� (r)=@r�� � ��@�I�(r)=@r�� 8 r 2 (��=2; ��), implying that �T� (r) and �I�(r) do not intersect

for r 2 (��=2; ��).

Proof of Proposition 6. Following steps analogous to derivation in the main model, one
the derive the optimal contract and pro�t functions under individual and team accountability.
Under individual accountability, the optimal contract and the associated pro�t function are:

�I� (r) =

8<: � (k1 + k2) =
�
k1 + 

2k2
�

if r � 1
2� (k1 + k2)

(2�(k1 + k2)� 2r) =
�
k1 + 

2k2
�
if 1

2� (k1 + k2) < r < �(k1 + k2)
0 if r � �(k1 + k2)

and

�I�(r) =

8><>:
J�2 12

(k1+k2)2

(k1+2k2)
if r � 1

2� (k1 + k2)

2J �(k1+k2)r�r
2

k1+2k2
if 1

2� (k1 + k2) < r < �(k1 + k2)

0 if r � �(k1 + k2)
:

Under team accountability, the optimal contract and the associated pro�t function are:

�T
�

1 = 0; �T
�

2 = �
k2

if � < �k2
�1
2

�T
�

1 = 2���(�1)k2
k2+2k1

; �T
�

2 = �+�(�1)k1
k2+2k1

if �k2
�1
2

� � < � (k1+k2)

�T
�

1 = �; �T
�

B1 =
�
 if � � � (k1+k2) ;

and

�T� (r) =

8>>><>>>:
J�2 (k1+k2)2 if r � 1

2�
k1+k2
k2+k1

JrK (r) =2 if 1
2�

k1+k2
k2+k1

< r � 1
2 ( + 1)�

Jr 2
2
k2 (�� r) if 1

2 ( + 1)� < r < �

0 if r � �

;
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where K (r) = A +
�
A2 + 2(1� )2�2k1k2

�1=2
and A = �(k2 + k1) � r(k2 + 2k1). Note

that 12� (k1 + k2) >
1
2� ( + 1), since k1; k2 � 1. The remainder of the proof is given by the

following steps.
Step 1. We �rst show that for r 2 (12�(k1 + k2)=(k2 + k1); �],

��@�I�=@r�� < ��@�T� =@r��.
For r 2 (12�(k1 + k2)=(k2 + k1); � (k1 + k2) =2] this is obvious, since @�

I
�=@r = 0 and

@�T� =@r < 0. For r 2 [� (k1 + k2) =2; �] ; @�I�=@r = 2J (�k1 � 2r + �k2) =(k1 + 2k2) and
@�T� =@r = 2Jk2 (�� 2r) =2. Since @�I�=@r < 0 and @�T� =@r < 0,

��@�I�=@r�� < ��@�T� =@r��
is equivalent to @�I�=@r � @�T� =@r > 0. This di¤erence is increasing in r, since @(@�I�=@r �
@�T� =@r)=@r = 4J

�
k1k2 � 2 + 2k22

�
=(
�
k1 + 

2k2
�
2) > 0 (recall that k2 � 1). Thus, it is

su¢ cient to show that @�I�=@r � @�T� =@r > 0 when r = � (k1 + k2) =2. This condition is
equivalent to 2�2 (k1 �  + k2) J�k2 > 0 (again, recall that k2 � 1).
Step 2. We now show �I� and �

T
� cross only once. Because �

T
� (

1
2�(k1 + k2)=(k2 + k1))

= J�2(k1+k2)=2 > J�
2 1
2(k1+k2)

2=(k1+
2k2) = �

I
�(
1
2�(k1+k2)=(k2+k1)) and �

T
� (�) =

0 < �I�(�), by Mean Value Theorem, there must exist a value of r 2 [12�(k1 + k2)=(k2 +
k1); �], say r��, such that �T� (r

��) = �I� (r
��). Moreover, since

��@�I�=@r�� < ��@�T� =@r�� for
r 2 (12�(k1 + k2)=(k2 + k1); �], r

�� must be unique.
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